
MIT Open Access Articles

Efficient numerical schemes for 
multidimensional population balance models

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Inguva, Pavan K and Braatz, Richard D. 2023. "Efficient numerical schemes for 
multidimensional population balance models." Computers & Chemical Engineering, 170.

As Published: 10.1016/j.compchemeng.2022.108095

Publisher: Elsevier BV

Persistent URL: https://hdl.handle.net/1721.1/157748

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-ShareAlike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/157748
http://creativecommons.org/licenses/by-nc-sa/4.0/


Efficient Numerical Schemes for

Multidimensional Population Balance Models

Pavan K. Inguva1 and Richard D. Braatz1
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Abstract

Multidimensional population balance models (PBMs) describe chemical and biological processes having a
distribution over two or more intrinsic properties (such as size and age, or two independent spatial variables).
The incorporation of additional intrinsic variables into a PBM improves its descriptive capability and can be
necessary to capture specific features of interest. As most PBMs of interest cannot be solved analytically,
computationally expensive high-order finite difference or finite volume methods are frequently used to obtain
an accurate numerical solution. We propose a finite difference scheme based on operator splitting and solving
each sub-problem at the limit of numerical stability that achieves a discretization error that is zero for
certain classes of PBMs and low enough to be acceptable for other classes. In conjunction to employing
specially constructed meshes and variable transformations, the scheme exploits the commutative property of
the differential operators present in many classes of PBMs. The scheme has very low computational cost –
potentially as low as just memory reallocation. Multiple case studies demonstrate the performance of the
proposed scheme.

1 Introduction

Multidimensional population balance models (PBM) are of significant interest due to having the ability to
describe population dynamics that vary across multiple intrinsic variables. Examples of such populations include
crystals that vary along two independent spatial dimensions such as length and width [1–4]; granules that vary
in solid, liquid, and gas content [5, 6] or porosity, binder content, and composition [7]; and cell populations that
vary in multiple properties such as cell size, age, and intracellular concentrations of species of interest such as
enzymes [8–10]. Another important class of problems where multidimensional PBMs are valuable are systems
where, in addition to variations in one or more intrinsic variables, there is spatial variation such as in slug or
plug flow in a tube which introduces an additional intrinsic variable in the form of axial position or residence
time [11–15].

Most PBMs of interest cannot be solved analytically, and so many numerical methods have been developed.
Compared to 1D PBMs, multidimensional PBMs are more challenging to solve numerically, as the solution
process is much more memory intensive and prone to numerical diffusion and/or dispersion. As such, various
numerical schemes have been specifically targeted at multidimensional PBMs based on the finite difference
method (FDM) [8, 16], the finite volume method (FVM) [5, 17–20], the finite element method (FEM) [21, 22],
spectral methods [23], and Lattice Boltzmann methods [24]. Often, these methods are computationally costly
and/or highly mathematically involved which impacts their adoption and deployment.

In previous work, we demonstrated how FDM, when thoughtfully applied using specially constructed meshes
and variable transformations, can accurately and efficiently solve 1D PBMs [15]. This article describes the
extension of those methods to multidimensional PBMs. Many classes of PBMs have differential operators that
commute which enables the use of operator splitting techniques with no splitting error [25]. These operator
splitting techniques transform a multidimensional PBM into a series of 1D sub-problems, each of which can be
solved highly accurately and efficiently as previously shown. Although the presented methods and case studies
focus on 2D PBMs, the extension to n-dimensional PBMs naturally follows.

2 Theory and Methods

This section is structured as a series of cases in which each case outlines the development of the finite difference
numerical scheme for a specific class of PBM. Finite difference schemes are benchmarked with the SharpClaw
solver [26], a high-order weighted essentially non-oscillatory (WENO) solver from the PyClaw package [27, 28].
Default solver settings with a maximum CFL number of 1 for all problems were used. For cases where the
growth rate in the PBM is variable (in the context of hyperbolic conservation equations, this is also called
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variable velocity advection), PyClaw requires the equation to be formulated non-conservatively which is done by
employing a variable transformation (e.g., see (16)) or by expanding out the “spatial” derivatives.

2.1 Case 1: PBMs with Constant Growth Rate

Consider the homogeneous PBM,

∂f(t, a1, a2)

∂t
+ g1

∂f(t, a1, a2)

∂a1
+ g2

∂f(t, a1, a2)

∂a2
= 0, f(0, a1, a2) = f0(a1, a2), (1)

where a1 and a2 are the intrinsic variables and g1 and g2 are the constant positive growth rates. PBMs of this
form arise when the driving force for growth is constant which, for example, can occur in crystallization where
an external control system maintains a constant supersaturation (see [15] and citations therein). The efficient
and accurate numerical solution to this class of PBMs using the techniques described in this section is already
known (e.g., see [25, 29, 30]). The solution of the PBM (1) is considered here for pedagogical reasons, as a
robust understanding of this section simplifies the presentation of subsequent, more complicated PBMs.

The application of the upwind finite difference scheme to (1) gives

f j,ki+1 − f j,ki
∆t

+ g1
f j,ki − f j−1,k

i

∆a1
+ g2

f j,ki − f j,k−1
i

∆a2
= 0, (2)

where i is the time index, j is the index for a1, and k is the index for a2. The discretized PDE can be specified
either in natural variables (such as in the Taylor series expansions) or by employing the index previously used,
i.e.,

f j,ki+1 − f j,ki
∆t

+ g1
f j,ki − f j−1,k

i

∆a1
+ g2

f j,ki − f j,k−1
i

∆a2
≡ f(t+ ∆t, a1, a2)− f(t, a1, a2)

∆t

+ g1
f(t, a1, a2)− f(t, a1 −∆a1, a2)

∆a1

+ g2
f(t, a1, a2)− f(t, a1, a2 −∆a2)

∆a2
. (3)

Defining α = g1∆t
∆a1

and β = g2∆t
∆a2

for compactness, the corresponding upwind scheme is

f j,ki+1 = f j,ki − α(f j,ki − f j−1,k
i )− β(f j,ki − f j,k−1

i ). (4)

To characterize the local truncation error of the scheme, consider the Taylor series expansions

f(t+ ∆t, a1, a2) =
∞∑

n=0

(∆t)n

n!

