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ABSTRACT
Database performance troubleshooting is a complex multi-
step process that broadly involves three key stages– (a) De-
tection: determining what’s wrong and when; (b) Root Cause
Analysis (RCA): reasoning about why is the performance
poor; (c) Resolution: identifying a fix. A plethora of tech-
niques exist to address each of these problems, but they
hardly work in real-world at scale. First, real-world customer
workloads are noisy, non-stationary and quasi-periodic in
nature rendering traditional detectors ineffective. Second,
real-world production databases execute a highly diverse
set of queries that skew the database statistics into long-tail
distributions causing traditional RCA methods to fail. Third,
these databases typically execute millions of such diverse
queries every minute rendering traditional methods ineffi-
cient when deployed at scale.

In this paper we describe Vista, a machine learning based
performance troubleshooting framework for databases, and
dive-deep into how it addresses the 3 real-world problems
outlined above. Vista deploys a deep auto-regressive model
trained on a large and diverse Amazon Relational Database
Service (RDS) fleet with custom skip connections and peri-
odicity alignment features to model long range and varying
periodicity in customer workloads, and detects performance
bottlenecks in the form of outliers. Furthermore, it efficiently
filters only a top few dominating SQL queries from millions
in a problematic workload, and uses a robust causal infer-
ence framework to identify the culprit queries and their
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statistics leading to a low false-positive and false-negative
rate. Currently, Vista runs on hundreds of thousands of
RDS databases, analyzes millions of workloads every day
bringing down the troubleshooting time for RDS customers
from hours to seconds. At the end, we also describe several
challenges and learnings from implementing and deploying
Vista at Amazon scale.
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1 INTRODUCTION
Relational databases are at the center of most fundamen-
tal business processes, and poor database performance im-
pacts both revenue and customer experience. A performance
bottleneck in database can occur due to a large number of
reasons, for e.g., concurrent clients competing for the same
resources (e.g., CPU, I/O), in combination with the infras-
tructure or network failures. Owing to the importance of
monitoring performance, databases constantly collect a large
number of detailed telemetry [51] (e.g., MySQL collects over
260 different metrics). However, when a performance bot-
tlenecks occurs, it is challenging and time consuming for
database administrators (DBAs) to monitor all these metrics,
†Work done while at AWS.
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Figure 1: Real workloads are noisy, non-stationary, and
quasi-periodic in nature making it non-trivial to iden-
tify when to alert the customer about a performance
degradation.

analyze millions of heterogeneous queries, and identify the
root-cause in real-time. As modern applications get increas-
ingly deployed on the cloud platforms using database-as-a-
service, DBAs rely on the cloud providers to provide them
with the necessary debugging framework to help detect, di-
agnose and fix such bottlenecks in real-time.
A typical performance debugging framework has three

key components: (a) Detection: to detect performance degra-
dation using telemetry data; (b) RCA: to identify the root
cause in form of either a problematic query, sub-optimal
configuration, over or under-provisioned hardware, etc; (c)
Recommendation: provide necessary information on how to
fix the identified issue (e.g., in forms of informative trou-
bleshooting docs, query tuning hints, etc). In order for such a
performance debugging system to be deployed in production,
it needs to satisfy some key requirements.

First, the detection component should work for variety of
database workloads across the fleet. For a fleet of millions of
databases, it is infeasible to build andmaintain local detection
models for each individual database. In Figure 1 we show 5
real customer workloads, measured over a period of 21 days,
represented in form of number of active sessions per minute,
and normalized for better visualization. Workloads differ
significantly from one another making it difficult to pick
the right detection algorithm (e.g., should we optimize for
detecting level-shifts, or periodic spikes, or point outliers?).
To make matters worse, workload behavior across a single
database is also dynamic.
Second, the RCA component of the system should be ro-

bust to noise in the workload. RCA is generally performed

by comparing the query statistics or system metrics in the
anomalous regions with baseline regions in history [29, 51].
Here identifying the right baseline is key to good preci-
sion/recall. In production workload, it is non-trivial to iden-
tify the right baseline regions due to changing periodicity,
old anomalies, and noise in workload. The RCA component
should be robust to such behavior in the historical workload
when computing the baseline. In Figure 3 we show the num-
ber of executions of a SQL query increased during a detected
performance anomaly (red region in top plot). However, sim-
ply using the pastH days to compute a baseline statistic (e.g.,
mean or p90) leads to false negatives. Furthermore, given
how diverse real-world workloads are, queries tend to have
a long-tail distribution as seen in this example which pre-
vents us from deploying popular statistical techniques (e.g.,
T-test [40]) in production that most of prior works rely upon
[29, 51].
Past Research: The area of performance troubleshoot-

ing is relatively well studied in the systems community and
hence there exist tons of solutions that address different
aspects of database performance troubleshooting, for e.g.,
detection of performance bottlenecks [20, 33, 51], root caus-
ing analysis [23, 28–30], and recommendation in form of
database tuning or query optimization [12, 18, 27, 31, 32, 38,
39, 48, 52]. Although insightful, most of these ideas are ren-
dered ineffective or inefficient when translated directly to
real-world customer workloads.

The detection techniques do not work due to various sim-
plifying assumptions made about the data (e.g., stationarity
in data [29, 33], gaussian noise [51], access to labeled dataset
[19], etc), or their infeasibilty to run at scale (e.g., require
human labeling [51], access to customer workload for replay
[48], etc).

Existing RCA techniques rely on classical statistical tests
like T-test [51], Mann-Whitney [33], or correlation (e.g.,
Spearman’s coefficient[29]) to identify abnormal features
of SQL queries (e.g., query statistics, or metrics like CPU,
Memory, I/O, etc). Although interpretable, these tests make
simplistic assumptions about the data that do not hold in real
world. For e.g., DBSherlock [51] constructs predicate-based
illustrations of anomalous metrics by comparing the arith-
metic mean of ’normal’ and ’anomalous’ time regions. Figure
7, and 8, show how comparing mean can be misleading in
presence of long-tail distributions. Complex techniques like
CauseRank [30] propose learning a causal graph over anoma-
lous metrics. Translating this idea to anomalous queries
is non-trivial as production queries are diverse, rare, and
ephemeral making it hard to train any feasible model. Also,
production systems encounter millions of queries during
peak hours. Maintaining such a graph with non-stationary
query workload is infeasible at production scale.
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Figure 2: Vista System Architecture

Production Systems: The industry relies on much sim-
pler light-weight tools (e.g., Performance Insights (PI) [8],
Amazon CloudWatch [1], Azure Monitoring [3], Oracle En-
terprise Manager [6], etc) which have limited features caus-
ing the DBAs to spend hours diagnosing performance issues,
inspecting queries manually, and identifying fixes while ig-
noring hundreds of false alerts. For instance, PI uses simple
static thresholds to flag a performance anomaly anytime the
number of active sessions exceeds the number of available
CPUs. On a noisy production database, this could happen
every other minute, leading to thousands of false alerts. In
summary, there is clearly a gap between the past research
and production systems. SOTA research techniques either
assume nicer properties of data, or are non-trivial to scale,
and production systems are too simple, and hence to noisy,
to rely upon.

We present Vista, an automated machine learning based
performance troubleshooting framework for databases built
to bridge this gap. The core design philosophy of Vista
is: "How do we use sophisticated techniques that can exploit
the vast and diverse RDS fleet to achieve much needed gener-
alization, while deploying them at scale. Like several other
frameworks, Vista too adopts a 3-staged troubleshooting
pipeline that consists of- (a) Detection, (b) RCA; (c) Recom-
mendation; which we describe in this paper. However, the
focus of this paper are two keymodeling insights listed below
which also form the contributions:

• Vista shows a robust self-supervised way of training
a lightweight deep ML model for detection of perfor-
mance bottleneck across a fleet of 100K databases that
contains diverse set of workloads which vary in peri-
odicity, scale, and type of outliers. This helps the model
generalize to variety of unseen workloads.

• Vista shows a robust way of identifying the abnormal
queries, and telemetry metrics with heavy-tail distribu-
tion for downstream root cause analysis at scale. The
main intuition is to ignore noisy regions in the past

Figure 3: Naive baselines lead to False Negative (FN):
Standard𝑚𝑒𝑎𝑛 (red line), or 𝑝90 (blue line) are similar
across both treatment and control group, indicating
that no. of executions of this candidate query didn’t
change, and hence it isn’t a root cause, which is incor-
rect. Vista computes a robust 𝑝90 baseline (green line)
using POF by excluding occurrences of query during
past anomalies (yellow region), and correctly identifies
the query as root-cause due to an increase in its no. of
executions during the anomaly (red region) w.r.t base-
line.

workload to get a robust baseline, and use quantile
estimators to handle heavy-tail behavior.

