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Abstract
High-energy nuclear collisions encompass three key stages: the structure of the colliding nuclei, informed by low-energy 
nuclear physics, the initial condition, leading to the formation of quark–gluon plasma (QGP), and the hydrodynamic expan-
sion and hadronization of the QGP, leading to final-state hadron distributions that are observed experimentally. Recent 
advances in both experimental and theoretical methods have ushered in a precision era of heavy-ion collisions, enabling an 
increasingly accurate understanding of these stages. However, most approaches involve simultaneously determining both 
QGP properties and initial conditions from a single collision system, creating complexity due to the coupled contributions 
of these stages to the final-state observables. To avoid this, we propose leveraging established knowledge of low-energy 
nuclear structures and hydrodynamic observables to independently constrain the QGP’s initial condition. By conducting 
comparative studies of collisions involving isobar-like nuclei—species with similar mass numbers but different ground-state 
geometries—we can disentangle the initial condition’s impacts from the QGP properties. This approach not only refines our 
understanding of the initial stages of the collisions but also turns high-energy nuclear experiments into a precision tool for 
imaging nuclear structures, offering insights that complement traditional low-energy approaches. Opportunities for carrying 
out such comparative experiments at the Large Hadron Collider and other facilities could significantly advance both high-
energy and low-energy nuclear physics. Additionally, this approach has implications for the future electron-ion collider. 
While the possibilities are extensive, we focus on selected proposals that could benefit both the high-energy and low-energy 
nuclear physics communities. Originally prepared as input for the long-range plan of U.S. nuclear physics, this white paper 
reflects the status as of September 2022, with a brief update on developments since then.
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1  Introduction: from nuclear structure 
to heavy‑ion collisions

Collective behavior in many-body systems governed by the 
strong nuclear force emerges ubiquitously across energy 
scales and plays an instrumental role in our understand-
ing of the phenomenology of such complex systems. In 
the zero temperature realm of atomic nuclei, strong collec-
tive correlations of nucleons lead to a range of fascinating 

structure properties, such as the emergence of rotational 
bands, which are naturally explained via notions of nuclear 
deformations and fluctuating intrinsic nuclear shapes [1]. At 
high temperatures, nucleons melt into fundamental constitu-
ents, quarks and gluons, to form the so-called quark–gluon 
plasma (QGP), whose collective description in terms of fluid 
dynamics has enabled us to explain a wealth of experimental 
data from high-energy nuclear collisions [2, 3].

Recently, collisions of ions of similar mass at high energy, 
such as in the BNL RHIC isobar run of 96Ru+96Ru and 
96Zr+96Zr collisions, have led to the experimental demon-
stration of the direct impact of structural properties of nuclei 
on the collective flow of the produced QGP [4]. Enabling 
such a connection is the fact that high-energy collisions 
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probe, on an event-by-event basis, nucleon configurations 
from collapsed nuclear wave functions in the overlap region 
[5–7]. This is made possible by the ultra-short time dura-
tion for the interaction between the two ions at high energy. 
Sensitivity to individual realizations of nucleon configura-
tions combined with the large number of particles produced 
in each high-energy collision (up to 30,000 particles in a 
Pb+Pb collision at CERN LHC energy [8]) enables a direct 
link between multi-particle correlations in the final state of 
the collisions and multi-nucleon correlations in the collid-
ing nuclear states. The way high-energy collisions of nuclei 
access the nuclear structure is, therefore, akin to the tech-
niques employed in the study of many-body correlations 
in highly controllable quantum systems, such as cold atom 
gases [9, 10], where the coordinates of individual constitu-
ents are measured via imaging techniques. High-energy col-
lisions are the ideal tool for imaging the collective structure 
of atomic nuclei, as opposed to electron-nucleus scattering, 
where more local information about parton structure or 
short-range nucleon correlations is accessible.

A major research goal in high-energy nuclear physics is 
the characterization of the QGP in terms of medium proper-
ties, such as specific shear and bulk viscosities, �∕s and �∕s , 
or the jet quenching transport parameter, q̂ [3]. The precision 
achievable in this characterization, e.g., in state-of-the-art 
Bayesian analyses [11–15], is impacted by our uncertain 
knowledge of the mechanism of energy deposition in the 
interaction of two nuclei. Assessing the role of the nuclear 
structure input will, therefore, reduce this uncertainty, per-
mitting global analyses of data to infer cleaner information 
about the collision dynamics, and in turn the knowledge of 
the QGP initial condition [16]. Conversely, a major direc-
tion of research in nuclear structure theory focuses on the 
emergence of nuclear properties from fundamental theory 
[17]. Such ab initio approaches aim at describing strongly 

correlated nuclear systems from approximate (yet systemati-
cally improvable) solutions of the Schrödinger equation with 
nucleon–nucleon and three-nucleon interactions constructed 
in an effective theory of low-energy QCD. These efforts find 
a natural application in the phenomenology of multi-parti-
cle correlations in high-energy nuclear collisions. Once the 
response of the QGP initial condition to nuclear structure 
is established, one could use measurements in heavy-ion 
collisions to test the results of ab initio approaches in a way 
that is complementary to low-energy experiments. The sys-
tematic use of ab initio results as an input for the model 
building of nuclear collisions will then permit us to assess, 
in particular, the consistency of nuclear phenomena across 
energy scales.

Given the rapid progress in the development of ab ini-
tio theories of nuclear structure, and considering that the 
nuclear program at the CERN LHC in the next decade is 
largely to be defined, it is timely to identify the physics 
opportunities based on the synergy of these two areas from 
which the nuclear community as a whole could benefit.

