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Abstract 

Background  Machine learning (ML) is increasingly used in population and public health to support epidemiological 
studies, surveillance, and evaluation. Our objective was to conduct a scoping review to identify studies that use ML 
in population health, with a focus on its use in non-communicable diseases (NCDs). We also examine potential algo‑
rithmic biases in model design, training, and implementation, as well as efforts to mitigate these biases.

Methods  We searched the peer-reviewed, indexed literature using Medline, Embase, Cochrane Central Register 
of Controlled Trials and Cochrane Database of Systematic Reviews, CINAHL, Scopus, ACM Digital Library, Inspec, 
Web of Science’s Science Citation Index, Social Sciences Citation Index, and the Emerging Sources Citation Index, 
up to March 2022.

Results  The search identified 27 310 studies and 65 were included. Study aims were separated into algorithm 
comparison (n = 13, 20%) or disease modelling for population-health-related outputs (n = 52, 80%). We extracted 
data on NCD type, data sources, technical approach, possible algorithmic bias, and jurisdiction. Type 2 diabetes 
was the most studied NCD. The most common use of ML was for risk modeling. Mitigating bias was not extensively 
addressed, with most methods focused on mitigating sex-related bias.

Conclusion  This review examines current applications of ML in NCDs, highlighting potential biases and strategies 
for mitigation. Future research should focus on communicable diseases and the transferability of ML models in low 
and middle-income settings. Our findings can guide the development of guidelines for the equitable use of ML 
to improve population health outcomes.
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Background
 Non-communicable diseases (NCDs), which include 
cardiovascular diseases, diabetes, cancers, and chronic 
respiratory diseases, are the leading cause of both bur-
den of disease and death, globally, with a disproportion-
ally higher rate of mortality in low- and middle-income 
countries (LMICs) [1, 2]. Population-level approaches 
of strengthening screening and detection are critical for 
identifying populations at high-risk of NCDs and inform-
ing early interventions [1]. One potential avenue for 
streamlining these interventions and lessening the bur-
den of NCDs on the global population, is through artifi-
cial intelligence (AI) [3]. 

The increasing global interest in AI, particularly 
machine learning (ML), stems from the availability of 
large datasets and ever-growing computational power 
[4]. With its ability to learn and adapt from experience 
without explicit programming, ML has become crucial 
in various fields, such as healthcare [5]. However, along-
side its remarkable potential, there are significant con-
cerns associated with the widespread adoption of ML, 
notably the potential for algorithmic bias. Algorithmic 
bias in the context of AI and health systems is defined 
as: “the instances when the application of an algorithm 
compounds existing inequities in socioeconomic status, 
race, ethnic background, religion, gender, disability or 
sexual orientation to amplify them and adversely impact 
inequities in health systems” [6]. These biases, rooted in 
historical and systemic inequities, persistently affect mar-
ginalized groups, which reinforce prejudices. Marginal-
ized groups, referring to individuals or communities who 
experience social, economic, or political disadvantages 
and discrimination, often bear the brunt of these ampli-
fied inequities in access to healthcare services and out-
comes [7]. Reinforcing prejudices in this context means 
that predictive models, when trained on biased data or 
making decisions that align with historical disparities, 
inadvertently magnify these inequities, leading to deeper 
disparities in healthcare access, diagnosis, and treatment 
along socioeconomic, racial, gender, and ethnic lines 
[8–11]. 

Such algorithmic biases can manifest differently across 
different types of ML. For example, in supervised learn-
ing, which uses labelled datasets to classify data or pre-
dict outcomes, biases can enter the model through 
incomplete training data or data that are not representa-
tive and lead to inaccurate predictions for diverse popula-
tions. In unsupervised learning, biases can take the form 
of social biases, which encompass a range of prejudicial 
attitudes rooted in societal factors such as race, gender, 
and socioeconomic status. These biases may inadvert-
ently emerge during algorithmic analysis of unlabelled 
data, potentially leading to unfair or discriminatory 

outcomes, highlighting the importance of addressing 
them to foster equitable ML practices [12–14]. 

