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Abstract

Wireless sensor networks have emerged as a promising tech-
nology for a wide range of important applications. A major
research challenge in this field is the distributed resource
allocation problem, which concerns how the limited resources
in a wireless sensor network should be allocated or scheduled
to minimize costs and maximize the network capability.

In this paper, we propose the Adaptive Distributed Re-
source Allocation (ADRA) scheme, an adaptive approach for
distributed resource allocation in wireless sensor networks.
Our scheme specifies relatively simple local actions to be
performed by individual sensor nodes in a wireless sensor
network for mode management. Each node adapts its oper-
ation over time in response to the status and feedback of its
neighboring nodes. Desirable global behavior results from the
local interactions between nodes.

We study the effectiveness of the ADRA scheme for a realis-
tic application scenario; namely, the sensor mode management
in an acoustic sensor network to track vehicle movement. We
evaluated the scheme via simulations, and also prototyped it
using the Crossbow MICA2 motes. Our simulation and hard-
ware implementation results indicate that the ADRA scheme
provides a good tradeoff between performance objectives such
as coverage area, power consumption, and network lifetime.

Index Terms: Wireless Sensor Networks, Distributed Re-
source Allocation.

1. INTRODUCTION

With the advancement in technologies such as MEMS sensor
devices, wireless networking, and low-power embedded pro-
cessing, the dream of deploying large-scale wireless sensor
networks [1], [2] is fast becoming a reality. A wide range
of important applications of wireless sensor networks include
environmental and wildlife habitat monitoring, healthcare
monitoring of patients, weather monitoring and forecasting,
military and homeland security surveillance, tracking of goods
and manufacturing processes, safety monitoring of physical
structures and construction cites, smart homes and offices, etc.

In the field of sensor networks, one of the research is-
sues that remain open is the problem of distributed resource
allocation - how to allocate, without a central coordinator,
limited sensing, processing or communication resources in the
sensor network to best monitor a dynamic constantly changing
environment.

The classical problem of allocating scarce resources to
minimize cost and maximize capability has been a well studied
one. The broad field of operational research can be described
as the study of optimal resource allocation. Scheduling prob-
lems, assignment problems, timetabling problems, bin-packing
problems, etc. are typical resource allocation problems that
have solutions coming from the fields of numerical optimiza-
tion, dynamic programming, combinatorial optimization, game
theory, etc.

Distributed real-time resource allocation is challenging be-
cause of several reasons. First, the number of decision makers
is large. Second, there is limited communication among the
decision makers. Thus, the information available for each de-
cision maker is incomplete. Third, the environment is dynam-
ically changing. Finally, the solution required is constrained
by time.

The distributed resource allocation problem has been tackled
using several approaches such as agent based negotiation
strategies, distributed constraint satisfaction (and optimization)
techniques, market based techniques, genetic algorithms, and
techniques based on chromatic sums and factor graphs. In
this paper, we propose the Adaptive Distributed Resource
Allocation (ADRA) scheme, which approaches the problem
from a different angle compared to that of existing work in
the literature.

The ADRA scheme specifies relatively simple local actions
to be performed by individual sensor nodes in a wireless
sensor network for mode management. Each node adapts its
operation over time in response to the status and feedback of
its neighboring nodes. Desirable global behavior results from
the local interaction between nodes. The ADRA scheme is
scalable since the coordination of the actions of neighboring
nodes requires little communication. It is adaptive and robust
with respect to the dynamic environment that the wireless
sensor network operates in.

To evaluate the effectiveness of the ADRA scheme, we
apply it to a realistic application scenario. The scheme is
used to perform sensor mode management in an acoustic
sensor network comprising of acoustic sensors to monitor
vehicle movement in an open terrain. We evaluated the scheme
via simulations, and also prototyped it using the Crossbow
MICA2 motes. Our simulation and hardware implementation
results indicate that the ADRA scheme reduces the power
consumption and improves the network lifetime, at the expense
of a small decrease in coverage area.