∂nf

∂tn

∣∣∣∣
t,a1,a2

,

f(t, a1 −∆a1, a2) =

∞∑

n=0

(−1)n
(∆a1)n

n!

∂nf

∂an1

∣∣∣∣
t,a1,a2

,

f(t, a1, a2 −∆a2) =

∞∑

n=0

(−1)n
(∆a2)n

n!

∂nf

∂an2

∣∣∣∣
t,a1,a2

. (5)

Equation 1 implies that the higher order derivatives are related by

∂nf

∂tn
= (−1)n

n∑

p=0

n!

p!(n− p)!g
n−p
1 gp2

∂nf

∂an−p1 ∂ap2

= (−1)n

(
gn1
∂nf

∂an1
+ gn2

∂nf

∂an2
+
n−1∑

p=1

n!

p!(n− p)!g
n−p
1 gp2

∂nf

∂an−p1 ∂ap2

)
(6)
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Correspondingly, the local truncation error is

Error =

[
∂f

∂t
+ g1

∂f

∂a1
+ g2

∂f

∂a2

∣∣∣∣
t,a1,a2

−
(
f j,ki+1 − f j,ki

∆t
+ g1

f j,ki − f j−1,k
i

∆a1
+ g2

f j,ki − f j,k−1
i

∆a2

)

=
∞∑

n=2

1

n!

[
g1(−1)n(∆a1)n−1 ∂

nf

∂an1
+ g2(−1)n(∆a2)n−1 ∂

nf

∂an2
− (∆t)n−1 ∂

nf

∂tn

∣∣∣∣
t,a1,a2

=

∞∑

n=2

(
(−1)n

n!

[
(g1(∆a1)n−1 − gn1 (∆t)n−1)

∂nf

∂an1
+ (g2(∆a2)n−1 − gn2 (∆t)n−1)

∂nf

∂an2

− (∆t)n−1
n−1∑

p=1

n!

p!(n− p)!g
n−p
1 gp2

∂nf

∂an−p1 ∂ap2

∣∣∣∣
t,a1,a2

)

=
∞∑

n=2

(
(−1)n

n!

[
1

gn1

(
(∆a1)n−1

gn−1
1

− (∆t)n−1

)
∂nf

∂an1
+

1

gn2

(
(∆a2)n−1

gn−1
2

− (∆t)n−1

)
∂nf

∂an2

− (∆t)n−1
n−1∑

p=1

n!

p!(n− p)!g
n−p
1 gp2

∂nf

∂an−p1 ∂ap2

∣∣∣∣
t,a1,a2

)

=
∞∑

n=2

(
(−1)n(∆t)n−1

n!

[
1

gn1

(
1

αn−1
− 1

)
∂nf

∂an1
+

1

gn2

(
1

βn−1
− 1

)
∂nf

∂an2

−
n−1∑

p=1

n!

p!(n− p)!g
n−p
1 gp2

∂nf

∂an−p1 ∂ap2

∣∣∣∣
t,a1,a2

)
(7)

It can be shown using von Neumann stability analysis that the explicit upwind scheme is conditionally stable for

α, β ≥ 0, α+ β ≤ 1. (8)

The above upwind scheme is not able to solve the PBM exactly irrespective of the values of α and β. The
selection of α and β to satisfy the second inequality in (8) results in excessive numerical diffusion [25].

An alternative approach is to employ operator splitting (also called fractional step methods) [25, 31] which
enables the original PBM (1) to be expressed in a manner more amenable to numerical solution. Furthermore,
operator splitting incurs no additional error penalty when the operators commute [25]. To illustrate this point,
consider the application of first-order order splitting (also known as dimensional splitting in this instance) to (1),

∂f∗

∂t
+ g1

∂f∗

∂a1
= 0, f∗(t, a1, a2) = f(t, a1, a2), t ∈ [t, t+ ∆t],

∂f∗∗

∂t
+ g2

∂f∗∗

∂a2
= 0, f∗∗(t, a1, a2) = f∗(t+ ∆t, a1, a2), t ∈ [t, t+ ∆t],

f(t+ ∆t, a1, a2) = f∗∗(t+ ∆t, a1, a2). (9)

To write the subsequent equations more compactly, A and B are used to represent the operators g1
∂
∂a1

and

g2
∂
∂a2

respectively. An expression for the splitting error for first-order splitting can be obtained by considering
the Taylor series expansion of f about t+ ∆t [25],

f(t+ ∆t, a1, a2) = f(t, a1, a2) +
∞∑

n=1

(∆t)n

n!
(A+ B)nf(t, a1, a2)

=

∞∑

n=0

(∆t)n

n!
(A+ B)nf(t, a1, a2)

= e∆t(A+B)f(t, a1, a2). (10)

For the dimensional splitting method (9),

f∗∗(t+ ∆t, a1, a2) = e∆tBe∆tAf(t, a1, a2)

=

( ∞∑

n=0

(∆t)n

n!
Bn
)( ∞∑

n=0

(∆t)n

n!
An
)
f(t, a1, a2)

=
∞∑

n=0

(∆t)n

n!

(
n∑

p=0

n!

p!(n− p)!B
pAn−p

)
f(t, a1, a2). (11)
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Therefore the splitting error is

Error = f(t+ ∆t, a1, a2)− f∗∗(t+ ∆t, a1, a2)

=

∞∑

n=0

(∆t)n

n!

[
(A+ B)n −

(
n∑

p=0

n!

p!(n− p)!B
pAn−p

)]
f(t, a1, a2)

=
∞∑

n=2

(∆t)n

n!