Recently, ML has been acknowledged for improving 
clinical care, yet less attention has been paid to its appli-
cations in population and public health and the potential 
for biases to arise during model design and development. 
Our objective was to conduct a scoping review to (1) 
identify studies that employ ML to address NCDs within 
the context of population and public health, and (2) to 
assess any algorithmic bias reporting that may have been 
exhibited during the design, training, and implementa-
tion of ML models, and how model developers mitigated 
these biases. Examining ML’s role in NCD surveillance 
informs more effective NCD management and resource 
allocation, while also addressing algorithmic bias detec-
tion to mitigate structural and systemic causes of margin-
alization in NCD research [12–14]. 

Methods
This scoping review followed the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses Exten-
sion for Scoping Reviews (PRISMA-ScR) statement [15]. 
The protocol for this review was submitted to Open Sci-
ence Framework (available from osf.io/vkf24/) [16].

Databases
Due to the multidisciplinary nature of our area of inter-
est, we considered many information sources covering 
both ML and NCDs. We searched the peer-reviewed, 
indexed literature using the following databases: Med-
line (Ovid), Embase (Ovid), Cochrane Central Register of 
Controlled Trials and Cochrane Database of Systematic 
Reviews (Ovid), CINAHL (EBSCOhost), Scopus, ACM 
Digital Library, Inspec (Elsevier), and Web of Science’s 
Science Citation Index, Social Sciences Citation Index, 
and Emerging Sources Citation Index. All languages were 
included in the search. Commentaries, letters, editorials, 
conference proceedings were excluded. The databases 
were searched from 2000 to March 4–7, 2022 (inclusive). 
The range of publication dates was chosen to identify ML 
models that use the latest computing approaches and 
data.

Search strategy
A health information specialist (CZ) with Library Ser-
vices, Unity Health Toronto, carried out comprehensive 
searches using a combination of subject headings and 
keywords, adapted for each database, for the broad con-
cepts of AI and ML (e.g., artificial neural networks, deci-
sion trees, support vector machines) combined using the 
Boolean operator AND with the following five NCDs: 
cancers of the lung, trachea, and bronchus, ischemic 
heart disease, type 2 diabetes, chronic obstructive 
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pulmonary disease, Alzheimer’s disease, and other 
dementias. Lung, tracheal, and bronchial cancers were 
chosen specifically as they represent a significant pub-
lic health burden with high preventability, making them 
a priority area for exploring the applications of ML. We 
identified the aforementioned non-communicable dis-
eases (NCDs) as part of the five primary clusters repre-
senting the greatest burden of morbidity and mortality 
caused by NCDs: cancer, cardiovascular disease, diabe-
tes, chronic respiratory diseases, and neurological dis-
orders as specified by the NCD Alliance [17]. Prior to 
de-duplication, the search yielded 48 701 results. After 
de-duplication in EndNote, 27 310 references remained. 
All the search strategies as run are available in Additional 
file 1 and have also been posted publicly on the Open Sci-
ence Framework [18]. 

Eligibility criteria
All studies were required to meet the following eligibil-
ity criteria concerning the research focus, at both title/
abstract and full-text screening : (1) relevant to popula-
tion-level health and/or a public health approach; (2) per-
tain to at least one of the following conditions: cancer of 
the lung, trachea, and bronchus, ischemic heart disease, 
type 2 diabetes, chronic obstructive pulmonary disease, 
Alzheimer’s disease, and other dementias; (3) describe 
the use of at least one ML model to address a real-world 
population or public health challenge. There were no 
language restrictions for the studies reviewed. All study 
designs were included.

Studies were excluded if: (1) they were not relevant to 
population-level health and/or a public health approach 
(i.e., the study focused on individual-level, clinical 

applications of ML); (2) focus was not any of the condi-
tions mentioned in the inclusion criteria or studies that 
focused on complications and conditions associated with 
the condition itself; (3) no-real world data was used; (4) 
commentaries, letters, editorials, conference proceed-
ings, and dissertations (Table 1).

Screening process
DistillerSR was used to manage citations. We trained 
research assistants to review the citations and test the 
criteria on 50 randomly selected citations. The training 
was repeated with randomly selected blocks of 50 cita-
tions until inter-rater reliability was met (kappa > 0.9). 
Reviewers screened the studies via a two-phase process: 
the title/abstract phase, referred to as first-level screen-
ing, and the full-text phase, referred to as second-level 
screening. The reviewers utilized the eligibility criteria to 
evaluate and determine the inclusion/exclusion of stud-
ies, which were then recorded in DistillerSR.