The rest of this paper is organized as follows. In Section
2, we review the related work and discuss our contributions
in this paper. Section 3 presents the problem statement and
the ADRA scheme. We describe the acoustic sensor network
application scenario in Section 4. Section 5 discusses the
algorithms that we have developed to implement the ADRA
scheme for the acoustic sensor network scenario. The method-
ology and results of our simulation study are presented and
discussed in Section 6. For our hardware implementation of
the ADRA scheme, we discuss the hardware platform, the
implementation issues, and the performance results in Section
7. Finally, we conclude this paper in Section 8.

2. RELATED WORK

Different aspects of the distributed resource allocation problem
have been investigated in the literature. In [3], resources are
allocated for applications in a distributed real-time system
by characterizing the specifications (e.g. hardware platform,
quality of service constraint) and then developing appropriate
heuristics to maximize the performance goal. An initial static
allocation is determined to maximize the allowable workload
increase prior to the dynamic resource reallocation process to
avoid QoS violation.

In [4], [5], [6], a systematic formulation to map the
distributed resource allocation problem into the distributed
constraint satisfaction problem (DCSP) was proposed. The
mapping is sufficiently generalized and reusable to tackle some
specific difficulties such as ambiguity and dynamism. The
problem is then solved by finding a solution to the DCSP,
which is actually the assignment of values for distributed
variables to satisfy all distributed constraints.

In market-based techniques [7], [8], [9], the distributed
system is modelled as the interaction between agents taking
economic roles. Resources are allocated through buying and
selling activities between agents. A seller seeks to maximize
its earnings whereas a buyer seeks to minimize its spending.
Resource requests and price notifications are communicated
among the agents. Certain heuristics or strategies are used
to control agent behaviors through the propagation of price
information.

Another interesting approach to the multi-agent resource
allocation problem is the auction and bidding techniques for
allocating resources to tasks, such as combinatorial auction
[10], [11] and coalition formation [12], [13].

Much of the work in the multi-agent systems community
has focused on multi-agent negotiation over the allocation of
resources. In [14], a ”contract net” framework for commu-
nication and control in a distributed system was proposed.
It functions as the common medium for contract negotiation,
which is an essential form of task distribution. The protocol for
the negotiation process should help determine the content of
exchanged messages, and it is not just a means of physical
communication. For example, [15] employs a finite state
machine as the heart of the negotiation protocol, while [16]
uses an underlying strategy of combinatorial auction.

Our work differs from the previous work and makes two
important contributions. First, our ADRA scheme is a scalable
and adaptive distributed resource allocation scheme for wire-
less sensor networks. It is scalable since it relies only on near-
neighbor communications between nodes in a sensor network.
It is adaptive since each node reacts to the environment (such
as the presence of targets) as well as the status and feedback of
its neighbors. These local node interactions produce desirable
global system behavior.

Second, unlike previous work which seldom consider re-
alistic application scenarios, we have actually applied the
ADRA scheme to the realistic application scenario of an
acoustic sensor network to monitor vehicle movement. In
most previous work, the performance evaluation is done via
analytical modeling or the simulation of a generic sensor
network. In our work, we also evaluated the ADRA scheme via
simulation. But more importantly, we implemented the scheme
on real sensor hardware and evaluated its effectiveness.

3. ADAPTIVE DISTRIBUTED RESOURCE ALLOCATION

SCHEME

A. Problem Statement

In the remainder of the paper, the basic entity in a sensor
network is a sensor node which has sensing, processing, and
communication capabilities. Given a set of stationary sensor
nodes{Si ∈ S, i = [1..n], |S| = n} and a set of actions (or
modes) that each sensor node is able to partake,{Aα ∈ A, α =
[1..m], |A| = m}, we letSi,α,t denote sensor nodei choosing
actionα at time t, andθi,α,t denote the corresponding utility
for Si,α,t.

Each sensor node can only choose one action at any partic-
ular time instance, thusSi,α,t = {0, 1} and

∑m
α=1 Si,α,t = 1.

The utility θi,α,t is a function of the following factors:

• Sensing coverage (or target detection),
• Target localization,
• Target error minimization.

The time,t, is measured in discrete units, wheret = [0..∞].
For a sensor nodeSi, the rate of energy consumption affects
its useful lifetime.θi,α,t = 0 when t > ti,limit; ti,limit being
the time whenSi is out of power and is no longer able to
sense, process, or communicate.

