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Abstract: Signal-agnostic data exploration based on machine learning could unveil very
subtle statistical deviations of collider data from the expected Standard Model of particle
physics. The beneficial impact of a large training sample on machine learning solutions
motivates the exploration of increasingly large and inclusive samples of acquired data with
resource efficient computational methods. In this work we consider the New Physics Learning
Machine (NPLM), a multivariate goodness-of-fit test built on the Neyman-Pearson maximum-
likelihood-ratio construction, and we address the problem of testing large size samples under
computational and storage resource constraints. We propose to perform parallel NPLM
routines over batches of the data, and to combine them by locally aggregating over the
data-to-reference density ratios learnt by each batch. The resulting data hypothesis defining
the likelihood-ratio test is thus shared over the batches, and complies with the assumption
that the expected rate of new physical processes is time invariant. We show that this method
outperforms the simple sum of the independent tests run over the batches, and can recover,
or even surpass, the sensitivity of the single test run over the full data. Beside the significant
advantage for the offline application of NPLM to large size samples, the proposed approach
offers new prospects toward the use of NPLM to construct anomaly-aware summary statistics
in quasi-online data streaming scenarios.
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1 Introduction

Numerous experimental tests have confirmed the Standard Model as the best description of
the particle physics world, reaching levels of precision up to few parts per thousand. New
physical processes, if detectable, should therefore manifest as very subtle statistical deviations
of the data distributions with respect to the Standard Model expectations. Increasing the
phase space acceptance and the statistics of the analysed datasets could unveil interesting
data structures that were missed so far. Along with the regular signal-specific statistical
analyses, signal-agnostic anomaly detection tools have grown of interest in the high energy
physics community, and machine learning has proved to be a crucial ingredient to scale
their discovery power.

Anomaly detection broadly refers to the problem of identifying data patterns that do not
align with their expected behaviours. Events can be interpreted as anomalous for multiple
reasons; either because their appearance in the dataset is rare, or because they manifest out of
the expected data support. Moreover, anomalies can emerge as a collective behaviour affecting
the statistical model describing the data occurrence in the experiment. In this work we focus
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on collective anomalies, namely phenomena that rise as an unexpected deformation of the
data probability distribution. These kind of anomalies are tackled by means of statistical
anomaly detection tools. Statistical anomaly detection refers to the problem of recognising
and quantifying distributional deviations of a dataset from its nominal expected behaviour.
Besides its use in new physics searches, statistical anomaly detection finds a wide spectrum
of applications in experimental particle physics. The most striking examples are data quality
monitoring of experimental setups at data taking time, and validation of simulated samples.

When a tractable model of the data nominal behaviour is available, statistical anomaly
detection reduces to a goodness-of-fit (GoF) test: a test statistic is defined according to
a notion of similarity between the data distribution and the nominal model, and the level
of compatibility is quantified in terms of the test statistic p-value with respect to the test
distribution in nominal conditions. However, in most of the applications of statistical anomaly
detection in high energy physics, a tractable model for the nominal data distribution is not
available and needs to be replaced by a dataset of reference (denoted as R in this work),
simulated according to the nominal model or built in a data-driven fashion. In these cases,
the problem of statistical anomaly detection is solved as a two-sample-test, introducing a
test statistic that measures the distance between two samples.

High energy physics, and in particular collider data, pose extremely challenging problems
for statistical anomaly detection due to the level of precision required to test the Standard
Model. For instance, the accuracy of the statistical models employed in the process of scientific
discovery is a particularly delicate matter that requires powerful testing tools. Similarly,
the lack of new interesting tensions with the Standard Model hypothesis after the Higgs
boson discovery seem to indicate that, if detectable, new physics should manifest at the LHC
as a very rare process, whether in time or in phase space. Anomaly detection algorithms
must therefore be able to capture very subtle anomalous behaviours, and they should be
run over the most inclusive set of data allowed by the computational and methodological
constraints. An extensive review of GoF algorithms routinely adopted in the high energy
physics community can be found in ref. [1].

Machine learning (ML) has provided significant improvements to the statistical tools
employed in data analysis at the LHC, allowing to deal with increasingly complex data
structures, and exploiting a wider amount of the physics information produced by the experi-
ments. In the specific context of GoF, machine learning based algorithms have opened the
path to multivariate statistical analyses, able to capture mismodeling also in the correlations
between variables ref. [2].

In absence of constraining inductive biases, as it is the case in unknown anomalous
signals searches, the power of machine learning strategies resides in their ability to learn
from the training examples coming directly from the experimental data. However, the
latter could be either scarce or completely lacking of anomalous events due to their rarity.
The impact of machine learning is therefore expected to become more and more evident
by scaling the training sample size and, as a consequence, the rate of collected anomalies.
While beneficial to the training, larger sample sizes introduce computational and storage
constraints, that need to be addressed. In this work, we focus on the New Physics Learning
Machine (NPLM) algorithm, an ML-empowered goodness-of-fit method based on the Neyman-
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Pearson hypothesis test (refs. [3–7]), and we address the problem of how to test large datasets
under computational and storage constraints. The approach presented in this paper proposes
parallel computing of the test over batches of the original sample and a final aggregation
strategy that combines the local approximation of the data-to-reference ratios learnt by each
instance of the algorithm. We outline three operational approaches for different resource
constraints settings, aiming at maximally exploiting the available experimental data both
in offline and quasi-online configurations.

We apply the split-aggregation approach to a one-dimensional toy model and two realistic
LHC datasets of increasing complexity. The former is a dimuon final state characterised
by 5 observables and sample size of O(104) events, and a 24-dimensional problem defined
by the tri-momenta of eight objects selected at the L1 trigger of the CMS experiment with
sample size of O(106) events.

Our numerical experiments for one-dimensional and five-dimensional problems show
that the aggregation strategy can fully recover or, in same cases, even outperform the single
batch implementation, thanks to the effect of regularization against statistical noise that
the aggregation strategy introduces.

Furthermore, the studies conducted on the 24-dimensional problem show the discovery
potential of the various approaches in high-dimensional and large statistic scenarios.

The paper is organised as follows. In section 2 we describe the NPLM algorithm and
the proposed batch solution for handling large sample sizes. In section 3 we study the
performances of the split-aggregation approach on the one-dimensional and five-dimensional
problems and we compare them with the original implementation of NPLM. In section 4, we
apply the split-aggregation strategy to a large size dataset simulating the CMS L1 trigger,
showing the scalability of the algorithm to more complex scenarios. We conclude in section 6
discussing our main findings and future research directions.

2 Algorithm

In this section we briefly summarise the main features of the NPLM algorithm and we provide
the statistical foundations for the new proposed split-aggregation solution.

