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Highlights:

What are the main findings?

• A novel RL framework is proposed for bus operations, integrating three high-level actions:
holding, skipping, and turning around to reduce passenger waiting times.

• The model incorporates LSTM to capture both Markov and non-Markov processes, enhancing
decision-making based on past actions and future predictions.

• Domain Randomization is used to improve the model’s robustness against unpredictable traffic
conditions and passenger demand.

• Curriculum learning allows the RL agent to efficiently learn complex action spaces, demonstrat-
ing improvements over traditional holding-only strategies.

What are the implications of the main finding?

• The proposed RL framework demonstrates that reinforcement learning can effectively handle
the complexity of bus operations with curriclumn learning integrated.

• The integration of domain randomization within RL enhances the model’s adaptability to
real-world variations, offering a more robust solution for public transit systems.

• The combination of holding, skipping, and turning around strategies in the RL model provides
greater flexibility and efficiency in bus operations, significantly outperforming traditional
single-strategy approaches.

• This approach highlights the potential of RL to provide scalable and efficient operation in multi-
agent environments, paving the way for smarter and more adaptive urban transportation systems.

Abstract: Public transit systems are critical to the quality of urban life, and enhancing their efficiency
is essential for building cost-effective and sustainable smart cities. Historically, researchers sought
reinforcement learning (RL) applications to mitigate bus bunching issues with holding strategies.
Nonetheless, these attempts often led to oversimplifications and misalignment with the goal of
reducing the total time passengers spent in the system, resulting in less robust or non-optimal
solutions. In this study, we introduce a novel setting where each bus, supervised by an RL agent,
can appropriately form aggregated policies from three strategies (holding, skipping station, and
turning around to serve the opposite direction). It’s difficult to learn them all together, due to
learning complexity, we employ domain knowledge and develop a gradually expanding action space
curriculum, enabling agents to learn these strategies incrementally. We incorporate Long Short-Term
Memory (LSTM) in our model considering the temporal interrelation among these actions. To address
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the inherent uncertainties of real-world traffic systems, we impose Domain Randomization (DR) on
variables such as passenger demand and bus schedules. We conduct extensive numerical experiments
with the integration of synthetic and real-world data to evaluate our model. Our methodology proves
effective, enhancing bus schedule reliability and reducing total passenger waiting time by over 15%,
thereby improving bus operation efficiency and smoothering operations of buses that align with
sustainable goals. This work highlights the potential of robust RL combined with curriculum learning
for optimizing public transport in smart cities, offering a scalable solution for real-world multi-agent
systems.

Keywords: bus oeration; deep reinforcement learning; intelligent transportation systems; curriculum
learning; smart cities

1. Introduction

Public transit systems, particularly bus services, are foundational to urban infrastruc-
ture and human mobility. The precise and timely operation of these systems is a cornerstone
of urban mobility. Historically, reinforcement learning (RL) has been sought after to opti-
mize bus schedules, predominantly addressing the persistent challenge of bus bunching [1].
However, traditional RL methods often oversimplify the problem, leading to solutions that
may not adequately minimize passenger waiting times or optimize bus schedules and the
overall system performance [2]. These challenges arise from several inherent complexities:

First, bus operations in urban areas face numerous unpredictable variables, from
sudden surges in passenger demand to unforeseen traffic congestion, which traditional
RL models struggle to accommodate. Second, the temporal dynamics between bus stops,
intertwined with factors like varying passenger demands at different times of the day and
changing traffic conditions, require models with memory capabilities to make informed
decisions. Lastly, the vast and diverse nature of real-world traffic data, with its inherent
uncertainties, poses a challenge for any model to generalize effectively.

Recent attempts to address these issues lean on over-simplified strategies. For instance,
some models resort to merely holding buses at stations or optimizing routes without taking
into account the dynamic nature of urban traffic and passenger demand.

To address these challenges, we introduce a comprehensive approach in this paper. Our
methodology begins with the deployment of a robust RL model that has a Long Short-Term
Memory (LSTM) network integrated. The incorporation of LSTM allows our model to account
for the temporal dynamics of bus operations, enabling it to make decisions based on historical
and real-time data. We also employ Domain Randomization (DR) to introduce variability and
robustness into our model, preparing it for the uncertainties of real-world operations.

In summary, the contributions of this paper are:

• We introduce an LSTM-integrated RL model tailored for improving bus operations to
capture both Markov and non-Markov processes.

• We implement DR to enhance the robustness of our model, ensuring its effectiveness
amidst the uncertainties of urban traffic and dynamic passenger demands.

• We implement Curriculum Learning with masked LSTM to learn the bus operation
strategies step by step from holding and skipping to turning around and combining
all three controls.

• Our approach not only leads to a significant reduction in passenger waiting times but
also offers a more holistic optimization of bus schedules, ensuring timely and efficient
urban mobility.
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2. Related Works
2.1. Bus Bunching Problem

Bus bunching, the phenomenon where two or more buses arrive at a stop simultane-
ously, occurs when the headway between buses is not preserved as defined by the schedule.
Many attempts have been made in the past to address bus bunching by implementing
control policies that preserve the desired headway. Daganzo explores an adaptive con-
trol scheme that adjusts the holding time of buses at different control points to maintain
headway [3]. The method requires a smaller slack compared to the conventional strategy
that introduces a large slack in the schedule to make bus bunching become unlikely. This
line of strategy is further explored by Andres et al. who improve the control scheme by
adding a predictive model for future headway given a series of headway [4]. Sánchez-
Martínez et al. set up an optimization model that computes the holding times of all buses at
all control stops with dynamic running time and demand [5]. In a separate paper, Daganzo
and Pilachowski formulate the desired cruise speed, which is the stochastic equilibrium
cruise speed, as a function of the spacing between buses [6]. Thus, a bus can slow down
or accelerate to meet the desired cruise speed, with which bus bunching can be avoided.
Bartholdi et al. introduce the idea of “self-equalizing” headway in that the headway
between buses is not bounded by a predefined value [7]. Instead, headway can reach
equilibrium given that it is confined above a certain threshold, achieved by holding at
control points [7]. Estrada et al. also consider the possibility of extending the green light
phase at certain intersections to adjust the headway between buses [8]. Lastly, Wu et al.
consider both passing and distributed passenger boarding as alternatives to control the
headway dynamically [9].