While Vista is not the first ML-based performance trou-
bleshooting framework for databases [29, 33, 51], to the best
of our knowledge Vista is the first that highlights the pecu-
liarities of real-world database workloads, demonstrates how
to address them using existing machine learning techniques,
and deploys at scale. Vista has been running in produc-
tion† at AWS for >2 years making thousands of detection for
hundreds of thousands of RDS databases every day. Making
Vista practical required several iterations and careful design
trade-offs, in particular addressing long-tail distribution of
queries, and variance in periodicity across workloads when
learning a model across the fleet. We conclude the paper
with such lessons learned from implementing and deploying
Vista at scale that maybe of interest to those in the "ML for
systems" community with an eye for practicality.

2 RELATEDWORK
Detection of Performance Degradation: Given the large
number of telemetry collected bymodern databases, machine
learning has been a popular choice for detecting performance
bottlenecks [20, 22, 29, 33, 51]. However, 2 key issues make
this problem non-trivial are: (a) lack of labeled data, and
(b) dynamic workload behavior. Unavailability of labels pre-
vents us from training deeper supervised models, and hence
approaches like iSQUAD [33], or PinSQL [29] rely on tradi-
tional detection techniques like threshold based outliers or
†https://aws.amazon.com/devops-guru/features/devops-guru-for-rds/
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T-Test which become ineffective when dealing with long tail
distribution or highly dynamic periodic workloads. On other
hand approaches like DBSherlock [51] rely on the user to
provide a ’normal baseline’ so model can identify anomalies
with respect to it. This is highly unreliable as identifying
the right baseline is a non-trivial task for the end-user both
from statistical and domain knowledge perspective. Further-
more, the problem worsens as the workload pattern for a
given database changes over time rendering simple mod-
els like SR-CNN [42] and STL-based [17, 26, 34, 49] with
static thresholds ineffective. Vista uses a combination of
smart techniques like periodicity alignment and skip connec-
tions to handle these highlighted issues without needing any
labeled data. We believe Vista has the first ML-enhanced
performance degradation detection mechanism that can han-
dle highly dynamic periodic workloads of varying lengths
trained with zero labels and deployed in a real-world setting
at scale.

Root Cause Analysis (RCA): RCA can be stated as iden-
tifying the right set of anomalous metrics or SQL queries that
can inform the user about ’why’ did the performance degrade.
DBSherlock [51] generates root-causes in form of predicates
whereas Sentinel [20] relies on database logs to build be-
havior models to identify anomalous metrics. iSQUAD [33]
focuses specifically on identifying intermittent slow queries
and clusters them into known root causes, while PinSQL
[29] identifies SQLs that correlate with performance anom-
alies. Similarly, CauseRank [30] and FluxRank [28] use causal
discovery algorithms to build a causal graph followed by a
ranking algorithm to rank the root causes. While these re-
search results show a lot of promise, they do not address
the practical issues we faced when deploying Vista. For ex-
ample, DBSherlock constructs predicate-based illustrations
of anomalous metrics by comparing the arithmetic means
of ’normal’ and ’anomalous’ time regions. In Figure 7 and
8 we show examples of query statistics collected by Post-
greSQL engine for 3 different customer workloads. Simply
comparing means of long-tail distributions can lead to large
number of both false positives and negatives questioning
the reliability of the troubleshooting framework. Similarly,
iSQUAD and PinSQL rely on T-test [40], while CauseRank
uses z-score, both of which are known to be unstable for
long tail distribution, with [28] being a notable exception.

3 OVERVIEW
In this section we describe the high level architecture of
Vista. All RDS database instances emit hundreds of teleme-
try metrics every second in a streaming manner. When
turned on for a given database instance, Vista uses its fol-
lowing components to detect, and analyze a performance

bottleneck in real-time and provide recommendation to the
user on how to further resolve the issue:

• Anomaly Detection: A machine learning model that
is responsible for learning the workload behavior over
time and detecting outliers.

• Root Cause Analysis: A module that smartly filters
the dominating queries from millions of queries run-
ning every second and uses a robust causal inference
framework to identify the root cause or culprits in
form of a particular query or system metrics.

• Recommendation: A light-weight module that sur-
faces the technical findings with relevant troubleshoot-
ing documentation carefully curated by our expert
in-house DBAs.

As stated in Section 1 we will dive deeper into the first two
components of Vista which also form the core technical
contribution of this work. However, at the end we will ex-
plain how those two modules are combined with a simple
recommendation module to complete the loop and provide a
final recommendation to the user.
Figure 2 gives an overview of Vista’s system architec-

ture. To understand how Vista works, we will briefly walk
through the pipeline from start to end. When turned on for
a given RDS database instance, Vista starts collecting infor-
mation about all the active sessions on the database every
second and feeds it to the feature extractor to compute a sur-
rogate health metric for the database. It then constantly feeds
that health metric into a trained ML model in a streaming
manner. As soon as an anomaly is detected in the health met-
ric, Vista creates an anomaly eventwith the 4 key attributes–
{𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒, 𝑒𝑛𝑑_𝑡𝑖𝑚𝑒, 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦, 𝑜𝑛𝑔𝑜𝑖𝑛𝑔_𝑓 𝑙𝑎𝑔} (we will de-
scribe each attribute in detail in section 4 below). If an anom-
aly is ongoing, it will not have an 𝑒𝑛𝑑_𝑡𝑖𝑚𝑒 . Vista then sends
this anomaly event to the Analysis module which first iden-
tifies the dominating queries as a part of candidate selection,
and fetches per-query statistics for those candidate queries.
Similarly, it also fetches telemetry data for a subset of impor-
tant system metrics for that anomalous time region. It then
uses a causal inference framework that is robust to long tail
behavior and identifies the root cause queries and metrics.
Finally, the Recommendation module attaches relevant trou-
bleshooting documentation to this statistical analysis. These
documents are handcrafted by expert in-house DBAs and
contain best practices to follow w.r.t the identified issues. In
the Vista console, anomalies are ranked w.r.t their 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦
so users can prioritize in case they have to deal with multiple
anomalies over a period of time.

4 VISTA
In this section, we dive deeper into the technical details of
how Vista trains its ML detectors to identify performance
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Figure 4: The flowchart of Vista’s streaming anomaly
detection process.

bottlenecks in a streaming manner, filters dominating SQL
queries, and pin point root causes in presence of long tail
distributions.

4.1 Requirements
Based on customer interactions we define a rigorous list of
requirements needed tomake Vista’s detectionmodule prac-
tically useful for real-world. First, when turned on, Vista
need to identify anomalies in a streaming manner in order
to alert customers in real time when a performance degrada-
tion occurs. Second, anomalies should be reported in form
of continuous time segments with a specific 𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 and
𝑒𝑛𝑑_𝑡𝑖𝑚𝑒 along with other attributes instead of point-wise
anomalies. This reduces noise both in detection, and RCA
processes. Third, customer workloads are highly periodic
in nature. To be practically useful, Vista’s detection model
needs have a low False Positive Rate (FPR) and hence should
be able to discount periodic behavior in customer workloads.
Fourth, the model needs to be instance optimized, i.e, custom
tailored to user’s workload. A pre-trained model that has
< 5% FPR for 95% of customers but > 20% FPR for 5% of
customers would not be acceptable. However, given Ama-
zon’s scale, it is infeasible to maintain individual models
for millions of customers. Hence, Vista’s detection model
should be able to exploit the large RDS fleet during training
and generalize to unseen customer workloads. Finally, sixth,
the output needs to be interpretable. This is an important re-
quirement where users demand a single ’health’ metric/score
which can indicate the overall state of database systemwhich
is easily interpretable to make decisions in time-sensitive
scenarios.

To the best of our knowledge, we haven’t seen many prior
works present such a comprehensive list of requirements
coming directly from real customers that makes the detection
model practically useful. Each requirement stated above is
technically non-trivial, and a research topic in itself valuable

Figure 5: A modified neural network architecture of
Vista’s forecasting model with skip connections.

enough for both industry and academia to explore. Now we
will explain all the three modules in detail along with the
necessary definitions, and design choices made along the
way.

4.2 Online AD using diverse RDS fleet data
All of Vista’s intelligence depends on identifying accurate
anomalous patterns in database performance in real-time. If
we accurately detect these bottlenecks with low false alarms,
identifying root cause becomes reasonably easier.