2.1 New Physics Learning Machine (NPLM)

New Physics Learning Machine (NPLM) is a ML-based signal-agnostic strategy to detect and
quantify statistically significant deviations of the observed data D from a defined reference
model R ref. [3]. The NPLM method is inspired by the classical approach to hypothesis
testing based on the log-likelihood-ratio ref. [8]

t(D) = 2 max
w

∑
x∈D

log L(x|Hw)
L(x|R) , (2.1)

where the two compared hypotheses are the reference, R, and a composite alternative,
Hw, whose nature is not known a priori. A model fw(x) with trainable parameters w is
defined on the space of the data x to parametrize the density distribution of the data in
the family of alternatives

n(x|Hw) = n(x|R)efw(x) . (2.2)
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Figure 1. NPLM training over a single dataset. Schematic representation of a single run of
the NPLM algorithm. The NPLM model, a kernel method in this work, takes as input two datasets,
a reference sample (R) and a data sample D, and it fit via maximum-likelihood the log-ratio of
their densities f(x; ŵ). The resulting model is evaluated in-sample on D and R to compute the test
statistic t.

Since the total number of events in x is a Poissonian random variable whose expectation
depends on the theory model, the test statistic in eq. (2.1) is computed as the extended
log-likelihood-ratio, which in terms of fw is written as

t(D) = 2 max
w

[
N(R) − N(Hw) +

∑
x∈D

fw(x)
]

, (2.3)

with N(R) and N(Hw) the expectation values of the total number of events in D under the
reference and the alternative hypotheses respectively. The maximisation problem described
by eq. (2.3) can be solved by a machine learning task

tw(D) = −2 min
w

L[fw] , (2.4)

where the loss function

L[fw] =
[∑

x∈R
wx(efw(x) − 1) −

∑
x∈D

fw(x)
]

, (2.5)

takes as input two training datasets: the dataset of interest D, and a sample of reference R
drawn according to the reference hypothesis and weighted by wx to match the experimental
luminosity. The weight encodes the information about the cross section of the physics process
at the origin of each event, and hence it is assigned at the per event level and, generally, it could
be different for various data points. Thus, the machine learning task learns the optimal values
of the trainable parameters of f , ŵ, to approximate the log-density-ratio of the two samples

fŵ(x) = log n(x|Hŵ)
n(x|R) (2.6)

A schematic representation of the NPLM training task is provided in figure 1
As for any test statistic, the value of the test obtained for D has to be compared to the

distribution of the test under the reference hypothesis, p(t|R), and the p-value is finally used
as a GoF metric. We build p(t|R) empirically, running pseudo-experiments on datasets that
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are generated according to the R hypothesis. The model fw(x) could be a neural network as in
refs. [3–5], or it could be built with kernel methods refs. [6, 9]. In this work we employ kernel
methods since they have been showed to be less time demanding than neural networks. Details
about the NPLM training strategy based on kernel methods are postponed to section 2.4.

It should be mentioned that the test statistic in eq. (2.4) has good statistical properties
(i.e. its null distribution approximates a χ2 in the asymptotic regime) only if the number
of events representing the reference hypothesis, NR is large enough that the statistical
fluctuations affecting the reference sample are negligible with respect to the one affecting
the data. We refer the reader to ref. [4] and ref. [6] for a detailed discussion on the impact
of the reference sample size on the NPLM test statistic properties.

Moreover, in realistic particle physics scenarios uncertainties affect the knowledge of
the reference hypothesis requiring the introduction of nuisance parameters, defining families
of transformations of the reference distribution that should be seen as not anomalous. A
solution to extend the NPLM strategy to account for systematic errors has been introduced
in ref. [5]. In our studies, we will consider systematic uncertainties as negligible and leave the
treatment of systematic uncertainties within the batch approach for future studies. Finally,
often times simulations are not accurate enough to provide a good reference model. In those
circumstances, data driven techniques need to be implemented to build R. The problem of
building an accurate reference model R is a distinct problem and out of the scope of this
work. Comment on possible solutions to this problem in section 4. In the next section we
introduce the batching idea to address the problem of large sample size.

2.2 Learning New Physics from batches

Let’s assume that the experimental data D are acquired in Nb batches Di

D = ∪iDi , (2.7)

and the size Ni of each batch is a Poissonian random variable whose expectation is a function
of the integrated data acquisition time.1 In addition, let’s assume that each batch Di can
be stored in a buffer long enough time to undergo the NPLM training task.

Since the proton-proton collisions are independent events, the optimal test of the full
dataset according to Neyman and Pearson would be the sum of the log-likelihood-ratio
test performed over each single batch, with alternative hypothesis set to the True model
(T) underlying the data:

tid(D = ∪iDi) = 2
Nb∑
i=1

log L(Di|T)
L(Di|R) . (2.8)

Clearly, the True hypothesis T is not known a priori and we want to exploit the NPLM
strategy to estimate it. The solution we propose in this work is to run separate instances
of the NPLM algorithm over different batches and recombine the information encoded in

1More precisely, the expected number of observations for a given physics process (H) is a function of its
physics cross section (σ(H)), the integrated luminosity (L), and the acceptance (a) and efficiency (ϵ) of the
experimental setup: N(H) = σ(H) × L × a × ϵ.
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the log-density-ratio functions

fŵ, i(x) = log
n(x; Hi

ŵ)
n(x; R) (2.9)

learnt by the different instances. Recalling the parametrization defined in eq. (2.2), for each
learnt model fw, i we can write an estimate of the density ratio between the data batch
and the reference R

n(x; Hi
ŵ) = n(x; R)ef

ŵ,i
(x)

. (2.10)

Each density n(x; Hi
ŵ) can be interpreted as an approximated view of the same True physical

model. If the learning process outputs an accurate enough representation of T, then eq. (2.8)
can be straightforward approximated summing the likelihood-ratio-tests output by NPLM
for the separate batches

tNb
SUM(D) =

Nb∑
i=1

t(Di) = 2
Nb∑
i=1

log L(Di|Hi
w)

L(Di|R) = 2
Nb∑
i=1

∑
x∈R

wx(1 − e
f

i,ŵ
(x)) +

∑
x∈Di

fi,ŵ(x)

 .