2  Manifestation of nuclear structure 
in high‑energy nuclear collisions

2.1  Methodology

Figure 1 illustrates the method for accessing the structure 
of ions colliding at relativistic energies. (A) Two nuclei 
are smashed in a high-energy collider (the large Lorentz 
contraction in the beam direction is not shown). (B) At 
the time of interaction, the nuclei are characterized by 
nontrivial geometries of nucleon configurations, includ-
ing deformations and radial profiles. (C) The geometry of 
such configurations is reflected in the initial condition of 

Fig. 1  (Color online) Schematic 
view of a relativistic heavy-
ion collision, highlighting the 
role played by the collective 
properties of the colliding ions 
in shaping the geometry of the 
produced quark–gluon plasma 
(QGP). The Lorentz contrac-
tion of the two nuclei in the 
z-direction, by factor � ∼ 100 at 
the BNL RHIC or over 1000 at 
the CERN LHC, is not shown. 
See text for a detailed descrip-
tion
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the created QGP. The subsequent hydrodynamic expansion 
of this system, driven by pressure-gradient forces, con-
verts the spatial asymmetries in the initial shape into the 
momentum asymmetries of emitted particles in the trans-
verse plane. (D) Experimentally, transverse momentum 
( pT ) asymmetries can be revealed via a Fourier expansion 
of the particle distributions in azimuthal angle:

where the Fourier harmonics Vn = vne
inΦn are coefficients of 

anisotropic flow. The most significant harmonics are V2 , 
elliptic flow, reflecting the elliptical asymmetry of the geom-
etry of the QGP, and V3 , reflecting the triangular asymme-
try [18–20]. We note that the total particle multiplicity, 
Nch = ∫ dpTdN∕dpT , is proportional to the amount of energy 
deposited in a collision, which in turn is determined by the 
number of nucleons, Npart , participating in the interaction. 
The slope of the pT spectra reflects the strength of the radial 
expansion, characterized by ⟨pT⟩ =

1

Nch

∫ dpT pTdN∕dpT , 
which is inversely related to the transverse size of the over-
lap region [21]. Due to these relations, inherent to the hydro-
dynamic description, information about the structure of the 
colliding ions can be inferred from the detected final-state 
particles.

The most direct way of observing the impact of the 
nuclear structure via this method is through comparing 
observables measured in collisions of species that are 
close in mass. Isobars, i.e., nuclides having the same 
mass number, are ideal candidates for such studies [16], 
as explicitly demonstrated by experimental data from 
96Zr+96Zr and 96Ru+96Ru collisions, collected in 2018 at 
the BNL RHIC and released three years later [4]. Given 
two isobars, X and Y, and a given observable, O , we ask 
the following question:

Model studies have established that any visible departure 
from unity in the ratio must originate from differences in 
the structure of the isobars. In the measurements of the 
STAR collaboration, structure influences are ubiquitously 
found. Ratios of more than ten observables taken between 
96Zr+96Zr and 96Ru+96Ru have been measured, all display-
ing distinct and centrality-dependent deviations from unity, 
as reported in Fig. 2 [22]. Such rich and versatile informa-
tion can provide a new type of constraint on the structure 
of these isobars, as also predicted by early model investiga-
tions, which we discuss below.

(1)
d2N

dpTd�
=

dN

2�dpT

(
1 + 2

∞∑

n=1

vn cos n(� − Φn)

)
,

(2)
OX+X

OY+Y

?
=1

2.2  Nuclear structure input

The hydrodynamic model of heavy-ion collisions success-
fully reproduces a vast set of experimental measurements 
at the BNL RHIC and the CERN LHC [23]. The input to 
hydrodynamic simulations is the event-by-event distribution 
of nucleons in the colliding ions. Motivated by low-energy 
nuclear physics, a Woods–Saxon profile with a nuclear sur-
face expanded in spherical harmonics is routinely employed,

where R0 is the half-density radius, a0 is the surface diffuse-
ness, �2 is the magnitude of the quadrupole deformation, � 
determines the relative length of the three axes of the ellip-
soid, and �3 is the (axial) octupole deformation parameter, 
where �3 ≠ 0 implies a breaking of parity symmetry in the 
intrinsic nuclear shape. Hydrodynamic simulations show 
that any changes in these parameters leave characteristic 
and detectable impacts on experimental observables such 
as those shown in Fig. 2 [24, 25].

Alternatively, hydrodynamic simulations can take pre-
sampled nucleon configurations from ab initio calculations 
as input (See, e.g., Refs. [26–29] for such applications in 
16O collisions). Here, diffuseness and deformations emerge 
directly from many-nucleon correlations in the sampled 
wave functions. Given the expected rapid progress in the 
reach and quality of ab initio calculations over the next few 
years [17, 30], this alternative approach should become 
broadly adopted in the modeling of heavy-ion collisions in 
future. Full exploitation of such predictions of state-of-the-
art nuclear theory will demonstrate further the scientific rel-
evance of the connection between high-energy observations 
and low-energy theories.

2.3  Signatures of intrinsic nuclear shapes

A crucial observable in high-energy heavy-ion collisions 
is the rms flow coefficient, vn =

√
⟨�Vn�2⟩ . Numerical and 

semi-analytical studies show that, for collisions at a given 
multiplicity (or centrality), vn is enhanced by the presence 
of nuclear deformations in the colliding ions, following[16, 
31–33],

where b0 and b1 are positive coefficients that depend on cen-
trality. The enhancement predicted by Eq. (4) would show 
up, in particular, when comparing collisions of deformed 
nuclei to collisions of spherical nuclei. A powerful way to 
do so is to compare deformed ion collisions with collisions 

(3)

�(r, �,�) ∝
1

1 + e[r−R0(1+�2(cos �Y
0
2
(�,�)+sin �Y2

2
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of nearly spherical 208Pb ions. The left panel of Fig. 3 reveals 
an enhanced v2 in 129Xe+129Xe collisions compared to 
208Pb+208Pb collisions [34], as observed by the ALICE col-
laboration [35]. A state-of-the-art calculation [36] confirms 
the origin of this effect due to the large �2 of 129Xe.

Concerning the triaxiality, � in Eq. (1), revealing its 
presence requires the use of three-particle correlations. 
The most sensitive observable is the correlation of the 
shape of the QGP with its size [37], measurable experi-
mentally via a correlation between v2

n
 and the fluctuation 

Fig. 2  (Color online) Ratios of observables taken between 96Ru+96Ru and 96Zr+96Zr collisions as a function of N
ch

 , as measured by the STAR 
Collaboration (Preliminary results). A total of ten ratios are shown

Fig. 3  (Color online) Modification of multi-particle correlation observables in Xe+Xe collisions compared to the baseline with spherical nuclei 
provided by Pb+Pb collisions. Left: elliptic flow, v

2
 [35]. Right: correlation between elliptic flow and the average transverse momentum, �

2
 [45]
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of transverse momentum, �pT = pT − ⟨pT⟩ , at a given mul-
tiplicity. This quantity is conveniently formulated as a 
Pearson coefficient [38], �n =

