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Abstract In this work, we address the question of how to
enhance signal-agnostic searches by leveraging multiple test-
ing strategies. Specifically, we consider hypothesis tests rely-
ing on machine learning, where model selection can intro-
duce a bias towards specific families of new physics signals.
Focusing on the New Physics Learning Machine, a method-
ology to perform a signal-agnostic likelihood-ratio test, we
explore a number of approaches to multiple testing, such
as combining p-values and aggregating test statistics. Our
findings show that it is beneficial to combine different tests,
characterised by distinct choices of hyperparameters, and that
performances comparable to the best available test are gener-
ally achieved, while also providing a more uniform response
to various types of anomalies. This study proposes a method-
ology that is valid beyond machine learning approaches and
could in principle be applied to a larger class model-agnostic
analyses based on hypothesis testing.

1 Introduction

After decades of experimental results that contributed to the
development and confirmation of the Standard Model of par-
ticle physics (SM), we are in a phase in which no compelling
theoretical prediction is guiding experimental searches. It is
therefore important to develop model-independent analyses
that are potentially sensitive to new physics effects not neces-
sarily predicted by any specific Beyond the Standard Model
(BSM) scenario. This is an extraordinary difficult task given
the complexity of collider data and the fact that new physics
can manifest itself as a deviation from the SM predictions in

a e-mail: marco.letizia@edu.unige.it (corresponding author)

infinitely many ways. Moreover, these effects are expected to
be extremely rare (poor signal-to-background ratio) and/or
hidden (uncommon observables).

Several proposals for partial model-independent analy-
ses have been applied to experimental data. Early instances,
such as those in [1–5], were based on simplifying assump-
tions about the way new physics effects could appear in the
measurements and, as a consequence, they were limited to a
selection of interesting final states. Crucially, these method-
ologies focused on theoretically motivated high-level fea-
tures to reduce dimensionality and resorted to traditional sta-
tistical techniques.

Recently, machine learning (ML) has been leveraged to
design flexible and multivariate data-driven tests, further
enhancing signal-agnostic strategies. Various approaches
have been proposed over the past few years (the reader can
find an exhaustive review in [6]), some of which have already
been applied to experimental data (see [7] and [8]). Despite
their potential, the adoption of these techniques introduces
new challenges, particularly in understanding how model
selection can impact sensitivity and bias the analysis towards
specific signal hypotheses.

Here, we address this topic considering as a case study
the model introduced in [9], where classifiers based on effi-
cient kernel methods [10] are used to design a multivari-
ate and unbinned likelihood-ratio test in which the alterna-
tive hypothesis is derived from data. This idea (dubbed The
New Physics Learning Machine, NPLM for brevity) was ini-
tially presented in [11] using neural networks. The approach
to hyperparameters selection proposed in [9] is based on
a mix of statistical and heuristic criteria that was shown
to work well empirically on a number of benchmarks (see
also [12,13]). However, it is not guaranteed that the result-
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ing model has optimal performance or a uniform response
over a wide range of possible deviations from the reference
expectation. It is then natural to ask whether it is possible to
explore more principled and controlled approaches to model
selection with the purpose of improving sensitivity as well
as robustness.

In this work, we propose to improve model-independent
searches by exploiting the idea of multiple testing [14,15].
Instead of selecting a single test based on a specific learn-
ing model, we propose to define multiple ones characterised
by different choices of hyperparameters, implicitly defining
different alternative hypotheses, and combine their outputs
into a single meta-analysis while accounting for the look-
elsewhere effect, commonly known as the multiple compari-
son problem in the statistic literature. Similar strategies have
been proposed in recent studies [16,17], in the context of a
class of kernel-based two-sample tests known as maximum
mean discrepancy. We compare different methods and show
that this framework results in a more uniform response over
new physics effects of different nature, and that the achieved
performance is comparable or close to the best model, which
is not known a priori in real use cases.1 Our findings sug-
gest that exploiting multiple testing can be a powerful tool
to enhance model-agnostic searches for new physics, beyond
the challenge of hypeparameter tuning in ML-based strate-
gies.

The paper is organised as follows. In Sect. 2 we recall
the underlying statistical framework and revise the NPLM
approach to hypothesis testing in its implementation based on
kernel methods, with a focus on the model selection pipeline.
In Sect. 3 we review the multiple testing problem, explore
some approaches to address it and introduce how to inte-
grate them in the NPLM methodology. Section 4 is dedicated
to numerical experiments. Concluding remarks are given in
Sect. 5.

2 The search for new physics as a signal-agnostic
hypothesis test

Let us consider a set D = {xi }ND
i=1 of realisations of a random

variable x ∈ X ⊆ Rd representing experimental measure-
ments, independent and identically distributed according to
an unknown true distribution ptrue(x). We call reference dis-
tribution, p(x |R), the distribution of the events as predicted
by a reference model R (in our case, the SM). Additionally, in
high energy collider physics, the number of collected events
ND is also a random variable, following a Poisson distribu-
tion characterised by a true expected value N (true). We name
N (R) the expected number of collected events as predicted