(2.11)
This approach produces a powerful test if the exact shape and normalization of the signal
is captured by all models. However, when the signal is very rare its impact in a small size
data sample can be overlooked by the model. We can exploit two simple assumptions to
provide a better solution. First, we assume that the new physics source is static, namely
its occurence rate is uniform over time. Second, we assume that biases affecting single
batch views are due to statistical noise whose impact over time is on average null. Under
these assumptions, averaging the density-ratio terms learnt in different batches provide a
single alternative hypothesis HNbw shared among batches, that helps to enhance systematic
discrepancies, interpreted as signals, while suppressing random ones. The density of the
data under HNbw would then have the following form:

n(x; HNb
w ) = 1

Nb

Nb∑
i=1

n(x; Hi
w) . (2.12)

By expressing the model of the data density distribution in each batch in terms of the set of
functions {fw,i}Nb

i=1, we can define an “aggregated” model of the log-ratio of the densities as

F Nb(x; W) = log n(x; HNbw )
n(x; R) = log

 1
Nb

Nb∑
i=1

efi(x; w)

 , (2.13)

and use it to compute the log-likelihood-ratio test statistics over the set of batches:

tNb
AGGR(D) = 2

Nb∑
i=1

log L(Di|HNbw )
L(Di|R) = 2

Nb∑
i=1

∑
x∈R

wx(1 − eF
Nb
W (x)) +

∑
x∈Di

F Nb
W (x)

 . (2.14)

Batching solutions for computationally intensive calculations with kernel methods have
already been proposed in the literature for supervised approaches (see for instance ref. [10]).
In ref. [10] the authors show theoretical guarantees for recovering the performances of the
full sample training solution, provided that the number of splitting is not too large.
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2.3 Operational strategies in resource constrained settings

Despite the advantage provided by splitting the dataset in batches, the computational require-
ments for the algorithm execution might still pose significant challenges to its application in
realistic scenarios. In fact, computing tNb

AGGR requires evaluating F M
W(x) over each element x in

the total set of acquisitions D = ∪iDi. This means that all data batches have to be stored for
the whole duration of the NPLM algorithm execution, and the memory locations at which the
models are stored need to be accessible by all batches. Moreover, the execution time largely
varies depending on several factors concerning the algorithm setup, such as the size of the
batches, the choice of input variables, but also to the computational resources available and
the way these are dispatched. The possibility of running NPLM tasks in parallel on multiple
GPUs provides, for instance, the potential to significantly reduce the computational time.

On the other hand, if the storage resources are limited, it could happen that not all the
data can be saved long enough for the NPLM routines to be all completed. In this situation,
the test in eq. (2.14) cannot be evaluated exactly. Two alternatives can then be contemplated.
The first one is to run NPLM over all the batches and save the final models {fw,i}Nb

i+1 to
estimate HNbw , but running the test only on a subset of Ntest batches that could be stored:

tNb,Ntest
AGGR (D) = 2

Ntest∑
i=1

log L(Di|HNbw )
L(Di|R) = 2

Ntest∑
i=1

∑
x∈R

wx(1 − eF
Nb
W (x)) +

∑
x∈Di

F Nb
W (x)

 . (2.15)

The second alternative is considering eq. (2.10) as the limit of a smart multidimensional
binning approach, where the bins centres are the elements of the reference sample R. In this
limit, each bin has counting equal to the unity under the reference hypothesis and value eF

Nb
W (x)

under the alternative. A “saturated” binned likelihood-ratio test [11] can then be computed:

tNb
SAT(R) = 2

∑
x∈R

wx

[
(1 − eF

Nb
W (x)) + eF

Nb
W (x) log F Nb

W (x)
]

. (2.16)

Notice that the test does not depend on the data D directly, but only via F Nb
W , that has

been learnt exploiting the dataset D in batches. Moreover, the test does not compute the
likelihood-ratio of the data, but it rather evaluates the distance between the density of the
reference and that of the alternative hypothesis on the data points belonging to the reference
sample R. Eq. (2.16) is a powerful metric when the model F Nb

W is able to capture the signal
shape well enough. Its performances deteriorates for signal events that lay in rare regions of
the input space, or whose shape is too complex compared to the expressivity of the family of
universal approximators used to define the models {fw,i}. An alternative approach of online
data summarization based on machine learning was proposed in ref. [12]. There are two main
conceptual differences between the approach presented in ref. [12] and the one presented
in the current paper. The first is that the authors of ref. [12] propose to learn directly the
probability distribution of the data, while via NPLM we propose to learn the ratio of the data
density with respect to a reference. The second difference concerns the training strategy. The
authors of ref. [12] suggest to train a unique model (specifically, a normalizing flow) feeding
the acquired data batches sequentially. Conversely, in the present work we propose to perform
a complete and independent training for each batch, thus preventing catastrophic forgetting.
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In the experiments reported in section 4 we consider three representative resource
constrained scenarios (depicted in figure 2):

1. No resource constraints (NPLM-ALL): all batches are used both for training
and for testing. The final test is the one obtained aggregating over all models as in
eq. (2.14).

2. Long term storage constraint (NPLM-ONE): there are enough computational
resources to train multiple instances of the algorithm in a quasi-online fashion but only
one batch is available for testing. For this configuration, the final test is the one in
eq. (2.15), obtained aggregating over all models and testing on one batch (Ntest = 1).

3. Saturated test (NPLM-SAT): all data are temporarily available for a quasi-online
training of several instances of the algorithm but they cannot be stored and tested. In
this case, we only test the distance between the density model of the data and that of
the reference distribution by computing the saturated test as in eq. (2.16).

2.4 Time-efficient NPLM implementation with non-parametric models

To harness the execution time of a single instance of the NPLM algorithm we consider the
kernel-based implementation of NPLM presented in ref. [6], and applied in ref. [9], which
exploits the Falkon library [13], a modern solver for kernel methods that leverages several
algorithmic solutions developed in refs. [13–15] to allow for their use in large scale problems.
The model used in Falkon is a Nystrom approximated Kernel method defined as a finite
weighted sum of kernel functions

fw(x) =
M∑

i=1
wik(x; xi, σFLK) . (2.17)

The kernel function, k(x; xi, σFLK), adopted in this implementation is a Gaussian kernel

k(x; xi, σFLK) = exp
(
−∥x − x′∥2

2σ2
FLK

)
, (2.18)

where the hyper parameter σFLK denotes the Gaussian width.
To approximate the log-ratio between the distribution of the D and R datasets the

training exploits a weighted binary cross-entropy loss

L(fw) =
∑
x∈R

wx log
[
1 + efw(x)

]
+
∑
x∈D

log
[
1 + e−fw(x)

]
, (2.19)

with a L2 regularisation term. The NPLM method works under the assumption that the
reference sample is large enough to be a good representation of the R hypothesis, which
typically leads to an imbalanced dataset with NR > ND. The weight wx, is thus introduced
to balance the two classes’ contributions.
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(b) NPLM-ONE

(a) NPLM-ALL

(c) NPLM-SAT

Figure 2. Operational strategies in resource constrained scenarios. Schematic representation
of the three scenarios considered in this work. The experimental data are collected in batches in
a storage unit or buffer (orange distributions) and used to train multiple instances of the NPLM
model (purple squares). In the NPLM-ALL scenario (a), all data batches and trained models are sent
downstream to compute the aggregated test statistic in eq. (2.14). In the NPLM-ONE scenario (b),
all the models are aggregated but only one batch is sent downstream for testing using eq. (2.15) with
Ntest = 1. Finally, in the NPLM-SAT scenario (c), only the models are stored and can be used to test
using eq. (2.16).