[
(A+ B)n −

(
n∑

p=0

n!

p!(n− p)!B
pAn−p

)]
f(t, a1, a2)

≈ (∆t)2

2
(AB − BA)f(t, a1, a2) +O((∆t)3). (12)

If the operators commute, i.e.,
AB − BA = 0, (13)

then the second-order term is zero. The operators do commute for g1
∂
∂a1

and g2
∂
∂a2

for sufficiently smooth f ,

g1
∂

∂a1
g2

∂

∂a2
= g1g2

∂2

∂a1∂a2
= g2

∂

∂a2
g1

∂

∂a1
. (14)

More generally, the binomial formula can be used to show that, for A and B that commute, the splitting
error (12) is exactly zero [25]. Correspondingly, the PBM (1) can be solved exactly by solving each 1D PBM
sub-problem in (9) exactly. Each sub-problem can be exactly solved very efficiently using the upwind finite
difference scheme when CFL = 1 is employed as the scheme simplifies to a form that only requires memory
reallocation [15, 25].

As we will subsequently demonstrate, many PBMs have operators that commute which enables the use of
operator splitting techniques for effective solution. In cases where the operators do not commute, more accurate
splitting schemes such as Strang splitting [32, 33] can be more accurate.

2.2 Case 2: PBMs with Growth Rate Dependent on Intrinsic Variables Only

2.2.1 PBMs with Growth Rate Gi = Gi(ai)

Consider a homogeneous PBM with a growth rate given by G(a) = (G1(a1), G2(a2)) expressed in conservative
form,

∂f

∂t
+
∂(G1(a1)f)

∂a1
+
∂(G2(a2)f)

∂a2
= 0, f(0, a1, a2) = f0(a1, a2), (15)

with G1(a1) and G2(a2) continuous in a1 and a2 respectively, bounded, and G1(a1), G2(a2) > 0,∀a1, a2. PBMs
of this form are relevant when the growth rate depends on the intrinsic variable such as size-dependent growth
in crystallization and precipitation or age-dependent growth in cell population models (see [15] and citations
therein). Equation 15 can be transformed by multiplying each term in the equation with G1(a1)G2(a2) which
gives

∂(G1(a1)G2(a2)f)

∂t
+G1(a1)

∂(G1(a1)G2(a2)f)

∂a1
+G2(a2)

∂(G1(a1)G2(a2)f)

∂a2
= 0. (16)

Defining a new variable f̂ = G1(a1)G2(a2)f enables (16) to be written as

∂f̂

∂t
+G1(a1)

∂f̂

∂a1
+G2(a2)

∂f̂

∂a2
= 0. (17)

Two variable transformations are introduced,

ã1 =

∫ a1

0

1

G1(a1)
da1, ã2 =

∫ a2

0

1

G2(a2)
da2, (18)

which can be used to transform (17),

∂f̂

∂t
+G1(a1)

∂f̂

∂ã1

dã1

da1
+G2(a2)

∂f̂

∂ã2

dã2

da2
= 0, (19)

∂f̂

∂t
+

∂f̂

∂ã1
+

∂f̂

∂ã2
= 0. (20)

Under the assumptions, each function ãi(ai) is invertible [15]. Reparametrizing f̂ in terms of ãi,

f̃(t, ã1, ã2) = f̂(t, a1, a2), (21)

4



where f̃ denotes that f̂ has been reparametrized. This reparametrization enables (20) to be written in the form

∂f̃

∂t
+

∂f̃

∂ã1
+

∂f̃

∂ã2
= 0 (22)

that can be solved exactly as discussed in the previous section. Then all values for f̃(t, ã1, ã2) are mapped to

f̂(t, a1, a2) by applying the inverses of ãi(ai).
To demonstrate the effectiveness of the proposed exact method, multiple solution strategies are considered

alongside the exact method,

1. Apply the upwind scheme to (15) on a uniform mesh (“Con-Uniform,Upwind”)

2. Apply the WENO scheme to (16) on a uniform mesh (“Trans-Uniform,WENO”)

3. Apply the upwind scheme to (15) on a non-uniform mesh to locally enforce CFL = 1 (“Con-
Nonuniform,Upwind”)

4. Apply the upwind scheme to (16) on a uniform mesh (“Trans-Uniform,Upwind”)

5. Apply the upwind scheme to (16) on a non-uniform mesh to locally enforce CFL = 1 (“Trans-
Nonuniform,Upwind”)

6. Employ the exact method presented in this work (“Exact”)

When the uniform meshes are employed in strategies 1 and 4, the value of ∆t is computed to enforce CFL ≤ 1
which ensures numerical stability,

∆t =
1.0

maxG1(a1)
∆a1

+ maxG2(a2)
∆a2

. (23)

To construct the nonuniform mesh for 2D problems for strategies 3 and 5, the mesh is constructed backwards
from its end using a specified ∆t,

aj−1
1 = aj1 − γG1(aj1)∆t, ak−1

2 = ak2 − (1− γ)G2(ak2)∆t, 0 ≤ γ ≤ 1, (24)

where γ is a free parameter which controls the mesh spacing in a particular direction, with γ = 0.5 used in the
case studies. The implementation of the exact method requires computing (18) and their inverses. These steps
can be done offline either analytically or numerically as discussed in previous work [15].