2.2. Traditional Method in Bus Operations

Traditionally, agencies use holding control in bus operations. Ideally, bus operation is
defined by the accumulation of bus arrival times at succeeding control points [10]. The set
of the control points {tn,s} is defined by:

tn,s+1 = t0,0 + nH +
s

∑
i=0

pi, n, s = 0, 1, 2 . . . (1)

where the buses, n, are treated as “agents” and the control points, s, as “time”. The actual
travel time an,s represents the state of the agents. pi represents the planned travel time or
planned inter-arrival time between successive control points on a bus route. It accounts for
the time a bus is expected to take to travel from one control point to the next, incorporating
scheduled stops and typical traffic conditions. The uncontrolled travel time un,s for bus n
between stops s and s + 1 is:

un,s ≡ an,s+1 − an,s = cs + βs(hn,s − H) + γn,s

= cs + βs
(
an,s − an−1,s − H

)
+ γn,s

(2)

where an,s represent the arrival time of nth bus at control point s; hn,s = an,s − an−1,s
represents the headway ahead of bus n at the control point s; H is the actual headway; cs
represents the travel time from s to s + 1 assuming all buses are on-time; βs is a constant
representing the average increase in bus arrival time from s to s + 1 due to a unit increase in
headway time. γn,s represents a stochastic term that accounts for unpredictable variations
in the travel time of bus n between stops s and s + 1.

In traditional bus operations, there are two systems—Frequency-Based Systems and
Scheduled Systems.

In frequency-based bus systems, buses run at regular intervals throughout the day.
This approach is generally preferred in densely populated urban areas where there is high
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demand for public transit. Passengers find it convenient as they don’t need to check the
schedule; however, it can easily cause bus bunching because buses tend to be too close to
each other. To address this, when operating, each bus may hold at a stop based on the delay
of the previous bus. The modified an,s+1 can be calculated by the following equation:

an,s+1 = an,s + cs + Dn,s + βs(hn,s − H) + γn,s (3)

Dn,s =
[
ds −

(
βs + α

)
(hn,s − H)

]+
(4)

where α is a weighting parameter. However, such a control strategy passes down the delay.
If bus n delays, then bus n + 1 also has to delay due to the extra holding time Dn+1,s. The
delay of the (n + 1)-th bus also causes extra holding time Dn+2,s, resulting in the delay of
the n + 2-th bus. This will create a vicious cycle, leading to delays for all following buses
due to the delay of the n-th bus, as is shown in Figure 1. Also, previous studies focus on
alleviating bus bunching while often ignoring the overall system performance.

Figure 1. Delay Passing Down Caused by Holding.

On the other hand, scheduled bus systems adhere to a stringent timetable, with vehicle
departures occurring at specific, pre-established times. Although scheduled bus systems
do not pass down the delay, buses can get bunched if the delay is greater than the headway,
which often happens in urban areas. The disadvantages of these two bus control systems
inspire our work of using combined strategies to control the whole bus system actively.

2.3. Reinforcement Learning Application in Bus Operations

Due to the recent advance in Deep Reinforcement Learning (DRL), which can effec-
tively model the feedback of various control strategies over a long time horizon, DRL
appears as a promising strategy for improving bus operations [11]. Many works have
explored building a bus operation policy that preserves the headway among buses. Chen
et al. develop a multi-agent reinforcement learning (MARL) scheme to find the optimal
holding time at stops from a discretized action space that minimizes the deviation from
the scheduled headway [12]. Wang et al. adopt a multi-agent deep reinforcement learning
(MDRL) scheme to find the optimal holding time for each bus at each stop based on the
amount of variance in the headway the action leads to, which is the reward [13]. Such
an approach allows the action imposed on each individual bus to interact with the entire
system, not only with the leading and the trailing buses. Alesiani et al. introduce a re-
ward function that penalizes solutions with long travel times and long holding times [14].
Tham et al. construct an action space in which a bus can choose to skip zero, one, or two
stations to improve bus operation [15]. Poliziani et al. use the simulator BEAM CORE to
evaluating transit enhancements [16]. Rodriguez et al. implemented a cooperative strategy
which combines holding and stop-skipping together in bus operation [17]. Still, no study
considers the overall costs incurred by the passengers and lacks a mixed-strategy action
space that uses holding, turning around, and skipping as potential solutions.
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2.4. Curriculum Learning

Curriculum learning is a popular and effective method for improving RL agent per-
formance and efficiency in a variety of environments by guiding agent actions. Several
studies have investigated the impact of task sequencing on the learning performance and
sample efficiency of RL agents. In general, many propose a curriculum learning framework
that intelligently orders tasks to gradually increase in difficulty. By strategically sequencing
tasks, agents were shown to not only achieve faster convergence and higher reward states,
but improved generalization across a range of environments [18]. Traffic and transportation
optimization is also a commonly examined environment for evaluating all types of rein-
forcement learning algorithms. Other attempts, such as the ones proposed by [19,20], use
curriculum learning to improve upon learning efficiency in various frameworks, however
not explicitly in the bus operation setting. Additionally, others have examined curriculum
learning discretely through the lens of an “adversary", but use a deterministic algorithm
rather than a model to define the adversary’s actions throughout training.