– 9 –



J
H
E
P
1
2
(
2
0
2
4
)
0
9
3

Hyper parameters choice. The hyper parameters choice for a given family of universal
approximators defines the “modes” of the data that the NPLM algorithm is able to capture.
For the kernel-methods considered in this work, there are three hyper parameters that need to
be defined: the number of centres M , the Gaussian width σ, and the regularisation parameter
λ. In ref. [6] it has been showed that there exists a “valley” of (M , σ, λ) configurations that
guarantee the convexity of the loss function, arbitrarily small prediction error and reasonable
convergence time. However, no further indication can be provided to enhance the sensitivity
to statistical anomalies. Different hyper parameters choices could be optimal to capture
different types of data deviations from the reference distribution. For instance, small values
of the Gaussian kernels width, σFLK, would allow to better capture localised deviations, like
narrow resonances, while larger values would be better suited to represent effects affecting
the distribution on a wider range, like scale mismatches. If the nature of the anomaly is
unknown and no good prior is available, then the most inclusive way of testing the data is
combining multiple choices of the hyper-parameters configurations. In this work we fix M and
λ following the prescription proposed in ref. [6]. Namely, we chose M = c

√
N with c ∼ O(1)

such that the training time is reasonable given the available computational resources, and we
choose λ as small as possible, provided no instabilities are encountered.

For the Gaussian width, σFLK, we adopt the approach recently proposed in ref. [16]
rather than limiting to a single value we consider five values corresponding to the 5, 25, 50, 75
and 95 % quantiles of the pairwise distance distribution between the elements in the reference
set. We combine the results obtained with different values of σFLK by selecting the minimum:

P = min
{σFLK}

(pσFLK) (2.20)

It is worth noticing that the authors of ref. [10] comment on the impact of regularisation
on the batched solutions, highlighting how the correct level of generalisation can be recovered
if the trainings run on the batches is under-regularised. The NPLM algorithm is a signal-
agnostic strategy and therefore an optimal regularisation level cannot be determined prior to
testing the data. Nevertheless, we observe the benefit of the aggregation as a regularisation
in our studies. Details are reported in section 3.

3 Numerical experiments

In this section we study the properties of the batch-based strategy outlined in section 2.3
over two proof-of-concept applications. We start considering a one-dimensional problem
characterised by a smoothly falling reference distribution (EXPO-1D) for which the optimal
test statistic according to Neyman and Pearson can be computed analytically and used as a
target. We then move to the multidimensional problem of a dimuon final state observed at
collider experiments (DIMUON-5D). A detailed description of the datasets’ properties and
signal benchmarks is given in appendix A.1. The details about the algorithm implementation,
execution time and resource consumption are given in section 5. Throughout this section,
we will summarise our findings in terms of power curves representing the true positives rate
of different tests as a function of the false positives rate α. To help the interpretation, we
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transform α to the corresponding Z-score (Zα in the plots), defined as

Zα = Φ−1(1 − α), (3.1)

where Φ−1 is the quantile of the standard normal distribution. For a given signal benchmark,
the best performing test is the one which exhibits the highest values of the power at a
fixed Z-score.

3.1 Improving regularisation and sensitivity by aggregating over batches

We start by studying the impact of the number of batches Nb on the power of the NPLM-ALL
aggregated test statistic (eq. (2.14)). We run the NPLM algorithm for different values of Nb
and we compare the power curves of the aggregated test (eq. (2.14)) and the simple sum
of tests (eq. (2.11)) resulting by combining them. We run the experiments on the various
signal benchmarks reported in table 2 for the EXPO-1D dataset and on table 3 for the
DIMUON-5D dataset. We report in figure 4 the power curves for one signal benchmark of
the EXPO-1D dataset, and in figure 5 the power curves for one signal benchmark of the
DIMUON-5D dataset. Interestingly, the aggregated test shows similar or higher power
as the number of batches increases. Conversely, we observe that the simple sum of tests
suffers from significant power degradation as the number of batches increases. A possible
explanation for the full power recover can be found in the in-sample nature of the NPLM
algorithm. Each trained model is by construction induced to (over)fit fluctuations in the
data batch distribution within the constraints imposed by regularisation, even when those
fluctuations are not statistically significant in the single batch. Combining the outcome of
each batch training at the level of the functional forms of the models allows therefore to
restore the suite of information carried along by each model, and exploit it to gain sensitivity
to very rare signals. As for the observed increased power, we suggest that the inductive bias
introduced by averaging over the batches has a beneficial role in the model regularisation,
which lead to higher expressivity without a dramatic increasing of the effective degrees of
freedom of the test, hence producing lower p-values. Additional studies to investigate this
matter are left for future work.

An illustrative example of the aggregation idea is given in figure 3. The panels represent
the data distribution (black histograms) and reference distribution (light blue histograms)
for the one-dimensional EXPO-1D dataset, when the data are split in four batches. A rare
Gaussian signal is injected in the tail of the exponentially falling distribution. The light green
solid lines represent the models learnt in each training. On the right hand side of the figure,
we report four panels showing the individual batches and the relative trained models. The
models follow the statistical fluctuations of the training sample producing an imprecise view
of the true model of the data. On the left hand side, the four models are combined according
to eq. (2.13) to produce the aggregated version, showed in dark green. It is easy to notice
the improved stability of the aggregated model with respect to the ones trained on single
batches. The observed behaviour is consistent across all the studied signal benchmarks for
both datasets. Additional power plots for the aggregated and simple-sum tests for different
values of σFLK on different datasets and signal benchmarks are reported in appendix A.2.
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Figure 3. Understanding the regularising effect of the batching strategy. Visual representa-
tion of the densities functions reconstructed by the NPLM models trained on different batches (light
green lines), and after combining them following eq. (2.13) (dark green line in the main panel). The
reconstruction after combination is more robust to statistical fluctuations and approximates the true
signal model better than each single one.
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Figure 4. NPLM-ALL. EXPO-1D — localised signal in the tail. Power curves for the
aggregated test tAGGR (left panel) and the simple sum of tests tSUM (right panel) at different number
of batches. Data splitting improves the performances of tAGGR, while degrades tSUM.