⟨v2n�pT⟩��
⟨v4n⟩−⟨v2n⟩2

�√
⟨�pT�pT⟩

 . For 

quadrupole deformation, theoretical work shows the fol-
lowing leading-order dependence [39]

where b′
0
 and b′

1
 are positive coefficients. In the presence of 

large �2 , moving from oblate ( � = 60◦ ) to prolate ( � = 0 ) 
shapes decreases �2 in a substantial way. A recent measure-
ment at RHIC shows precisely 𝜌2 < 0 in central U+U colli-
sions [40], which is explained naturally by the large prolate 
deformation of 238U [41], �2 ∼ 0.28 , � = 0 . The nucleus 
129Xe is particularly interesting for such a study, as its shape 
is considerably deformed and also triaxial, �2 = 0.2 and 
� ≈ 30◦ [42–44]. In the right panel of Fig. 3, model calcula-
tions assuming oblate, triaxial, and prolate 129Xe shape show 
a strong modification of �2 in 129Xe+129Xe collisions with 
respect to the 208Pb+208Pb collisions [43]. Measurements 
from the ATLAS collaboration indeed confirm the triaxial 
scenario [45]. One important point is that the combined use 
of v2

2
 and �2 can simultaneously constrain �2 and �.

In the octupole sector, much less is known from low-
energy physics [46]. Direct evidence of octupole defor-
mation in excitation bands of atomic nuclei is scarce, 
because octupole deformation rarely manifests as a mean-
field effect (static deformations) [47, 48], as in a simple 
rotor model. However, dynamical octupole correlations 
at the beyond-mean-field level are present in essentially 
all nuclei [49] and should leave their fingerprint in the 
nucleon configurations from ab initio calculations. 
High-energy nuclear collisions, probing configurations 
of nucleons on an event-by-event basis, give access to all 
such non-static deformations in the ground states in the 
same way as the static ones.

One of the breakthrough outcomes of the isobar 
collision campaign at RHIC is reported in Fig. 4, also 
shown in the mid-bottom panel of Fig. 2. The ratio of vn 
taken between Ru+Ru and Zr+Zr collisions shows sig-
nificant departures from unity. The data imply that 96Ru 
has a larger �2 than 96Zr, as expected from low-energy 
experiments. A similar departure for n = 3 , showing an 
enhanced v3 in Zr+Zr collisions, can only be ascribed to 
96Zr having a sizable �3 [50], which is not predicted by 
mean-field energy density functional calculations [48, 
51]. The results of the STAR collaboration demonstrate 
that heavy-ion collisions offer a clean access route to 
multi-nucleon correlations that are both difficult to quan-
tify from traditional low-energy experiments and hard to 
predict from phenomenological models.

(5)�2 ≈ b�
0
− b�

1
�
3
2
cos(3�),

2.4  Radial profiles and relation to neutron 
distributions

The nuclear radial profile, determined by the R0 and a0 
parameters in Eq. (2), influences the area and the density 
of the overlap region. In general, a smaller a0 or R0 for a 
fixed mass number leads to a sharper edge in the overlap 
geometry, leading to a more compact QGP, larger pressure 
gradients, and hence larger ⟨pT⟩ and vn . The impact is more 
significant in off-central collisions where the overlap region 
is smaller, and sensitivity to a variation in R0 and a0 is larger. 
Indeed, model studies show that the probability distributions 
of Npart , and hence the distribution of Nch , p(Nch) , as well 
as ⟨pT⟩ and v2 , are largely impacted by variations in a0 and 
R0 [24, 52, 53].

Due to model-dependent systematics, constraining the 
radial nuclear profile in a single collision system is difficult. 
Such limitation is largely overcome by comparing experi-
mental observables between systems close in size, such as 
isobars. Assuming the differences of radial parameters are 
small, deviation of isobar ratios from unity can be approxi-
mated by (taking 96Ru and 96Zr as an example)

where the coefficients c0 and c1 depend only on the mass 
number at a given centrality or multiplicity and are insensi-
tive to the final state effects [54]. These simple equations 
describe well the isobar ratios, as verified in recent transport 
model simulations [24].

Energy density functional calculations suggest that 96Zr 
has a larger diffuseness but a smaller radius than 96Ru, i.e., 
Δa0 ≡ a0,Ru − a0,Zr < 0 and ΔR0 ≡ R0,Ru − R0,Zr > 0  [56, 
57]. As shown in Fig. 5, a transport calculation imple-
menting such differences can quantitatively describe the 

(6)
Ru

Zr
≈ 1 + c0(R0,Ru − R0,Zr ) + c1(a0,Ru − a0,Zr ) ,  ≡ p(Nch), v2, or ⟨pT⟩,

Fig. 4  (Color online) Preliminary ratios of flow coefficients, vn , taken 
between Ru+Ru and Zr+Zr collisions. The suppression of the v

3
 ratio 

at large multiplicity is due to an enhancement of v
3
 in Zr+Zr colli-

sions
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measured ratios of v2{4} (the fourth-order cumulant of ellip-
tic flow fluctuations) and of the distribution of charged par-
ticle number, p(Nch) . The cumulant v2{4} measures the flow 
originating from the intrinsic ellipticity acquired by the QGP 
due to the finite impact parameter of the collisions [58]. Fig-
ure 5 shows that such intrinsic ellipticity is impacted only by 
Δa0 [59], but is insensitive to ΔR0 and nuclear deformations. 
On the other hand, p(Nch)-ratio is sensitive to both Δa0 and 
ΔR0 [56, 57]. A dedicated study finds that the ratio of pT 
is also sensitive to both Δa0 and ΔR0 [53]. Therefore, the 
measurement of isobar ratios provides several independent 
determinations on the differences ΔR0 and Δa0 , which can 
be confronted against the predictions of low-energy nuclear 
structure models.

The knowledge of nucleon distribution, in combination 
with the well-known proton distribution parameters ap and 
R0p from low-energy experiments, allows one to probe the 
difference between the rms radius of neutrons and protons 
in heavy nuclei, Δrnp = Rn − Rp , known as the neutron 
skin. The value of Δrnp is directly related to the slope of 
the symmetry energy, dubbed L, appearing in the equation 
of state (EOS) of nuclear matter [60]. Determinations of L 
are intensively pursued at low energy because this parame-
ter plays a crucial role in the stability properties of neutron 
stars [61, 62]. Isobar ratios in high-energy collisions are 
expected to probe only the difference in the neutron skin, 
Δ(Δrnp) = Δrnp,Ru − Δrnp,Zr . Assuming Woods–Saxon dis-
tributions for protons and nucleons, Δrnp receives a contri-
bution from both half-radius and surface diffuseness [24]: 
Δ(Δrnp) ∝ (R0ΔR0 − R0pΔR0p) + 7∕3�2(aΔa − apΔap)  . 
Therefore, collisions of isobars or, in general, of species 
of similar mass numbers allow one to access detailed 

information about radial profiles and neutron skins of 
nuclei systematically.