3. The Framework of the Training Environment

SimPy facilitates discrete event simulations, where the behavior of agents can be
modeled as processes that interact with each other and with the environment and learned
by RL model [21]. Therefore, we use Simpy to formulate the bus line corridor model with m
uniformly distributed stations, sj, j = 1, 2, ..., m. There are n buses, bi, i = 1, 2, ..., n, driving
on this route with a constant average speed v. The general setup of the framework is
shown in Figure 2. The extended times, which may occur when skipping or turning around
actions are done, are included when setting the actions in the environment. Here are
the assumptions:

• The route is a simple loop with stations evenly distributed along [13].
• When there is bus bunching at station sj, the probability for the passengers to board

each bus is equal.
• Boarding and alighting occur concurrently and adhere to a proportional pattern based

on passenger counts. Each passenger’s time to board and exit is consistently τb and τa
minutes at every stop. The bus must wait for both processes to complete before it can
depart, with the longer of the two processes dictating the overall stop duration at a
certain station.

• At bus stop sj, the arrival of passengers is described by a Poisson distribution with a
rate of λj. For a passenger at stop sj, their destination is selected randomly and with
equal chance from the next ⌊(m − j)/2⌋ stops.

• There is a capacity C for each bus.

As is shown in Figure 2, here’s the general setup of the framework:

• The delay of bus n incur at bus stop s and between stops s and s + 1 caused by traffic
or other factors is denoted by Dn,s.

• The bus system is a frequency-based system. All the buses are initialized at station sj
with a constant interval of headway H.

• If a bus decides at station sj to skip the next station sj+1, it must alight all the passengers
whose destinations are sj+1 at station sj and make the next stop at station sj+2.

• If a bus decides to turn around at station sj, j ≤ ⌊m/2⌋. It must alight all the passengers
whose destinations are sk, k = j + 1, ..., ⌊m/2⌋. The symbol ⌊·⌋ denotes the floor
function, which rounds down to the nearest integer.
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Figure 2. Representationof the Bus Line simulated in Simpy.

In our training environment, 5 passenger statuses are defined as shown in Table 1.
Passengers might be waiting at a station, get on a bus and alighted. When alighted, he
might still be waiting since the passenger hasn’t arrived or he might arrive and leave the
system. As a penalty, when waiting time is longer than the headway, passengers will have
a 50% possibility of leaving the station as a penalty for a long wait.

Table 1. Passenger Status.

Status Meaning In or Out of the System

0 Waiting
Passengers are

in the transit system
1 On bus

2 Waiting after Alighted

3 Arrived Passengers are
out of the transit system4 Left after a long wait

4. Methodology
4.1. A PPO Algorithm to Improve the Efficiency of Bus Operations
4.1.1. Action and Agent

In bus operation, every bus is an agent. In our paper, we use three actions based on
experience: holding, skipping, and turning around. Holding means buses will wait at one
stop. Skipping means skipping a stop. Turning around means alighting all passengers and
serving the other direction. Each bus (agent) makes an action at the station, interacts with
the environment, and gets the reward as shown in Figure 3.

Figure 3. The Training Environment.
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Holding strategy is the most popular way since it is easier to implement with formed
equations [3]. On the other hand, Daganzo, et al. [10] propose the skipping and turning
around strategy, but without giving equations. Since RL can perform complex decision-
making and balance exploration and exploitation after learning the policies, our paper
builds our bus operation model based on RL.

4.1.2. Observation

At time step t, a bus agent bi can obtain partial information about the transport
environment as its current observation ot

bi
. In this bus route simulation environment, a

single observation consists of the following components: bus location, passenger count
on the bus, and action status. Specifically, the location is represented by the station index,
transformed into a continuous scale based on the distance traveled from the last station
proportional to the travel time, which can be periodically reset at each full loop around
the stations. This continuous scale helps capture the exact positioning between stations,
important for modeling the dynamics of movement and timing.

The number of passengers currently on the bus is a direct integer count, reflecting the
current load and influencing decisions related to stopping, skipping, or turning around.
The actions undertaken by the bus are encoded in terms of the most recent action (holding,
skipping, turning around). The action is encoded as a variable, while the duration since the
last action started provides a temporal depth to the observation, capturing the time aspect
of the bus’s recent operations.

Thus, the complete observation for a bus agent bi at time t can be expressed as
ot

i = [ot
i,L, ot

i,Npax
, ot

i,H , ot
i,T , ot

i,Ego], referring to location ot
bi ,L

, passenger count on the bus

ot
i,Npax

, headway ot
i,H , and time ot

i,T respectively. In our multi-agent RL, only one agent takes

an action at the same time. Ego ot
i,Ego means the current bus to take action.

These components act as the dynamics of a bus system vary with time due to differing
passenger loads throughout the day and also vary spatially as buses move through different
segments of their routes which may have varying degrees of passenger demand. These
observations allow the reinforcement learning model to adapt its policy, aiming to optimize
the stated objectives of the system.

4.1.3. Reward

The total reward is defined as R = −(α Tw
Nw

+ β Tb
Nb
), where Tw refers to the total

passenger waiting time, Tb refers to the total passenger time on bus, Nw refers to the total
number of waiting passengers, Nb refers to the total number of passengers on bus, and
α, β ∈ R are the weighting parameters. In the following section, we use 106 seconds as the
unit of reward.