3.2 Improving anomaly detection on a single batch exploiting quasi-online
learning

The results presented in section 3.1 suggest that the aggregation improves the quality of the
density-ratio modelling. This motivates the use of NPLM in a quasi-online setup to extract
powerful information from data even when only a fraction of the latter can be eventually
stored (storage constrained scenario). This is always the case at collider experiments, where
trigger algorithms are designed to filter the data. We study the impact of aggregating the
modelling over multiple batches on the power of the NPLM test for a single data batch
(NPLM-ONE scenario). For the EXPO-1D dataset, the data are split in eight batches, all
of them are analysed via NPLM but only one is saved for testing. For the DIMUON-5D
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Figure 5. NPLM-ALL. DIMUON-5D — Z’ resonance at 300 GeV. Power curves for tAGGR
(left panel) and tSUM (right panel) at different number of batches. Data splitting improves the
performances of tAGGR, while degrades tSUM.
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Figure 6. NPLM-ONE. EXPO-1D. Power curves for tAGGR when evaluated over one single data
batch (light blue line) compared with the power of the test learnt and evaluated over the full dataset
(green line) and one data batch (black line). The aggregation improves the accuracy over the learnt
alternative model enhancing the sensitivity with respect to the single batch test. The two panels show
the results of our tests for two signal benchmarks, the narrow peak (left panel) and the broad peak
(right panel).

dataset, instead, the data are split in four batches. Figure 6 shows the results of our study for
the narrow (left panel) and broad (right panel) signal benchmarks in the EXPO-1D dataset,
whereas figure 7 shows the results for two different injections of a Z ′ resonant signal with
invariant mass of 300 GeV, considered in the DIMUON-5D dataset. While not competitive
with the ideal scenario of unlimited storage availability in which the full dataset can be
tested, either in one batch (green line) or in multiple batches without loosing power, the
power curve of our experiment in the NPLM-ONE setup (lightblue line) shows significant
improvement over the simple use of NPLM on a single batch (black line). Similar behaviours
are found for different signal benchmarks in both the univariate and multivariate datasets.
Additional plots are reported in appendix A.3.
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Figure 7. NPLM-ONE. DIMUON-5D. Power curves for tAGGR when evaluated over one single
data batch (light blue line) compared with the power of the test learnt and evaluated over the full
dataset (green line) and one data batch (black line). The aggregation improves the accuracy over
the learnt alternative model enhancing the sensitivity with respect to the single batch test. The two
panels show the results of our tests for two signal benchmarks, the a Z ′ resonance in the bulk of the
mass spectrum (left panel) and a Z ′ resonance in the tail of the mass spectrum (right panel).

0 1 2 3
Zα

0.0
0.2
0.4
0.6
0.8
1.0

P
(Z
>
Z
α
)

bulk signal:
# aggregation: 8
bulk signal:
# aggregation: 8
bulk signal:
# aggregation: 8

0 1 2 3
Zα

0.0
0.2
0.4
0.6
0.8
1.0

P
(Z
>
Z
α
)

tail signal:
# aggregation: 8
tail signal:
# aggregation: 8
tail signal:
# aggregation: 8

tAGGR, MINp-σFLK

tAGGR, MINp-σFLK

aggreg.: 8
test: 1
tSAT, MINp-σFLK

Figure 8. NPLM-SAT. EXPO-1D. Comparison of the aggregated and saturated test statistic
power curves for a localized signal in the bulk (left panel) and in the tail (right panel). We compare
the power curve of the saturated test (black line) with that of the aggregated test evaluated over th e
full dataset (light blue line), or on one batch only (green line). The experiments have been performed
aggregating over 8 batches.

3.3 Anomaly-preserving data compression via likelihood-ratio

Finally, we consider the extreme scenario in which data cannot be permanently stored but
are only available quasi-online for a limited time window. In this case, the proposed solution
is storing the NPLM models {fw,i}Nb

i+1 as compressed representations of the data batches,
and build the saturated likelihood-ratio test described in eq. (2.16). The saturated test is not
properly a likelihood-ratio test because the likelihood is not directly evaluated on the data
points in D. This in principle could lead to inefficiencies. A trivial failure example, for instance,
is that of a signal localised in a low density region of the reference data distribution. Since the
likelihood-ratio reconstructed by F is only evaluated in the data points of the reference sample
R, if the shape of the signal is underestimated then the test would not be sensitive to it. This
intuition can be verified running numerical experiments of different nature. Figure 8 shows
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Figure 9. NPLM-SAT. DIMUON-5D. Comparison of the aggregated and saturated test statistic
power curves for a Z ′ resonant signal in the bulk (left panel) and in the tail (right panel) of the mass
spectrum considered in this work. We compare the power curve of the saturated test (black line) with
that of the aggregated test evaluated over the full dataset (light blue line), or on one batch only (green
line). The experiments have been performed aggregating over 4 batches.

two representative experiments run on the EXPO-1D dataset. In the figure we compare the
power curve of the saturated test (black line) with that of the aggregated test evaluated over
the full dataset (light blue line), or on one batch only (green line). For the signal located in the
bulk of the reference distribution (left panel), the saturated test has comparable power to the
aggregated test evaluated over the full dataset. Instead, for the Gaussian signal in the tail of
the reference distribution (right panel), the power of the saturated test deteriorates, as fewer
reference data points are available in the signal region to properly quantify the discrepancy.
Similar results are found for the DIMUON-5D dataset (see figure 9). Additional figures
for the remaining signal benchmarks are reported in appendix A.4.

4 Scaling up to big data LHC scenarios

In this section we apply the batch-aggregation approach to a larger scale dataset, emulating
a typical data stream acquired at the CMS experiment with a one light lepton (electron
or muon) requirement at the first level of data filtering (L1 trigger). The dataset, initially
introduced in refs. [17, 18] and later adapted for anomaly detection [19] is publicly available
on Zenodo [20–24]. It consists of simulated events for the Standard Model (SM) and four
beyond the Standard Model signatures that we report below:2

• A → 4l: a neutral scalar boson (A) decaying to two off-shell Z bosons, each forced to
decay to two leptons;

• h± → τ±ν: a charged scalar boson (h±) decaying to a τ lepton and a neutrino;

• h0 → τ+τ−: a scalar boson (h0) decaying to two τ leptons;

• LQ → bτ : a leptoquark (LQ) decaying to a b quark and a τ lepton.
2Additional information about the dataset can be found in ref. [19].
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The dataset contains a list of 19 physics objects (4 muons, 4 electrons, 10 jets and the
event missing transverse energy) for each collision event. Each object is characterised by
three kinematic variables and a class label, for a total of 76 features. We run the batched
version of NPLM over the 24 dimensional problem defined by considering the kinematic
features of eight out of the nineteen objects: the missing transverse energy, the first two
most energetic muons, the first two most energetic electrons, and first three most energetic
jets. We consider a data sample D of 1 million SM events, on top of which signal events of
the order of few parts per mill are injected to test the algorithm sensitivity. The marginal
distributions over the input features for the Standard Model background and the four signal
benchmarks are reported in figures 12 and 13 in appendix A.1.