3  Science cases at the intersection 
of nuclear structure and hot QCD

A window to perform collisions with new ions will be 
opened in future at the CERN LHC beyond Run3 (2025) 
and possibly before the shutdown of the BNL RHIC upon 
successful completion of the sPHENIX program. About 
250 stable isotopes in the nuclear chart could be used sys-
tematically for such a purpose. About 140 are found in 
isobar pairs or triplets, as in Table 1. Our idea is to select 
nuclear species that would permit us to (1) probe features 
of high-energy collisions, in particular their initial condi-
tion, by exploiting well-known structural properties, (2) 
extract structure information of the colliding ions that 
would complement the effort of low-energy experiments, 
(3) reveal features of colliding ions that are difficult to 
access in conventional nuclear structure experiments, but 
have a significant impact on low-energy models. Contin-
ued effort is required to identify species that can maximize 
the scientific impact for both the hot QCD and the nuclear 
structure communities. For the moment, we have identified 
four cases that may lead to discoveries via high-energy 
experiments. They involve nuclides belonging to the mass 
regions A ∼ 20 , A ∼ 40 , A ∼ 150 , A ∼ 200 . More cases 
are expected to emerge upon further discussion and model 
studies (see Sect. 4 for a brief progress update since 2022).

Fig. 5  (Color online) Ratios of observables taken between Ru+Ru 
and Zr+Zr collisions. The inset in the left panel shows how the neu-
tron excess of 96Zr compared to 96Ru yields a more diffuse nuclear 
surface, i.e., a larger a

0
 and a slightly smaller R

0
 in Eq. (1). Left: the 

impact of the larger a
0
 of 96Zr manifests predominantly in the fourth-

order cumulant of v
2
 , v

2
{4} , which originates from the intrinsic ellip-

ticity of the QGP due to the finite collision impact parameter. Right: 
both a

0
 and R

0
 differences contribute to a broad hump in the ratio of 

p(N
ch
) . Calculations are obtained within the A Multi-Phase Transport 

(AMPT) model [55]



Imaging the initial condition of heavy‑ion collisions and nuclear structure across the nuclide… Page 7 of 17   220 

3.1  Stress‑testing small system collectivity 
with 20Ne

The neon-20 nucleus presents the most extreme ground 
state of all stable nuclides with A > 10 . It is a strongly 
deformed object made of five �-clusters in a reflection-
asymmetric �+16O molecular configuration  [63–65]. 
In terms of the common quadrupole deformation coef-
ficient, the ground state has �2 ≈ 0.7 , the highest of all 
stable ground states. The deformation of this nucleus 
is so large that its impacts can easily survive the large 
event-by-event fluctuations associated with sampling a 
small number of nucleons ( ∝ 1∕

√
A ). The extreme geom-

etry of 20Ne enables us to perform nontrivial tests of the 
initial-state modeling and the hydrodynamic response in 
small systems. In particular, one can compare collisions 
of highly-deformed  N20 nuclei with collisions of nearly 
spherical  O16 nuclei, the latter collisions have already been 
recorded at RHIC and are planned for 2025 at the LHC. 
The ratios of observables between the two systems will be 
largely independent of final state transport properties and 
hence directly access the variation in the initial condition 
caused by nuclear structure differences. Having data from 
20Ne+20Ne collisions will maximize the scientific output 
of the 16O+16O run (and vice versa). On the side of nuclear 
structure theory, ab initio approaches have recently been 
pushed to describe light systems up to A ∼ 40 [17], includ-
ing 20Ne [66]. Strong deformations in these approaches 
emerge from genuine n-body (up to A-body) correlations 
in the wavefunction generated by inter-nucleon interac-
tions linked to QCD via an effective field theory. Precise 
measurement of multi-particle correlations in 20Ne+20Ne 
collisions will provide novel tests of the effectiveness of 

such ab initio calculations in capturing collective effects 
in strongly correlated nuclei.

As a bonus, while collecting 20Ne+20Ne collisions in col-
lider mode at 7 TeV, one can have the same collisions in 
fixed-target mode at around 0.07 TeV by injecting a 20Ne 
gas in the SMOG system of the LHCb experiment [67]. This 
would enable a study of the 

√
sNN dependence of the initial 

condition, longitudinal dynamics and geometry of small 
systems. Another, potentially superior way of imaging the 
structure of light nuclei is to collide them with heavy spheri-
cal nuclei, such as in 16O+208Pb or 20Ne+208Pb [68, 69]. The 
shape of overlap region at small impact parameter directly 
captures the nucleon distribution in light nuclei. Ratios of 
observables between 16O+208Pb and 20Ne+208Pb collisions 
will reveal the shape differences between 16O and 20Ne. The 
main advantage over symmetric 16O+16O and 20Ne+20Ne 
collisions is that asymmetric “isobar”+Pb collisions produce 
much more particles and will have a better centrality resolu-
tion [67]. This idea may be extended to even smaller sys-
tems such as 8Be+208Pb and 12C+208Pb [68, 69]. Collisions 
of asymmetric systems are feasible at the BNL RHIC (as 
demonstrated by the p+Au, d+Au and 3He+Au runs [70]) 
but not at the CERN LHC in collider mode. However, asym-
metric collisions can be performed in fixed-target mode by 
injecting oxygen-16 and neon-20 ions in the SMOG system 
of the LHCb detector [71] (a small sample of Ne+Pb data 
was collected in 2013).

3.2  Shape evolution along the Samarium isotopic 
chain

Certain isotopic chains in the nuclear chart exhibit strong 
variations in nuclear shapes. While this occurs mainly away 

Table 1  Pairs and triplets of 
stable isobars (half-life > 10

8 y)

 141 nuclides are listed. The region marked in italics contains large strongly deformed nuclei ( 𝛽
2
> 0.2 ). 

The region marked in bold corresponds to nuclides which may present an octupole deformation in their 
ground state [48].