Database Load. To prevent the users from having to mon-
itor hundreds of telemetry metrics, Vista derives an inter-
pretable univariate time series metric called Database Load
(𝑑𝑏_𝑙𝑜𝑎𝑑) which serves as a proxy of database health. This
process is ubiquitous, and appreciated in real-world to re-
duce the cognitive load of user [7]. A typical database health
metric is commonly seen to be derived from average query la-
tency [33, 51], or number of active sessions [5, 13, 29] both of
which are highly interpretable. In Vista we define 𝑑𝑏_𝑙𝑜𝑎𝑑
as the average number of active sessions per minute. We
choose this for 3 key reasons–
1. It gives us a strong baseline: An active session is a con-
nection that has submitted work to the DB engine and is
waiting for response. A session is ’active’ when it is either
running on CPU or waiting for a resource to become avail-
able so that it can proceed. For e.g., an active session might
wait for a page to be read into the memory, and then con-
sume CPU while it reads data from the page. Thus, when
there are more active sessions than the available resource,
i.e., number of CPU cores, it means someone is waiting and
there is an opportunity for optimization. More concretely, if
𝑑𝑏_𝑙𝑜𝑎𝑑 > 𝑛𝑢𝑚_𝑐𝑝𝑢, database is under load. This concrete
explanation gives us a strong baseline in terms of 𝑛𝑢𝑚_𝑐𝑝𝑢,
and is simple enough for users to consume and interpret in
real-time for decision making.
2. Low computational overhead: Obtaining active sessions is
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Table 1: 10 real database performance bottleneck scenarios created by our DBAs to test Vista’s RCA ability on
both AMS and APG engines. The third column highlights the Dominating Wait Event (DWE) for corresponding
problematic SQL query in that problem type.

Engine Problem Type DWE Description

APG

Poor Application Design Lock:Tuple High number of concurrent sessions trying to acquire conflicting lock for same tuple by running
UPDATE and DELETE statements.

Poor Transaction Management Lock:TransactionId Result of long running transactions that hold longer locks blocking other transactions
from running or high concurrency.

Network Congestion Client:ClientRead Connection is in idle transaction state and is waiting for a client to send more data or issue a command.
Lock Contention LWLock:buffer_content High number of concurrent queries updating the same buffer content on tables with a lot of indexes.

Poor Application Design IO:BufFileRead and IO:BufFileWrite Large number of ORDER BY and GROUP BY queries consuming the work_mem area.

AMS

Storage Latency io/aurora_redo_log_flush DB doing excessive commits and write operations.
Workload Spike io/table/sql/handler Greatly increase the rate of I/O transactions causing a workload spike.

Poor Application Design synch/cond/innodb/row_lock_wait One session has locked a row for an update, and another session tries to update the same row.
Workload Spike synch/sxlock/innodb/hash_table_locks Pages not found in the buffer pool, thus, must be read from a file.

Poor Configuration synch/mutex/innodb/buf_pool_mutex A thread has acquired a lock on the InnoDB buffer pool to access a page in memory.

computationally expensive [29]. To avoid this, we resort to
sampling followed by aggregation. The data collection agent
wakes up every second, scans the database, and counts the
number of sessions that are active. Note that this sampling
process is biased towards multi-second long running queries,
while the fast queries that are < 1 second are missed. This is
a deliberate process as optimizing fast queries isn’t our goal.
Furthermore, if it is indeed a frequent query, it will likely get
sampled in one the runs. Finally, the count is averaged and
reported every minute to run AD on it.
3. Highly interpretable. This aggregate 𝑑𝑏_𝑙𝑜𝑎𝑑 metric is a
counter which can further be factorized down into activity
types (for e.g., wait event types) informing the user about
what type of load their database is facing, i.e., is it I/O heavy,
CPU heavy, and so on. This piece of information becomes
valuable later when surfacing useful recommendations.

Forecasting model. With the simple definition of database
’load’ discussed above, it may seem like training a deep neu-
ral network to detect anomalies is an overkill. But note that
real-world workloads are highly noisy and periodic (see Fig-
ure 1). Thus, simple rules like 𝑑𝑏_𝑙𝑜𝑎𝑑 > 𝑁 × 𝑛𝑢𝑚_𝑐𝑝𝑢
(N=1,2,3, etc) may lead to 100-1000s of detections per day
which is unacceptable. Hence, we need a system that can in-
fer the changing workload pattern, discount periodic spikes
in 𝑑𝑏_𝑙𝑜𝑎𝑑 metric, and pick out the outliers.
To achieve this, Vista’s AD module is built using a neu-

ral network based forecasting model which is trained in a
self-supervised fashion without needing any external labels.
Forecasting based AD is well studied in literature and has
shown to work extremely well on variable length time series
data [14, 45, 46]. Motivated by effectiveness of MQ-RNN [50],
we build a forecasting network based on the RNN Seq-2-Seq
model [47]. The recurrent nature of RNNs induces a causal
relationship, i.e., forecast for next time step depends only on
history, which is key for building a streaming service where
future values aren’t available to look during online inference.
One important distinction from classical forecasting models

is that Vista AD model’s final goal is to produce anom-
aly segments which we refer to as Anomaly Events, instead
of mere next step raw forecast. An Anomaly Event is a tu-
ple of form {𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒, 𝑒𝑛𝑑_𝑡𝑖𝑚𝑒, 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦, 𝑜𝑛𝑔𝑜𝑖𝑛𝑔_𝑓 𝑙𝑎𝑔}
representing the signature of a detected anomalous inci-
dent. The 𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 and 𝑒𝑛𝑑_𝑡𝑖𝑚𝑒 are timestamp objects
denoting the start and end time of an anomaly, 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 ∈
{LOW, MEDIUM, HIGH} is a measure of criticalness of the de-
tected issue, and 𝑜𝑛𝑔𝑜𝑖𝑛𝑔_𝑓 𝑙𝑎𝑔 is a boolean value informing
whether the anomaly is ongoing (i.e., 1) or has ended (i.e., 0).
Later in this section we will discuss how we compute each
of these attributes of a given anomaly event.
Since it is technically easier to forecast point estimates

rather than long continuous time segments, we modify the
forecasting problem as follows: Given a time series of the
form 𝑥𝑡−𝑖 , . . . , 𝑥𝑡−1, 𝑥𝑡 , 𝑥𝑡+1, . . . , 𝑥𝑡+𝑗 we aim to predict the
output F (𝑥𝑡+1, . . . , 𝑥𝑡+𝑗 ) from 𝑥𝑡−𝑖 , . . . , 𝑥𝑡 where F is a rep-
resentation of future values. When F is an identity function,
the problem reduces to a classical multi-step forecasting
problem, e.g., DeepAR [44]. In Vista we represent F with
the statistical mean of future values, i.e, –

F (𝑥𝑡+1, . . . , 𝑥𝑡+𝑗 ) = 𝑥𝑡+1:𝑡+𝑗 (1)

where𝑥𝑡+1:𝑡+𝑗 denotes themean of sequence [𝑥𝑡+1, . . . , 𝑥𝑡+𝑗 ].
Our proposed RNN model for forecasting of mean statistic is
similar to Seq-2-Seq model [16, 47] which consists of an en-
coder and a decoder module. Unlike other forecasting meth-
ods [41, 44] who typically aim to predict a sequence, our
model predicts only a single variable as shown in Eq.1. This
technical modification gives us two benefits– (a) it is a sim-
pler problem to solve; (b) predicting a mean estimate of next
few steps, instead of raw value at the next step helps counter
the correlation between values at adjacent time points and
provides robustness by preventing the forecaster from col-
lapsing into a trivial persistence model [21]. In terms of build-
ing blocks of our recurrent model, we chose Gated Recurent
Units (GRUs) in the encoder and a Multilayer Perceptron
(MLP) in the decoder as shown in Figure 5.
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Figure 6: The colored regions indicate all the occurrences of candidate query 𝑞𝑖 . The red region indicates the
occurrences during the ’anomaly’, and forms the treatment group, while the yellow regions, which form the control
group, indicate the query occurrences during the ’normal’ times, i.e, when databasewas healthy (𝑑𝑏_𝑙𝑜𝑎𝑑 < 𝑛𝑢𝑚_𝑐𝑝𝑢).
Query occurrences in the green regions are ignored by both treatment and control as these regions are neither
anomalous, nor deemed healthy.

Skip Connections. Skip connections have been shown as
an effective approach to improve modeling dependencies in
sequential data, e.g., in CNNs [37] and RNNs [15]. The prior
approaches apply skip connections on hidden units while in
Vista we apply skip connections directly on the raw inputs.
Figure 5 illustrates the modification in the revised network.
Instead of feeding a single value 𝑥𝑡 from the raw time series,
we expand the number of channels at each timestamp 𝑡 to
obtain 𝑥𝑡 . Subsequently, the corresponding input becomes a
vector, for all timestamps. Instead of simply using the past
𝑙 timestamps to generate 𝑥𝑡 = [𝑥𝑡 , . . . , 𝑥𝑡−𝑙+1] which acts as
a ’lag-trick’ [50] and induces periodic information in input,
we introduce a Periodicity Alignment feature to handle long
range periodic dependencies arising due to daily or weekly
periodic jobs run on the database.