The reference sample R is taken to be 10 million SM events (ten times larger than
the full D sample), and the D sample is split in 5 batches (Nb = 5). As for the kernel
methods hyper parameters, we set M = 10 000 and λ = 10−6. For sake of time, we study
the performances of the model for a single value of the kernel width σFLK, corresponding
to the 90% quantile of the distribution of pair-wise distance between SM data points. We
run the three versions of the algorithm presented in section 3: train and test over all batches
(NPLM-ALL), train over all and test only one batch (NPLM-ONE), and the saturated test
on the model obtained averaging over all batches (NPLM-SAT).

Figure 10 shows the median Z-score reached by the three approaches for a 0.2% and 0.4%
signal injection of the four different signal benchmarks. For completeness, we also show the
sensitivity of the algorithm if only a fifth of the luminosity, namely one batch, is exploited by
NPLM. The results of our tests confirm the main finding already outlined in section 3. First,
the NPLM-ONE approach exhibits increased performances with respect to the application of
NPLM to a single batch, remarking that the aggregation via average proposed in this work
allows to unveil sensitive information about the signal signature, even when the full set of
data is not available at testing time. Moreover, when all the data are available at testing
time (NPLM-ALL), the NPLM algorithm can take advantage of the full sample statistics to
make discovery possible. This is the case for the A → 4l and h± → τ±ν signal benchmarks,
where a 2 per mill signal injection (corresponding to a 2 sigma global normalization effect
in our studies), can be raised to evidence (for A → 4l) or discovery (for h± → τ±ν) level
of significance.3 For the A → 4l and h± → τ±ν signal benchmarks, we observe impressive
reaches for the NPLM-SAT approach as well. This result aligns with what observed in the
one-dimensional and five-dimensional experiments, namely that NPLM-SAT is as successful
as NPLM-ALL when the signal support is mainly in the bulk of the reference sample support,
as it is the case for the signal benchmarks considered here (see marginal distributions reported
in figures 12 and 13). Additionally, this result points out the potential of the NPLM split-
aggregation method as a tool to compute anomaly-preserving summary statistics, allowing to

3The Z-score values reported in figure 10 are computed empirically up to 3. For larger values of the default
NPLM, NPLM-ALL and NPLM-ONE, we rely on the asymptotic χ2 distribution of the test statistic under
the null hypothesis (the compatibility of the NPLM test with a χ2 for kernel methods was previously studied
in refs. [6, 9]). For NPLM-SAT we don’t observe the emergence of an asymptotic χ2. However the null
distribution has a good agreement with a normal distribution. We therefore use the normal asymptotic to
extrapolate an estimate of Z-scores above 3. Points above 3 in the figure should therefore be taken more as a
qualitative trend than an accurate estimate.
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Figure 10. CMS-L1-24D Summary plot. Significance of the tests in terms of the median Z-score
as a function of the fraction of signal injection. We split the dataset in 5 batches and run NPLM-ALL
(train and test over 5 batches), NPLM-ONE (train over 5 batches and test only one batch), and
NPLM-SAT. For comparison, we report the performance of the NPLM strategy run without batching
over the full luminosity (27 pb−1) and over the over a fifth of it (5.4 pb−1), corresponding to the
luminosity of one of the batches used for NPLM-ALL, NPLM-ONE and NPLM-SAT. The total
number of background events sum to 1 million. The inspected signal fractions are of the order of few
per mill. Each panel corresponds to a different signal benchmark.

save information about data that are only temporarily available and eventually discarded by
the data acquisition system. We conclude this section with commenting on the performances
of NPLM on the h± → τ±ν and LQ → bτ signals, that are found to be poorer. We believe
that the reason could reside in the choice of the features adopted in these studies — only a
subset of the original nineteen physics objects is retained for this analysis. Moreover, the
algorithm performances are sensitive to the size of the reference sample R — our studies
suggest that the larger the sample the more accurate the result becomes, though more
computationally demanding. Finally, one peculiar feature of this dataset is the so called “zero
padding”, namely filling with zeros the entries corresponding to specific objects in the event
that are not observed. The zero padding gives rise to sharp features that project great part
of the data on lower dimensional surfaces of the input manifold. The problem of variable
size events could be solved choosing a different data representations, model architecture, or
by mapping the data to a lower dimensional embedding. These interesting directions are
out of the scope of this paper and are left for future work.

5 Computational resources and training time

In this section, we report the details of the algorithm implementation, highlighting the
typical execution time and computational resources needed for the numerical experiments
studied in this work.

Execution time. The execution time of a single instance of the NPLM algorithm based
on kernel methods depends on several factors: the total number of data points, the number
of kernels M , the kernel width σFLK, the smoothness parameter λ, and on the hardware
resources employed. Our implementation relies on the Falkon library [13], that allows to speed
up the fitting time by optimally exploiting GPUs [6]. We report in table 1 the typical time
range for a single batch execution for the hyper parameters choice adopted in our experiments.
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dataset M σFLK λ NR ND (all) Time (single batch)
EXPO-1D 1k [0.1, 0.3, 0.7, 1.4, 3.0] 10−6 200k 16k 0.5–1.5 s

DIMUON-5D 10k [0.8, 1.9, 3.0, 4.4, 6.6] 10−6 40k 8k 3–12 s
L1CMS-24D 10k [10.5] 10−6 10M 1M 40–70 s

Table 1. Model hyper parameters and execution time. Unless stated otherwise, all instances of the
NPLM algorithm for each dataset follow the settings described in this table.

The variance within experiments on the same dataset is mainly due to the σFLK value, smaller
values require a higher number of iterations of the Falkon algorithm to reach convergence.
The main difference in execution time between the univariate and multivariate cases is due
to the model size, being the number of kernels used in the five-dimensional problems a factor
10 larger than in the one-dimensional case. The training time is not significantly affected
by the batch size, as the reference sample size is dominating the overall size of the training
sample. For large samples and complex models the execution time increases exponentially
with the dataset size (see studies reported in ref. [6]), and the benefit of batching the dataset
in terms of execution time become more striking. This has been observed, for instance,
when studying the L1CMS-24D.

Storage resources. Aggregating over batches requires both temporary and permanents
computational and storage resources. The temporary resources are used to train each single
instance of the algorithm and should be sufficient to store the data batch input to the model,
and the model itself. Importantly, the model location should be accessible by all data batches
to allow estimating F Nb according to eq. (2.13). The reference sample R and the values that
the aggregated model F Nb takes in the test points should instead be stored in a permanent
location. The reference sample is a static input to the NPLM algorithm and is common to
all training instances.4 Together with the test data, it is used to asses the value of the test in
all three versions described in section 3. The amount of memory resources to be allocated
for the aggregated model depends on the number of data points required by the test. For
the test in eq. (2.14), the aggregated function F Nb is evaluated over all data points and
reference points, requiring a vector of length NR + ND. For the test in eq. (2.15), only a
subset Ntest < Nb of batches is used for evaluation and therefore the vector length reduces to
NR + Ntest

Nb
ND. Finally for the saturated test in eq. (2.16), the aggregated function is only

evaluated over the reference set, requiring a NR length vector only. For the first two cases,
the storage resources needed scale linearly with the data taking time, while in the last case
they are constant. The implications of information loss on the sensitivity of the different
summary statistics are discussed in section 3.2 and 3.3.