1 The code to reproduce our results can be found in https://github.com/
mletizia/multiple-testing-nplm.

by the reference model. Ideally, the analysis should also be
sensitive to discrepancies between these two values. This can
be formalised by introducing the quantity

n(x |·) = N (·)p(x |·), (1)

namely the probability density normalised to the associated
expected number of events for any given physical theory.
The goal of a signal-agnostic test is to determine whether
p(x |R) is a good description of the data without introducing
alternative models. In statistical terms, this can be framed
as a goodness-of-fit (GoF) test. However, the reference dis-
tribution is commonly not available in closed form. In this
work, we consider the situation in which a reference sam-
ple R = {xi }NR

i=1 can be obtained by simulations or with
measurements from a control region. The problem is then to
assess the goodness of the population-level null hypothesis

H0 : ntrue(x) = n(x |R) (2)

from finite data, by comparing D with R. A task of this kind
is commonly known in statistics as a two-sample test. In this
framework, the alternative hypothesis is simply the negation
of the null

H1 : ntrue(x) �= n(x |R). (3)

In order to have an accurate description of the reference dis-
tribution, we assume that NR � ND.

A two-sample hypothesis test requires to choose a test
statistic, namely a function

t : X ND × X NR → R (4)

that maps the measured data and the reference sample to
a measure of their compatibility defined as a real number
tobs = t (R,D). To establish the statistical significance of
the outcome of the test, a p-value is computed. This quantity
is the probability, under the null hypothesis, of observing
values that are at least as extreme as the measured ones

pobs = P(t ≥ tobs|H0). (5)

The observed p-value is then compared to a predefined
threshold α ∈ [0, 1], representing the highest acceptable rate
of false positives associated with the test, i.e. the probability
of rejecting the null hypothesis if true. A discovery is claimed
if pobs < α. These probabilities can be mapped to Z-scores
using the following expression

Z = �−1(1 − p), (6)

where �−1 is the quantile function of a standard Gaussian
distribution. Different tests are compared by evaluating their
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power, namely their rate of true positives at the critical value
tα

α = P(t > tα|H0), (7)

power = P(t ≥ tα|H1). (8)

Given α, the best test is the one maximising the power with
a false positive rate at most equal to α. In order to be able to
estimate the rate of true positive, the alternative hypothesis
H1 needs to be realised concretely. In this work, we consider
a number of scenarios from the HEP literature [11,13,18,
19]. However, when performing a two-sample test on real
measurements, the result of the analysis would be reported
as the observed p-value defined in Eq. (5).

2.1 The NPLM methodology

NPLM is an approach to signal-agnostic hypothesis testing
based on machine learning that aims at approximating the
maximum-likelihood-ratio test as defined by Neyman and
Pearson [20]. It is based on the idea of introducing a local
deformation of the reference distribution (as defined in Eq.
(1))

nw(x) = e fw(x)n(x |R), (9)

with F = { fw} a rich family of functions parametrised by
w. In [9] and in this work we consider kernel methods, for
which the function fw is expresses as the following weighted
sum

fw(x) =
N∑

i=1

wi kσ (x, xi ), (10)

with the parameters w to be selected from data and N =
NR + ND the total number of data points. Specifically, we
use a Gaussian kernel

kσ (x, x ′) = exp

(
−||x − x ′||2

2σ 2

)
, (11)

where σ is the kernel width, a hyperparameter. The result-
ing space of functions allows to approximate any continuous
function given enough data. This approach is powerful but
limited by large computational requirements. To solve this
problem we use Falkon [10], a modern solver for large-scale
kernel methods which replaces Eq. (10) with

fw(x) =
M∑

i=1

wi kσ (x, xi ), (12)

where {x̃1, ..., x̃M } are called Nyström centres and are sam-
pled uniformly at random from the input data, with M a

hyperparameter. The corresponding solution can be shown
to be with high probability as accurate as the exact one (see
[21] and references therein). In practice, the optimal param-
eters ŵ are learned from data with a supervised classifier
trained to separate R from D by minimising the following
empirical risk

1

N

∑

i

�(yi , fw(xi )) + λR( fw), (13)

based on a weighted logistic loss

�(y, fw(x)) = (1 − y)
N (R)

NR
log

(
1 + e fw(x)

)

+y log
(

1 + e− fw(x)
)

, (14)

with y = 0 if x ∈ R and y = 1 if x ∈ D. This loss can be
shown (see [9]) to have the correct target function

fŵ(x) ≈ f ∗(x) = arg min f E [�(y, f (x))] = log
ntrue(x)

n(x |R)
,

(15)

meaning that the desired function (in this case the ratio of the
data-generating densities) is recovered in the limit of infinite
data. The second term in Eq. (13) is a regularisation term

R( fw) =
∑

i j

wiw j kσ (xi , x j ). (16)

constraining the complexity of the model. The problem
defined in Eq. (13) is then solved by an approximate Newton
method, as discussed in detail in [10].

At the end of training, the model is evaluated in-sample
on the whole dataset with the following metric

tobs(D) = −2

[
N (R)

NR

∑

x∈R

(
e fŵ(x) − 1

)
−

∑

x∈D
fŵ(x)

]
,

(17)

which is derived from the extended likelihood-ratio (see
[9,11,22]). To simplify the notation, we omit the depen-
dence of Eq. (17) on the reference sample R and on the
learned parameters ŵ. This method allows to leverage the
Neyman–Pearson approach to hypothesis testing with a data
driven alternative hypothesis, without the need to specify
it a priori. The connection between goodness-of-fit tests
and the Neyman–Pearson construction at the core of NPLM
was discussed earlier in [23] and more recently in [13].
The latter contribution also include comparisons with other
standard metrics and methods commonly used in statis-
tics and machine learning, such as the binned χ2 test, the
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Kolmogorov–Smirnov test, the aurea under the ROC curve
and classifier two-sample tests [24].