A isobars A isobars A isobars A isobars A isobars A isobars

36 Ar, S 80 Se, Kr 106 Pd, Cd 124 Sn, Te, Xe 148 Nd, Sm 174 Yb, Hf
40 Ca, Ar 84 Kr, Sr, Mo 108 Pd, Cd 126 Te, Xe 150 Nd, Sm 176 Yb, Lu, Hf
46 Ca, Ti 86 Kr, Sr 110 Pd, Cd 128 Te, Xe 152 Sm, Gd 180 Hf, W
48 Ca, Ti 87 Rb, Sr 112 Cd, Sn 130 Te, Xe, Ba 154 Sm, Gd 184 W, Os
50 Ti, V, Cr 92 Zr, Nb, Mo 113 Cd, In 132 Xe, Ba 156 Gd,Dy 186 W, Os
54 Cr, Fe 94 Zr, Mo 114 Cd, Sn 134 Xe, Ba 158 Gd,Dy 187 Re, Os
64 Ni, Zn 96 Zr, Mo, Ru 115 In, Sn 136 Xe, Ba, Ce 160 Gd,Dy 190 Os, Pt
70 Zn, Ge 98 Mo, Ru 116 Cd, Sn 138 Ba, La, Ce 162 Dy,Er 192 Os, Pt
74 Ge, Se 100 Mo, Ru 120 Sn, Te 142 Ce, Nd 164 Dy,Er 196 Pt, Hg
76 Ge, Se 102 Ru, Pd 122 Sn, Te 144 Nd, Sm 168 Er,Yb 198 Pt, Hg
78 Se, Kr 104 Ru, Pd 123 Sb, Te 146 Nd, Sm 170 Er,Yb 204 Hg, Pb
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from the stability line, the chain of eight stable samarium 
isotopes (Sm Z = 62 ) features a transition from nearly 
spherical to strongly deformed nuclei with increasing neu-
tron number, e.g., from 144Sm with �2 ≈ 0.09 , to 154Sm with 
�2 ≈ 0.34 , with a change in mass number of only about 7%. 
Since the hydrodynamic response is expected to be essen-
tially constant over the isotopic chain, these systems offer a 
strong lever-arm to probe in detail how the initial condition 
of QGP responds to varying nuclear shapes, e.g., by predict-
ing the coefficients b0 and b1 in Eq. (4) using two Sm iso-
topes and then make predictions of �2 for other isotopes [33]. 
The �2 differences among isotopes can be extracted from 
ratios of flow observables, as done for the BNL RHIC iso-
bar run. The extracted differences from heavy-ion collisions 
can be compared with nuclear structure knowledge, to study 
whether shapes evolve similarly when adding neutrons one-
by-one in low-energy experiments and high-energy colli-
sions. We stress that these nuclei have been subject of much 
investigation at low energy, where their properties are nicely 
consistent across experiments and theoretical frameworks.

It is worth noting, then, that scanning the Sm isotopic 
chain in high-energy collisions would provide new experi-
mental insight onto the octupole deformations of such 
nuclei. As demonstrated by the isobar ratios, nontrivial 
results are expected. Clear observation of octupole and 
potentially hexadecapole deformations for such nuclei would 
showcase the discovery potential of high-energy nuclear col-
lisions as a tool to observe the manifestations of many-body 
correlations of nucleons in the ground state of nuclei, in 
a way that is fully complementary to low-energy structure 
experiments. In turn, this will provide new experimental 
constraints to test future ab initio calculations of such large 
and deformed systems.

3.3  The neutron skin of 48Ca and 208Pb 
in high‑energy collisions

In low-energy experiments, the neutron skins of 48Ca and 
208Pb, two doubly magic nuclei with a considerable neu-
tron excess, have been the subject of much work. Dedi-
cated experiments at Jefferson Lab have been devoted to 
measuring the neutron skin of these species [72, 73]. The 
measured value for 208Pb is Δrnp = 0.28 ± 0.07 fm, which is 
systematically larger than predictions from energy density 
functional theories. The properties of neutron stars (e.g., the 
tidal deformability) resulting from such a constraint on the 
EOS turn out to be slightly at variance with those inferred 
from pulsar and gravitational wave observations, which has 
sparked intense debate in the community [74, 75]. The neu-
tron skin of 48Ca is instead more in line with the theoreti-
cal expectations. We aim to provide new constraints on the 
neutron skins of 48Ca and 208Pb by utilizing high-energy 
collisions.

Providing a robust estimate of the neutron skin of 48Ca in 
high-energy nuclear collisions is rather straightforward. The 
isotopic chain of calcium has two doubly magic nuclei, 48Ca 
and 40Ca. The latter has the same number of protons and 
neutrons, and its neutron skin is much smaller than that of 
48Ca. However, experiments reveal that 48Ca and 40Ca have 
essentially the same charge radius with a difference less than 
0.001 fm [76, 77], such that neutrons alone determine the 
differences in size between these two isotopes. As discussed 
in Sect. 2.4, heavy-ion collisions allow one to experimen-
tally access differences in the neutron skins between nuclei 
of similar mass. Therefore, if Δrnp(48Ca) ≫ Δrnp(

40Ca) ≈ 0 , 
collisions of such nuclei could isolate

We estimate that this quantity can be accessed with an uncer-
tainty of about 0.02 fm. Any significant deviations from the 
expectations of low-energy theories or experiments should 
be ascribed to the modification of the partonic structure of 
nucleons in nuclear environment at high energy.

Following this idea, the constraints on neutron skin of 
208Pb could be obtained by comparing data from 208Pb+208Pb 
with data from 197Au+197Au, as the two species are nearly 
isobars. Therefore, having such collisions at the same 
beam energy would allow us to determine the difference 
Δrnp.Pb − Δrnp.Au from observables such as v2{4} . This infor-
mation could be combined with an additional estimate of the 
neutron skin from a method recently developed by the STAR 
collaboration [78], also at high energy. This method employs 
the production of �0 mesons in photo-nuclear processes in 
ultra-peripheral collisions using the newly developed spin 
interference enabled nuclear tomography. The cross section 
for �0 production in dipole-nucleus scattering contains a 
coherent component determined by the gluon distribution of 
the target nucleus. Fits of the coherent diffractive |t| distribu-
tion within a Woods–Saxon geometry model in 197Au+197Au 
collisions lead to Δnp(

197Au) = 0.17 ± 0.03(stat.) ± 0.08(sys) 
fm. This method could be readily applied to other species 
such as 208Pb via 208Pb+208Pb collisions. It would measure 
the neutron skin of 208Pb with an uncertainty that is similar 
to or even better than that obtained by the PREX-II experi-
ment. We emphasize that the systematic errors are largely 
correlated in this technique. The experiment should be able 
to demonstrate whether the extracted neutron skin differ-
ence between 208Pb and 197Au is compatible with low energy 
models and measurements (including PREX-II for Pb [72]). 
We note that a short Pb+Pb collision run at RHIC would be 
sufficient for this purpose. This is a cost-effective experiment 
with significant impacts on the nuclear physics community 
as a whole.