Periodicity Alignment. Periodicity alignment is a simple yet
efficient approach to enhance long-range temporal depen-
dency modeling. It works by directly appending historical
data in the current timestamp, and hence avoids building
a more complex model. More specifically, the input to the
GRU unit at timestamp 𝑡 , i.e, 𝑥𝑡 is represented as –

𝑥𝑡 = [𝑥𝑡 , ®𝑥𝑡−𝛿 , ®𝑥𝑡−2𝛿 , . . . , ®𝑥𝑡−𝑐𝛿 ] (2)

where 𝛿 ∈ N+ is the length of a period. Note that 𝛿 is a
hyperparameter which can be tuned based on the fleet data
or domain knowledge. The 𝑐 ∈ N+ determines the number
of periods to look back. We define ®𝑥𝑡−𝑘𝛿 as –

®𝑥𝑡−𝑘𝛿 = [𝑥𝑡−𝑘𝛿 , 𝑥𝑡−𝑘𝛿+𝜂, . . . , 𝑥𝑡−𝑘𝛿+𝑠𝜂] ∀𝑘 = 1, 2, . . . 𝑐 (3)

Here 𝜂 ∈ N+ is the step size to shift right, and 𝑠 ∈ N+ is the
number of shifts.

Note that the setup in Eq.(3) via right shift enables spikes in
history to appear in one of the channels of data just preceding
a future spike, and thus provides essential information for a
more accurate prediction. The forecasting model is trained in
a self-supervisedmanner on standardized𝑑𝑏_𝑙𝑜𝑎𝑑 data using
a quantile-based loss function [50] and a stochastic gradient

descent optimizer ADAM [24]. We define the quantile loss
as follows–

L𝜏 (𝑥, 𝑥) = max[𝜏 (𝑥, 𝑥), (1 − 𝜏) (𝑥 − 𝑥)] (4)

where 𝑥 is the ground truth, 𝑥 the prediction, and 𝜏 ∈ (0, 1)
corresponds to the quantile. Compared to typically used
mean squared error (MSE) loss, quantile loss is more robust
to outliers and can obtain interval estimation [25]. In pro-
duction we set 𝜏 = 0.9, i.e p90 as the quantile for computing
loss, but it is a design choice which should be varied based
on the sensitivity of downstream task.

AD via Forecasting. With a trained forecasting model, the
next step is to employ it for anomaly detection. Given that
Vista’s AD is a streaming algorithm, it should commit a
decision at the current time based on historical data only.
For every timestamp 𝑡 , Vista’s AD is expected to return only
one of the following 4 decisions, which is further illustrated
in the flowchart in Figure 4.

• D1: Start a new anomaly.
• D2: Do nothing.
• D3: Continue the current ongoing anomaly.
• D4: Close the current ongoing anomaly.

In order to reduce the detection latency in production, we
minimize the number of calls made to underlying forecasting
model. More specifically, we invoke the forecasting model to
run a forward pass only when we need to determine whether
to start a new anomaly, i.e, D1 above. In order to start an
anomaly, the forecasting model’s output needs to meet two
conditions that we define below in Eq.(5) using these two
quantities– (a) Quantile loss L𝜏 (𝑥, 𝑥) as shown in Eq.(4); (b)
Truth-over-Prediction ratio R(𝑥, 𝑥) = 𝑥

𝑥
.

L(𝑥, 𝑥) ≥ 𝜃
R(𝑥, 𝑥) ≥ 𝜖 (5)

Where the thresholds 𝜃 and 𝜖 are set empirically. Vista
starts an anomaly only if both these conditions are met.
Intuitively, the first condition is straightforward: start an
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Figure 7: Using 𝑚𝑒𝑎𝑛 to compare long-tail distributions
leads to False Positive (FP): The 𝑡𝑒𝑚𝑝_𝑏𝑙𝑘𝑠_𝑟𝑒𝑎𝑑 statistic
of candidate query shows a regular periodic behavior
as compared to history, but when we compare the𝑚𝑒𝑎𝑛
estimate (red) during the anomaly time, to its𝑚𝑒𝑎𝑛w.r.t
its history, it doubled indicating a significant change
in no. of temporary blocks read by the query and in-
correctly concluding it as to be a root cause. However,
a 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 statistic (green) is more robust in such a case.

anomaly when the true 𝑑𝑏_𝑙𝑜𝑎𝑑 deviates from the predicted
𝑑𝑏_𝑙𝑜𝑎𝑑 . However, relying only on the first condition leads
to miss-detections (False Negatives) where the quantile loss
is impacted by the {0, 1} scale of the standardized input data.
When both 𝑥 and 𝑥 are small, their quantile loss becomes
smaller. To handle this, we use their ratio, which is scale
invariant, unlike the quantile loss based on the difference.
Once an anomaly is declared, we set its 𝑜𝑛𝑔𝑜𝑖𝑛𝑔_𝑓 𝑙𝑎𝑔 to 𝑡𝑟𝑢𝑒
and monitor its progress to decide when to terminate. Since
the neural network is only used to check whether to start
an anomaly, we instead decide the termination of an anom-
aly by simply comparing 𝑑𝑏_𝑙𝑜𝑎𝑑 against the 𝑛𝑢𝑚_𝑐𝑝𝑢 met-
ric. More specifically, we close an ongoing anomaly when
its 𝑑𝑏_𝑙𝑜𝑎𝑑 value is consistently less than 𝑛𝑢𝑚_𝑐𝑝𝑢 for 𝜅
minutes, which is a tunable hyperparameter. Both these
processes give us the start and end time of an Anomaly
Event (𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒, 𝑒𝑛𝑑_𝑡𝑖𝑚𝑒). An ongoing anomaly is stored
in a persistent storage system (e.g., DynamoDB table [2])
and retrieved for every AD run. Similarly, the 𝑑𝑏_𝑙𝑜𝑎𝑑 and
𝑛𝑢𝑚_𝑐𝑝𝑢 metrics are cached as model_state in an S3 bucket.
The last key attribute of an Anomaly Event is its severity
which quantifies the impact of that anomaly on the database.

Severity. We categorize the severity of an anomaly in 3
levels: {LOW, MEDIUM, HIGH}. For an anomaly 𝑥 starting
at 𝑡0 and ending at 𝑡1 we compute a severity score S(𝑥) as
follows–

S(𝑥) =
𝑥𝑡0:𝑡1

𝑛𝑢𝑚_𝑐𝑝𝑢𝑡0:𝑡1
(6)

Thus, score is the mean of 𝑑𝑏_𝑙𝑜𝑎𝑑 between 𝑡0 and 𝑡1, normal-
ized by corresponding 𝑛𝑢𝑚_𝑐𝑝𝑢. An implicit requirement of
the scoring function is that it should be strictly increasing,
i.e., an anomaly with a larger value of 𝑑𝑏_𝑙𝑜𝑎𝑑 must have a

Figure 8: Using 𝑚𝑒𝑎𝑛 to compare long-tail distributions
leads to False Negative (FN): The 𝑏𝑙𝑘𝑠_𝑟𝑒𝑎𝑑_𝑡𝑖𝑚𝑒 statis-
tic of candidate query shows a thin tall spike during
an observed anomaly duration. A𝑚𝑒𝑎𝑛 estimate (red)
cannot capture this rare event, while a 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 (green)
does, and flags the candidate query as root cause due
to an increase in time spent reading data file blocks
w.r.t its historical behavior.

larger score. We now need score thresholds {𝜔1, 𝜔2} which
can be used to convert the raw scores into the 3 pre-defined
𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 labels as follows–

• 0 ≤ 𝑆 (𝑥) < 𝜔1 : then 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 = LOW
• 𝜔1 ≤ 𝑆 (𝑥) < 𝜔2 : then 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 = MEDIUM
• 𝜔2 ≤ 𝑆 (𝑥) : then 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 = HIGH

We compute these thresholds empirically with help from
domain experts wherewe first run Vista’s ADmodule on the
RDS fleet for a period of 2 weeks to obtain ∼ 25𝐾 detections
and then use domain experts to filter out 1000 most common
anomalies from the fleet. This carefully sampled set serves
as a proxy for the larger RDS fleet of 100K instances. Experts
then further study these anomalies to segregate them into
3 categories {LOW, MEDIUM, HIGH}. We then use a simple
distribution matching scheme to infer the severity thresholds
from it. More specifically, if the percentage of LOW, MEDIUM
and HIGH anomalies in the expert labeled sample set are
𝑞1%, 𝑞2% and 𝑞3% then we compute 𝜔1, 𝜔2, 𝜔3 as –

P[𝑆 (𝑋 ) < 𝜔1] = 𝑞1/100
P[𝜔1 ≤ 𝑆 (𝑋 ) < 𝜔1] = 𝑞2/100

P[𝜔2 ≤ 𝑆 (𝑋 )] = 𝑞3/100
(7)

Goal here is to end up with thresholds, which, if used to
label the severity of anomalies in the sample set, generate
the same distribution as the experts. We acknowledge that
this is an approximation given the lack of labeled data, but
works reasonably well in practice.