2.2.2 PBMs with Growth Rate Gi = Gi(a)

Consider a homogeneous PBM with growth rate G(a) = (G1(a1, a2), G2(a1, a2)) expressed in conservative form,

∂f

∂t
+
∂(G1(a1, a2)f)

∂a1
+
∂(G2(a1, a2)f)

∂a2
= 0. (25)

While it is not possible in general to solve this class of PBMs exactly, employing the aforementioned strategies
can improve the numerical solution. Applying first-order splitting to (25) gives

∂f∗

∂t
+
∂(G1(a1, a2)f∗)

∂a1
= 0, f∗(t, a1, a2) = f(t, a1, a2),

∂f∗∗

∂t
+
∂(G2(a1, a2)f∗∗)

∂a2
= 0, f∗∗(t, a1, a2) = f∗(t+ ∆t, a1, a2),

f(t+ ∆t, a1, a2) = f∗∗(t+ ∆t, a1, a2). (26)

As the operators do not commute, this splitting incurs an error proportional to (∆t)2. Although it might
be advantageous to use a higher order splitting scheme, they are not considered in the present work as the
intention is to demonstrate how comparatively simple techniques can be employed to effectively solve these
PBMs. Defining the variable transformation f̂ = Gi(a1, a2)f for each sub-problem in (26) results in

∂f̂∗

∂t
+G1(a1, a2)

∂f̂∗

∂a1
= 0, f̂∗(t, a1, a2) = G1(a1, a2)f(t, a1, a2),

∂f̂∗∗

∂t
+G2(a1, a2)

∂f̂∗∗

∂a2
= 0, f̂∗∗(t, a1, a2) = f̂∗(t+ ∆t, a1, a2)

G2(a1, a2)

G1(a1, a2)
,

f(t+ ∆t, a1, a2) =
f̂∗∗(t+ ∆t, a1, a2)

G2(a1, a2)
. (27)
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Each sub-problem in (27) can be solved exactly by defining the variable transformation,

ãi =

∫ ai

0

1

Gi(a1, a2)
∂ai, (28)

which results in

∂f̃∗

∂t
+
∂f̃∗

∂ã1
= 0, f̃∗(t, ã1, a2) = G1(a1, a2)f(t, a1, a2),

∂f̃∗∗

∂t
+
∂f̃∗∗

∂ã2
= 0, f̃∗∗(t, a1, ã2) = f∗(t+ ∆t, a1, a2)

G2(a1, a2)

G1(a1, a2)
,

f(t+ ∆t, a1, a2) =
f̂∗∗(t+ ∆t, a1, a2)

G2(a1, a2)
, (29)

where the f̃ indicates that f has been reparameterized in terms of the transformed variables ãi.
Five solution strategies are considered alongside the proposed “exact” scheme,

1. Apply the upwind scheme to (25) on a uniform mesh (“Con-Uniform,Upwind)

2. Apply the WENO scheme to (25) on a uniform mesh (“Expanded-Uniform,WENO”)

3. Apply the upwind scheme to (26) on a uniform mesh (“Split-Con-Uniform,Upwind”)

4. Apply the upwind scheme to (27) on a uniform mesh (“Split-Trans-Uniform,Upwind”)

5. Apply the upwind scheme to (27) on a non-uniform mesh to locally enforce CFL = 1 for each sub-problem
(“Split-Trans-Nonuniform,Upwind)

6. Apply the scheme developed in this section (“Split-Exact”).

For the “Con-Uniform,Upwind” scheme, the time step ∆t is evaluated to enforce CFL ≤ 1 for numerical stability,

∆t =
1

maxG1(a1,a2)
∆a1

+ maxG2(a1,a2)
∆a2

. (30)

In comparison, the methods using operator splitting on a uniform mesh permit a larger ∆t,

∆t = min

{
∆a1

maxG1(a1, a2)
,

∆a2

maxG2(a1, a2)

}
. (31)

The implementation of the “Split-Trans-Nonuniform,Upwind” scheme is comparatively involved. One
challenge is the mesh construction for each sub-problem in (27) as each sub-problem solved on its own non-
uniform mesh. To outline the mesh construction process for this scheme, suppose that the problem domain
is specified to be a1 ∈ [0, L1], a2 ∈ [0, L2], where L1, L2 are positive constants. For the mesh for the first
sub-problem (in a1), we first evaluate grid points in the a2 direction of the mesh at a1 = L1 as these points are
then used as the basis for stepping backwards to generate the rest of the mesh using the formula,

aj−1,k
1 = aj,k1 −∆tG1(aj,k1 , ak2). (32)

This task is underspecified and can be implemented in multiple ways such as using a linearly spaced array of
a2 ∈ [0, L2] at a1 = L1. We have elected to use the other growth rate G2(a1, a2) to construct this array using
the formula

ak−1
2 = ak2 −∆tG2(L1, a

k
2). (33)

The mesh for the second sub-problem (in a2) is similarly created. These steps can and should be done offline.
The mesh construction process for this scheme involves the formation of jagged arrays (an array of arrays in
which member arrays can have different number of elements) and requires due care. An example of such a mesh
created as part of the scheme can be seen in Figure 1. The Awkward Array Python library [34] can be used to
handle these jagged arrays.

Both the “Split-Trans-Nonuniform,Upwind” and “Split-Exact” schemes require interpolation of the solution
from one mesh to the other to solve each sub-problem at each time step. The interpolation step can become
computationally costly and potentially constrain accuracy the solution. The SciPy Python Library [35] was used
to perform the interpolation and Delaunay computation was performed offline to speed up the interpolation step.
Another potential issue is failure of the interpolation step which can result in the population of “Not a Number”
(NaN) values in the solution. This issue is mitigated through the use of a low-order interpolation scheme.
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Figure 1: Exemplar jagged mesh generated as part of the “Split-Trans-Nonuniform,Upwind” scheme.