2.1.1 Model selection

Falkon possesses three main hyperparameters: the number of
centres M , the kernel width σ and the regularisation param-
eter λ. These are tuned only on reference data to avoid biases
toward specific anomalous features that might be present in
the measurements D. Following [9,12], they are selected as
follows:

– The Gaussian width σ is selected as the 90th percentile
of the pairwise distance among reference-distributed data
points. Heuristics of this type are common for kernel
methods, see for instance [25].

– To achieve optimal statistical bounds and preserve per-
formance, the number of centres M must be at least be
of order

√
N , as discussed in [26]. Studies presented in

[9] suggest that values close to the number of data points
ND in the measurements work well but can be reduced
for a faster training.

– The regularisation parameter λ is kept as small as possible
while maintaining a stable training [26].

As a consequence of these criteria, we consider the kernel
width as the main hyperparameter that regulates the com-
plexity of the model and sets the typical scale of the problem.
Indeed, it is easy to show that if σ is small the model tends
to overfit while, if large, it behaves as a linear model.2 In
the context of two-sample testing, the specific choice of σ

has a crucial impact on the families of alternative hypotheses
that are effectively explored by the test, as we will discuss in
Sects. 3 and 4 (see also [16,17]).

2.1.2 Single test at fixed hyperparameters

Given a particular set of hyperparameters θ∗ = (M∗, σ ∗, λ∗),
a single test proceeds as follows. As a first step, the model
is trained on the reference sample R and the measure-
ments D, returning the value of the observed test statistic
tobs = tobs(D), as given by Eq. (17). Next, the distribution
of the test statistic under the null hypothesis p(t |H0) is esti-
mated empirically. There are different ways to do it. We con-
sider here the scenario in which the reference model can be
sampled at will via simulations. Therefore, we re-train the
NPLM model from scratch on the reference sample R and
multiple (N (H0)

toys ) reference-distributed samples D(R)
i , mim-

icking measurements in the absence of new physics. Each test
returns a value ti = t (D(R)

i ). The collection of test statistics

2 It is however worth highlighting that, in general, all three hyperpa-
rameters act as regularisers.

{ti }N
(H0)

toys
i=1 is used to empirically estimate the p-value as (see

[27])

p̂obs = 1

N (H0)
toys + 1

⎡

⎢⎣
N

(H0)

toys∑

i=1

1(ti − tobs) + 1

⎤

⎥⎦ , (18)

where 1(x) is the Heaviside step function, which is zero
when x < 0 and one otherwise. It is worth stressing that
the result of the test is implicitly conditioned on the selected
hyperparameters.

3 Multiple tests for robust detection

3.1 The multiple testing problem

In two-sample testing, one is interested in determining
whether the null hypothesis that two samples are drawn from
the same probability distribution can be rejected. The alterna-
tive hypothesis is the negation of the null and no assumption
is made about how the data-generating distributions might
differ. In practice, a specific test statistic has to be chosen to
formulate a concrete procedure and this will in general bias
the test towards specific hypotheses. For example, both the
Kolmogorov-Smirnov and the Anderson–Darling tests [28]
are viable options for a non-parametric test. However, the
latter is more sensitive to discrepancies in the tails of the
distributions. It is therefore logical to explore the possibil-
ity of conducting multiple tests to enhance the likelihood of
detection.

The problem of multiple testing, also known as the look-
elsewhere effect in the HEP literature (see [29–31]), arises in
this type of scenarios. Each individual test outputs a p-value.
Naively, it would be ideal to simply retain the test returning
the smallest p-value, associated with the highest detected
degree of discrepancy. However it is not correct to simply
compare the smallest p-value to the desired false positive
rate α. Indeed, it is crucial to take into account the fact that
we are (at least implicitly) testing different hypotheses simul-
taneously, resulting in an increased possibility of having at
least one false detection among the collection of considered
tests (see [32]). To address this problem, several methods to
combine tests into a single meta-test have been explored in
the literature. In common settings, all tests are designed to
be sensitive to a specific signal of interest, i.e. they all share
the same alternative hypothesis, and are applied to sets of
independent measurements. The reader can find in [33] an
overview of the most common approaches based on combin-
ing p-values, and theoretical arguments on their optimality
given a specific class of alternative hypothesis.
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Fig. 1 EXPO-1D – Corner plots showing correlations between the p-values obtained from different tests in the background-only hypothesis. The
Pearson’s correlation (ρ) is reported in the legend

In this work, we are interested in the case in which mul-
tiple tests are performed to explore different hypotheses (i.e.
different types of new physics signals) on the same set of
measurements, hence with a potentially high degree of cor-
relation. An example of this scenario can be found in [34], in
the context of common goodness-of-fit tests in one dimen-
sion. Here, we employ multiple testing strategies to reduce
the bias in the anomaly detection task caused by specific
hyperparameter choices in the machine learning model pow-
ering the NPLM test.

3.2 Designing multiple tests for NPLM

As elaborated at the end of 2.1.1, the choice of the kernel
width σ in Eq. (11) introduces a bias towards specific fam-
ilies of anomalous effects potentially present in the mea-
surements, with respect to the reference prediction (see also
Sect. 4.2.1 and Fig. 1). Following the previous discussion, it

would then be ideal to consider multiple NPLM tests defined
by different values of σ to explore various types of alternative
hypotheses on the same measurements.