Sensor nodes have no prior information on the targets and
their movement. Sensor nodes can sense and detect targets, and
are able to obtain directional information of the targets from
sensor measurements. It takes two sensor nodes detecting a tar-
get to localize the target. Minimizing the error in localization
requires more than two sensor nodes detecting the target. The
sensor nodes can communicate with their neighbors. However,
from available communications and environment sensing, the
nodes would not have full knowledge of the environment.

In this paper, the problem is made simpler in the following
respects. Sensors are aware of their locations in their deploy-
ment area. They are assumed to be able to sense targets with a
predefined sensing error and with a predefined sensing radius.



Algorithm 1 Adaptive Distributed Resource Allocation
Phase 1: Initialization
Query neighbors’ mode status.
Get information about detected targets (if any).
Update local variables (e.g. utility, battery life).
Send information on detected targets to neighbors.

Phase 2: Processing
Receive information on targets from neighbors.
Fuse own detected target info with neighbors’ detected target info.
Compute change in utility based on information from neighbors.
Compute own plan regarding sensor mode.
Optional : compute plan for neighbors.
Send information on the plan to neighbors.

Phase 3: Decision
Receive information on neighbors’ plans.
Resolve own plan with neighbors’ influence.
Execute the plan to change own sensor mode.

B. The ADRA Scheme

We propose the Adaptive Distributed Resource Allocation
(ADRA) scheme as a heuristic to guide sensor network nodes
for efficient resource allocation. The ADRA scheme is shown
in Algorithm 1.

Under the ADRA scheme, a sensor node goes through many
operational cycles repetitively in its lifetime. An operational
cycle represents a complete and self-contained activity period
during which the node gathers sufficient information regarding
the targets from the ambient environment and its neighbors
for decision making. It determines the necessary actions to
adapt itself to the environment while aiming for maximal
performance of the whole network at the same time. Each
cycle is split into three phases. Within each phase, the ADRA
scheme specifies the necessary local actions to be performed
to achieve the goal of efficient mode management and sensor
resource allocation.

In Phase 1 (Initialization), each node initializes its internal
states and prepares itself by querying its neighbors’ mode
status and the environment information such as targets within
range. At the end of Phase 1, it shares the gathered preliminary
information with the neighbors. During Phase 2 (Processing),
each node collects all preliminary information from neighbors.
The information would be analyzed and combined with its own
information to yield its behavioral plan, i.e. the likely action to
be executed. Again, the plan will be shared among neighbors.
Phase 3 (Decision) is the stage to make a final decision. With
all necessary information and action plans from neighbors, a
node is able to determine how it should react to maximize
overall performance of the network.

In a nutshell, each node actively shares information, get
feedback and cooperates with its neighbors. Consequently, the
network is able to adapt its behavior over time to changes in
the ambient environment.

4. APPLICATION SCENARIO : M ODE M ANAGEMENT IN

ACOUSTIC SENSOR NETWORK

To study the effectiveness of the ADRA Scheme, we apply it to
the realistic application scenario of sensor mode management

in an acoustic sensor network. This network is deployed for the
purpose of monitoring vehicle movement in an open terrain.
In this network, the acoustic sensors are powered by batteries.
The scheme should provide a good tradeoff between the ability
to provide coverage for the area of interest and localize the
targets, and the battery power conservation to prolong the
network lifetime.

Each acoustic sensor node has two modes:A =
{on, standby}. When the acoustic sensor node is in the “on”
mode, it has full sensing, processing, and communications
functionalities. It will consume a certain amount of battery
life during every time unit. When the node is in the “standby”
mode, it stops sensing the environment and has limited com-
munications capabilities. The amount of battery life consumed
in this state is assumed to be ten times lesser than when the
node is in the “on” mode. A node in “standby” mode can
still communicate and exchange messages with its neighbors
according to the ADRA scheme, and switch to the “on” mode
to sense a target when necessary.