4.1.4. Actor-Critic Learning

In order to maximize the discounted cumulative reward in the long term, to keep
the training procedure more stable, and to increase learning efficiency, we use proximal
policy optimization (PPO) proposed by Schulman et al. [22], a type of actor-critic method
designed to improve the stability and reliability of policy gradient methods by optimizing
a surrogate objective function. The design of the actor-critic framework is shown in
Figure 4. In order to avoid larger parameter updates and big policy ratios, r(θ) is forced
to stay within a small interval [1 − ϵ, 1 + ϵ], where ϵ is a hyperparameter. The objective
function is:

JPPO(θ) = E
[

min
(

r(θ)Âθold
, clip(r(θ), 1 − ϵ, 1 + ϵ)Âθold

)]
(5)
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θ is the set of current parameters of the policy network and it defines the current policy
that maps states to actions. r(θ) is the probability ratio between the current policy and
the previous policy for a given action. Âθold

is the advantage function, calculated based
on the previous policy θold. The advantage function Âθold

(s, a) estimates how much better
or worse a specific action a is, compared to the average action in a particular state s. It
serves as a way to encourage actions that are expected to yield higher returns. ϵ is a
hyperparameter that controls the range within which the probability ratio r(θ) is allowed
to vary without penalty. The operation clip(r(θ), 1 − ϵ, 1 + ϵ) constrains the ratio such that
it does not exceed 1 + ϵ and does not fall below 1 − ϵ. The PPO’s objective function selects
the lower value of the two between the unadjusted value and this clipped ratio. As a result,
this diminishes the incentive to push policy updates to extreme values in pursuit of higher
rewards.

The actor network, defined for each bus bi, is given by:

actorbi

(
ot

bi

)
= σ

(
MLP

(
ot

bi

))
,

where σ is the softmax function ensuring that the outputs can be interpreted as probabilities
for each possible action. MLP stands for Multilayer Perceptron, used to process the input
observations and produce an output that represents potential actions for each bus bi. This
probability distribution over actions allows the agent to explore the action space effectively
while exploiting learned behaviors that lead to higher rewards.

The critic network is structured similarly but with a crucial difference in its output layer:

criticbi

(
ot

bi

)
= MLP

(
ot

bi

)
,

which outputs a single value. This value represents the critic’s estimate of the value function
Vπ(st

bi
), where st

bi
is the state of the bus at time t. The value function approximates the

expected return from state st
bi

following the policy π dictated by the actor.
Both networks share parameters through most of their architecture up to the final

layer, which is designed to minimize both computational overhead and the number of
parameters needed to be learned in order to simplify the learning process and speeding
up convergence. The shared layers allow the networks to benefit from common feature
representations learned from the environment, which capture the complexities of the bus
operation, including the dynamics of passenger flow and the timing of stops.

The whole Actor-Critic Framework for bus environment is shown in Figure 4. The Bus
Environment provides observations that form the state (St) at each time step t, representing
relevant bus operational information, including Location ( Ot

i,L ), the Number of Passengers(
Ot

i,Npax

)
, Headway ( Ot

i,H ), Time
(

Ot
i,T

)
, and an Ego feature

(
Ot

i,Ego

)
to capture charac-

teristics specific to the main bus being analyzed. These features are tracked for each bus,
b1 through bn, creating a dynamic representation of the transportation system’s state. The
Actor-Critic PPO model consists of an Actor Network, which outputs a policy πθ

(
at | st

)
defining the probability of selecting action at in state st, and a Critic Network that evaluates
this state through a value function Vµ(st). The model leverages Sample Memory to store
between the new and old policies to maintain stable updates. The Advantage Function
Ât uses the Temporal Difference error δt to indicate how much better or worse the taken
action was compared to the Critic’s baseline value. Value Loss

(
LV(µ)

)
is the loss function

for the critic network, minimizing the difference between the predicted value Vµ(st) and

the actual return; PPO Clipped Loss
(

LCLIP(θ)
)

is the clipped objective function for the
actor network in PPO, designed to avoid excessive updates to the policy. To enhance policy
stability, we use LCLIP(θ) to clip the ratio within a predefined range, constraining updates
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to the policy πθ and Value Loss LV(µ) for the critic. An LSTM layer with 256 hidden
units captures temporal dependencies by using recurrent feedback, enabling the policy to
account for patterns over time. The model is trained by optimizing LCLIP(θ) and LV(µ)

using gradient descent, resulting in adaptive bus management decisions that consider both
the current state and sequential patterns in operational data.

Figure 4. The Actor-Critic Framework for PPO Algorithm.

4.1.5. Action Space

Both discrete and combined action spaces are feasible for bus operation. On con-
tinuous action spaces, standard PPO is unstable when rewards vanish outside bounded
support [22]. Since combined action spaces include continuous action spaces, we choose
discrete action spaces for RL in our model. The action value and action spaces for an
environment developed using the Gym library are shown in Tables 2 and 3. Gym is a
library in python to support RL. It provides a standardized interface for creating and
managing RL environments, including support for discrete and continuous action spaces.
In Table 3, the High-level Action column represents discrete options that guide broader
strategies (e.g., “Holding”, “Skipping”, or “Turning Around”), while the Low-level Action
column specifies finer control within these strategies. The Box configuration allows for a
continuous range of actions within specified bounds, supporting more nuanced decisions.
For instance, “Holding” includes both a discrete high-level decision and a continuous
low-level parameter within the 0 to 1 range. On the other hand, the Discrete Action Space
column provides a simplified, finite set of actions represented as Discrete (N), where N
is the total number of possible actions. Each strategy has corresponding discrete action
representations.