4As previously stated, this work doesn’t cover the case of an imperfect reference, namely the case in which
the reference model is affected by systematic uncertainties and its optimal configuration given the experimental
condition is not constant. We leave this case for future work.
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6 Conclusions

In this work we explore the possibility of scaling the use of NPLM to test large size data
samples in presence of variable computational and storage resource constraints. We propose
to split the dataset in batches and run parallel instances of the NPLM algorithm on each of
them. The final results are combined averaging the density-ratio functions learnt by each
instance of the NPLM algorithm. We apply this strategy to both univariate and multivariate
benchmarks representative of typical data distributions in particle physics experiments.
Our experiments show that the split-aggregation strategy preserves or even surpass the
sensitivity power of the NPLM test applied to the full sample (original implementation). A
possible explanation for the success can be found in the core design of the NPLM training
strategy, aiming at the maximum-likelihood fit of the model to the input data without seeking
generalisation, and thus obtaining a representation of the true model underneath the data
that over-fits the specific sample used for training. While over-fitting is commonly evaded
in machine learning algorithms, here it assumes a crucial role in preserving data structures
that do not generalise, either because they are statistical fluctuations or because they are
especially rare traits of the data. The ability of preserving rare structures is what makes
the batching approach for NPLM successful. Subtle hints of anomalous events in different
batches are recombined into a statistically significant signal, suggesting that the density-ratio
function learnt by the NPLM algorithm for each batch could be a good candidate to build
an anomaly-preserving summary statistic.

Moreover, the new NPLM split-aggregation strategy offers a solution to offline signal-
agnostic analyses of collider data, often characterised by large sample sizes. It is beneficial
both in terms of training time and sensitivity performances thanks to its effect of regularization
against statistical fluctuations, able in some cases to increase the significance of the observed
discrepancy. It should be mentioned that a rigorous treatment of the systematic uncertainties
affecting the reference sample in this context is crucial. A way to address systematic
uncertainties in the original NPLM implementation was proposed in ref. [5] for neural network
based models. In the split-aggregation approach additional challenges arise from the fact
that each batch has access only to “local” information about uncertainties. An accurate
global assessment of the systematic effects via nuisance parameters estimation needs therefore
the design of a successful aggregation strategy over the batches (see for instance ref. [25]).
The extension of the approach proposed in ref. [5] to handle systematic uncertainties in the
split-aggregation NPLM strategy is subject of ongoing study and left for future work.

The potential application of the new batch-based NPLM strategy extends beyond the
offline analysis, to quasi-online signal-agnostic analyses of streamed data that are only
temporarily available. Online approaches to data analyses allow to inspect collider data at
the experiments prior the stage of filtering applied by the triggers, opening the way to the
exploration of phase space regions never analysed before, at significantly high rates. Efforts in
this direction are ongoing at the LHC experiments. The CMS experiment is investigating new
approaches to analyse the experimental data at the collision rate of 40 MHz with focus on the
muon detector chambers and the electromagnetic calorimeters [26, 27]. Moreover, the LHCb
experiment has recently upgraded to a triggerless data readout at a rate of roughly 30 MHz,
with partial event reconstruction that allows to reduce the rate down to 1 MHz prior the final
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trigger stage [28]. In this work we proposed two possible solutions to run the NPLM algorithm
over a continuous stream of data under storage and computational resources constraints. In
complete absence of permanent storage, we propose to train NPLM over multiple batches
and test the aggregated density model following the saturated likelihood-ratio approach
(NPLM-SAT). In case of limited storage, in addition to NPLM-SAT we propose to train
NPLM over multiple batches and evaluate the test only on one batch available for long term
storage (NPLM-ONE). Experiments run under constrained storage scenarios (NPLM-ONE)
show that performing the aggregation over batches improves the modelling of the signal
increasing the power of the NPLM test applied to a single batch. As for the saturated test,
we observe sensitivity powers comparable to those of the NPLM algorithm applied to the
full statistics when the signal lays on high density regions, while the power is only partially
recovered for signals localised in the tails. In both cases, the sensitivity is expected to scale
as the statistics of the processed data increases. Online analysis is a promising avenue for
anomaly detection. The smart use of machine learning algorithms can leverage large statistics
to efficiently navigate unexplored data and recognise novel rare processes of unexpected
nature or location. The studies presented in this work are a first step in the direction of
investigating online or quasi-online solutions for statistical anomaly detection with the NPLM
algorithm. Detailed studies on scalability and uncertainties quantification in typical LHC
data streaming scenarios are left for future work.

Acknowledgments

This work is supported by the National Science Foundation under Cooperative Agreement
PHY-2019786 (The NSF AI Institute for Artificial Intelligence and Fundamental Interactions,
http://iaifi.org/). Computations in this paper were run on the FASRC Cannon cluster
supported by the FAS Division of Science Research Computing Group at Harvard University.
The author would like to thank Siddharth Mishra-Sharma, Phil Harris, Marco Zanetti and
Marco Letizia for the useful conversations and constructive feedback on the manuscript.

A Supplementary materials

A.1 Datasets details

EXPO 1D. This simple univariate setup introduced in ref. [3] and further studied in refs. [5, 7]
represents an energy or transverse-momentum spectrum that falls exponentially. Such type
of distributions are fairly common in collider physics experiments. Studying GoF techniques
in this setup is thus illustrative of some of the challenges associated with the search for new
physics at these experiments. The density distribution under the reference model is defined as

n(x|R) = N(R) e−x , (A.1)

where N(R) denotes the number of expected events in the dataset. In our studies we set
N(R) at 16k events for the full dataset D, and we consider batches of size 8k (2 batches), 4k
(4 batches) or 2k (8 batches) events. To test the model ability to detect features of various
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µ σ N(S)/N(R) Zid (full batch)

Gaussian peaks bulk 1.6 0.16 1.5 · 0−2 4.9
broad 4 0.64 6.5 · 0−3 4.2
narrow 4 0.01 1.5 · 0−3 4.8
tail 6.4 0.16 1.5 · 0−3 4.0

Tail excess excess 1.5 · 0−2 4.5

Table 2. Summary of the 1D signal benchmarks.
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Figure 11. Expo-1D signal benchmarks.

narrowness and in different locations, we consider four Gaussian signals

n(x|Gµ,σ) = N(S) 1√
2πσNP,i

e−
(x−µ)2

2σ2 , (A.2)

and an excess in the tail defined by

n(x|E) = N(S)
2 x2e−x . (A.3)

The data distribution under the alternative hypotheses has therefore the following form

n(x|Hi) = n(x|R) + n(x|S) , (A.4)

with S = {Gµ,σ, E}. A visual representation of the data distribution under the various signal
scenarios is presented in figure 11. For this toy model, the ideal test statistic according to
Neyman-Pearson can be computed analytically as

tS
id(D) = 2 log

[
e−N(S) ∏

x∈D

n(x|S) + n(x|R)
n(x|R)

]
. (A.5)

The fraction of signal injection over reference events, N(S)/N(R), the Z-score5 for the ideal
test (Zid), as well as the location µ and scale σ of the Gaussian signals are reported in table 2.