The acoustic sensor’s sensing capability is omnidirectional
in nature, i.e. it can detect a target’s acoustic signal from any
direction, with an error variance of one radian. A target is
considered to be detected when it is within range of the sensor.
Sensor measurements or target detections are in the form of
bearing (or angular) values of the target with respect to the
sensors monitoring it, which are combined to form a positional
fix of that target. The target bearing values and messages from
the ADRA scheme will be transmitted among neighboring
nodes.

5. ALGORITHMS

A. Stansfield Algorithm

The Stansfield algorithm [17] was originally developed for
combining bearings in radio direction finding. In this paper,
we adopt this algorithm to combine the bearing values of a
target detected by multiple sensor nodes to localize the target,
i.e. to obtain a positional fix of the target.

Figure 1 illustrates how the Stansfield algorithm works. The
figure shows 4 sensor nodes and a target. The constraint is that
each sensor nodej can only detect the bearingφj of the target,
but not the exact position and the distance to the target. This
constraint is applicable to a wide range of sensors. Each sensor
node might contain an array of rudimentary sensors internally
to provide direction finding capability. The Stansfield algo-
rithm outputs two metrics for target localization: a best point
estimate of the target coordinates, and an uncertainty ellipse
that bounds the likely location of the target.

The coordinates of the best point estimate is computed by
the following equation:[

xe

ye

]
=

 n∑
j=1

[
cos2 φj − sinφj cos φj

− sinφj cos φj sin2 φj

]−1

·
n∑

j=1

[
xj cos2 φj −yj sinφj cos φj

−xj sinφj cos φj yj sin2 φj

]



Fig. 1: Stansfield Algorithm

where
φj = the bearing of the target from thejth sensor node with
respect to true North;
xj = the x coordinate of thejth sensor node;
yj = the y coordinate of thejth sensor node;

The uncertainty ellipse represents the accuracy tolerance of
the algorithm. Its parameters are calculated from the following
geometric equations:

s =
n∑

j=1

(
cos φj sinφj

vjD2
j

)
,

t =
n∑

j=1

(
sin2 φj

vjD2
j

)
,

u =
n∑

j=1

(
cos2 φj

vjD2
j

)
,

where
vj = bearing variance corresponding to thejth sensor node;
Dj = estimated distance to the target from thejth sensor
node;
n = the number of bearing values associated.

Using the parameterss, t, andu, the length of the minor
axis of the ellipse,a, and the major axis,b, can be computed
as follows:

a2 = −2 log e(1− p)
t− s tanϕ

,

b2 = −2 log e(1− p)
u + s tanϕ

,

where e is the base of natural logarithm, andp is the
probability that the target will lie within the area bounded
by the ellipse. The angle,ϕ, of the ellipse is computed by:

tan 2ϕ = − 2s

t− u
.

Algorithm 2 Mode management in acoustic sensor network
1: main()
2: Constants : battPri, /* priority value for battery life conservation */
3: covPri, /* priority value for coverage */
4: locPri, /* priority value for localization */
5: threshold /* threshold value */
6: Variables : potential, /* potential for on or standby mode */
7: battLife, /* battery life of node */
8: battLifeDiff /* battery life difference between self and neighbor */
9: repeat

10: initAndSend();
11: rcvProcessSend();
12: rcvExe();
13: until termination of operation, or if node depletes its battery life

14: procedure initAndSend()
15: Query neighbors’ mode status.
16: Get own sensor measurement of target(s) bearing value(s).
17: Update own potential.
18: Send to neighbors : target(s) bearing value(s) and existing positional

fix(es), own mode (on or standby).

19: procedure rcvProcessSend()
20: Receive from neighbors : targets’ bearing values and positional fixes,

neighbors’ modes.
21: Reset potential.
22: Fuse and update current set of bearing value and positional fix with new

values from self and neighbors.
23: for each bearing value from self and neighborsdo
24: Increase own potential (by covPri).
25: end for
26: for each positional fix from self and neighborsdo
27: Increase own potential (by locPri).
28: end for
29: Send to neighbors : own potential and battLife.