We proceed by choosing a set of unique values 
 =
{σi }ni=1, defining the following set of tests

T = {t (σi )|σi ∈ 
}ni=1, (19)

while the other hyperparameters of the method, M and λ, are
kept fixed. In this regard, it is important to realise that values
of σ that are close will give rise to highly correlated tests,
while far apart values will result in less correlated tests.

Additionally, since the test considered here is based on a
learning model, it will be highly adaptive to the data, poten-
tially increasing correlation among tests. To ensure a more
uniform performance across different anomalous scenarios
and decrease correlation, few well-separated values of σ are
preferable. Following a standard practice in kernel methods
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(see for instance [25]) and similarly to the original proposal
presented in [9], we select them as percentiles of the distribu-
tion of the pairwise distance in a set of reference-distributed
data points, after proper feature rescaling. This provides an
estimate of the relevant scales in the problem. However, it
might be beneficial to also include larger values to consider
possible long-range effects. The number of tests n = |
| is
a free parameter of the algorithm. In choosing it, one should
keep in mind that performing an extensive number of tests is
computationally more demanding, although this cost can in
principle be amortised with adequate distributed computing
strategies. On the other hand, this could ultimately have a
negative impact on the sensitivity if, as n grows, the rate of
false positives increases faster than the rate of true positives.

3.3 Aggregation methods

We explore various options to combine tests based on the
existing literature, and discuss the benefits and disadvantages
of each of them given the design choices outlined in Sect. 3.2.
Specifically, we consider the following meta-test statistics:

min-p Introduced in [35], the meta-test statistic is defined
as the smallest individual p-value

pmin = − log min
σ∈


p(σ ). (20)

prod-p Following [36], the meta-test statistic is defined as
the log-scaled product of the individual p-values

pprod = −
∑

σ∈


log p(σ ). (21)

avg-p Similarly to [37], the individual p-values are aver-
aged as

pavg = −1

n

∑

σ∈


p(σ ). (22)

smax-t Inspired by [17], the test statistics are combined
directly via the following smooth maximum func-
tion

tsmax = T log
1

n

∑

σ∈


et
(σ )/T , (23)

where T ∈ R>0 plays the role of a temperature.
For T → 0 it corresponds to the maximum, while
for T → ∞ it reduces to the arithmetic mean (see
[38]). We fix T = 1, unless specified otherwise.

HB The Holm–Bonferroni method [39] is a standard
approach for correcting p-values to address the mul-
tiple comparison problem in statistics that is uni-

formly more powerful than the Bonferroni correc-
tion. It proceeds by first sorting the observed p-
values in decreasing order. Then, starting from the
largest one, each p-value is compared with an asso-
ciated adjusted threshold, according to the following
formula

p(σi ) ≤ α

n + 1 − i
, (24)

where the index i runs over the ordered set (lowest-
to-highest) of p-values {p(σ1) ≤ p(σ2) ≤ · · · ≤
p(σn)} and n is the total number of tests. The null
hypothesis is rejected as soon as one p-value satis-
fies the inequality.

Choosing the optimal method without prior knowledge on
the type of signal potentially in the measured data is generally
not a solvable problem for composite hypotheses. However,
the specificities of these tests can be used as a guide to isolate
the most promising options.

The avg-p method assigns uniform weights to all the tests.
This is generally a good choice if the tests are expected to
perform similarly. This is not necessarily the case for the
NPLM set of tests, since the choice of 
 is made such that
the overlap between families of alternatives is small.

The log-scaled product of p-values (prod-p) allows to
direct the combination focus toward the smallest p-values.
This can be a good choice if a subgroup of the tests per-
forms well relative to the others, as it allows to enhance their
contributions to the sum.

The minimum over p-values (min-p) is intuitively the best
solution if a specific test is expected to perform significantly
better than the others.

The typical values of the NPLM test statistic strongly
depend on the complexity of the model. In particular, for any
given set of data, t (σ1) > t (σ2) if σ1 < σ2, as also observed in
previous studies [9,11,18]. The result of combining tests via
smax-t is therefore equivalent to selecting the test statistic
with smallest value of σ . Therefore, we do not expect this
strongly biased strategy to work well in our study.

Estimating the level of correlation among NPLM tests is
thus crucial to identify the best aggregation method. A signal-
agnostic strategy to address this task is to inspect the pairwise
correlation under the null hypothesis, i.e. when detecting sta-
tistical fluctuations in background-only samples D(R)

i . We
will give practical examples within the scope of our numer-
ical experiments in Sect. 4. Finally, it is worth emphasiz-
ing how each of these aggregation methods, besides the HB
approach, does not require any explicit correction to the p-
values to account for the look-elsewhere effect. However, the
latter still manifest itself in the fact that while more agnostic
tests generally deliver a more uniform response to different
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alternative hypotheses, a loss in power can occur with respect
to tests that are fine tuned to specific scenarios.