2.3 Case 3: PBMs with Time-Dependent Growth Rates

2.3.1 PBMs with Growth Rate Gi = Gi(t)

Consider a homogeneous PBM with G(t) = (G1(t), G2(t)) expressed in conservative form,

∂f

∂t
+
∂(G1(t)f)

∂a1
+
∂(G2(t)f)

∂a2
= 0, f(0, a1, a2) = f0(a1, a2). (34)

Bringing Gi(t) out of the “spatial” derivatives gives

∂f

∂t
+G1(t)

∂f

∂a1
+G2(t)

∂f

∂a2
= 0. (35)

The operators G1(t) ∂
∂a1

and G2(t) ∂
∂a2

commute for sufficiently smooth f ,

G1(t)
∂

∂a1
G2(t)

∂

∂a2
= G1(t)G2(t)

∂2

∂a1∂a2
= G2(t)

∂

∂a2
G1(t)

∂

∂a1
. (36)

Therefore, first-order splitting with no splitting error can be applied which gives

∂f∗

∂t
+G1(t)

∂f∗

∂a1
= 0, f∗(t, a1, a2) = f(t, a1, a2), t ∈ [t, t+ ∆t],

∂f∗∗

∂t
+G2(t)

∂f∗∗

∂a2
= 0, f∗∗(t, a1, a2) = f∗(t+ ∆t, a1, a2), t ∈ [t, t+ ∆t],

f(t+ ∆t, a1, a2) = f∗∗(t+ ∆t, a1, a2). (37)

As shown in previous work [15], each sub-problem can be solved exactly by employing a variable transformation
for t,

t̃i =

∫ t

0

Gi(t
′)dt′. (38)

Introducing this variable transformation for t transforms (37) into

∂f̃∗

∂t̃1
+
∂f̃∗

∂a1
= 0, f̃∗(t̃1, a1, a2) = f(t, a1, a2)

∂f̃∗∗

∂t̃2
+
∂f̃∗∗

∂ã2
= 0, f̃∗∗(t̃2, a1, a2) = f̃∗(t̃1 + ∆t̃1, a1, a2)

f(t+ ∆t, a1, a2) = f̃∗∗(t̃2 + ∆t̃2, a1, a2), (39)

where f̃ denotes that f has been reparametrized in terms of t̃i. Since each sub-problem can be solved exactly
and there is no error arising from operator splitting, this strategy solves the PBM exactly.
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2.3.2 PBMs with Growth Rate Gi = Gi,t(t)Gi,ai(ai)

Consider a homogeneous PBM with a separable time- and size-dependent growth rate G(t,a) = (G1,t(t)G1,a1(a1),
G2,t(t)G2,a2(a2)) in conservative form,

∂f

∂t
+
∂(G1,t(t)G1,a1(a1)f)

∂a1
+
∂(G2,t(t)G2,a2(a2)f)

∂a2
= 0, f(0, a1, a2) = f0(a1, a2). (40)

Many physical systems can be described by such a separable growth rate as the growth rate can typically be
split into an “environmental” part which is a function of t and a part that is only a function of the intrinsic
variable [36]. This model can be solved exactly by employing the variable transformation and splitting strategies
explored in previous cases. Factoring Gi,t(t) from the spatial derivatives and multiplying each term in (40) by
G1,a1(a1)G2,a2(a2) transforms (40) into

∂(G1,a1(a1)G2,a2(a2)f)

∂t
+G1,t(t)G1,a1(a1)

∂(G1,a1(a1)G2,a2(a2)f)

∂a1

+G2,t(t)G2,a2(a2)
∂(G1,a1(a1)G2,a2(a2)f)

∂a2
= 0. (41)

Defining a new variable f̂ = G1,a1(a1)G2,a2(a2)f and introducing the variable transforms for ai, i.e., ãi =∫ ai
0

1
Gi,ai (ai)

dai transforms (41) to

∂f̂

∂t
+G1(t)

∂f̂

∂ã1
+G2(t)

∂f̂

∂ã2
= 0. (42)

Reparametrizing f̂ in terms of ãi,
f̃(t, ã1, ã2) = f̂(t, a1, a2), (43)

where f̃ denotes that f̂ has been reparametrized. This reparameterization enables (42) to be expressed in a
form that can be exactly solved as shown in the previous case,

∂f̃

∂t
+G1,t(t)

∂f̃

∂ã1
+G2,t(t)

∂f̃

∂ã2
= 0. (44)

2.4 Case 4: Nonhomogeneous PBMs

2.4.1 Nonhomogeneous PBMs with Constant Growth Rates

Consider a PBM with a growth rate G = (g1, g2), where g1 and g2 are positive constants, and a nonhomogeneous
term h(t, a1, a2),

∂f

∂t
+ g1

∂f

∂a1
+ g2

∂f

∂a2
= h(t, a1, a2), f(0, a1, a2) = f0(a1, a2). (45)

It is not possible to generally transform (45) into a form that can be solved exactly. However, significant
improvement can be achieved by employing operator splitting and solving each sub-problem while enforcing
CFL = 1. Applying first-order splitting gives

∂f∗

∂t
+ g1

∂f∗

∂a1
= 0, f∗(t, a1, a2) = f(t, a1, a2), t ∈ [t, t+ ∆t]

∂f∗∗

∂t
+ g2

∂f∗∗

∂a2
= 0, f∗∗(t, a1, a2) = f∗(t+ ∆t, a1, a2), t ∈ [t, t+ ∆t]

∂f∗∗∗

∂t
= h(t, a1, a2), f∗∗∗(t, a1, a2) = f∗∗(t+ ∆t, a1, a2), t ∈ [t, t+ ∆t]

f(t+ ∆t, a1, a2) = f∗∗∗(t+ ∆t, a1, a2). (46)

The first two sub-problem can be solved exactly, while the ;ast sub-problem can be solved efficiently using
the forward Euler time stepping scheme. Many of the cases previously considered can be transformed into
a form comparable to (46). To demonstrate this, consider a nonhomogeneous PBM with a growth rate
G = (G1,t(t)G1,a1(a1), G2,t(t)G2,a2(a2)),

∂f

∂t
+
∂(G1,t(t)G1,a1(a1)f)

∂a1
+
∂(G2,t(t)G2,a2(a2)f)

∂a2
= b(t, a1, a2), f(0, a1, a2) = f0(a1, a2). (47)

Employing the steps developed in Section 2.3.2 transforms (47) into

∂f̃

∂t
+G1,t(t)

∂f̃

∂ã1
+G2,t(t)