Why does a simple static rule suffice to close an anom-
aly? We use a sophisticated neural net model to start an
anomaly, whereas it is closed using a simple static rule of
𝑑𝑏_𝑙𝑜𝑎𝑑 > 𝑛𝑢𝑚_𝑐𝑝𝑢 consistently for 𝜅 minutes. This cuts
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the number of calls we make to forecaster in half and im-
proves latency. The reason this simple rule is sufficient is
because of the way we define database health, i.e., a database
is healthy when 𝑑𝑏_𝑙𝑜𝑎𝑑 <= 𝑛𝑢𝑚_𝑐𝑝𝑢. So if it continues
to remain so for 𝜅 > 1 minutes, we can safely assume the
database is healthy and close the anomaly without requiring
the forecaster to predict it. The reason we can’t do the same
thing to start an anomaly is because real databases, specially
dev databases, are known to run heavy workloads where
𝑑𝑏_𝑙𝑜𝑎𝑑 > 𝑛𝑢𝑚_𝑐𝑝𝑢 regularly. In such cases, Vista needs to
identify and discount these periodic spikes to prevent false
alarms for which we need sophisticated models.
Does it work with any RDS engine? Yes. The AD model is

DB engine agnostic, i.e., it can be used by customers running
their database on any engine (for e.g., Aurora PostgreSQL
[10], or Aurora MySQL [9], Oracle [11], etc).

What about an instance with zero history? New customers
are key when a service is launched, but unfortunately ML
models need history to make accurate predictions. Thus, to
ensure a low false positive rate even for customers with no
history, we apply a key guardrail: we adopt a staged detec-
tion process, i.e., we do not surface any detection made by
Vista to customer for at-least first𝜓1 minutes, followed by
surfacing only HIGH severity detections for next𝜓2 minutes.
The intuition is that first stage is warmup phase-1 where
the predictions are technically valid but unreliable and could
lead to false alarms. Second stage is a warmup phase-2 period
where we are confident in surfacing only the most severe
anomalies, where 𝑑𝑏_𝑙𝑜𝑎𝑑 >> 𝑛𝑢𝑚_𝑐𝑝𝑢. The danger of a
false alarm is less due to- (a) model has seen more data and
hence can make more confident predictions; (b) a severely
high spike can potentially be interesting to customer from
an optimization perspective, even if it is not statistically
anomalous.

What about the case when there’s a data loss/corruption, or
database crashes? We have two guardrails to handle such
scenarios– (a) Since neural-nets are known to generalize
well, we exploit this behavior when training the forecaster
where we randomly crop small patches of data from input
sequence and force the model to predict correct estimates
from incomplete data. This form of added regularization
helps us handle cases where missing data is small (e.g., few
minutes to an hour); (b) For cases where the database crashes,
or the loss is for several hours to days, we simply assume the
recovered database to be a new instance with zero history
and fallback to our staged detection process described in
previous question.

There seem to be a lot of magic hyperparameters that need
to be set in order for Vista to work? In order to deal with
a diverse fleet of databases with varying periodicities, and
having necessary guardrails to prevent false alarms, we need
a list of tunable parameters that can be set externally. We

provide a complete list of hyperparameters that need to be
set/tuned, some by domain knowledge, some by mere grid
search over a wide search space, and some purely driven by
design choice for the downstream task. There’s no "right"
value for these parameters, but nevertheless, we share the
values that worked best for us, and the rationale behind
choosing them in Table 5.

4.3 Root Cause Analysis with long tail data
distribution

Vista’s RCA module is based on how expert DBAs debug
a performance issue, i.e., by asking "What changed?". This
question can be studied across three main categories– (a)
User-driven: This refers to analyzing SQL queries run by the
user, and pin-pointing the ones that behaved differently dur-
ing the anomaly as compared to their behavior during nor-
mal times (e.g., some query started reading more rows than
usual); (b) System-driven: This refers to sub-optimal configu-
rations that lead to performance bottlenecks (e.g., database is
under-provisioned, out-of-memory events, etc); (c) External:
This refers to issues like Large Scale Events (LSEs) that cause
the system to crash. We look at the first category and defer
the rest two for the following reasons: (a) System-driven
RCA is non-trivial by looking at just telemtery data, for e.g.,
if the database is under provisioned on CPUs, one can not
infer that by just monitoring the 𝑛𝑢𝑚_𝑐𝑝𝑢 metric which is
mostly static throughout. This requires sophisticated mod-
els with an understanding of how databases work [48, 52],
which is out of scope for this discussion as Vista relies solely
on telemetry data for RCA, which is by design, to respect
user privacy; (b) Performance issues due to external events
like LSEs are highly rare given the stability of production
environments, and how robust cloud service providers are.

For user-driven category, we look at individual SQL queries
that ran on database during the anomaly detected by Vista,
and compare them with a robust baseline to pin point the
deviant ones. However, in production there are millions
of queries that run every minute so we need a two-stage
approach– Step-1: Reduce the search space by filtering out
candidate queries for RCA; Step-2: Use robust estimators
to compute appropriate baselines for those queries and pin-
point the ones that changed. This type of two-staged ap-
proach has shown to work pretty well [29].

4.3.1 CandidateQuery Selection. RDS engines collect a large
number of statistics† per query, every second, which makes
it infeasible to store, and monitor them constantly over
time without impacting the overall performance of data-
base. Hence, Vista only collects and analyzes queries when
an anomaly is detected. But even during an anomaly event,

†List of query statistics: Aurora PostgreSQL, Aurora MySQL

91

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.UsingDashboard.AnalyzeDBLoad.AdditionalMetrics.PostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.UsingDashboard.AnalyzeDBLoad.AdditionalMetrics.MySQL.html


SoCC ’24, November 20–22, 2024, Redmond, WA, USA V. Singh, Z. Song, B. Narayanaswamy, K. Vaidya, T. Kraska

which could last from few seconds to several hours, there
can be a few thousands to millions of queries that got ex-
ecuted. Analyzing every single one of them in real-time is
still computationally non-trivial. Hence, Vista resorts to a
filtering mechanism where it flags out only the "dominating"
or "candidate" queries during the anomaly event.

How do you define a "dominating" query? In the process of
execution, a query interacts with multiple database and OS
sub-systems, such as query plan repository, database buffer
cache, IO or networking layers, spending time in each step.
As the query goes through all these stages, its current state
is continuously being emitted by the database in the form
of a session state (that we sometimes refer to as wait event).
By aggregating these states over time, it becomes possible to
estimate where the query is spending most of its time during
execution. Such aggregation can also be done on a database
level, to determine what majority of database queries are
waiting for. Vista extracts this information and aggregates
it per query during the anomaly event, ranks the queries
w.r.t this in descending order, filter out the top-𝐾 queries,
and refers them as "dominating" SQL queries or "candidate"
queries.

Are SQL queries the true root cause of performance degrada-
tion? Not necessarily. Note that, Vista relies only on teleme-
try data (e.g., query statistics) which limits its capability to
infer the true root cause (e.g., what the end users are actu-
ally doing, e.g., executing more queries, changing schema,
upgrading instance class type, etc). However, those unob-
served actions impact the query statistics which Vista logs
and monitors. This is what we refer to as RCA in Vista, i.e.,
surfacing queries that changed behavior during the 𝑑𝑏_𝑙𝑜𝑎𝑑
anomaly, so users can dive-deep and identify the true root
cause themselves.
So what assumptions are you making in this process? We

make three key assumptions: (a) If a performance issue does
not manifest itself in 𝑑𝑏_𝑙𝑜𝑎𝑑 as an anomaly, Vista has no
means to detect that issue. It is by choice, as we believe if
𝑑𝑏_𝑙𝑜𝑎𝑑 is low, database is healthy, and we do not need to an-
alyze anything; (b) If 𝑑𝑏_𝑙𝑜𝑎𝑑 is anomalous, Vista assumes
something is definitely wrong with the database, and will try
to highlight queries that changed behavior during the anom-
aly. This could be misleading in cases where those queries
are not necessarily the root-cause but instead are just im-
pacted by the issue (e.g., query execution time peaked up as
the user downgraded the database instance); (c) Invariant
characteristics (e.g., fixed parameters or hardware specs) are
not monitored and hence excluded from the analysis. These
are known limitations, and we defer them to future work as
improvements for Vista.

