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Figure 2 - Dedicated systems separate the gene expression of an engineered system from that of the cellular chassis. _ _ _
of both inducers is necessary for the expression of GFP.
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This means that the behavior of the engineered system should become decoupled from the behavior of the chassis.

It is becoming possible to engineer simple multi-component systems in living organisms
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the details of the host cell. Modularization can be achieved by making the interactions
between the engineered system and the host cell simpler and standardized.
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Description
x 0 BL21 is a common E. coli lab strain. It was lysogenized with a lambda lysogen to form BL21(DE3). This

| | | | strain contains a chromosomal copy of T7 RNAP under the control of a lacUV promoter. A chromosomal copy
0 100 200 300 400 500 of lacl represses the lacUV promoter. This strain was transformed with plasmid pCH1497-ASD1 to form

. . BL21(VM1.0). This plasmid encodes a dedicated rrn operon.
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Systems including BBa_R0052 have been shown to be toxic to BL21(VM1.0)
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