∂f̃

∂ã2
= G̃1,ã1(ã1)G̃2,ã2(ã2)b̃(t, ã1, ã2), (48)
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where the superscript ∼ over the various functions denotes the reparameterization in terms of the transformed
variables ãi. Recognizing that h̃(t, ã1, ã2) ≡ G̃1,ã1(ã1)G̃2,ã2(ã2)b̃(t, ã1, ã2), and applying first-order splitting with
a variable transformation for t to (48) as in Section 2.3.1 yields

∂f̃∗

∂t̃1
+
∂f̃∗

∂ã1
= 0, f̃∗(t̃1, ã1, ã2) = f̃(t̃, ã1, ã2), t̃1 ∈ [t̃1, t̃1 + ∆t̃1]

∂f̃∗∗

∂t̃2
+
∂f̃∗∗

∂ã2
= h̃(t, ã1, ã2), f∗∗(t̃2, ã1, ã2) = f∗(t̃1 + ∆t̃1, ã1, ã2), t̃2 ∈ [t̃2, t̃2 + ∆t̃2]

f(t+ ∆t, a1, a2) = f∗∗(t+ ∆t, a1, a2). (49)

2.5 PBMs with a Linear Nonhomogeneous Term

Consider a PBM with a constant growth rate G = (g1, g2) and a linear nonhomogeneous term,

∂f

∂t
+ g1

∂f

∂a1
+ g2

∂f

∂a2
= −λ(t, a1, a2)f, f(0, a1, a2) = f0(a1, a2). (50)

By employing a variable transform f̂ = µf , where the functional form of µ is to be determined, (50) can be
transformed into a form that can be solved exactly,

∂f̂

∂t
+ g1

∂f̂

∂a1
+ g2

∂f̂

∂a2
= 0. (51)

This equation can be expanded to yield a PDE for µ,

∂µ

∂t
+ g1

∂µ

∂a1
+ g2

∂µ

∂a2
= λµ. (52)

An expression for µ can be derived from the solution of (52).

Table 1: Summary of functional forms of µ for different forms of λ

Form of λ Form of µ Functional form of µ

Constant µ(a1) ∨ µ(a2) ∨ µ(t) e
λa1
g1 ∨ e

λa2
g2 ∨ eλt

λ(a1) µ(a1) exp
(

1
g1

∫ a1
0
λ(a′1)da′1

)

λ(a2) µ(a2) exp
(

1
g2

∫ a2
0
λ(a′2)da′2

)

λ(t) µ(t) exp
(∫ t

0
λ(t′)dt′

)

λ(t, a1) µ(t, a1) exp
(∫ t

0
λ(t′, g1t

′ + a1,0)dt′
)

, a1,0 = a1 − g1t

λ(t, a2) µ(t, a2) exp
(∫ t

0
λ(t′, g2t

′ + a2,0)dt′
)

, a2,0 = a2 − g2t

λ(a2, a2) µ(a1, a2) exp
(∫ a1

0
1
g1
λ(a′1,

g2
g1
a′1 + a2,0)da′1

)
, a2,0 = a2 − g2

g1
a1

λ(t, a1, a2) µ(t, a1, a2) exp
(∫ t

0
λ(t′, g1t

′ + a1,0, g2t+ a2,0)dt′
)

, a1,0 = a1 − g1t, a2,0 = a2 − g2t

3 Results and Discussion

This section is structured as a series of cases which correspond to the various classes of PBMs explored previously.
The error of the various numerical schemes is compared via the Root Mean Square Error (RMSE) and Maximum
Absolute Error (MAE),

RMSE =

√∑n
i=1(yi − yanalytical,i)2

n
, (53)

MAE = max
i
|yi − yanalytical,i|. (54)
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3.1 Case 1: PBMs with Constant Growth Rates

Consider the PBM,

∂f

∂t
+

∂f

∂a1
+

∂f

∂a2
= 0, f0(a1, a2) = 50 exp

(
− (a1 − 0.4)2

0.005
− (a2 − 0.4)2

0.005

)
, ai ∈ [0, 2]. (55)

A no-flux boundary condition is applied at the top and right ends of the domain (i.e., a1 = a2 = 2), and a
modified Dirichlet boundary which enforces the value of f at the ghost nodes are zero [17] is applied on the left
and bottom ends of the domain, i.e., a1 = a2 = 0. The PBM has the analytical solution,

f(t, a1, a2) = f0(a1 − t, a2 − t) = 50 exp

(
− (a1 − 0.4− t)2

0.005
− (a2 − 0.4− t)2

0.005

)
. (56)

Exemplar simulation results can be found in Figure 2 and the convergence analysis can be found in Figure 3.
An additional numerical scheme “Exact,Interpolation”, which adapts the “Exact” scheme by replacing the
memory reallocation step with an interpolation function call to compute the updated values at t+ ∆t, was also
implemented to demonstrate that the use of an interpolation step to compute the values of f at t+ ∆t does not
adversely impact error performance.

(a) Analytical Solution (b) Exact Scheme

(c) Upwind Scheme (d) WENO Scheme

Figure 2: Simulation results for Case 1 at t = 1.0 using the various schemes. 101 grid points are used in both
the a1 and a2 directions for the Upwind and Exact schemes while 100 cells in both the a1 and a2 directions for
the WENO scheme.

3.2 Case 2: PBMs with Growth Rate Gi = Gi(ai)

Consider the PBM adapted from [37],

∂f

∂t
+
∂(G1(a1)f)

∂a1
+
∂(G2(a2)f)

∂a2
= 0, f0(a1, a2) = 50 exp

(
− (a1 − 0.4)2

0.005
− (a2 − 0.4)2

0.005

)
, (57)

with,
G1(a1) = 0.1 + 0.05a1, G2(a2) = 0.5 + 0.25a2, ai ∈ [0, 2]. (58)

10



(a) RMSE (b) MAE

Figure 3: Error analysis for Case 1. The use of dimensional splitting and employing CFL = 1 for each subproblem
solves the PBM to machine precision as expected.