The action space for holding is discretized into an interval of 10 s (For example, an
action value of 5 means an action of holding for 50 s.) Discrete action space introduces
simplicity to the problem-solving process by transforming a combined action space into a
manageable set of discrete options for the agent to select from, thereby making the learning
algorithm more tractable. Furthermore, combined action spaces are susceptible to stability
challenges during training, since minimal alterations in policy could precipitate substan-
tial changes in action outcomes; discretization mitigates this issue, enhancing stability.
Moreover, discretization of the action space can significantly reduce the computational re-
sources required for policy evaluation and improvement, which is beneficial for real-world
applications where quick decisions may be necessary.
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Table 2. Action Value

Combined Action Space Discrete Action Space

High-Level Action Low-Level Action Discrete Action

Holding 0 Holding time 0, 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11

Skipping 1 / 12

Turning Around 2 / 13

Table 3. Action Space

Combined Action Space Discrete Action Space

High-Level Action Low-Level Action Discrete Action

Holding Discrete (2) Box (low = 0,
high = 1, shape = (1,)) Discrete (12)

Skipping Discrete (2) / Discrete (2)

Turning Around Discrete (2) / Discrete (2)

Combined Strategies Discrete (3) Box (low = 0,
high = 1, shape = (1,)) Discrete (14)

Note: - ’Box’ specifies the continuous numeric range of valid action values for each dimension of the action space
in gym library. - ’Discrete’ a finite set of discrete actions.

4.2. LSTM

The bus’s previous action should affect its next action. Whether the bus ahead is
holding might also affect this bus’s action. Therefore, agents need to memorize and
analyze the actions taken. The inherent unpredictability of bus schedules, characterized
by variations in passenger arrivals and unforeseen delays, requires an approach that
can effectively capture and leverage sequential dependencies. Long Short-Term Memory
(LSTM) networks, renowned for their ability to model and process sequential data [23],
serve as a fundamental cornerstone in achieving this goal.

Mathematically, the LSTM cell employs a set of gating mechanisms to manage the flow
of information across time steps.xt represents the input embedding for the current time
step t, generated by the Transformer module and fed into the LSTM. Each xt is derived
from the Transformer’s output, allowing the LSTM to leverage the Transformer’s encoded
sequence representations. This LSTM cell is used to update the hidden state ht and cell
state ct in a way that accounts for the current input data xt, the previous hidden state ht−1,
and the previous cell state ct−1. The gating mechanisms, which include the forget gate ft,
input gate it, and output gate ot, govern the retention, updating, and discard of information
at each time step to address the intricacies of bus operations. The LSTM cell’s internal
computations are represented by the following equations:

ft = σ
(

W f · [ht−1, xt] + b f

)
(6)

it = σ
(
Wi · [ht−1, xt] + bi

)
(7)

c̃t = tanh
(
Wc · [ht−1xt] + bc

)
(8)

ct = ft ⊙ ct−1 + it ⊙ c̃t (9)

ot = σ
(
Wo · [ht−1xt] + bo

)
(10)

ht = ot ⊙ tanh(ct) (11)
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In these equations, σ represents the sigmoid activation function, ⊙ denotes element-
wise multiplication, and tanh signifies the hyperbolic tangent function. The weight matrices
W f , Wi, Wc, and Wo along with bias vectors b f , bi, bc, and bo are learned during training.
By updating the hidden state and cell state using this LSTM architecture, the RL agent can
effectively capture the sequential patterns and dependencies present in the bus operation
environment, ultimately aiding in making informed decisions for optimized management.

The process of the whole implementation is shown in Algorithm 1. The algorithm
first initializes variables, including the Bus Environment e, the RL policy π, an experience
replay memory D, and the LSTM hidden and cell states h and c. The LSTM function
handles initializing LSTM units, training episodes, and updates to the agent’s policy π.
The inner loop runs for each time step within an episode, where the environment state st
is observed, an action at is selected based on the current policy and LSTM states, and a
transition (st, at, rt, st+1) is stored in the episode memory M. Each transition includes the
current state, action, reward rt, and the next state st+1, all of which crucial for updating the
agent. The LSTM state ( h, c ) is also updated at each time step, enabling the network to
incorporate sequential information. After each episode, the episode memory M is added
to the replay memory D, which is then sampled to update the policy using PPO. This
structured approach allows the RL agent to learn a time-dependent policy for improved
bus operation, leveraging both episodic experience and sequential data handling through
LSTM. When implementing the LSTM algorithm, we set LSTM_Units to 256 and get π, D
from RL agent.

Algorithm 1 Bus Operation RL Training with LSTM
Input: Bus Environment e, Hyperparameters, LSTM Units
Output: Trained RL Policy π

1: Initialize LSTM network with LSTM_Units units.
2: Initialize RL agent with policy π.
3: Initialize experience replay memory D.
4: Initialize LSTM hidden state h and cell state c.
5: function LSTM(LSTM_Units, π, D, batch_size)
6: for episode = 1 to max_episodes do
7: Reset bus environment e to initial state.
8: Reset LSTM state: (h, c) = LSTM_Reset().
9: Initialize episode memory M.

10: for time step t = 1 to max_steps do
11: Get bus state st from environment e.
12: Select action at using policy π and LSTM state (h, c).
13: Execute action at in environment e, observe next state st+1 and reward rt.
14: Store transition (st, at, rt, st+1) in episode memory M.
15: Update LSTM state (h, c) based on (h, c, at).
16: if episode is done then
17: Add episode memory M to experience replay memory D.
18: Break from time step loop.
19: if len(D) ≥ batch_size then
20: Sample a batch of transitions from D.
21: Update the policy π using PPO with LSTM states.
22: return trained policy π

23: LSTM(LSTM_Units, π, D, batch_size)

4.3. Domain Randomization

In the context of deploying bus operations, it is imperative for the RL algorithm to
be resilient to the unpredictable nature of real-world bus schedules. Variabilities such
as unexpected delays or sudden surges in passenger arrivals can disrupt the optimal
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functioning of bus operations, leading to issues like bus bunching. Therefore, the RL
algorithm must be robust to the variability in delays. To close the “Sim to Real” gap, we
implemented Domain Randomization (DR) in our training regimen.

The primary motivation behind DR is to introduce variability in the training environ-
ment, enabling the RL agent to generalize better when faced with unforeseen circumstances
in real-world scenarios. Using DR, a range of simulated environments can be generated
with diverse randomized attributes and subsequently train a model that is effective in all of
these environments. This model is likely to possess adaptability to the real-world setting,
given that the actual system is anticipated to be just one realization of the distribution of
training variations.