Furthermore, it is worth noting that at the energy reached 
at the LHC, electro-weak (EW) bosons are abundantly 

(7)Δrnp(
48Ca) − Δrnp(

40Ca) ≃ Δrnp(
48Ca).
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produced in nucleus–nucleus collisions via ud̄ → W+ , 
dū → W− , and qq̄ → Z processes. These real EW bosons 
probe the weak charge distributions in the heavy-ion initial 
state, i.e., the sum of weak charge distributions from the 
two colliding nuclei in the overlap region. Therefore, isobar 
ratios of W and Z boson yields as a function of centrality may 
provide direct access to the radial distribution of valence 
and sea quarks, offering an access route to charge radius, 
mass radius and thus the neutron skin, and compare with 
that extracted from the PREX-II analysis of the neutral weak 
form factor of 208Pb [79] associated with virtual Z boson. 
Based on 1  nb−1 5.02 TeV Pb+Pb data (from one month of 
typical heavy-ion running), we expect each LHC experiment 
to deliver about 600k W bosons and 20k Z bosons recon-
structed in the lepton decay channel [80, 81]. If isobar or 
isobar-like collisions such as 40Ca+40Ca vs. 48Ca+48Ca, or 
208Pb+208Pb vs. 197Au+197Au become available at LHC, it 
will be possible to compute ratios of W and Z boson yields as 
a function of centrality with a statistical uncertainty of order 
1% ( 

√
1∕10000 ). This could be achieved in particular at the 

high-luminosity LHC, in Run5 or beyond ( > 2035 ) [82, 83].

3.4  Initial conditions of heavy‑ion collisions

The success of the hydrodynamic framework of heavy-ion col-
lisions enables us today to perform quantitative extractions of 
the transport properties of the QGP via multi-system Bayes-
ian analyses [11–15]. A major limitation of such extractions is 
the lack of precise control on the initial condition of the QGP 
prior to the hydrodynamic expansion. Insights about the energy 
deposition from two collided nuclei come from the color glass 
condensate (CGC) effective theory of high-energy QCD [84]. 
There, for a given boosted nuclear profile described by the 
thickness function T = ∫ �(x, y, z)dz , the average energy den-
sity deposited in the transverse plane in the collision of, say, 
nuclei A and B, at the instant immediately after the collision 
occurs is of the form [85]

Bayesian analyses of heavy-ion data, while constraining 
transport properties of the QGP, attempt as well to constrain 
the initial conditions of the collisions. The prediction of the 
CGC in Eq. (8) can be tested via a generic parameterized 
Ansatz for the energy density, such as the TRENTo Ansatz 
for the energy density per unit rapidity, dE∕dy [GeV∕fm2] , 
namely dE∕dy ∝ (T̂

p

A
+ T̂

p

B
)1∕p [86], or its generalized ver-

sion, dE∕dy ∝ (T̂
p

A
+ T̂

p

B
)q∕p [23, 87], where T̂  represents the 

thickness function constructed solely from the participant 
nucleons within the colliding ions. The values of p and q 
and other model parameters such as nucleon width w and 

(8)⟨T00⟩ [GeV∕fm3] ∝ TATB.

inter-nucleon minimum distance dmincan then be inferred 
from the analysis of high-energy collision data.

However, information about the content of the colliding 
nuclei, which cannot be predicted based on the CGC alone, 
yields a significant uncertainty in our understanding of the 
energy deposition itself and, in turn, of the QGP transport 
parameters resulting from fits to data. One example is provided 
by v3 in Zr+Zr collisions. If one attempted to reproduce the 
measured v3 in hydrodynamic calculations without implement-
ing any �3 parameter for such a nucleus, one would correct a 
10% enhancement of such an observable in central collisions 
by biasing the extraction of other QGP transport or initial-state 
properties dramatically. It is the knowledge of the presence of a 
large octupole deformation from the isobar ratio v3,Zr∕v3,Ru , that 
enable us to avoid biasing the extracted QGP features. Bayes-
ian approaches have not yet systematically explored the impact 
of nuclear shape and radial distributions. Nuclear structure 
knowledge should be used systematically as a new lever arm 
to probe the initial condition of collisions of species that are 
close in mass and thus obtain better determinations of the QGP 
transport coefficients.

As discussed in Sect. 2.1, the deviation of isobar ratios from 
unity probes directly the structural differences between the 
two species, and the way the initial condition is shaped by two 
colliding ions. Numerical work shows that the ratios of many 
observables can be expressed in terms of the differences of 
Woods–Saxon parameters as a generalization of Eq. (6) [24],

with O ≡ p(Nch), v2, or ⟨pT⟩ . Crucially, these ratios are 
insensitive to variations of QGP transport properties [54]. 
Therefore, the left-hand side of Eq. (9) captures the varia-
tions of initial conditions in the isobar systems, which are 
related to the structure parameters on the right-hand side. 
The coefficients cn reflect how the initial condition changes 
when the nuclear structure is varied between the isobars. Via 
isobar collisions, thus, one can conveniently separate the role 
played by low-energy nuclear structure input ( R0 , a0 , �22 , �

2
3
 ) 

and role played by constraints from the knowledge of high-
energy heavy-ion collisions ( ci coefficients) for observables 
(isobar ratios) that depend solely on the initial condition of 
the QGP, as illustrated in Fig. 6.