During first-level screening, two independent review-
ers screened titles and abstracts of all imported studies 
to select studies for final review. If eligibility criteria were 
fully met, the studies were included. Studies that did not 
meet at least one inclusion criterion, as agreed upon by 
the reviewers, were excluded. Conflicts regarding the 
eligibility of certain studies were resolved through dis-
cussion and consensus among the reviewers. If consen-
sus could not be reached, the research associate (CC) 
decided on inclusion/exclusion. Second-level screening 
involved reviewing the full-text of all studies that passed 
the title and abstract screening. This process was per-
formed by a sole reviewer (SB), who excluded any studies 

Table 1  Inclusion and exclusion criteria for the study articles

Inclusion Criteria Exclusion Criteria

(1) Population-wide implications and/or a public health approach, which 
includes those pertaining to subsets of the general population at a cer‑
tain point in life-course (e.g., seniors, children).

(1) Did not have a population-wide implication and/or public 
health approach, this included studies that focused on a population 
that was defined by one or multiple diseases, studies that focused 
on domains outside of public health systems or conventional population 
systems, studies that focused on high-risk groups (e.g., smokers) or in a spe‑
cialised medical setting (e.g., hospitalized patients), or studies that focused 
on any subset of the population defined by socio-demographic character‑
istics other than age, such as ethnicity and sex.

(2) Pertained to at least one of the following conditions: cancer 
of the lung, trachea, and bronchus, ischemic heart disease, type 2 diabe‑
tes, chronic obstructive pulmonary disease, Alzheimer’s disease, and other 
dementias.

(2) Focus was not any of the conditions mentioned in the inclusion criteria 
or studies that focused on complications and conditions associated 
with the condition itself (e.g., diabetic retinopathy).

(3) Described the use of at least one ML model (e.g., artificial neural net‑
works, decision trees, support vector machines) to address a real-world 
population or public health challenge. There were no language restric‑
tions for the studies reviewed.

(3) No-real world data was used, including general discussions of ML, stud‑
ies that incorporated data from animal models or in-silico experiments, 
and proof-of-concept studies.

(4) Commentaries, letters, editorials, conference proceedings, and disserta‑
tions.
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that did not meet the same inclusion criteria as the first 
phase.

Data collection processing and synthesis
Four independent reviewers extracted data (AP, RR, SB, 
TV). An Excel data extraction form was developed based 
on the JBI Manual for Evidence Synthesis [19]. Two 
reviewers (SB, RR) pilot-tested this form on ten randomly 
selected studies. The four study team members indepen-
dently extracted data from all included studies; the data 
extraction was then vetted by one study team member 
(SB).

The following data were extracted: author(s), title, 
journal, year, ML application type(s), intended purpose 
of ML, study design, intervention (if applicable), results, 
jurisdiction, data sources, unit(s) of analysis, sample size, 
demographics, identification of any potential algorith-
mic bias in the ML model (biases related to gender, sex, 
ethnicity, socioeconomic status), LMIC transferability, 
bias mitigation strategies, NCDs targeted, target popula-
tion and setting, intended users, and impact reported by 
the author. We also noted if information was unavailable 
from an article or if any additional sources of algorith-
mic bias (e.g., age-related bias) were discussed. Narrative 
syntheses were performed on the extraction categories. 
The studies were summarized into a table outlining ML 
applications, ML application aims, jurisdictions, data 
sources, NCDs studied, considerations of biases and their 
mitigation (Table 2). The narrative synthesis and synthe-
sis of study characteristics (Table 3) are presented in the 
Results section.

Results
Study selection
Our initial search yielded 27 310 citations. Following 
title/abstract screening, 275 abstracts remained. Follow-
ing full-text screening by SB, 65 articles met eligibility 
criteria and were included in the final review (Fig. 1).

Publication and study characteristics
Table  2 presents a summary of the data extracted from 
each included study. Most of the studies (n = 59, 90.77%) 
were published between 2017 and 2023; five studies 
(n = 5, 7.69%) were published between 2011 and 2016; 
and one study (n = 1, 1.54%) was published between 2005 
and 2010 (Fig. 2).