Running the NPLM algorithm requires a reference sample (R) to compare the data D
with. Our R sample is composed of NR = 200k events, sampled according to the R hypothesis.
It should be noticed that this studied is conducted under the assumption that we can sample
synthetic data from the R hypothesis, which is perfectly known, at will.

5The Z-score is defined as the quantile of a standard normal distribution whose survival function matches
the p-value p:

Z = Φ−1(1 − p)
.
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Mass (GeV) Σ (GeV) N(S)/N(R) Zid (full batch)

Z’ scenarios 600 16 6 · 10−4 3
16 1.5 · 10−3 7.1

300 8 2.5 · 10−3 5
8 5 · 10−3 8.8

200 5 5 · 10−3 5.1
5 1 · 10−2 9.1

cw(TeV−2) N(D)/N(R)

EFT scenarios 1.0 1.002 3.7

Table 3. Summary of the MUMU signal benchmarks. The signal yields, N(S), and data yileds, N(D),
are the ones expected for the luminosity of one batch in our experiments configuration.

Dimuon 5D. The second benchmark considered in this work consists of a set of Monte
Carlo simulated proton-proton collisions happening at 13 TeV at the LHC, with two opposite
charged muons in the final state ref. [29]. In this dataset, each event is represented by five
variables describing the kinematics of the dimuon system: the transverse momentum of
each muon (pT,1(2)), their pseudorapidities (η1(2)), and the relative azimuthal angle between
the two objects (∆ϕ12 = ϕ1 − ϕ2). We focus on final states with transverse momenta
greater than 20 GeV, pseudorapidities lower than 2.1 in absolute value, and with invariant
mass of the dimuon system larger than 60 GeV. The dominant background process in this
configuration is the Drell-Yan, that for sake of simplicity we consider as the only source of
background. In our experiments the total number of expected events in the SM background
hypothesis is around N(R) = 8000, after the acceptance selections are applied. We then study
the impact of splitting the data in four batches and combining them via the batch-based
strategy proposed in section 3. As signal benchmarks, we considered a set of Z ′ bosons
with variable mass and width and a set of EFT scenarios described by the dimension-6
4-fermions Lagrangian cW

Λ Ja
LµJµ

La, with variable Wilson coefficients. Details on the signal
benchmarks are given in table 3.

CMS-L1 24D. As supplementary material we report the marginal distribution of the SM
dataset and the four signal benchmarks over the 24 input variables considered in this work
(figures 12, 13). The narrow peak at zero present in all plots is the effect of “zero padding”
(see main text for more comments).

A.2 Improving regularization and sensitivity by aggregating over batches

In this appendix we provide additional plots showing the power curves of the aggregation
method NPLM-ALL proposed in this work, both for the univariate EXPO-1D dataset
(figure 14) and for the multivariate MUMU-5D one (figures 15 and 16). The power of the
method is compared with a simple sum of tests (details in sections 3 and 3.1).
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Figure 12. Input features for the CMS-L1-24D dataset (panel 1). In each row we show the
transverse momentum, pseudorapidity and azymuthal angle of an object.

A.3 Impact of aggregation on a single batch test

We provide in figure 17 additional plots showing the power curves of the aggregation method
NPLM-ONE proposed in this work. The power of the method is compared with a simple
sum of tests (details in sections 3 and 3.2).

A.4 Saturated test statistic

In this appendix we provide additional plots showing the power curves of the aggregation
method NPLM-SAT proposed in this work (see figures 18 and 19). The power of the method
is compared with a simple sum of tests (details in sections 3 and 3.3).
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Figure 13. Input features for the CMS-L1-24D dataset (panel 2). In each row we show the
transverse momentum, pseudorapidity and azymuthal angle of an object.
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Figure 14. EXPO-1D, NPLM-ALL. Power curves for tAGGR (top row) and tSUM (bottom row) at
different number of batches. Each column shows a different signal benchmark. Data splitting improves
the performances of tAGGR, while degrades tSUM.
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Figure 15. MUMU-5D, NPLM-ALL (panel 1). Power curves for tAGGR (top row) and tSUM
(bottom row) at different number of batches. Each column shows a different signal benchmark. Data
splitting maintains or improves the performances of tAGGR, while degrades tSUM.
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Figure 16. MUMU-5D, NPLM-ALL (panel 2). Power curves for tAGGR (top row) and tSUM
(bottom row) at different number of batches. Each column shows a different signal benchmark. Data
splitting maintains or improves the performances of tAGGR, while degrades tSUM.
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Figure 17. NPLM-ONE. DIMUON-5D. Power curves for the aggregated test tAGGR when
evaluated over one single data batch (light blue line) and over the full dataset (green line), compared
with the power of the test learnt and evaluated over one data batch (black line). The aggregation
improves the accuracy over the learnt alternative model enhancing the sensitivity with respect to the
single batch test.The two panels show the results of our tests for two signal benchmarks, the a Z ′

resonance in the tail of the mass spectrum (left panel) and a EFT scenario (right panel).
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Figure 18. NPLM-SAT. EXPO-1D. Comparison of the aggregated and saturated test statistic
power curves for a narrow gaussian signal (left panel), a broad gaussian signal (central panel), and
a non resonant excess in the tail (right panel) of the exponential falling reference distribution. The
experiments have been performed splitting the dataset in 8 batches. We show in black the power curve
of the saturated test (NPLM-SAT), in lightblue the power curve of the aggregated test evaluated over
the full dataset (NPLM-ALL), and in green the one of the aggregated test evaluated over one batch
(NPLM-ONE).
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Figure 19. NPLM-SAT. DIMUON-5D. Comparison of the aggregated and saturated test statistic
power curves for a Z ′ resonant signal in the bulk (left panel) and in the tail (right panel) of the mass
spectrum considered in this work. The experiments have been performed splitting the dataset in
4 batches.
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