In DR, the training environment is the source domain that we can have full access
to, while the real-world bus operation is the target domain that we want to transfer
to. The model is trained in the source domain. A set of N randomization parameters
can be controlled in the source domain eξ , where the configuration ξ is sampled from a
randomization space.

With DR, discrepancies between the source and target domains are modeled as vari-
ability in the source domain [24]. Throughout the process of policy training, episodes
are gathered from the source domain eξ utilizing randomization. As a result, the policy
becomes acquainted with a diverse array of environments and acquires the ability to gener-
alize effectively. R is the reward defined in Section 4.1.3. The policy parameter θ is refined
to maximize the average expected reward R across a distribution of configurations:

θ∗ = arg max
θ

Eξ∼Ξ

[
Eπθ ,τ∼eξ

[R(τ)]
]

(12)

In (12), we model discrepancies between the source and target domains by introducing
variability in the source domain, denoted as eξ . The symbol eξ represents the source
environment with randomized parameters ξ, which introduce diverse configurations to
simulate domain discrepancies. The variable ξ is drawn from a distribution Ξ, capturing
different configurations of the source environment. Through policy training, episodes
are gathered from the source domain eξ , where πθ denotes the policy with parameters
θ. The parameter θ is optimized to maximize the policy’s performance across various
configurations by maximizing the expected reward R, which is defined in Section 4.1.3.
The symbol R(τ) represents the reward for a trajectory τ, which is a sequence of states
and actions collected in the source environment eξ under the policy πθ . Finally, θ∗ denotes
the optimal policy parameters that maximize the average expected reward across the
distribution of source domain configurations. We then implement DR on passenger arrival
rate and bus schedule.

Sánchez-Martínez, et al. set the domain of the adjustment factor from 0 to 2 [5]. They
chose arrival rates that yield a peak bus load of 75% of capacity in high-crowding cases
and 25% in low-crowding. Similarly, we introduce three distinct levels of passenger arrival
rates. Without DR, the passenger arrival rate is set as λ. The demand levels are shown by
the parameters l1, l2, l3. Let L = {l1, l2, l3}. We let l1 = 1.25 in high-crowding cases, l2 = 1.0
in ordinary cases, and l3 = 0.75 in low-crowding cases. Let passenger arrival rate with DR
be λ∗. Demand levels l1, l2, l3 are randomly selected, so λ∗ = rand(L)λ. This variability
ensures that the RL agent is well-equipped to handle both peak and off-peak scenarios, as
well as any unexpected surges in passenger demand.

To further introduce randomness, Gaussian noise is added to the demand levels
l1, l2, l3. To ensure that these randomized demand levels remain realistic and within pre-
defined bounds, they are clipped to lie within the minimum and maximum values of the
initial demand levels array L. The resulting randomized demand levels are then used to
compute the passenger arrival rate, which subsequently influences the generation of the
passenger arrival times. This DR approach ensures that the generated passenger arrival
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tables encompass a broad range of possible scenarios, aiding in creating a more generalized
and adaptable model. The process of generating passenger arrival is shown in Algorithm 2.

Algorithm 2 DR
Input: NStation, HORIZON, NPax
Parameter: Demand Level, Seed
Output: Passenger Arrival Table

1: Let DemandLevelΘ = [0.5, 0.75, 1.0].
2: Initialize the random seed.
3: Generate a random array RandomDemandLevels, denoted as Θ̂ =

[X1, X2, . . . , XNStation ] ∈ RNStation , with Xi randomly chosen from Θ for
i = 1, 2, . . . , NStation.

4: Add Gaussian noise ϵ ∼ N(0, 1), to Θ̂.
5: Clip Θ̂ to ensure that its values remain within the range specified by Θ.
6: function GENERATETABLE(Seed)
7: Initialize the random seed.
8: Create a zero array PaxArriveTable of shape (Nstation, int(Npassenger)).
9: For each row of PaxArriveTable, generate passenger arrival times following an

exponential distribution.
10: Replace zeros in PaxArriveTable with infinity.
11: return PaxArriveTable
12: function GENERATEPAX(NStation, NPax, Θ̂, PaxArriveTable1,PaxArriveTable2)
13: Compute NStation As NStation = NStation//2.
14: Reverse the order of rows in PaxArriveTable2, then concatenate it with

PaxArriveTable1.
15: For each row of the concatenated table, add a time interval proportionally.
16: return The Concatenated Table
17: GeneratePax(GenerateTable(Seed1), GenerateTable(Seed2))

Given that delays are a common occurrence in bus operations, we incorporated
random delays in our training environment. By training the agent with random delays,
we aim to make it adaptive to various scenarios and ensure smooth operations. The
random delay rd is added every time a bus leaves a station and obeys uniform distribution,
rd ∼ U[min_delay, max_delay].

View the learning randomization parameters in DR as a bilevel optimization prob-
lem. Assume that: (1) we have access to bus operation in real environment ereal (2) the
randomization settings (demand level and random delay) are sampled from a distribution
parameterized by ϕ, ξ ∼ Pϕ(ξ). Our goal is to acquire knowledge of a distribution upon
which a policy πθ can be trained to attain peak performance within the context of ereal :

ϕ∗ = arg min
ϕ

L
(

πθ∗(ϕ); ereal

)
(13)

θ∗(ϕ) = arg min
θ

Eξ∼Pϕ(ξ)

[
L
(

πθ ; eξ

)]
(14)

where L(π; e) is the loss function of policy π evaluated in the environment e.
In the bilevel optimization framework defined by (13) and (14), the goal is to learn

the optimal distribution for randomization parameters, denoted by ϕ. The variable ϕ

parameterizes the distribution Pϕ(ξ), from which the randomization settings ξ are sampled.
This distribution Pϕ(ξ) defines the variability within the source environment eξ . The outer
optimization objective seeks to adjust ϕ to minimize the policy’s performance loss in
the real environment ereal . πθ∗(ϕ) represents the policy trained using optimal parameters
θ∗(ϕ), where θ∗(ϕ) minimizes the expected loss in the source environment eξ under the
distribution Pϕ(ξ). This two-level optimization structure enables us to find the optimal
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randomization distribution ϕ∗, facilitating the training of a policy πθ∗(ϕ∗) that generalizes
effectively and achieves peak performance in the real environment ereal .