Table 3 presents a synthesis of the characteristics of the 
included studies and the frequency with which each of 
the following subcategories was reported.

Application aims
Studies could be classified as either comparing ML 
models/approaches (n = 13, 20.00%) [33, 34, 37, 38, 

42–44, 52, 54, 59, 65, 77, 82] or using disease modelling 
for population-health related outputs (n = 52, 80.00%) 
[20–32, 35, 36, 39–41, 45–51, 53, 55–58, 60–64, 66–
76, 78–81, 83, 84]. The modelling of NCDs included 
measuring incidence in the population (n = 18, 34.62%) 
[24, 25, 28, 36, 39, 40, 47, 53, 60–63, 68–70, 79, 81, 
83], measuring risk in the population (n = 32, 61.54%) 
[20–23, 26, 27, 30–32, 35, 41, 45, 46, 48–51, 55, 57, 58, 
64, 66, 67, 71–76, 78, 80, 84] and evaluating the effec-
tiveness of an inervention on outcomes as defined by 
study authors (n = 2, 3.85%) [29, 56].

Data sources
Data sources used by the studies included longitudinal 
survey data (n = 27, 41.54%) [20, 27–31, 33, 34, 38–41, 
43–45, 49, 51, 54, 55, 57, 63, 64, 71, 74, 75, 78, 82], bio-
medical databases (n = 9, 13.85%) [21, 24, 26, 36, 50, 53, 
56, 59, 80], electronic medical records (n = 16, 24.62%) 
[22, 25, 32, 35, 37, 52, 58, 62, 65, 66, 70, 73, 77, 81, 83, 84], 
social media textual elements (n = 1, 1.54%) [23], admin-
istrative claims (n = 8, 12.31%) [47, 48, 60, 61, 67, 69, 72, 
79, 82], laboratory data (n = 1, 1.54%) [42], cellular data 
(n = 1, 1.54%) [76], search-engine queries (n = 1, 1.54%) 
[68], and wearable sensors (n = 1, 1.54%) [46] .

Non‑communicable diseases targeted
Almost 50% (n = 32, 49.23%) [27, 32–35, 37, 39, 43, 46, 47, 
50, 52, 55, 56, 58, 59, 61, 62, 64, 66, 67, 69, 71, 72, 74, 76–
78, 80, 82–84] of included studies focused on type 2 dia-
betes. Almost a quarter examined Alzheimer’s and other 
dementias (n = 14, 21.54%) [25, 28–31, 36, 40, 41, 44, 48, 
53, 60, 63, 75]. Around 30% of included studies focused 
on cardiovascular and respiratory diseases (n = 19, 
29.23%) [20–24, 26, 38, 42, 45, 49, 51, 54, 57, 65, 68, 70, 
73, 79, 81], spanning specifically ischemic heart disease 
(n = 10, 52.63%) [21, 23, 26, 38, 45, 54, 57, 65, 70, 73], 
chronic obstructive pulmonary disease (n = 4, 21.05%) 
[24, 51, 68, 81], and cancer of the lung, trachea, and bron-
chus (n = 5, 26.32%) [20, 22, 42, 49, 79].

Technical approaches
The approach most employed within the applications 
studied was supervised learning, aimed at resolving prob-
lems of, or completing tasks involving classification and/
or regression. Included in this paradigm are approaches 
involving constructs such as decision trees, ensembles 
(in turn including bagging, boosting, and random forest 
constructs), algorithms such as k-nearest neighbor, and 
systems such as artificial neural and naïve Bayesian net-
works. In terms of specific technologies, some algorithms 
as well as constructs employed within the studies consid-
ered were support vector machine (n = 21, 32.31%) [21, 
23, 28, 33, 35, 36, 42, 44, 48, 52, 59, 62, 63, 65, 72–78], 
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Table 3  Characteristics of included studies

Numerous ML approaches were used simultaneously in certain studies

More than one bias was considered in certain studies

*High-income economy (i.e., for 2023, with a gross national income (GNI) per capita of $13 205 or more)