Multiplying each term in (57) by G1(a1)G2(a2) and defining f̂(t, a1, a2) = G1(a1)G2(a2)f transforms (57) into

∂f̂

∂t
+G1(a1)

∂f̂

∂a1
+G2(a2)

∂f̂

∂a2
= 0, f̂(0, a1, a2) = f̂0(a1, a2) = G1(a1)G2(a2)f0(a1, a2). (59)

This PBM has an analytical solution,

f(t, a1, a2) =
f̂0

(
(a1 + 2)e−0.05t − 2), (a2 + 2)e−0.25t − 2)

)

G1(a1)G2(a2)
(60)

Exemplar numerical solutions to the PBM can be found in Figure 4 and convergence analysis in Figure 5. To
employ the “Exact,Analytical” scheme, the functions ãi(ai) given by (18) and their inverse need to be separately
computed analytically and supplied into the scheme. Another variant of the exact scheme, “Exact,Numerical”
is also considered where ãi(ai) and its inverse are computed numerically instead. While the accuracy of the
“Exact,Numerical” scheme is constrained by the accuracy of the quadrature step as can be seen in Figure 5, the
scheme is still able to perform very well and is more user-friendly as it does not require any pre-computation.

3.3 Case 3: PBMs with Growth Rate Gi = Gi(a)

Consider the PBM,

∂f

∂t
+
∂(G1(a1, a2)f)

∂a1
+
∂(G2(a1, a2)f)

∂a2
= 0, f0(a1, a2) = 50 exp

(
− (a1 − 0.4)2

0.005
− (a2 − 0.4)2

0.005

)
, (61)

with,
G1(a1, a2) = 0.25 + 0.5(a1 + a2), G2(a1, a2) = 0.5 + 0.25(a1 + a2). (62)

The analytical solution to this PBM is

f(t, a1, a2) = f0

(
Bc2 −Dc1
BC −AD ,

Cc1 −Ac2
BC −AD

)
exp(−0.75t), (63)

where

c1 = 3a1 + 0.75t+ 2− 2e0.75t, c2 = 3a2 − 0.75t+ 1− e0.75t,

A = 1 + 2e0.75t, B = −2 + 2e0.75t, C = −1 + e0.75t, D = 2 + e0.75t. (64)

None of the schemes employed are able to solve the PBM to a high degree of accuracy (Figure 6). Even though
the “Split-Exact” scheme performs poorer than the WENO scheme (which is regarded as both mathematically
involved and computationally expensive), the “Split-Exact” scheme enables the use of much larger ∆t values
as the sub-problems are effectively solved as a single function call to advance the full ∆t instead of requiring
time-stepping.

The “Split-Exact scheme” using the method of characteristics can be modified and enhanced to eliminate
the need to interpolate between meshes to solve each sub-problem and further speed up the solution. However,
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(a) Analytical Solution (b) Con-Uniform,Upwind

(c) Trans-Uniform,Upwind (d) Trans-Uniform,WENO

(e) Con-Nonuniform,Upwind (f) Trans-Nonuniform,Upwind

(g) Exact(Analytical) (h) Exact(Numerical)

Figure 4: Simulation results for Case 2 at t = 1.0 using the various schemes. 101 grid points are used in both
the a1 and a2 directions for the Upwind schemes on a uniform grid and Exact schemes while 100 cells in both
the a1 and a2 directions for the WENO scheme. The simulations on a nonuniform grid have 277 and 56 grid
points in the a1 and a2 directions respectively.
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(a) RMSE (b) MAE

Figure 5: Error analysis for Case 2.

(a) RMSE (b) MAE

(c) “Split-Exact” RMSE (d) “Split-Exact” MAE

Figure 6: Error Analysis for Case 3.
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(a) Analytical Solution (b) Con-Uniform,Upwind

(c) Expanded-Uniform,WENO (d) Split-Con-Uniform, Upwind

(e) Split-Trans-Uniform,Upwind (f) Split-Trans-Nonuniform,Upwind

(g) Split-Exact

Figure 7: Simulation results for Case 3 at t = 1.0 using the various schemes. 101 grid points are used in both
the a1 and a2 directions for the Upwind schemes on a uniform grid and Split-Exact schemes while 100 cells in
both the a1 and a2 directions for the WENO scheme. The Split-Exact scheme used a value of ∆t = 0.1. The
simulation on a nonuniform grid has 25,367 grid points by specifying ∆t = 0.01.
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this enhancement requires the offline analytical evaluation of two integrals and does not significantly improve
the error performance (see Figure A1). This modification is discussed in the Appendix (see Section A1). The
lack of improvement in the error performance from using the enhanced scheme indicates that the main source
of error with the “Split-Exact” scheme arises from the operator splitting step rather than the quadrature and
interpolation steps. Correspondingly, it might be worth exploring more sophisticated splitting schemes to further
improve error performance.

3.4 Case 4: PBMs with a Nonhomogeneous Term

Consider the PBM,

∂f

∂t
+

∂f

∂a1
+

∂f

∂a2
= 1 + a1a2, f0(a1, a2) = 10 exp

(
− (a1 − 0.4)2

0.005
− (a2 − 0.4)2

0.005

)
, (65)

with the same boundary conditions as Case 1. An analytical solution cannot be readily supplied for benchmarking
so, to perform the convergence analysis, a “reference” numerical solution was generated by running the simulation
using the presented scheme on a very fine mesh (∼ 2.56× 106 grid points).

(a) Reference Solution (b) Split Scheme

(c) Upwind Scheme (d) WENO Scheme

Figure 8: Simulation results for Case 4 at t = 1.0 using the various schemes. 101 grid points are used in both
the a1 and a2 directions for the Upwind and Split schemes while 100 cells in both the a1 and a2 directions for
the WENO scheme.