30: procedure rcvExe()
31: Receive from neighbors : potential values and battLife info.
32: for each neighbordo
33: Compute battLifeDiff.
34: if (neighborbattLife > battLife) then
35: Decrease potential by (battPri * battLifeDiff)
36: else
37: Increase potential by (battPri * battLifeDiff)
38: end if
39: end for
40: if (potential< threshold)then
41: Switch to ”standby” mode
42: else
43: Switch to ”on” mode.
44: end if

B. Mode Management in Acoustic Sensor Network

Next, we discuss the algorithm to implement the ADRA
scheme for the acoustic sensor network scenario. The al-
gorithm for the scenario is shown in Algorithm 2. In the
first phase (initAndSend), each node obtains its own sensor
measurements of the targets’ bearing values, and updates its
own potential , which is the utility value used for deciding
the mode of the node (on or standby). Then, it sends the
information on the detected targets and its own mode to the
neighbors.

In the second phase (rcvProcessSend), each node receives
the bearing values and positional fixes of targets from its
neighbors. Then, it fuses its own and the neighbors’ bearing
values to obtain the new positional fixes of the targets. The
node updates its ownpotential , and sends itspotential



and battery life to the neighbors.
In the third phase (rcvExe), each node receives the potential

and battery life information from its neighbors. Based on the
difference in battery life between itself and its neighbors, the
node computes its newpotential value. After computing
its new potential , the node decides whether to be ”on”
or ”standby” by comparing thepotential with a threshold
value.

6. SIMULATION EVALUATION

We evaluate the ADRA scheme by simulating the acoustic
sensor network scenario with the Recursive Porous Agent
Simulation Toolkit (Repast 3.0) [18]. Repast is a powerful
open source agent-based simulation and modeling toolkit. It
is written in Java, and is originally developed at the University
of Chicago.

In the simulation setup, we model various system attributes
such as terrain size, number of sensor nodes, network topology,
number of targets and their movement tracks, sensor modes
and measurements, sensing and radio communication range.
The assumptions of our model have been discussed in Section
4. In addition, sensor nodes are aware of their locations in the
terrain and the neighbors in their communication range, and
they are time-synchronized.

A. Experimental Methodology

We simulate this scenario by modeling an array of sensor
nodes deployed in a grid-like manner with several rows and
columns. In this configuration, each internal node has four
neighbors (to its north, south, east, and west), each corner node
has two neighbors, and each edge node has three neighbors. A
sensor node’s sensing range and radio communication range
overlaps with that of its neighbors. The spacing between
two neighbors is the smallest distance such that a circle
representing the sensing coverage area of an internal node only
intersects with those coverage circles of its four neighbors and
no other nodes. By simple geometric rule, the node spacingd
is related to the sensing rangesr by the equation:d = sr

√
2.

We test two configurations of different network sizes to
investigate the scalability of the ADRA scheme: Net16 with
16 nodes (4×4 grid) and Net256 with 256 nodes (16×16 grid).
The sensing range is set as 150m, and so the spacing between
nodes isd = 150

√
2 = 212m. As each node needs to exchange

messages with its neighbors, the radio communication range
must be larger than the node spacingd. In the simulation, the
communication range is set to be 300m. The corresponding
dimensions of the grid areas for Net16 and Net256 are 1060m
× 1060m and 3604m× 3604m respectively. We also model
a number of targets (8 and 24 targets for Net16 and Net256
respectively) moving across the terrain.

We study three cases of the acoustic sensor network op-
eration. In the baseline (”WithoutAlgo”) case, the network
does not use the ADRA scheme, i.e. all the nodes would be
“on” until they exhaust their battery life. In the other two
cases ”WithAlgoWithoutTarget” and ”WithAlgoWithTarget”,
the network uses the ADRA scheme to control its operation.

Fig. 2: Screenshot of acoustic sensor network simulation with 16 nodes
(Net16).

There are no targets in the former case, while there are targets
to be tracked in the latter case.

Figure 2 shows a screenshot of the Net16 simulation. The
sensing coverage radius of an active node is delineated by a
circle. The absence of such a circle indicates that a node is in
“standby” mode. The figure also shows the target bearing lines
of sensors that have detected the targets, and the uncertainty
ellipses surrounding the targets.