Characteristic Frequency %

Years of Publication 2005–2010 1 1.54

2011–2016 5 7.69

2017–2023 59 90.77

Jurisdictions Bangladesh 1 1.54

Canada* 3 4.62

China 10 15.38

Finland* 1 1.54

France* 1 1.54

Germany* 1 1.54

Hungary* 1 1.54

India 4 6.15

Iran 3 4.62

Japan* 1 1.54

New Zealand* 1 1.54

Saudi Arabia* 1 1.54

South Korea* 8 12.31

Spain* 1 1.54

Sweden* 1 1.54

Taiwan* 2 3.08

United Kingdom* 7 10.77

United States* 13 20.00

Application Aims Modelling Risk in Population 32 61.54

Modelling Disease Incidence in Population 18 34.62

Evaluating Effectiveness of Intervention 2 3.85

Comparison of Models/Approaches 13 20.00

Data Sources Longitudinal Survey Data 27 41.54

Biomedical databases 9 13.85

Electronic medical records 16 24.62

Social media textual elements 1 1.54

Administrative claims 8 12.31

Laboratory data 1 1.54

Cellular data 1 1.54

Search engine queries 1 1.54

Non-communicable diseases Type 2 diabetes 32 49.23

Alzheimer’s & other dementias 14 21.54

Cardiovascular disease 10 15.38

Chronic obstructive pulmonary disease 4 6.15

Cancer or the lung, trachea, and bronchus 5 7.69

Major technical approaches Support vector Machine 21 32.31

Multilayer perceptron 6 9.23

Random forest 27 41.54

Bias considerations No consideration 49 75.38

Ethnicity-related bias 5 7.69

Sex-related bias 5 7.69

Age-related bias 2 3.85

Socioeconomic status 2 3.85

Not specified bias 5 7.69

Implementation of bias mitigation strategies Yes 7 10.76

No 58 89.23
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multilayer perceptron (n = 6, 9.23%) [35, 44, 48, 54, 59, 
77], random forest (n = 27, 41.54%) [21, 25, 27, 29, 31, 32, 
34–36, 40, 42, 44, 47, 48, 52, 53, 58, 68, 70, 72, 74–78, 82, 
83]. Numerous ML approachs were used simultaneously 
in certain studies.

Consideration of bias and its mitigation
Although all the reviewed articles recommended apply-
ing their ML models in their specific NCD contexts, less 
than one-third (n = 16, 24.62%) [21, 26, 27, 39, 49, 51, 53, 
58, 59, 64, 66, 72, 77–79, 82] addressed the possibility of 
algorithmic bias that may arise from the implementation 
of their ML models. Of those studies mentioning bias 
potential, only 7 (7 out of 16, 43.75%) [26, 27, 39, 51, 59, 
64, 78] outlined practical steps taken to mitigate bias. For 
the most part, those methods concerned mitigating sex-
related bias and affected model design.

Countries and other regional divisions represented
Areas from which samples were drawn included Aus-
tralia (n = 5, 7.69%) [22, 28, 57, 72, 82], Bangladesh (n = 1, 
1.54%) [35], Canada (n = 3, 4.62%) [20, 66, 81], China 
(n = 10, 15.38%) [40, 50, 51, 70, 73–75, 77, 78, 84], Finland 
(n = 1, 1.54%) [63], France (n = 1, 1.54%) [39], Germany 
(n = 1, 1.54%) [25], Hungary (n = 1, 1.54%) [64], India 
(n = 4, 6.15%) [27, 56, 62, 65], Iran (n = 3, 4.62%) [32, 33, 
37], Japan (n = 1, 1.54%) [58], New Zealand (n = 1, 1.54%) 
[26], Saudi Arabia (n = 1, 1.54%) [71], South Korea (n = 8, 
12.31) [29, 43–45, 48, 49, 55, 60], Spain (n = 1, 1.54%) 
[53], Sweden (n = 1, 1.54%) [30], Taiwan (n = 2, 3.08%) 
[69, 79], the United Kingdom (n = 7, 10.77%) [21, 31, 34, 
36, 46, 59, 80], and the United States (n = 13, 20.00%) [23, 
24, 38, 41, 42, 47, 52, 54, 61, 67, 68, 76, 83] .