The numerical diffusion is much smaller for the Split and WENO than the Upwind scheme (Figure 8). At low
resolution, the proposed Split scheme has much higher accuracy than the WENO scheme (Figure 9). Employing
operator splitting and solving the “advection” component of the Split problem exactly results in much less
numerical diffusion on coarser meshes compared to WENO scheme.

3.5 Case 5: PBMs with a Linear Nonhomogeneous Term

Consider an example of the 2D von Foerster equation,

∂f

∂t
+

∂f

∂a1
+

∂f

∂a2
= −(a1 + a2)f, f0(a1, a2) = 50 exp

(
− (a1 − 0.4)2

0.005
− (a2 − 0.4)2

0.005

)
, (66)

with the boundary conditions,
f(t, a1 = 0, a2) = f(t, a1, a2 = 0) = 0. (67)
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(a) RMSE (b) MAE

Figure 9: Error analysis for Case 4.

This PBM has the analytical solution,

f(t, a1, a2) =

{
f0(a1 − t, a2 − t) exp

(
−(a1 + a2)t+ t2

)
, a1, a2 ≥ t,

0, a1, a2 < t.
(68)

The simulation and error results (see Figures 8 and 11) are qualitatively similar to Cases 1 and 2, with the
proposed exact scheme solving the PBM to machine precision, and the upwind and WENO schemes having
much lower numerical accuracy.

4 Conclusions

With a combination of dimensional splitting, variable transformations, and operating at the limit of numerical
stability, the upwind finite difference scheme is able to solve many classes of multidimensional PBMs either to
machine precision or with sufficiently high accuracy for most applications. One of the most significant features
of the proposed numerical scheme is its high computational efficiency, requiring only memory reallocation or,
in some instances, a minimal number of floating point operations and function calls during the time-stepping.
Even in Case 3 in Section 3, where the accuracy of all of the tested numerical schemes is comparatively poor,
the proposed scheme can be more efficient due to the larger time-steps made possible by the scheme effectively
transforming each sub-problem into a function call. The low computational cost enables the direct incorporation
of the multidimensional population balance model into on-line optimization-based control, aka model predictive
control.

5 Availability of Code

A Python implementation of the various schemes discussed in this work is available at https://github.com/
pavaninguva/PBM_Schemes.
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Appendix
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A1 PBMs with Growth Rate Gi = Gi(a)

Consider the PBM,
∂f

∂t
+

∂(G1(a1, a2)f)

∂a1
+

∂(G2(a1, a2)f)

∂a2
= 0. (A1)

Applying first-order splitting as discussed in the manuscript to (A1) gives

∂f∗

∂t
+

∂(G1(a1, a2)f∗)

∂a1
= 0, f∗(t, a1, a2) = f(t, a1, a2),

∂f∗∗

∂t
+

∂(G2(a1, a2)f∗∗)

∂a2
= 0, f∗∗(t, a1, a2) = f∗(t + ∆t, a1, a2),

f(t + ∆t, a1, a2) = f∗∗(t + ∆t, a1, a2). (A2)

Applying the variable transformation f̂ = Gi(a1, a2)f for each sub-problem in (A2) transforms (A2) into

∂f̂∗

∂t
+ G1(a1, a2)

∂f̂∗

∂a1
= 0, f̂∗(t, a1, a2) = G1(a1, a2)f(t, a1, a2),

∂f̂∗∗

∂t
+ G2(a1, a2)

∂f̂∗∗

∂a2
= 0, f̂∗∗(t, a1, a2) = f̂∗(t + ∆t, a1, a2)

G2(a1, a2)

G1(a1, a2)
,

f(t + ∆t, a1, a2) =
f̂∗∗(t + ∆t, a1, a2)

G2(a1, a2)
. (A3)

To implement the enhancement to the “Split-Exact” scheme discussed in the main text, it is important to first
recognize that each sub-problem in (A3) can be solved analytically using the method of characteristics. Consider
the first sub-problem in (A3),

∂f̂∗

∂t
+ G1(a1, a2)

∂f̂∗

∂a1
= 0, f̂∗(t, a1, a2) = G1(a1, a2)f(t, a1, a2). (A4)

Equation A4 has the analytical solution,

f̂∗(t + ∆t, a1, a2) = f̂∗(t, a1,0, a2), (A5)

where a1,0 is evaluated by computing the integral,

∫ a1

a1,0

1

G1(a1, a2
∂a1 = t. (A6)

In the example considered, G1(a1, a2) = 0.25 + 0.5a1 + 0.5a2 which gives

a1,0 = e−t/2(0.5 + a1 + a2) − 0.5 − a2. (A7)

Another way of conceptualizing the mesh construction step for the “Split-Exact” scheme is that the scheme
numerically computes this transformation which is reflected on the mesh. Hence, by evaluating this integral
offline prior to the simulation, it is possible to specify a single mesh such as a uniformly spaced mesh on which
the solution for both sub-problems can be evaluated on as opposed to requiring one mesh for each sub-problem.
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This not only eliminates the initial step of computing the mesh (either analytically which has no error penalty or
by using quadrature which imposes a minor error penalty as shown in the second case study), it also eliminates
the need to interpolate the solution between both meshes at each time-step. For 201 grid points in both the a1
and a2 directions using a ∆t = 0.05, the “Split-Exact” scheme took ∼56s while this enhanced scheme took ∼40s.
These times are provided to illustrate the difference in relative CPU time and should not be taken as a metric
for the absolute performance of the schemes as the schemes are implemented in Python (which can be relatively
slow) and the code is not optimized for speed.

(a) RMSE (b) MAE

Figure A1: Error analysis for case 3 using the enhanced “Split-Exact” scheme.

(a) Analytical Solution (b) Enhanced “Split-Exact”

Figure A2: Simulation results using the enhanced “Split-Exact” scheme with 201 grid points in both a1 and a2
directions and ∆t = 0.05.
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