4 Numerical results

4.1 Methodology

This section is dedicated to comparing the different
approaches to multiple testing outlined in Sect. 3.3. They
can be classified into three categories: combining p-values
(min-p, prodp, avg-p), aggregating test statistics (smax-t)
and adjusting p-values (HB). We utilize three benchmarks
from the high-energy physics literature on signal-agnostic
searches and anomaly detection [11,13,18,19] with minor
modifications. Each benchmark is defined by a reference
distribution, characterising the null hypothesis, and different
types of new physic signals, characterising different alterna-
tive hypotheses. When possible, we vary certain parameters
to alter the alternative, such as the width of a resonance or the
number of signal events, to explore more diverse scenarios
and increase the validity of our study.

For each benchmark and each value of the kernel width
σ ∈ 
, we proceed with the following steps:

Selection of α We set the false positive rate α or its corre-
sponding Z -scores, as defined in Eq. (6). Specifically, we
consider Zα = 3, the standard threshold in high-energy
physics for evidence of a signal, and Zα = 2.

Estimation of test distributions We estimate the distri-
bution of the NPLM test statistic under the null hypothe-
sis p(t (σ )|H0), as outlined in Sect. 2.1.2, and under each
alternative hypothesis p(t (σ )|H1). The empirical distri-

bution of the test is obtained repeating the test N
(H0/1)

toys
times on statistically independent samples that are drawn
from the true data-generating distributions whenever
available. Alternatively, a bootstrap-based approach is
employed, resampling with replacement from a large
dataset.

Calculation of smax-t The smax-t test statistic is com-
puted directly from the test statistic values using Eq. (23),
separately for the null and alternative hypotheses.

Computation of p-values For each toy sample drawn
from the null or alternative hypotheses, we compute the
p-value p(σ ) as defined in Eq. (18). When estimating the
null distribution, the test sample itself is excluded and
the empirical p-value is computed with respect to the
remaining N (H0)

toys − 1 samples.

Application of the HB method The output of the HB
method is computed directly from the p-values associ-

ated with each sample as in Eq. (24) using the predefined
threshold α.

Determination of critical values The threshold α is
translated into a critical value tα based on the N (H0)

toys
test statistic values under the null hypothesis. The criti-
cal value corresponds to the highest value at an empirical
quantile not exceeding 1−α. This conservative approach
ensures that the actual false positive rate is not larger than
α.

Evaluation ofmeta-test performanceThe performance
of meta-tests (min-p, prodp, avg-p, smax-t) is assessed
by computing their statistical power for each benchmark
and alternative hypothesis. Power, defined by Eq. (7), is
estimated empirically using:

p̂owerα = 1

N (H1)
toys

N
(H1)

toys∑

i=1

1(ti − tα). (25)

4.2 Datasets and hyperparameters

4.2.1 EXPO-1D

In this univariate benchmark (see also [9,11,13]), we con-
sider a reference model given by an energy spectrum that
decays exponentially, described by the following density

n(x |R) = N (R)e−x , (26)

where the expected number events in the reference hypoth-
esis is N (R) = 2000. The reference sample is composed
of NR = 100 N (R) events. We consider the following
parametrised alternative hypothesis

ntrue(x) = n(x |R) + N (S)
1√

2πσNP
exp

[
− (x − x̄2

NP)

2σ 2
NP

]
,

(27)

representing a Gaussian peak with mean x̄NP and standard
deviation σNP, on top of the reference background. In our
tests, we vary both parameters and the average number of
injected new physics events N (S) to establish the perfor-
mance of the method. We evaluated the null hypothesis
with N (H0)

toys = 4000 and each alternative hypothesis with

N (H1)
toys = 2000.

Hyperparameters Being an illustrative benchmark, we
select values for M and λ that result in faster training times
than those reported in [13]. We use M = 1000, λ = 10−6

and 
 = {0.01, 0.3, 0.7, 1.4, 4.5, 9}. The first five values
correspond to the 0.01, 0.25, 0.50, 0.75 and 0.99 quantiles;
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Table 1 EXPO 1D. P(Z > 3) – probability of observing Z ≥ 3 for different types of new physics signals, as represented in Eq. (27). The last
value of σ follows from the prescription from the original proposal [9]. Bold values highlight the best performances

N(S) 7 18 13 10 90
x̄NP 4 4 4 6.4 1.6
σNP 0.01 0.16 0.64 0.16 0.16

σ = 0.01 0.0028 ± 0.0008 0.0010 ± 0.0006 0.0005 ± 0.0004 0.0001 ± 0.0001 0.029 ± 0.004

σ = 0.3 0.012 ± 0.002 0.107 ± 0.007 0.008 ± 0.002 0.246 ± 0.009 0.65 ± 0.01

σ = 0.7 0.006 ± 0.001 0.123 ± 0.007 0.011 ± 0.002 0.36 ± 0.01 0.70 ± 0.01

σ = 1.4 0.004 ± 0.001 0.078 ± 0.006 0.012 ± 0.002 0.29 ± 0.01 0.54 ± 0.01

σ = 4.5 0.0023 ± 0.0007 0.020 ± 0.003 0.011 ± 0.002 0.098 ± 0.007 0.28 ± 0.01

σ = 9.0 0.0028 ± 0.0008 0.018 ± 0.003 0.012 ± 0.002 0.075 ± 0.006 0.24 ± 0.01

σ = 2.3 [9] 0.0023 ± 0.0007 0.044 ± 0.005 0.013 ± 0.002 0.028 ± 0.004 0.36 ± 0.01