Collisions from pp, p+A and A+A have been collected 
at the BNL RHIC and the CERN LHC. For A+A colli-
sions, we have 238U+238U and 197Au+197Au collisions at 
the BNL RHIC, and 129Xe+129Xe and 208Pb+208Pb col-
lisions at the CERN LHC. However, none of these pairs 

(9)

ORu

OZr

≈ 1 + c0(R0,Ru − R0,Zr)

+ c1(a0,Ru − a0,Zr) + c2(�
2
2,Ru

− �
2
2,Zr

) + c3(�
2
3,Ru

− �
2
3,Zr

),
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are close enough in their mass number 1, which means 
that the final-state effects do not completely cancel in the 
ratios  [34]. The model dependencies of these residual 
effects are then significant enough to preclude a precise 
extraction of the initial condition. Colliding isobars, or 
in general species close in mass, such as 197Au and 208Pb, 
represents an ideal way to constrain the initial condition 
across the nuclide chart.

Concerning the possibility of having Pb+Pb reference 
data at the BNL RHIC, there are two arguments in the 
context of hot QCD studies to motivate such an effort, in 
addition to the neutron skin case pointed out in Sect. 2.3. 
(1) Being doubly magic, 208Pb is essentially spherical. In 
contrast, 197Au has a modest oblate deformation. For the 
high-precision studies of Au+Au collisions expected from 
the upcoming sPHENIX program, it would be important, 
then, to have Pb+Pb collisions as a tool to calibrate the 
initial condition of Au+Au collisions and ensure that the 
expectations of the low-energy nuclear theory are compat-
ible with the observations at high energy. (2) Having Pb+Pb 
systems would also provide a bridge to compare the outcome 
of Pb+Pb collisions at the BNL RHIC to that of Pb+Pb col-
lisions at the CERN LHC, to study the beam energy depend-
ence of observables. For both these goals, a short Pb+Pb run 
at the BNL RHIC would be sufficient.

Last but not least, isobar or isobar-like collisions may 
serve as novel probes of the hard sector, via the analysis 
of observables such as the production of leading hadron, 
jets, photons, and heavy flavors. It has already been shown 
that collective flow of D-mesons is sensitive to the deforma-
tion of the nucleus [88]. Additionally, by constructing ratios 
of selected observables at a given centrality, or multiplic-
ity, final state effects such as jet quenching are expected to 
cancel. Deviations from unity in the constructed ratios will 
provide access to flavor-dependent Nuclear Parton Distri-
bution Function (nPDF), tailored for each underlying hard-
scattering process. Interestingly, the precision determination 

of the impact parameter from bulk particles in coincidence 
with hard processes means that we can use isobar ratios to 
detect differences in the transverse spatial distribution of 
partons at given longitudinal momentum fraction between 
the two isobars.

One such example is already discussed in Sect. 3.3 in 
the context of W and Z bosons for neutron skin measure-
ments. For some of the hard probes, such as high-pT charged 
hadrons or inclusive jets, production will be so abundant 
that even a short run would permit one to determine the 
isobar ratio with a statistical precision of 1% or better as a 
function of centrality, with large cancelation of the system-
atical uncertainties. One could also study how the isobar 
ratio evolves with rapidity to detect potential modifications 
to the nuclear structure inputs due to nPDF or gluon satura-
tion. Isobar ratios of more differential measurements, such 
as dijet or photon-jet measurements, could probe in more 
detail the correlation between the final-state medium effects, 
such as quenching, and the geometry of the hard-scattering 
processes, such as the path length. For this purpose, colli-
sions of different species should be taken at the same 

√
sNN , 

with similar pileup and detector conditions. Model studies 
are forthcoming to put this argument on a more quantitative 
ground.

3.5  Impact on future experiments: EIC and CBM 
FAIR

Collisions of isobars may provide valuable input to the phys-
ics of the planned EIC. One important goal of the EIC pro-
gram is to understand the partonic structure of nuclei at very 
high energy [89, 90]. At small longitudinal momentum frac-
tion, x, the density of gluons may saturate and form the so-
called color glass condensate (CGC). EIC will probe gluon 
saturation using a range of scattering processes in electron-
nucleus collisions. In heavy-ion collisions, the modification 
of parton distributions in nuclei (nPDF) impacts the initial 
conditions of the QGP, which in turn are imaged via the 
isobar ratios of bulk and high-pT observables. In this way, 
one can gain access to the transverse spatial distribution of 
partons. Exploiting isobar ratios as a function of rapidity, 

Fig. 6  (Color online) Impact 
of isobar-like collisions on the 
goal of the heavy-ion program. 
Better control on the initial 
condition can be achieved by 
exploiting the constraints from 
both the ratios of final-state 
observables and the nuclear 
structure knowledge

1 Although the 20% difference in the mass number between 238U and 
197Au seems not too big, the very large deformation of 238U makes 
it non-trivial to precisely constrain the properties of 197Au (see 
Ref. [32] for an attempt).
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and in particular as a function of 
√
sNN , may provide a 

unique probe of x-dependence of nPDF and gluon satura-
tion. Collisions of the same isobar pair, for example, Ru+Ru 
and Zr+Zr, at different energies could be realized at CBM 
FAIR [91] at 

√
sNN ≤ 4.9 GeV, BNL RHIC at 

√
sNN = 200 

GeV, and the CERN LHC at 
√
sNN > 5 TeV. Any differences 

between RHIC and LHC in the isobar ratios for soft and 
hard probes could be used to infer the energy dependence 
of initial conditions and in turn that of the partonic structure 
within nuclei. This study will complement the EIC program 
by providing additional information on the spatial structure 
of dense gluonic matter. In turn, this information will pro-
vide valuable input for the CBM experiment at FAIR in the 
study of the QCD phase diagram at low temperature and 
high baryon density [91], in particular, to inform theoretical 
models such as SMASH [92], AMPT [93], and hydrodynam-
ics [94–98] that aim to describe the dynamical and transport 
properties of nuclear matter in such conditions.

4  Brief summary of developments 
since 2022

Since 2022, research devoted to the connection between low-
energy nuclear structure and high-energy nuclear collisions 
has exploded, to the point that it is not possible to cover all 
the numerous important contributions in this section.

One notable development is the progress made in extract-
ing quantitative information about the structure of nuclei 
from collider data. Using the Bayesian analysis framework, 
a recent study demonstrated the possibility of determining 
the skin of 208Pb from LHC data [99], yielding values that 
align well with low-energy determinations [72, 100]. Addi-
tionally, quantitative insights into nuclear deformations were 
obtained through comparative measurements of 238U+238U 
and 197Au+197Au collisions conducted by the STAR Col-
laboration  [101]. When combined with high-precision 
hydrodynamic calculations and the relatively well-under-
stood, modest quadrupole deformation of 197Au [102, 103], 
these measurements enabled the quantitative extraction of 
the intrinsic surface deformation parameters, �2U and �U , of 
the 238U nucleus. The results for �2U align with low-energy 
nuclear physics results, while the nonzero value of �U pro-
vides evidence for a shape that breaks axial symmetry, shed-
ding light on an aspect of this nucleus that is poorly known 
in low-energy approaches.