In DR, even though the ranges for randomization are manually selected, this approach
necessitates domain expertise and a series of iterative adjustments through trial and error.
In nature, this constitutes a manual optimization procedure for adjusting ϕ to achieve the
optimal L

(
πθ∗(ϕ); ereal

)
within the context of ereal .

4.4. Curriculum Learning

In improving bus operations with reinforcement learning (RL), managing a discrete ac-
tion space containing actions such as holding, skipping stations, and turn-arounds presents
unique challenges. The action space varies in granularity, from temporal adjustments
(holding for specific seconds) to substantial route alterations (turn-arounds), complicating
policy formulation due to their non-uniform impact on state transitions. When actions
have significantly different impacts on the system’s dynamics, the agent might struggle to
adequately explore and evaluate all actions. This heterogeneity in action types mandates a
curriculum learning approach, where the agent sequentially masters each action, devel-
oping a robust understanding of when and how to deploy each action optimally. In our
implementation, we built an amount of Φ difficulty levels, each difficulty level is numbered
by φ, φ = 1, 2, .... Within one difficulty level, only certain actions can be taken. Actions
that are allowed to be used at difficulty level φ are stored in array aφ. The difficulty level
will increase once the current reward r reaches the threshold of a certain reward at that
difficulty level rφ or the reward does not increase after many iterations (it is set to 20,000
iterations in our paper, which means if the reward at difficulty level φ remains the same
over 20,000 iterations, the difficulty level will be increased to φ + 1).

We test different settings of curriculum, as shown in Table 4. In test 1, we first train
the model with only the holding method, then add skipping and turning around. In test 2,
since the action space of holding is bigger than skipping and turning around, we split the
holding action into 2 difficulty levels. In tests 3 and 4, we switch the order of the curriculum.
Also, more actions do not necessarily mean a higher difficulty level. Therefore, we add
test 5 to first implement all the actions, then gradually decrease and increase the actions. It
turns out that only test 3 shows a better result than no curriculum learning. This means
learning skipping first and then adding turning around and holding can help the agents
learn a better strategy. Intuitively, this also makes sense because skipping and turning
around has fewer action spaces than holding.

Table 4. Different Settings of Curriculum and the Final Reward.

Test Φ a1 a2 a3 a4 a5 Final Reward Better Than No CL

1 3 0, 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11

0, 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12

0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13 / / −1.04

2 4 0, 1, 2, 3, 4, 5, 6 0, 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11

0, 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12

0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13 / −1.04

3 3 12 12,13 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13 / / −1 ✓

4 3 13 12,13 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13 / / −1.05

5 5 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13

0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12

0, 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11

0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12

0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13 −1.03
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5. Experiments
5.1. Setup
5.1.1. Environment Parameters

The simulation framework is constructed based on the parameters outlined in Section
III and illustrated in Figure 3. The model includes a corridor with m = 20 uniformly
distributed bus stations and a system comprising n = 14 buses. The capacity of each bus
C = 60. The journey time between any two adjacent stops, excluding time spent at stops, is
3 min. Passenger boarding and alighting times adhere to the standards specified by [12],
which are 1.8 s per passenger for alighting and 3.0 s per passenger for boarding. The upper
limit of holding time at stops is set to 120 s.

5.1.2. Simulation Settings

At the initialization of the simulation, buses depart from the first stop s1 according to
the headway of a bus line at Chicago. The departure data is gathered from Chicago Transit
Authority (CTA). The rate of passenger arrivals at each stop follows a Poisson distribution
fitted from CTA data. The simulation advances in one-second increments and the time
horizon is set to 3 h. The granularity of time in the simulation (how often actions can be
taken) is set as 1s.

5.1.3. RL Algorithm Parameters

In the simulation setup for the reinforcement learning model, several key parameters
define the learning dynamics and optimization strategy for the PPO agent operating within
a bus operation environment. The discount factor is set at 0.99, indicating that future
rewards are almost as significant as immediate ones, but slightly less so, which helps
the agent value long-term outcomes effectively. The learning rate is configured at 0.01,
providing a moderate pace for updating the agent’s knowledge based on new data, which
balances the trade-off between learning speed and stability. Batch size is specified at 128,
determining the number of experiences the model processes before performing an update,
thus impacting the granularity of learning and the smoothness of the update trajectory. The
training process set a total of 70,000 steps.

5.2. Ablation Study and The Effectiveness of Three Strategies

The process of systematically modifying aspects of an algorithm to assess the contri-
bution of each component is known as an ablation study. By removing or altering certain
parts of the RL algorithm, we can identify which elements are crucial to performance and
which are ancillary. We design an ablation study focused on the PPO algorithm, where we
incrementally integrate Long Short-Term Memory (LSTM) networks and DR to evaluate
their impact on the model’s learning process.

Our study begins by establishing a baseline using the Simple PPO algorithm. As
described in Section 4.1, PPO utilizes a clipped objective function to prevent large policy
updates, which could lead to performance collapse. This baseline serves as a control for
subsequent experiments, ensuring that any observed improvements can be attributed to
the newly added components.