Min-p 0.008 ± 0.001 0.103 ± 0.007 0.007 ± 0.002 0.32 ± 0.01 0.66 ± 0.01

Prod-p 0.005 ± 0.001 0.083 ± 0.006 0.012 ± 0.002 0.26 ± 0.01 0.65 ± 0.01

Avg-p 0.006 ± 0.001 0.049 ± 0.005 0.011 ± 0.002 0.068 ± 0.006 0.50 ± 0.01

smax-t 0.0028 ± 0.0008 0.0010 ± 0.0006 0.0005 ± 0.0004 0.0001 ± 0.0001 0.029 ± 0.004

HB 0.0020 ± 0.0007 0.0495 ± 0.0007 0.0035 ± 0.0013 0.231 ± 0.011 0.546 ± 0.009

the last value is chosen as twice the value of the 0.99 quan-
tile. Correlation among tests can be studied and estimated in
a signal-agnostic way by inspecting the pairwise correlations
under the null hypothesis, as depicted in Fig. 1. Here, the pan-
els closer to the diagonal show the correlation between tests
that are closer in the σ space. As anticipated in Sect. 3, the
correlation is higher for nearby tests.

4.2.2 MUMU-5D

This five dimensional dataset (introduced in [18]) is com-
posed of simulated LHC collision events producing two
opposite charged muons in the final state (pp → μ+μ−)
at a center-of-mass energy of 13 TeV. 3 The features are the
transverse momenta and pseudorapidities of the two muons,
and their relative azimuthal angle, i.e.,
x = [pT 1, pT 2, η1, η2,φ]. We consider two types of new
physics contributions: the first one is a new vector boson (Z ′)
for which we study different mass values (mZ ′ = 180, 200
and 600 GeV); the second one is a non-resonant signal
obtained by adding a four-fermion contact interaction to the
Standard Model Lagrangian for which the Wilson coefficient
cW determines the coupling strength. We fix N (R) = 2×104

expected events in the reference hypothesis and the size of the
reference sample is NR = 105. Also in this case, we vary
the number of expected signal events N (S). We evaluated
the null hypothesis with N (H0)

toys = 2000 and each alternative

hypothesis with N (H1)
toys = 1000.

Hyperparameters We selected M = 104, λ = 10−6 and

 = {0.31, 1.19, 1.79, 2.49, 4.23, 8.0}. The first five values

3 Data available at https://zenodo.org/record/4442665

correspond to the 0.01, 0.25, 0.50, 0.75 and 0.99 quantiles; the
last value is chosen as approximately twice the 0.99 quantile.
We evaluated the null hypothesis with N (H0)

toys = 2000 and

each alternative hypothesis with N (H1)
toys = 1000.

4.2.3 LHCO-6D

The LHC Olympic dataset is a widely utilised benchmark
for resonant anomaly detection proposed as a challenge by
[19]. The dataset, available on Zenodo [40], consists of LHC
collision events with two jets in the final state. The Standard
Model background consists of QCD events while the signal
is modelled as a resonant W ′ decaying into two massive par-
ticles X and Y , with X → qq and Y → qq. The W ′, X , and
Y masses are 3.5 TeV, 500 GeV and 100 GeV respectively.
Both constituents level and jet level information is provided
for each event. In this application we focus on six high level
observables describing the dijet system: the dijet invariant
mass, the mass of the leading jet, the difference between
the two jets masses, the angular separation between the two
jets, and the 2-subjettiness ratios for both jets (τ J1

2,1 and τ J2
2,1).

Events are required to have at least one R = 1.0, pseudra-
pidity |η| < 2.5, and transverse momentum pJ

T > 1.2 TeV.
Since most of the applications concerning this dataset rely
on a bump-hunt approach with sliding window on the dijet
invariant mass, we focus our test on one single mass win-
dow, corresponding to the signal region (3.1 ≤ mJ1,J2 ≤ 3.7
TeV). In this selection, the expected number of background
events is approximately N (R) = 121,000, on top of which
we inject an average of N (S) = 333 signal events. We eval-
uated the null hypothesis with N (H0)

toys = 2000 and each alter-

native hypothesis with N (H1)
toys = 2000.
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Table 2 EXPO 1D. P(Z > 2)

– Probability of observing
Z ≥ 2 for different types of new
physics signals, as represented
in Eq. (27). The last value of σ

follows from the prescription
from the original proposal [9].
Bold values highlight the best
performances