4.3.2 RobustQuantile Detectors for RCA. We study the prob-
lem of RCA under the Potential Outcomes Framework (POF)

[43] known for its intuitive yet rigorous mathematical foun-
dation. It also avoids learning complex causal models from
observational data which is non-trivial specially in case of
databases where thousands of different queries run on the
database every second.

Preliminaries.We first define the key terminologies in POF:
Unit: This is a proxy for an individual/person in a typical
POF experiment. We define a unit as an occurrence of the
candidate query 𝑞𝑖 .
Treatment: In POF, a treatment𝑊𝑖 is a binary action per-
formed on the units belonging to the Treatment Group. Goal
of POF is to then identify if the treatment was effective, i.e.,
was treatment truly the root cause of an outcome observed
on the treatment group as compared to a baseline, i.e., control
group? In our context, we consider this binary treatment to
be the true unobserved underlying root cause that led to the
𝑑𝑏_𝑙𝑜𝑎𝑑 anomaly. Interestingly, we do not need to know the
true treatment (a.k.a the root cause) to study its impact using
SQL queries. The binary treatment manifests itself in form
of a 𝑑𝑏_𝑙𝑜𝑎𝑑 anomaly, which we will use to define treatment
and control groups below.
Treatment Group: For each candidate query we define a
separate treatment group. This group is made up of all the
occurrences of query 𝑞𝑖 within the anomaly region, denoted
by red in Figure 6.
Control Group: For each candidate query we define a sepa-
rate control group. This group is made up of all the occur-
rences of query 𝑞𝑖 within the normal region in the history,
i.e., prior to the observed anomaly. In Figure 6 the five yel-
low regions indicate the normal region where query 𝑞𝑖 was
observed. Note that a healthy/normal region is defined using
our standard definition of 𝑑𝑏_𝑙𝑜𝑎𝑑 < 𝑛𝑢𝑚_𝑐𝑝𝑢. Hence, even
though 𝑞𝑖 was also observed during the green regions, we do
not include those occurrences in control group. Excluding
unhealthy, and anomalous regions when computing baseline
helps build a robust control group and prevents false nega-
tives as explained with a real-world example in Figure 3.
Outcome: We represent the outcome variable 𝑌𝑖 to be a vec-
tor representing the impact on query features of 𝑞𝑖 . Thus,
𝑌𝑖 (𝑊𝑖 = 1) denotes outcome vector for query𝑞𝑖 when treated
𝑊𝑖 = 1, and similarly, 𝑌𝑖 (𝑊𝑖 = 0) represents outcome for con-
trol. 𝑌𝑖 ∈ R𝑑 where 𝑑 is number of query statistics.
Treatment Effect: To measure the impact of treatment, we
compute a score using the two outcomes. This score is usu-
ally the difference in means, called Average Treatment Effect
(ATE) defined as follows-

𝜁 =
1
𝑚

∑︁
𝑖

𝑌𝑖 (𝑊 = 1) − 1
𝑛 −𝑚

∑︁
𝑖

𝑌𝑖 (𝑊𝑖 = 0) (8)

Where 𝑛 is the total number of units, out of which 𝑚
receive the treatment. This ATE framework can be used to
explain the RCA methods adopted by various prior works
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Table 2: Subset of system metrics that Vista runs the same RCA module upon, along with SQL queries to provide
additional content of performance degradation.

Engine CPU Memory Connections

APG
os.cpuUtilization.total.avg db.User.numbackends.avg

os.tasks.running.avg os.memory.outOfMemoryKillCount.avg db.User.total_auth_attempts.avg
os.general.numVCPUs.avg db.User.total_auth_failed.avg

AMS
os.cpuUtilization.total.avg db.Users.Threads_connected.avg

os.tasks.running.avg os.memory.outOfMemoryKillCount.avg db.Users.Connections.avg
os.general.numVCPUs.avg db.Users.Aborted_connects.avg

that use difference in mean [51], or T-test [29, 33] to pin
point deviating queries or metrics.
POF in Vista: Intuitively, Vista’s POF setting aims to

answer this question: "Given that an unknown intervention
caused a performance degradation observed in 𝑑𝑏_𝑙𝑜𝑎𝑑 as
an anomaly (a.k.a treatment), can you explain the issue by
identifying the SQL queries that executed during the anomaly
(a.k.a treatment group), and deviated (a.k.a outcome) from
their usual behavior (a.k.a control group)?"

In Vistawemake two key modifications to the traditional
POF in order to make it more robust. First, to handle the long
tail behavior observed in query statistics (see Figures 3, 7, 8),
Vista computes Quantile Treatment Effect (QTE) instead of
ATE. More specifically, we compare 𝑝90, i.e., 90𝑡ℎ percentile
of treatment group with 𝑝100, i.e., max of control group. Thus,
we modify Eq.(8) as–

𝜁𝑞𝑖 = max
(
0, (𝑝90[𝑌𝑖 (𝑊 = 1)] − 𝑝100[𝑌𝑖 (𝑊𝑖 = 0)])

)
(9)

Setting a higher quantile threshold for control group is a de-
sign choice that makes the QTE stricter and less susceptible
to false positives. These quantile values should be chosen
carefully based on downstream task. We wrap the QTE with
a ReLU operator [35] for numerical stability. Second, we use
a non-parametric test, like Permuatation test [36] to reject
the null hypothesis 𝐻0, which says, the anomaly manifested
in 𝑑𝑏_𝑙𝑜𝑎𝑑 has no effect on dominating queries rendering
them futile for root cause analysis. We repeat the permu-
tation process 𝐵 times, and use a p-value threshold of 𝛼 to
reject/accept the null hypothesis. We compute the p-value
as follows–

p-value =
1
𝐵

𝐵∑︁
𝑏=1
I((𝜁𝑞𝑖 )𝑏 > 𝜁𝑞𝑖 ) (10)

Where I is the indicator function. Since, 𝑌𝑖 is a 𝑑 dimen-
sional vector, we run this analysis for each of 𝑑 statistics for
all 𝐾 candidate queries, and rank the queries in descending
order of their number of statistics that successfully rejected
the null hypothesis. For e.g., if for candidate queries 𝑞1 and
𝑞2 we found 3 and 7 statistics rejected their null respec-
tively, we will rank 𝑞2 higher than 𝑞1 denoting 𝑞2 is more
important when investigating the corresponding anomaly.
Furthermore, our experienced in-house DBAs hand-picked a

Table 3: Comparison of different AD approaches on a
test set of ∼ 4.5𝑀 data points.

Method Eval type Precision Recall F1

STL
Event 0.759 0.694 0.725

Segment 0.722 0.666 0.693
Weighted 0.952 0.818 0.881

SR-CNN
Event 0.561 0.353 0.433

Segment 0.524 0.312 0.394
Weighted 0.648 0.495 0.513

Vista
Event 0.831 0.753 0.791

Segment 0.774 0.725 0.747
Weighted 0.962 0.924 0.943

small subset of key system metrics that have proven to be
useful when supplemented with the knowledge of deviant
queries for doing RCA. Vista repeats the same RCA process
as described above on these system metrics, and combines
this information along with identified queries to send to the
recommendation module. The complete list of system met-
rics for both Aurora PostgreSQL (APG), and Aurora MySQL
(AMS) engine that Vista uses is provide in Table 2.

4.4 Human-in-the-loop Recommendation
Module

The final component of Vista is its recommendation module
which we discuss briefly for completeness. We keep this
module relatively light-weight and simple as its goal is to
supplement Vista’s detection and RCA results with right
RDS documentation and a short blurb for the user to get
started. For e.g., for a database running on APG engine, when
Vista detects a 𝑑𝑏_𝑙𝑜𝑎𝑑 anomaly that is dominated with
sessions waiting for IO:XactSync and Lock:typle, it will
supplement the analysis with the corresponding wait event
documents that are carefully curated by expert in-house
DBAs†.

5 EXPERIMENTS
In this section, we experimentally assess the usefulness of
Vista’s findings both qualitatively and quantitatively. More
specifically, we evaluate:

†Click to see the list of wait event troubleshooting documents for Aurora
PostgreSQL.
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Table 4: Qualitative evaluation of Vista at identifying
the root cause SQL queries during different types of
real performance issues (see Table 1 for problem type
descriptions).