Note that only nodes in the “on” mode are capable of
detecting targets. In other words, there is a risk that a target
is missed out if all the within-range nodes are sleeping in the
“standby” mode. We choose the network coverage area to be
a performance netric. The coverage area is defined to be the
largest area such that any inside point is covered by at least one
circle, without double counting the regions where the circles
overlap.

Each sensor node starts off with a predefined battery life.
As simulation time passes, each node consumes battery life at
a varying rate according to the changes in its modes, until its
battery life is depleted. We measure the coverage area of the
Net16 and Net256 networks against time. As more and more
nodes eventually use up their battery life, the trend is that the
sensor network coverage area declines with time. Hence we
define another performance metric, sensor network lifetime, as
the amount of time for the coverage area to drop to zero.

B. Results and Discussion

The coverage area against time for Net16 and Net256 are
shown in Figure 3 and 4 respectively. Also, the results for
the average coverage area and the network lifetime for each
network under the three cases are shown in Table 1.

The baseline (”WithoutAlgo”) case is simplest to under-
stand. As all the nodes are always “on”, the maximum possible
coverage area is provided until all nodes deplete their battery



Fig. 3: Coverage area versus time (Net16)

Fig. 4: Coverage area versus time (Net256).

life. In our simulation, we set the nodes’ initial battery life
such that the network lifetime will be 200s for both the Net16
and Net256 baseline cases.

In the ”WithAlgoWithoutTarget” case, the network con-
verges into two steady state configurations. In one configu-
ration, the nodes at alternating diagonals are “on” and the rest
are in “standby” mode. In the other configuration, the modes
of the “on” and “standby” nodes are reversed. Triggered by the
adaptive nature of the ADRA scheme, the network periodically
switches back-and-forth between these two configurations by
reversing the modes of the nodes. In this manner, the battery
life consumption of the nodes is balanced as much as possible
across the network as time progresses. Consequently, half of
the nodes are “on” at steady state, and the network life time in
this case is double that of the ”WithoutAlgo” case. However,
as not all the nodes are “on” at all times, the tradeoff is that
the coverage areas for the Net16 and Net256 networks have
dropped to 75.4% and 86.3% of the maximal coverage in the

TABLE 1: COVERAGE AREA AND NETWORK LIFETIME

Net16 cases Avg cov area (K m2) Network lifetime (s)
WithoutAlgo 821.8 200
WithAlgoWithoutTarget 619.3 401
WithAlgoWithTarget 630.9 332

Net256 cases Avg cov area (K m2) Network lifetime (s)

WithoutAlgo 11929.3 200
WithAlgoWithoutTarget 10295.0 401
WithAlgoWithTarget 8702.3 349

baseline case respectively.
The ”WithAlgoWithTarget” case shows the effect of target

tracking. The coverage area rises above the ”WithAlgoWith-
outTarget” case at the beginning since the ADRA scheme turns
on more nodes to help track the targets. With more nodes
turned on, the power consumption is higher too. Eventually,
the coverage area starts to drop as more and more nodes
deplete their battery life. Thus, the network lifetime in this case
is shorter than that of the ”WithAlgoWithoutTarget” case, but
still longer than the ”WithoutAlgo” case. In the Net16 network,
the network lifetime of ”WithAlgoWithTarget” is 166% that
of the ”WithoutAlgo” case, while its coverage area is 76.6%
that of the ”WithoutAlgo” case. The corresponding numbers
for the Net256 network are 174.5% and 72.9% respectively.

In general, the ADRA scheme provides a significant im-
provement in network lifetime at the cost of a small decrease
in the coverage area in both the Net16 and Net256 networks.
Our results also shows that the ADRA scheme is scalable, and
it can work well for larger networks too.

7. HARDWARE I MPLEMENTATION

A. Hardware Platform

To assess the actual performance of the ADRA scheme on real
sensor hardware, we prototyped the acoustic sensor network
scenario using the Crossbow MICA2 motes [19]. The motes
are programmed in nesC [20] under the TinyOS development
environment [21]. nesC is an extension of the C programming
language to embody the structuring concepts and execution
model of TinyOS. TinyOS is an event-driven operating system
designed for sensor network nodes that have limited resources.
It adopts a component-based architecture which enables rapid
development while minimizing code size. Developers are
allowed to build components that can be easily composed
into complete, concurrent systems and yet perform extensive
checking at compile time [21].