N(S) 7 18 13 10 90
x̄NP 4 4 4 6.4 1.6
σNP 0.01 0.16 0.64 0.16 0.16

σ = 0.01 0.039 ± 0.003 0.046 ± 0.005 0.023 ± 0.003 0.025 ± 0.003 0.25 ± 0.01

σ = 0.3 0.083 ± 0.004 0.35 ± 0.01 0.053 ± 0.005 0.49 ± 0.01 0.881 ± 0.008

σ = 0.7 0.072 ± 0.004 0.37 ± 0.01 0.076 ± 0.006 0.66 ± 0.01 0.913 ± 0.007

σ = 1.4 0.052 ± 0.003 0.28 ± 0.01 0.082 ± 0.006 0.59 ± 0.01 0.820 ± 0.009

σ = 4.5 0.037 ± 0.003 0.166 ± 0.008 0.080 ± 0.006 0.37 ± 0.01 0.63 ± 0.01

σ = 9.0 0.0304 ± 0.003 0.121 ± 0.007 0.074 ± 0.006 0.29 ± 0.01 0.58 ± 0.01

σ = 2.3 [9] 0.039 ± 0.003 0.207 ± 0.009 0.079 ± 0.006 0.48 ± 0.01 0.69 ± 0.01

min-p 0.063 ± 0.004 0.31 ± 0.01 0.066 ± 0.006 0.58 ± 0.01 0.877 ± 0.007

prod-p 0.065 ± 0.004 0.32 ± 0.01 0.085 ± 0.006 0.58 ± 0.01 0.897 ± 0.007

Avg-p 0.063 ± 0.004 0.230 ± 0.009 0.082 ± 0.006 0.34 ± 0.01 0.835 ± 0.009

smax-t 0.039 ± 0.003 0.046 ± 0.005 0.023 ± 0.003 0.025 ± 0.003 0.25 ± 0.01

HB 0.046 ± 0.003 0.25 ± 0.01 0.047 ± 0.005 0.52 ± 0.01 0.85 ± 0.01

Table 3 MUMU 5D –
P(Z > 3) for different types of
new physics signals. The last
value of σ follows from the
prescription from the original
proposal [9]

Test Z’ M = 180 GeV Z’ M = 300 GeV Z’ M = 600 GeV EFT
W = 0.02 GeV W = 15 GeV W = 30 GeV cw = 1.5 × 10−6

σ = 0.31 0.007 ± 0.003 0.004 ± 0.002 0.0010 ± 0.0008 0.0010 ± 0.0008

σ = 1.19 0.096 ± 0.009 0.10 ± 0.01 0.006 ± 0.002 0.017 ± 0.004

σ = 1.79 0.065 ± 0.008 0.11 ± 0.01 0.012 ± 0.003 0.026 ± 0.005

σ = 2.49 0.036 ± 0.006 0.11 ± 0.01 0.027 ± 0.005 0.053 ± 0.007

σ = 4.23 0.037 ± 0.006 0.13 ± 0.01 0.066 ± 0.008 0.13 ± 0.01

σ = 8.0 0.023 ± 0.004 0.068 ± 0.008 0.056 ± 0.007 0.22 ± 0.01

σ = 3.0 [9] 0.031 ± 0.005 0.13 ± 0.01 0.044 ± 0.006 0.092 ± 0.009

min-p 0.065 ± 0.008 0.16 ± 0.01 0.057 ± 0.007 0.23 ± 0.01

prod-p 0.089 ± 0.009 0.18 ± 0.01 0.028 ± 0.005 0.083 ± 0.009

Avg-p 0.14 ± 0.01 0.15 ± 0.01 0.035 ± 0.006 0.098 ± 0.009

smax-t 0.007 ± 0.003 0.004 ± 0.002 0.0010 ± 0.0008 0.0010 ± 0.0008

HB 0 ± 0 0 ± 0 0 ± 0 0 ± 0

Table 4 MUMU 5D –
P(Z > 2) for different types of
new physics signals. The last
value of σ follows from the
prescription from the original
proposal [9]

Test Z’ M = 180 GeV Z’ M = 300 GeV Z’ M = 600 GeV EFT
W = 0.02 GeV W = 15 GeV W = 30 GeV cw = 1.5 × 10−6

σ = 0.31 0.11 ± 0.01 0.042 ± 0.006 0.023 ± 0.005 0.036 ± 0.006

σ = 1.19 0.30 ± 0.01 0.35 ± 0.02 0.047 ± 0.007 0.11 ± 0.01

σ = 1.79 0.30 ± 0.01 0.41 ± 0.02 0.11 ± 0.01 0.16 ± 0.01

σ = 2.49 0.25 ± 0.01 0.42 ± 0.02 0.19 ± 0.01 0.25 ± 0.01

σ = 4.23 0.23 ± 0.01 0.41 ± 0.02 0.25 ± 0.01 0.32 ± 0.01

σ = 8.0 0.19 ± 0.01 0.31 ± 0.01 0.29 ± 0.01 0.52 ± 0.02

σ = 3.0 [9] 0.25 ± 0.02 0.42 ± 0.02 0.24 ± 0.02 0.30 ± 0.02

min-p 0.32 ± 0.01 0.47 ± 0.02 0.28 ± 0.01 0.53 ± 0.02

prod-p 0.38 ± 0.02 0.53 ± 0.02 0.23 ± 0.01 0.38 ± 0.02

Avg-p 0.37 ± 0.02 0.46 ± 0.02 0.18 ± 0.01 0.31 ± 0.01

smax-t 0.11 ± 0.01 0.042 ± 0.006 0.023 ± 0.005 0.036 ± 0.006

HB 0.255 ± 0.003 0.40 ± 0.01 0.22 ± 0.01 0.46 ± 0.02
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Table 5 LHCO-6D –
P(Z > 2). The last value of σ

follows from the prescription
from the original proposal [9]

Test N (S) = 333

σ = 1.2 0.28 ± 0.01

σ = 2.5 0.28 ± 0.01

σ = 3.2 0.29 ± 0.01

σ = 3.9 0.28 ± 0.01

σ = 6.1 0.219 ± 0.009

σ = 12.2 0.175 ± 0.009

σ = 4.6 [9] 0.28 ± 0.01

Min-p 0.36 ± 0.01

Prod-p 0.37 ± 0.01

Avg-p 0.37 ± 0.01

smax-t 0.28 ± 0.01

HB 0.29 ± 0.01

Hyperparameters We select M = 853, λ = 10−6 and

 = {1.2, 2.5, 3.2, 3.9, 5.1, 6.1, 12.2}. The first five values
correspond to the 0.01, 0.25, 0.50, 0.75 and 0.99 quantiles;
the last value is chosen as twice the 0.99 quantile.