After establishing the baseline performance with Simple PPO, we introduce an LSTM
network with hidden unit dimension of 256 into the PPO framework. By incorporating
LSTM, we aim to determine whether the agent’s ability to remember and utilize past
information enhances its decision-making process, leading to improvements in both perfor-
mance and efficiency.

The final component added to our RL model is DR, a technique designed to improve
the robustness of the learned policy by training the agent across a variety of randomized
environments. As described in Section 4.3, this approach can be particularly beneficial
in scenarios where the trained agent is expected to be deployed in real-world conditions
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that differ from the simulated training environment. By exposing the agent to a range of
variations during training, we expect it to generalize better to unseen situations.

The ablation study is structured into four distinct experiments, as outlined as follows:

• Senario1: Simple PPO
• Senario2: Simple PPO + LSTM
• Senario3: Simple PPO + DR
• Senario4: Simple PPO + LSTM + DR
• Senario5: Simple PPO + LSTM + DR + Curriculum Learning

The reward plots of different scenarios is shown in Figure 5. From the ablation study,
we can observe improvements in performance and efficiency when adding new models.

Figure 5. Thereward plots of different scenarios with three strategies implemented

As is shown in Section 4.4, the reward does not increase if the holding strategy is
trained through curriculum learning. Therefore, we let Φ = 1, and a1 = [0, 1, 2, 3, 4, 5, 6, 7, 8,
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9, 10, 11] in order to implement the holding strategy. The comparison of the final reward
of holding only and three strategies is shown in Table 5. Figure 6 illustrates that the bus
schedule becomes more evenly distributed after training. The reward represents the total
time spent in the system, as stated in Section 4.1. The total time spent in the system is
decreased by 6% and the average passenger waiting time is reduced by 16%. For example,
in a bus system with 14 buses and 20 stations, when the headway is set at 5 min, it results
in an average reduction of about 50 s in the waiting time per passenger. Therefore, with
suitable algorithm implemented, a combination of three strategies yields more effective
results than solely relying on the holding strategy.

Figure 6. Bus Arrival Time Before and After Training.

Table 5. A Comparison between Holding Only and Three Strategies.

Scenario

Algorithm Reward

PPO LSTM Domain
Randomization

Curriculum
Learning

Holding
Only

Three
Strategies

Better Use
Three Strategies

1 ✓ −1.06 −1.05 ✓

2 ✓ ✓ −1.05 −1.24

3 ✓ ✓ −1.05 −1.05

4 ✓ ✓ ✓ −1.04 −1.01 ✓

5 ✓ ✓ ✓ ✓ −1.04 −1 ✓

5.3. The Robustness in Different Scenarios

To evaluate the result, we test the performance of DR model and compare it with the
model without DR. Compared to the basic scenario, we change three parameters (number
of buses, number of stations, and headway). In order to see the robustness of our model,
we also tested the performance of DR under different levels of noise. The scenarios and the
corresponding results are listed in Figure 7. The model employing DR achieves superior
outcomes in different scenarios in terms of its final reward, average reward, and reduced
average waiting time. Considering that the model integrating DR incorporates stochastic
noise, it follows that the standard deviation would exhibit an elevation.
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Figure 7. The evaluation of DR.

6. Conclusions and Future Work

In this paper, we propose a novel RL framework to improve bus operations. The
model contain three high-level actions: holding, skipping, and turning around. These
actions aim to reduce passenger waiting times. In order to let the model memorize the
previous action and affect the current action, LSTM is implemented to capture both Markov
and Non-Markov processes. To accommodate the unpredictability in bus operations and
enable the agent to gradually expand its knowledge across the entire action space, we
developed a curriculum and applied domain randomization during training. Our approach
has demonstrated its effectiveness in adapting to the proposed action space, outperform-
ing agents that rely solely on holding strategies. This shows the potential for efficiently
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learning from sparser reward signals and navigating more complex action spaces with our
new method.

This study demonstrates that curriculum learning effectively enables the agent to navi-
gate complex and varied action spaces. Additionally, incorporating domain randomization
in the training process enhances the robustness of the resultant model. Moreover, the
introduced action space, which includes holding, skipping, and turning around, facilitates
greater efficiency in bus systems compared to strategies that solely rely on holding.

In order to implement our model in reality, it would require clear communication
systems between buses, central control centers, and passengers. Investment in real-time
tracking and communication infrastructure would be necessary to coordinate actions
like skipping stops or turning around without causing confusion or inconvenience to
passengers. Operators on board and in control centers would implement the model’s real-
time prescriptions by utilizing enhanced communication systems that provide dynamic
instructions based on the RL model’s outputs. Bus drivers would adjust their actions
according to the control center as well as inform the passengers via display screen and
broadcast, while control center operators would monitor system performance, oversee the
RL algorithms, and coordinate with drivers to ensure effective execution of the strategies.
We also hope to mitigate the impact of the disruption to passengers using our model. For
instance, an incentive mechanism could be designed to encourage passengers to cooperate,
or certain actions could be restricted to ensure passenger convenience, thereby improving
service reliability and passenger satisfaction.

In the future, we aim to explore the development of improved curricula using algo-
rithmic strategies tailored for bus operation scenarios. Another future goal is to assess the
effectiveness of domain-randomized training for sim-to-real transfer by field-testing the
algorithm in real-world, variable traffic conditions. For the potential field test, we will
collaborate with a transit agency to select a controlled route, implement tracking systems,
and collect passenger feedback to evaluate the effectiveness of the proposed rewards and
assess any unmodeled factors affecting bus performance. While theoretical, this outline
would guide gradual implementation and offer a structured approach to future testing.

We believe this work opens new avenues in the extensively researched field of trans-
portation operations, introducing innovative problem formulations and methods with
lower operational costs, leading to a smarter, more sustainable urban transit system.
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