Most studies used datasets drawn from areas defined 
by the World Bank as high-income economies (i.e. for 

Fig. 1  PRISMA-ScR flow diagram
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2023, those with a gross national income (GNI) per cap-
ita of $13 205 or more) (n= 15/19 total countries; 78.95%) 
[85]. The remainder originated from countries classified 
as lower-middle-income (i.e. those with a GNI per cap-
ita of $1 086 to $4 255 [85], here specifically Bangladesh, 
India, and Iran) or upper-middle income (i.e. those with 
a GNI per capita of $4 256 to $13 204, here China) [85]. 

Discussion
Summary
In summary, we identified 65 peer-reviewed studies pub-
lished since 2005 that applied ML methods to evaluate 
NCDs using a population health lens. Only 65 out of 27 
310 references were eligible for our study, illustrating the 
lack of studies that comment on ML applications in pop-
ulation and public health, specifically concerning NCDs. 
The initial large reference yield may have been due to 
the novelty of ML and, after the onset of COVID-19, the 
increasing interest into population and public health. 
Although the literature adequately addressed types of 
data sources, to truly engage with issues of health equity, 
more work must be done to address algorithmic biases in 
ML which leaves a gap for researchers to explore.

Study selection and methodological considerations
We employed a rigorous selection process to deter-
mine which research studies would be included in our 
analysis. This process involved applying specific criteria, 
which ultimately led to the exclusion of certain stud-
ies. The reasons behind the exclusion of these studies 
are comprehensively outlined in Table  1. Some stud-
ies were later eliminated from consideration for various 

reasons, despite initially meeting our inclusion criteria. 
Firstly, some studies’ samples were obtained in ways that 
were not representative of the broader population. For 
instance, while one study by Muro et al. (2021) geared at 
identifying predictors of COPD diagnosis using data from 
many of the same individuals’ annual medical check-up 
information across 21 years, these individuals were all 
employees of Hitachi, Ltd. [86], which could have sys-
tematically influenced some aspect of the data collection. 
Secondly, other studies’ objectives, upon full-text exami-
nation, differed from what we identified during our initial 
screening. For example, one study titled “Predicting Lung 
Cancer in the United States: A Multiple Model Examina-
tion of Public Health Factors” appeared initially to model 
disease incidence and specify risk factors but ultimately 
focused on which emitted compounds are most harmful, 
and how population health can be improved by initiatives 
geared at transitioning the USA from non-renewable to 
renewable energy sources [42]. Because this study did not 
ultimately overview participants’ data (i.e., no sample size 
was mentioned), it did not meet our inclusion criteria.

Future directions in NCD research and public health 
interventions
The diseases evaluated in this review are representative 
of the global burden of mortality from NCDs, emphasiz-
ing diabetes, ischemic heart disease, cancers, and chronic 
respiratory diseases [87]. Study-focus distribution was 
also indicative of respective disease-category burdens. 
For instance, 49.23% of studies centered on T2D. Mortal-
ity from diabetes is increasing at a higher rate than other 
NCDs [88]. While overall NCD age-standardized mor-
tality rates decreased by 22% globally between 2000 and 

Fig. 2  Distribution of included studies by year of publication
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2019 for those between the ages of 30 and 70, diabetes 
age-standardized mortality for the same group increased 
by 3% worldwide [88]. At the same time, there has been 
a notable 13% increase in mortality rates attributable to 
T2D in LMICs [88]. The burden of disease is of particular 
relevance to LMICs, where there is already a high burden 
of infectious diseases. However, this was not reflected 
in the ML applications examined across this review. In 
contrast to the substantial 48.48% of studies that pre-
dominantly focused on Type 2 Diabetes (T2D), a signifi-
cantly smaller fraction of studies (around 16%) tackled 
cardiovascular diseases (CVDs). Although T2D mortal-
ity is increasing where CVDs’ is decreasing, T2D is still 
directly responsible for fewer deaths: approximately two 
million relative to 17.9 million from CVDs [87]. As such, 
CVD-centered ML applications in health may be useful 
to prioritize, considering the vast spectrum of conditions 
which could be categorized as CVDs [89]. 