Our hardware testbed deploys 16 MICA2 motes in a 4x4
grid resembling that of the Net16 simulation in Figure 2. The
model of the MICA2 motes used in the testbed is the MPR410.
It incorporates a 7.3MHz Atmel ATmega128L microcontroller,
128KB of program flash memory, 4KB of EEPROM, and
512 KB of flash logger memory for data. It makes use of
the Chipcon CC1100 radio tranceiver which operates in the
433 MHz RF frequency band. We also use the MTS310CA
sensor boards, which can be plugged into the MICA2 motes.
Each sensor board contains a variety of sensors such as
light sensor, temperature sensor, accelerometer, magnetometer,
acoustic sensor (microphone), and sounder.

The total power consumption of a mote is an aggregation
of the power consumption of its components, including the
processor, radio, logger memory, and sensor board. Each
component can operate in different functional modes. For
example, the microcontroller can operate in full-operation
or sleeping modes; the radio can operate in receive (Rx)
or transmit (Tx) modes; the logger memory can operate in
read, write, or sleep modes; the sensor board can operate
in full-operation or sleeping modes. The power consumption



of each component is different when operating in different
modes. For example, the microcontroller draws around 8mA
during full operation but only 8µA during sleep mode [19].
Therefore, the overall power consumption is the sum of all
component-based consumptions, averaged by the duty cycles
of operational modes for each component. In our testbed, we
empirically measured the power consumption of a MICA2
mote as approximately 25mA in active mode and 11mA in
standby mode.

Our testbed only aims to prototype the acoustic sensor
network scenario to demonstrate a proof-of-concept hardware
implementation of the ADRA scheme. Hence we disable all
sensors except the acoustic sensor for power saving. The
acoustic sensor on the MTS310CA sensorboard is a raw micro-
phone capable only of providing the magnitude reading of an
acoustic signal. It is unable to provide the direction of arrival
of an acoustic signal. Thus, we simplify our implementation
of Algorithm 2 so that it performs only target detection but
not target localization. Fortunately, this simplification does
not have any big impact on demonstrating the efficacy of
the ADRA scheme because our key performance metrics of
coverage area and network lifetime are still relevant.

We use the beeping sound of the MTS310CA sounder (at
acoustic frequency 4KHz) to emulate the noise from a target.
In other words, a target is a MICA2/MTS310CA sensor node
with its sounder activated. The spacing between two motes is
related to the sensing range of the acoustic sensor, in a similar
manner as in the simulation. By empirical measurements, we
determine that a good spacing distance between the motes in
our testbed is 50cm, as it is a suitable distance for detecting
the MTS310CA sounder signal with a reasonable internal
threshold.

B. Implementation Issues

The MICA2’s network protocol is rudimentary and lacks
advanced internetworking capabilities such as time synchro-
nization between nodes and reliable transmission of data
packets. The packet transmissions at the Media Access Control
(MAC) layer and the physical layer (CSMA/CA based con-
tention avoidance scheme) have non-deterministic completion
time, and the latency can be as large as several hundreds of
milliseconds for a one-hop link [22]. There are no handshak-
ing mechanisms to guarantee that a send() command issued
by a sender would transfer the packet over to the receiver
successfully.

There are many proposals to handle time synchronization
such as the Flooding Time Synchronization Protocol (FTSP)
[22], the Reference Broadcast Synchronization (RBS) algo-
rithm [23], and the Timing-sync Protocol for Sensor networks
(TPSN) [24]. Unfortunately, these protocols introduce over-
head packet exchange that may interfere with our legitimate
radio packets. As our proof-of-concept prototype is of a rela-
tively small scale, we adopt a simple synchronization mecha-
nism of employing the base station to broadcast sync command
to all nodes. This simple mechanism is not scalable if the
network size is large and there are nodes outside the radio

range of the base station. However, the scalability issue can be
resolved by deploying multiple pre-synchronized base stations
or integrating our algorithm with advanced synchronization
protocols, for example by piggy-backing FTSP/RBS/TPSN
sync overhead on our legitimate packet exchange.