4.3 Results

Tables 1, 2, 3, 4, 5 and 6 summarise the power of the various
meta-tests described in Sect. 3 for all the benchmarks in this
study. They report the probability of observing a Z -score
greater or equal to 3, in other words the chances of finding
evidence for the signal, and the probability of observing a
Z -score greater or equal to 2. In the upper part of the tables,
we show the sensitivity of the NPLM test for each individual
value in 
. In the middle part we show the performance of
the standard NPLM approach presented in [9]. In the bottom
part we report the performance of the various aggregation
strategies introduced in Sect. 3.3. All entries in the table are
endowed with uncertainties computed as the 68% Clopper-
Pearson [41] confidence interval.

The results obtained with single values of σ highlight
the dependency of the NPLM test outcome on the specific
choices of kernel width and signal benchmark. Narrow peaks,
like the one reported in the first columns of Tables 1 and 3,
are better detected by small values of σ , whereas large values
are preferable to detect broad peaks, like the one reported in
the third columns. We report in Figs. 2 and 3 examples of
the full power curve of each individual test, showing how
the sensitivity changes according to σ and follows different
trends depending on the signal.

Our studies show that it is beneficial to combine multi-
ple tests. With the exception of smax-t , that corresponds to
systematically selecting the test with the smallest width, the
other methods return powers that are comparable with or
larger than the original kernel-based NPLM proposal in [9]
and often competitive with the best overall test, which would

Table 6 LHCO-6D – P(Z > 3). The last value of σ follows from the
prescription from the original proposal [9]

Test N (S) = 333

σ = 1.2 0.0763 ± 0.006

σ = 2.5 0.103 ± 0.007

σ = 3.2 0.088 ± 0.006

σ = 3.9 0.048 ± 0.005

σ = 6.1 0.046 ± 0.005

σ = 12.2 0.054 ± 0.005

σ = 4.6 [9] 0.051 ± 0.005

Min-p 0.089 ± 0.006

Prod-p 0.092 ± 0.006

Avg-p 0.130 ± 0.007

smax-t 0.076 ± 0.006

HB 0.0045 ± 0.0015

be hard to identify a priori in real analyses. We observe that
min-p is the most balanced choice across multiple signal sce-
narios. Indeed, it is the one that gives the best results in most
cases and when it does not, its failure is not catastrophic.
The HB method can fail when the signal is hard to detect as
the corrected threshold in Eq. (24) can become too conser-
vative. The advantage of using min-p becomes particularly
evident when a specific individual test performs better. This
can be seen in the mZ ′ = 600 signal and, more strongly, in
the EFT case, where the best individual test is the one with
the largest σ with a clear trend. We also observe that prod-
p gives good results if a subset of tests performs similarly
well as in the third column of Table 1. The method avg-p is
instead performing well when the there is not a strong sep-
aration between the performance of the individual tests, as
shown in Tables 5 and 6. These results confirm the intuitions
discussed in Sect. 3.3.

5 Conclusions

In this paper we investigate the problem of model-selection in
ML-based solutions for signal-agnostic searches. By focus-
ing on the NPLM goodness-of-fit test, we show how hyper-
parameter tuning can introduce biases towards specific signal
hypotheses.

We propose to mitigate this effect by performing multiple
tests, characterised by different hyperparameters, on the same
set of experimental measurements, and combining them into
a meta-test in a way that is robust against the look-elsewhere
effect. By adopting this approach, we turn a potential limi-
tation of the kernel-based NPLM method into a feature that
allows for a more inclusive analysis. We show that this strat-
egy improves over the baseline proposal in [9] and we observe
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Fig. 2 EXPO-1D and MUMU-5D – Illustrative examples of power
curves for NPLM tests performed with different choices of σ . The upper
left and right hand panels show the power curves for a narrow signal and
a signal in the tail respectively in the univariate scenario. The bottom

panels illustrate the same effect for the five dimensional dataset in the
case of a Z ′ vector boson and a non-resonant signal. The grey-filled
area represents the region with no detection power

Fig. 3 LHCO-6D. Power curves for different choices of σ (shades of
green lines), compared with the one for the min-p aggregation (black
line). The grey-filled area represents the region with no detection power

a more uniform response across multiple signal scenarios.
In particular, we show that combining individual p-values
by selecting the smallest value (the min-p approach) is the
most effective method, especially for signals that are hard
to detect. This approach involves increased computational
requirements as multiple tests have to be performed in place
of a single one. However, this cost could be mitigated by an
appropriate parallelised strategy.

This work represents a further step towards building
unbiased machine learning tools for anomaly detection and
hypothesis testing in the context of collider experiments.
From this perspective, the strategy proposed in this study goes
beyond the NPLM approach and could be tested to combine
methods for new physics searches that have been designed
to be sensitive to specific families of signals, including those
that are not based on ML.

123



    4 Page 12 of 13 Eur. Phys. J. C             (2025) 85:4 

In conclusion, our study indicates that the impact of model
selection on sensitivity can be leveraged to enhance inter-
pretability, particularly for machine learning models with a
limited number of hyperparameters that can be connected to
physical priors. This is an interesting direction that we leave
for future developments.
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