Advancements in ML approaches
From a technical standpoint, supervised learning was 
the most popular algorithm found in our search. Unsu-
pervised learning was also employed in some studies, 
such as in Lam et al. (2021) [46]. These approaches can 
uncover patterns in data and identify subpopulations, 
making them particularly useful for exploratory analysis. 
Specifically, Lam et al. demonstrated the potential of con-
tinuous or periodic self-monitoring for early detection 
and screening of disease progression among subpopula-
tions at risk of T2D, particularly those in a prediabetic 
state [46]. Principal component analysis (PCA), a popu-
lar dimensionality reduction technique, was used by 
Kim et al. (2021) [44] to predict not only future demen-
tia patients but also other types of diseases using data 
that include limited input variables, making it useful in 
places with limited access to resources. The findings sug-
gest that PCA can serve as a cost-effective tool for pre-
dicting future cases of dementia and other diseases, even 
with limited input variables [44]. Natural language pro-
cessing (NLP) and text mining techniques were used by 
Alexander et al. (2020), Zheng et al. (2016), and Baechle 
et al. (2017) to extract information from electronic health 
records to identify disease patterns and risk factors [22, 
24, 83]. The results of these studies demonstrate the 
potential of NLP and text mining techniques in extract-
ing population health data from large-scale electronic 
health records, which could contribute to developing 
more targeted public health interventions.

Risk modelling was the most popular application of 
ML. Ravaut et al. (2021) and Barbieri et al. (2022) estab-
lished a machine-learning model at a population level 
that accurately predicts the onset of T2D and CVD using 

administrative health data up to 5 years in advance [26, 
66]. The studies suggested that using ML and admin-
istrative health data can create effective population 
health planning tools to differentiate high-risk from low-
risk populations for diabetes. This can assist in direct-
ing investments and interventions toward preventing 
NCDs and could also aid in mitigating individual-level 
complications.

Transferability of ML applications to resource‑limited 
settings
There is a notable disparity in the frequency of ML appli-
cations between high-income and low- and middle-
income countries. Populations classified as “low-income” 
by the World Bank were not included in the studies con-
sidered within this review. The application of ML mod-
els in jurisdictions that lack robust health records may 
be limited as these approaches rely on large-scale data 
sets to learn patterns and make predictions [90]. How-
ever, one study led by researchers from the United States 
explored the use of several ML techniques as a lower-
cost alternative to prediabetes screening in resource-
limited settings [27]. The authors used survey data from 
an FFQ completed by individuals from a rural region of 
Hyderabad, India, to calculate each participant’s Global 
Diet Quality Score (GDQS) and predict their risk for 
T2D development. The global applicability of the GDQS 
combined with ML techniques served as a low-cost, 
easy-to-use method for identifying populations at high 
risk of developing diabetes, bypassing the need to screen 
all individuals using laboratory-based tests [27]. An 
example of a promising data source is social media tex-
tual elements, such as Facebook posts, to help predict the 
risk of an NCD. In a study by Andy et al., the discrimina-
tory ability of social media posts to predict the 10-year 
risk of CVD was compared to that of pooled cohort risk 
equations [23]. The study results present a novel outlook 
for utilizing new and emerging digital data sources to 
identify potential risk factors by analyzing information 
recorded over several time points [23]. Accessing the rap-
idly generated data on social media platforms (e.g., posts) 
from consenting individuals offers an opportunity to col-
lect and analyze unscripted information that can differ 
from the standard survey assessments.

Geographical representation and generalizability of data
Within countries, there was inadequate representation 
of different regions. For instance, one study collected 
a diverse set of demographic variables (i.e., participant 
diet and level of cultural participation) [74] but was lim-
ited in its generalizability to a broader Chinese popula-
tion because it focused on data collected solely from 
the Shanxi region. Similarly, another study featuring a 
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sample from China focused on Nanjing. While focusing 
on regional samples provides insight into specific sub-
populations’ health in China, it also highlights a shortfall 
in data on other subpopulations. This could be because 
population health data and public health initiatives 
appear to be provincially governed.

This trend appears to be applicable to several nations. 
Other studies focused on regions such as East Azerbai-
jan [37] and Mashhad, Iran [33], and eight cities in Tamil 
Nadu, India [65]. One study aimed at predicting partici-
pation in a cognitive health promotion program among 
older adults in Seoul, South Korea, who had not been 
diagnosed with MND. This study focused on correlating 
intent to participate with various demographic factors 
such as level of education, smoking status, and cohabi-
tation status [29]. The authors recognized the complex 
biopsychosocial nature of cognitive health and employed 
a methodology that equalized city-level representation, 
such as stratified clustered sampling of all 25 districts 
in Seoul [29]. Since most of South Korea’s population 
resides in urban regions [91], generalizability to the entire 
population may not be as significant.