Packet loss is another challenging problem. When the
MICA2 testbed is sufficiently large, the contention for com-
mon wireless medium becomes severe. In practice, the MICA2
platform can experience up to 20%-40% packet loss. When
packet collision is detected, MICA2 motes back-off before
rebroadcasting, leading to an increase in the transmission
latency. The design of the MICA2 MAC and physical layer is
rudimentary and the task of mitigating packet loss/delay/jam
is a challenging issue.

To reduce the high amount of packet loss, we imple-
ment ”smart” transmission time-slot allocation. In the ADRA
scheme, a node only needs to exchange data messages with
its one-hop neighbors. Hence to avoid unnecessary wireless
medium contention, we reduce the transmission power of each
MICA2 mote so that it can only hear messages from its
one-hop neighbors. Then, we divide each operational cycle
into timeslots and within each timeslot, only one transmitter
per two-hop neighborhood is allowed to send radio packets.
Effectively, all nodes within one-hop neighborhood transmit
in different timeslots and the amount of collisions during
data exchange is reduced significantly. This approach is
quite similar to the Traffic-Adaptive Medium Access Protocol
(TRAMA) [25] and the Node Activation Multiple Access
Protocol (NAMA) [26].

However, we do not get perfect collision-free transmission
due to clock drift arising from imperfect synchronization.
Therefore we also perform selective packet retransmission at
the application layer to overcome the packet loss. Suppose a
node just changed from the “standby” mode to the “on” mode,
perhaps due to the high potential to detect a target. Then, it
is important for this node to notify its neighbors so that they
will also increase their potential and switch to the “on” mode
to detect the target. This means that it might be a good idea
to re-send the message during this situation, so that there is a
higher chance that the neighbors will get the message.

C. Results and Discussion

Figure 5 shows the coverage area against time for the three
cases measured on our 16-node testbed. The unit of time in the
x-axis is in terms of time cycles. A short time cycle duration
makes packet collision reduction and power management
difficult to control, whereas a long time cycle hampers the
sensibility of target detection. In our implementation, we tried
different durations and eventually decided to make each time
cycle last for 5 seconds to obtain acceptable performance. Each
MICA2 mote is powered by a pair of AA batteries which
can last for days. To expedite the data collection and analysis
process, we consider only the first 250 cycles as shown in
Figure 5.

As expected, the baseline (”WithoutAlgo”) case is very sim-
ple: all nodes are always “on” and hence the coverage area is



Fig. 5: Coverage area versus time for 16-node MICA2 testbed

constant at 9.1 m2 over time. In the ”WithAlgoWithoutTarget”
case, the coverage area dropped to an average value of 6.7
m2. When targets are introduced in the ”WithAlgoWithTarget”
case, more nodes are triggered to turn on and hence we get a
higher coverage area than the case of ”WithAlgoWithoutTar-
get”. In Figure 5, the graph representing ”WithAlgoWithTar-
get” is above that of the ”WithAlgoWithoutTarget” case during
the duration of 250 cycles. The average coverage area in the
presence of targets is 7.9 m2.

During the duration of 250 cycles, the coverage area of the
”WithAlgoWithoutTarget” case and the ”WithAlgoWithTar-
get” case are 73.6% and 86.8% that of the ”WithoutAlgo”
case respectively. However, if we were to run this experiment
for a longer time, the coverage area graphs for both these cases
should drop as more and more motes deplete their batteries,
just like in the simulation.

8. CONCLUSION

In this paper, we proposed the Adaptive Distributed Resource
Allocation (ADRA) scheme, which specifies the tight co-
ordination amongst neighboring nodes in a wireless sensor
network for action and decision making in mode management.
The ADRA scheme helps sensor networks adapt to changes
in the ambient environment dynamically and responsively.

We demonstrated the ADRA scheme’s efficacy by studying
a realistic application of an acoustic sensor network that adopts
the scheme for sensor mode management. The results from
our simulations and hardware prototype show that the ADRA
scheme can provide a good coverage area for target detection
and tracking, while achieving significant power saving and
prolonging the network lifetime.
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