These studies, among others, suggest a wide range of 
applications for the high-energy nuclear structure imaging 
method. Potential applications include: systematically deter-
mining structural properties of both even- and odd-mass 
ground states; probing higher-order deformations such as 
octupole and hexadecapole shapes [103, 104]; discerning 

the “softness” of the nuclear deformation including the 
imprint of shape fluctuations or shape coexistence [105], 
which could reveal nuclear shape phase transitions [106]; 
and utilizing isobar collisions to aid in the search for neu-
trinoless double beta decay through complementary tests 
of theory predictions for nuclear matrix elements [107, 
108]. Additionally, progress has been made in formalizing 
the connection between low-energy theory and high-energy 
observables based on correlation techniques  [109]. The 
ALICE Collaboration has also performed a measurement of 
many correlation observables to reveal deformation effects 
in 129Xe+129Xe collisions [110], although this was limited 
by event statistics.

Extending these investigations to smaller systems, the 
influence of nuclear structure on collision observables has 
also been explored. This is motivated by the availability of 
high-energy 16O+16O collisions at RHIC [111], which will 
also be collected at the LHC in summer 2025. As of October 
2024, numerous papers have appeared on nuclear clustering 
effects in high-energy collisions (e.g., [112–114] for recent 
works). Comparative studies involving light nuclei, such 
as 16O+16O versus 20Ne+20Ne collisions [115, 116], and 
16O+Pb versus 20Ne+Pb collisions [117], predict significant 
differences beyond model uncertainties. These differences 
reflect the pronounced structural variations between 16O and 
20Ne, including potential alpha clustering effects. Interest-
ingly, high-energy electron-isobar collisions offer another 
avenue to explore spatial distributions and correlations of 
nucleons in the ground states, albeit involving different types 
of observables compared to nucleus–nucleus collisions [109, 
118–120].

Furthermore, progress has been made in utilizing nuclear 
structure to constrain the initial conditions of heavy-ion col-
lisions. Isobar collisions provide a unique opportunity to 
study the energy dependence and formation mechanisms of 
these initial conditions [121, 122]. Determining the longi-
tudinal structure of QGP has been particularly challenging 
due to short-range non-flow effects that contaminate direct 
measurements; these effects arise from sources like reso-
nance decays and jet fragmentation, which are unrelated to 
the collective flow. Previous efforts have relied on observa-
bles, such as the rn correlators [123, 124], that do not have 
a straightforward connection with the longitudinal structure 
of the initial conditions. Isobar collisions offer a promising 
solution by allowing us to vary the initial conditions while 
keeping non-flow effects constant. Due to that, any differ-
ences in the longitudinal dependence of observables between 
isobaric systems can be attributed to changes in their initial 
conditions. Recent model studies [125, 126] demonstrated 
that this approach enables the complete subtraction of non-
flow influences, effectively isolating the longitudinal struc-
ture of the harmonic flow across the entire rapidity range.
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5  Summary

A major goal of the hot QCD program, the extraction of the 
properties of the quark gluon plasma (QGP), is currently 
limited by our incomplete understanding of the QGP’s initial 
condition, particularly how it forms from colliding nuclei. 
Our proposal is to use collisions of carefully selected spe-
cies to precisely assess how variations in nuclear structure 
affect the initial condition. Combining this approach with 
detailed measurements of particle correlations in the final 
state of heavy-ion collisions offers a new method to probe 
the geometries and spatial correlations of nucleons in atomic 
nuclei. This will enable us to test utilize predictions from 
state-of-the-art ab initio nuclear structure theories in a novel 
setup. We encourage the U.S. nuclear physics community 
to seize this interdisciplinary opportunity by pursuing colli-
sions of strategically chosen species at high-energy colliders.

• Impact on the hot QCD program Our ability to determine 
key properties of the QGP from experimental data is lim-
ited by our incomplete understanding of its initial condi-
tions immediately after a heavy-ion collision. Colliding 
nuclear species with significant differences in structural 
properties provides a new approach to investigate these 
initial conditions. Specifically, collisions of nuclei that 
are similar in mass—such as isobars—but different in 
structure allow us to measure relative changes in observa-
bles that are sensitive solely to the QGP initial condi-
tions. These variations stem from “known” structural 
differences between the species and help us examine 
precisely how the QGP is formed from the colliding ions. 
Therefore, future experiments involving isobar collisions 
with well-known geometries will help reduce uncertain-
ties in determining QGP properties from data.

• Impact on the nuclear structure program Explaining the 
emergence of nuclei from fundamental theory is a major 
goal of the nuclear structure program, which can benefit 
from its synergy with the hot QCD program based on 
high-energy heavy-ion collisions. Due to the short time-
scales of the interaction processes and the deterministic 
nature of the subsequent hydrodynamic evolution from 
the initial to the final state, measurements of particle 
angular correlations in the final states of high-energy 
collisions are sensitive to many-body correlations of 
nucleons, such as nuclear deformations, in the colliding 
nuclei’s ground states. High-energy colliders thus pro-
vide a novel tool to unravel strongly correlated nuclear 
systems and test ab initio theories of nuclear structure 
rooted in QCD.

• Importance of future collider runs Collisions of differ-
ent nuclear species will allow us to utilize and test the 
predictions of cutting-edge ab initio nuclear structure 

methods while simultaneously reducing the uncertainty 
in the QGP properties derived from data. It is timely to 
undertake such interdisciplinary studies in upcoming 
collider runs. These efforts should focus primarily on 
the CERN LHC in Run4 and Run5 beyond 2025, but 
also take advantage of opportunities at the BNL RHIC 
before it gives way to the electron-ion collider (EIC). 
A better understanding of the role of nuclear structure 
in high-energy collisions will enhance hydrodynamic or 
transport model simulations of collisions at RHIC’s BES-
II, and at the future CBM experiment at FAIR, where 
the connection between initial conditions and final states 
is more involved. Additionally, ensuring the robustness 
of the low-energy inputs will be valuable for studying 
the modification of parton distributions within nuclei, as 
planned at the future EIC.
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