Engine Problem Scenario Precision Recall F1

APG

Type 1 0.923 0.781 0.846
Type 2 1.0 0.879 0.935
Type 3 0.973 0.959 0.965
Type 4 1.0 0.628 0.764
Type 5 0.933 0.810 0.867

AMS

Type 1 0.891 0.772 0.827
Type 2 0.980 0.901 0.938
Type 3 0.954 0.977 0.965
Type 4 1.0 0.723 0.839
Type 5 0.966 0.834 0.895

1. AD accuracy (Section 5.1): How accurately can Vista
detect anomalies in real-time on unseen real-world customer
databases?
2. AD run-time (Section 5.2): How much time does Vista
take to return detection results for each sample data point
in a streaming manner?
3. Detection latency (Section 5.3): How quickly does Vista
recognize an ongoing performance degradation?
4. RCA accuracy (Section 5.4): How accurately can Vista
identify the deviant SQL queries for RCA?
5. Real-world case studies (Section 5.5): How useful is
Vista when deployed end-to-end in real-world?

What was Vista trained on? Vistawas trained on a collec-
tion of ∼ 100𝐾 customer workloads (i.e,𝑑𝑏_𝑙𝑜𝑎𝑑 metric) sam-
pled randomly from the RDS fleet comprising of both APG
and AMS databases, for a period of 90 days. Since 𝑑𝑏_𝑙𝑜𝑎𝑑
is collected at a per-minute frequency, the total number of
training data points used were ∼ 12.96𝐵. The workloads
demonstrated quasi-periodic behavior across multiple peri-
ods (for e.g., hourly, daily, or weekly) as shown in Figure
1. As Vista was trained in a self-supervised manner, we
did not need any labels during the training process. All the
hyperparameters used in Vista are stated in Table 5 along
with the rationale behind choosing those values. The training
was performed on a single p3.8xlarge instance, using the
ADAM [24] optimizer, with the quantile loss stated in Eq.(4),
and a learning rate of 10−3. The forecasting model used was
a 3-GRU layered encoder and decoder with 100 hidden units
each. The total number of parameters were 151K.

5.1 AD accuracy
Our expert DBAs hand-labeled an internal data set com-
prising of real-world workloads, sampled randomly from
150 anonymized real customer databases, over a period of
3 weeks (i.e., ∼ 4.5𝑀 data points) to test Vista on. The dis-
tribution of test set was 3.25% anomalous points, and rest
non-anomalous. We acknowledge that this test set depends

on a sampling process which even though carried out metic-
ulously by domain experts, is susceptible to incomplete rep-
resentation of all types of workload present in the fleet. For
benchmarks we pick two readily used light-weight AD ap-
proaches in industry– (a) STL [17, 26, 34, 49]; and (b) Fourier
based SR-CNN [42]. Both these algorithms are unsupervised
and do not require labels for training like Vista’s AD model.
To ensure consistency, we trained/tuned the baselines on the
same unlabeled training set which Vista was trained on.

Evaluation Metrics. We use 3 different types of evaluation
metrics: (a) Event-based; (b) Segment-based; (c) Weighted
Precision, Recall and F-1 scores. Event and Segment met-
rics are based on the amount of overlap defined using IoU
(Intersection-Over-Union) b/w predicted and true anomalous
segments, with an IoU threshold of > 0.1 and > 0.9 respec-
tively to determine a true positive detection [53]. Weighted
metrics weigh each prediction and ground truth segment
with their severity score that gives an estimate of how good
the AD algorithm is for more severe anomalies (eg: HIGH
severity). This is crucial in real-world because high severity
anomalies are prone to causing severe bottlenecks leading
to major impact on business and the revenue as compared
to short-lived low severity anomalies.

Performance Results. Table 3 shows the performance scores
obtained by Vista on the internal test set of ∼ 4.5𝑀 data
points. The test was run in a streamingmanner, everyminute,
and the final scores are obtained by averaging 5 test runs.
We can see that on database telemtery data, Vista AD has
10% better precision, 8% better recall and 9% better F1 score
as compared to the second best method.

5.2 AD run-time
Faster run-time is a key requirement for deploying Vista
in production. We compute a sample-by-sample run-time
which is the amount of time taken to run inference on a single
new data point in the streaming manner. As compared to the
STL-based method and SR-CNN which obtain a sample-by-
sample run-time of 0.15 and 0.09 seconds respectively, Vista
clocks a run-time of 0.024 seconds. These scores represent the
95th percentile (p95) of the run-time distribution computed
over the test set.

5.3 Detection latency
Another key productionmetric is the detection latencywhich
is defined as the amount of delay between the start time of
anomaly, and the time when it was surfaced to customer by
Vista. Ideally we want detection latency to be 0 minutes,
i.e real-time detection. On the test-set that contains ∼ 3500
anomalous segments, Vista obtains a p95 detection latency
of 17.47 minutes which is near real-time given our prediction
window is 15 minutes (Eq. 1).
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Table 5: List of free parameters in Vista along with their description, reference, values used, and the rationale
behind it.

Parameter Description Reference Value Rationale

𝑗 Number of data points in input Eq.(1) 15 Design choice
𝛿 Length of a period Eq.(2) 1440 Grid search on the fleet
𝑐 Number of periods to look back in history Eq.(3) 3 Grid search on the fleet
𝜂 Step size for right shift Eq.(3) 2 Grid search on the fleet
𝑠 Number of shifts Eq.(3) 10 Grid search on the fleet
𝜏 Quantile value used for loss function Eq.(4) 0.9 Design choice
𝜃 Threshold for starting an anomaly Eq.(5) 0.5 Grid search on the fleet
𝜂 Threshold for starting an anomaly Eq.(5) 6.5 Grid search on the fleet
𝜔1 Threshold for severity score Eq.(7) 4 Grid search on labeled subset
𝜔2 Threshold for severity score Eq.(7) 8 Grid search on labeled subset
𝑞1 % of LOW anomalies Eq.(7) 60% Expert labeling of sampled subset
𝑞2 % of MEDIUM anomalies Eq.(7) 31% Expert labeling of sampled subset
𝑞3 % of HIGH anomalies Eq.(7) 9% Expert labeling of sampled subset
𝜅 Minutes to wait before closing an anomaly Sec.(4.2) 15 Design choice
𝜓1 Warmup (phase-1) time in minutes Sec.(4.2) 15 Grid search on the fleet
𝜓2 Warmup (phase-2) time in minutes Sec.(4.2) 180 Grid search on the fleet
𝐾 Number of candidate queries to analyze for RCA Sec.(4.3) 5 Design choice
H Length of look back history to compute control group (in minutes) Sec.(4.3) 1440 Design choice
𝑑 Number of query statistics Sec.(4.3) 15 Domain Knowledge
𝛼 p-value threshold for permutation test Sec.(4.3) 0.05 Design choice
𝐵 Number of repetitions in permutation test Eq.(10) 100 Grid search on the fleet

5.4 RCA accuracy
To test the Vista’s accuracy in detecting the root cause SQL
query, our expert DBAs create a set of 10 realistic problem
types spread across both APG and AMS engine type. Each
problem type is a workload with a set of ∼ 100-500 SQL
queries, amongst which there are 1-5 root cause SQL queries
which Vista needs to highlight. Table 1 explains each prob-
lem type, what the root cause SQL queries mainly wait for,
and a description of the workload. For each problem type, we
compute Vista’s precision, recall and F1 score. Table 4 shows
the scores achieved by Vista. Note, that Vista achieves a
higher precision as compared to the recall for almost all prob-
lem types. This is due to the higher quantile threshold used
for the control group computing the QTE (See Eq.(10)). This
forces Vista to have a high tolerance for false alarms, but
also leads to missed detections observed in the recall scores.

5.5 Real-world case studies
In this section we share real-world experiences of DBAs
interacting with Vista in their day-to-day life to debug per-
formance issues.

5.5.1 Case Study 1: Lock Contention. In this scenario DBA
investigates a 𝑑𝑏_𝑙𝑜𝑎𝑑 anomaly where 40-100 database ses-
sions are waiting for database to respond on a database with
16 CPU cores. Firstly, the DBA looks at the wait event dis-
tribution of the 𝑑𝑏_𝑙𝑜𝑎𝑑 anomaly detected by Vista to see
what are sessions mainly waiting for. Vista shows that spike
is dominated by a single wait event Lock:tuple (97% of
the entire 𝑑𝑏_𝑙𝑜𝑎𝑑 spike). The Lock:tuple wait event rep-
resents a case where multiple sessions are completing for
access to the same database records. Furthermore, Vista
identifies two SQL queries that deviated from their nor-
mal behavior and had an increase in execution_rate and

logical block reads which correlated to the 𝑑𝑏_𝑙𝑜𝑎𝑑
spike. DBA infers that it is a locking issue by looking at
the wait event distribution of 𝑑𝑏_𝑙𝑜𝑎𝑑 spike, and an increase
in the query execution time potentially indicates that there
are popular records that these queries are continuously com-
peting for. Finally, Vista provides the lock related trou-
bleshooting document using which the DBA can get started
on implementing fixes and best practices.