Addressing algorithmic bias in ML
With respect to algorithmic bias, there was an overall 
lack of discussion on identifying, defining, and mitigat-
ing bias in population health settings. Chen et al. (2021) 
explored how the potential for ML to exacerbate existing 
health disparities, especially during model development, 
is a concern that requires more attention [92]. The article 
stresses the importance of health data in ML models and 
notes how collected data can be biased, with a larger por-
tion of the dataset leaning towards a specific biological 
sex or gender-identity, for example [92]. In this case, the 
model cannot be initialized due to imbalanced baseline 
representation [92]. A study by Barbieri et  al. attempts 
to mitigate sex-related bias to detect CVD by develop-
ing sex-specific ML models, emphasising the improved 
calibration and discrimination enabling 5-year risk pre-
diction [26]. Yet, it also emphasizes the need to further 
explore these models in countries with larger adminis-
trative health datasets [26]. However, even with larger 
datasets, algorithmic biases are still present [92]. People 
made vulnerable by social and economic policies, includ-
ing transgender and gender-nonconforming individuals, 
undocumented immigrants, and racialized populations 
are often underrepresented, misrepresented, or missing 
from collected health data [92]. Demographic data col-
lected in countries such as Canada and France, where 
race and ethnicity are not recorded in their nationalized 
health databases, makes race-based disparities extremely 
difficult to explore [92]. Ultimately, representative data 
collection is important in ensuring that datasets reflect 

the public population [92]. Moreover, the lack of report-
ing on bias in studies on population health must be 
addressed if ML is regarded as being able to revolutionize 
global healthcare systems [92, 93]. 

Strengths and limitations
This review is novel in examining how ML has been 
applied to population and public health by a range of 
applications such as prediction, surveillance, and evalu-
ating the effectiveness of interventions. Notably, we 
identified potential algorithmic biases and mitigation 
strategies. This review has several limitations. Firstly, 
a grey literature search was not conducted, thus possi-
bly introducing selection bias. Next, we did not perform 
duplicate screening during the full-text screening phase 
to adhere to project timelines and resources. Similarly, 
while data extraction was vetted by the lead author, it was 
not conducted in duplicate. This approach may intro-
duce the potential for bias, particularly in areas requiring 
subjective judgment, such as interpreting the inclusion 
criteria and determining which biases were discussed in 
the studies and how they were mitigated. Although our 
reviewer (SB) had extensive experience in the topic area, 
the lack of duplicate screening may affect the reliability of 
our findings. Additionally, although we did not place any 
restrictions on language, non-English articles were trans-
lated via Google Translate which is susceptible to some 
level of error. Finally, the terms population health and 
machine learning are not universally defined. Although 
we tried to encompass subtypes of machine learning in 
our search strategy, we may have excluded articles that 
could have relevance to the field. Along the same lines, 
increased recognition of the complexities of NCD-NCD 
interplays and, more broadly, the finer aspects of key-
word delineation will characterize future work. This 
includes the preferred terminology used by structurally 
disadvantaged communities to describe their experiences 
and the terminological conventions used to discuss ML 
applications in health in languages other than English. 
Finally, this review acknowledges the limitation of focus-
ing solely on lung, tracheal, and bronchial cancers. While 
this allowed for in-depth analysis within this specific 
scope, future research incorporating a wider range of 
cancer types is necessary to gain a more comprehensive 
understanding of ML applications in oncology.

Conclusion
This review provides an overview of current ML appli-
cations as well as the potential for bias and bias miti-
gation strategies. This was the first scoping review 
focused on ML applications for studying NCDs. LMIC 
transferability of such ML models was not discussed 
much, leaving a gap for researchers to investigate data 
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transparency methods, such as making codes and 
protocols open source. As the field of ML continues 
to evolve, there will be ample opportunity to capital-
ize upon the use of technology to improve population 
health (e.g., identifying high-risk subgroups); we hope 
our results will help to guide future research, such as 
the development of guidelines for the equitable use of 
machine learning.
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