5.5.2 Case Study 2: CPU Exhaustion. Vista notifies the DBA
about a 𝑑𝑏_𝑙𝑜𝑎𝑑 anomaly where 450 sessions are waiting on
a database with 2 CPU cores and mainly dominated by CPU
wait event. Vista also surfaces a query that shows abnormal
behavior and contributes 95% to the anomaly in terms of wait
events. Furthermore, Vista also highlights severe increase in
key system level metrics like cpuUtilization.total.avg
and outOfMemoryKillCount.avg indicating exhaustion of
resources. Noting that root cause query’s execution rate and
logical reads increased very slightly, DBA deduces that its
a scenario where heavy sorting (which uses both CPU and
memory) is, likely the true root cause of this issue. While
Vista does not (yet) have metrics that track CPU and Mem-
ory usage per query, it still guides the DBA in right direction
by combining the power of system metrics with per-query
statistics.

5.5.3 Case Study 3: I/O Issues. Vista notifies the DBA about
a𝑑𝑏_𝑙𝑜𝑎𝑑 spike dominated bywait events IO:DataFileRead
and IPC:BufferIO contributing over 87% to the detected
anomaly. Vista also highlights the potential root-cause query
seen to be waiting for I/O. DBA digs deeper on the query
using its query_id and finds that it is a range scan on pri-
mary key. Reading about the two wait events from the trou-
bleshooting docs provided by Vista, DBA figures that the
query is both reading from disk (into database cache) as well
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as competing for cache access. Furthermore, Vista high-
lights an abnormal increase in the execution rate and logical
reads of the query. Based on the analysis, DBA deduces two
insights: (a) Increased execution rate has likely caused in-
creased disk reads by individual queries; (b) Database buffer
cache is likely too small to hold all the data in database
working set (requiring cache pages to be constantly evicted).
DBA arrived at these insights in a couple of minutes, which
usually takes several minutes if not hours to discover.

6 A HITCHHIKER’S GUIDE TO DATABASE
MONITORING DEPLOYMENTS AT
SCALE

Despite careful design and concerns about possible deploy-
ment issues, we still faced many challenges. In the following
section we try to outline what we have learned from them,
by describing many of the problems we faced and how we
solved them.

6.1 Data Management
6.1.1 Handling missing values. In production, encountering
gaps in streaming data is common due to various reasons (for
e.g., data collection agent failure, customer shuts down the
database, its a new customer with no history, etc). The AD
module should be robust to such gaps and strike a balance
between the two scenarios– (a) raising false alarms, i.e, flag-
ging a periodic job as anomaly due to gaps in input history,
and (b) being overly conservative, i.e, not detecting any spike
due to missing values in the anomalous segment. Vista has
put guardrails in place to handle these: (a) When the data
gaps are longer (e.g., several hours to days) due to a database
crash, shutdown, or in case of a new customer with zero
history, Vista adopts a staggered approach where it doesn’t
surface any detection for first𝜓1 minutes, followed by only
surfacing HIGH severity detection for the next 𝜓2 minutes.
This limits false alarms arising due to lack of input data; (b)
Vista regularizes its training process to handle shorter data
gaps (e.g., few minutes to an hour) by randomly cropping
segments of data out during training to create data gaps and
force the neural-net to learn interpolation via generalization.

6.2 Model Learning
6.2.1 Robust predictions. While sequence models like RNNs
and LSTMs are among the most popular choices for mod-
eling time-series data for next-step prediction, they suffer
from a peculiar problem called lag-effect or the persistence
problem [21] when predicting the value at next time step
𝑥𝑡+1 given the history, i.e 𝑥𝑡−𝑘 , . . . , 𝑥𝑡 . The problem can be
described as 𝑥𝑡+1 ≈ 𝑥𝑡 , i.e, the predicted value by the model
is same or similar to the value at the preceding timestep 𝑡 .
The model thus learns to simply predict 𝑥𝑡 at 𝑡 + 1 leading to

incorrect forecasts. In order to prevent this, Vista predicts
the statistical mean of values at next 𝑗 timesteps ( 𝑗 = 15)
instead of predicting the value at next step (Eq.1). This acts
as a regularizer by adding noise during training and prevents
the model from collapsing into predicting preceding value
at each step.

6.3 Model Verification
6.3.1 Human-in-the-loop. We performed several round of
DBA reviews to qualitative assess the RCA and recommenda-
tions generated by Vista. During these weekly reviews we
randomly sampled 100 databases distributed equally across
engine-types, and configuration-types from the fleet and
ran Vista to obtain detections, RCA and recommendations.
These detections where then randomly assigned to a group of
experienced DBAs to obtain feedback. This time-consuming
human-in-the-loop evaluation helped us fine-tune Vista’s
analysis module by setting right thresholds, identifying the
important system metrics to add, and writing actionable
troubleshooting docs to make Vista overall useful.

6.3.2 Choosing right performance metrics. During internal
reviews we learned that having a highly precise service (low
false alarms) with bounded recall, is more useful for cus-
tomers than a noisier service with the highest F1 score. Fur-
thermore, production-ready service required establishing a
trade-off between high precision, bounded recall and other
components like detection latency, memory footprint of in-
put, model size, etc. Tuning model parameters to obtain the
best F1 score is not the right strategy when deploying a
service in production.

6.4 Model Deployment
6.4.1 Cost considerations. Cost is a key metric to optimize
when launching a production service, specially at AWS scale.
We optimized cost by cutting the number of invocation of
Vista’s AD module by 50%, by using it only to decide when
to open an anomaly. Choosing right health metric that’s sim-
ple for customers to understand with a interpretable base-
line made the other decisions (e.g., continuing, or closing
an anomaly) achievable by simple rules. Furthermore, dur-
ing months long internal trial runs on the entire fleet, we
observed that running the service at 3-minute intervals on
any given database led to the same number of detections as
running it every minute, which further reduced the cost by
∼ 66.67%.

6.4.2 Robust deployments. Failures come in many form like
software bugs, infra failures, or operational mistakes which
can bring the service down making it unreliable for busi-
nesses. To prevent this, we adopted a cell-based architecture
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[4] to deploy Vista across RDS fleet that helps isolate fail-
ures to a single cell instead of affecting the entire region. Sec-
ondly, it also enables horizontal scaling while maintaining
maximally sized components that can easily be performance
tested. Finally, as the fleet grows, a new cell can easily be
added to handle demand increase.

7 DISCUSSION & USER FEEDBACK
Post launch we interacted with customers to understand
what are their pain-points when using Vista and how can
we address them. A key request from the customers was to
have a way to control the sensitivity of Vista’s detection
mechanism, both in terms of length of anomaly, and its sever-
ity. This is key because some databases tend to be noisier
than others, which can also change with time, so a knob to
make detection stricter would help them reduce false alarms.
In order to address this we adopt a 2-phase solution. Firstly,
we allowed customers to simply configure alerts in terms
of severities, i.e., they could archive all the LOW, MEDIUM
anomalies, and get alerts only for HIGH severity anomalies.
However, this still doesn’t meet the needs of those customers
who wanted more control. To address that, we are working
with customers to get more feedback and building a feature
where we expose a sensitivity slider with 5 levels (0, 25, 50,
75, 100) that can help them control the sensitivity of the
detector. Under-the-hood this slider will map to a fixed set
of key hyperparameters (e.g., minimum length of anomaly,
threshold for severity score, vCPU level) , with the highest
sensitivity generating the least number of alerts and lowest
sensitivity the most number of alerts. These key parameters
are selected based on several customer interactions by our
domain experts, and the values are set using grid-search run
over the large RDS fleet.

8 CONCLUSION
Vista is an ML-based performance troubleshooting frame-
work serving in production for > 2 years, making thousands
of critical detections preventing > 10𝐾 false alarms every
day for RDS customers. Future work will focus on adding
more system metrics and per-query features in RCA, moving
to a multivariate AD system by factorizing the aggregate
𝑑𝑏_𝑙𝑜𝑎𝑑 metric into correspondingwait events formore gran-
ular insights, and building an anomaly deduping mechanism
to reduce cognitive overload, specially for customers that
monitor a fleet of 100-1000s of databases.
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