Computer Science and Artificial Intelligence Laboratory
Technical Report

MIT-CSAIL-TR-2006-006 January 27,2006

A Consistency Management Layer for
Inter-Domain Routing
Nate Kushman, Dina Katabi, and John Wroclawski

massachusetts institute of technology, cambridge, ma 02139 usa — www.csail.mit.edu

CSAIL

A Consistency Management Layer for Inter-Domain
Routing

Nate Kushman
nkushman @mit.edu

Abstract- This paper proposes an isolation layer — a shim —
between inter-domain routing and packet forwarding. The job of
this layer is to coordinate between Autonomous Systems (AS’s)
on when and how to modify the forwarding state to ensure inter-
domain routing loops do not cause forwarding loops. The bene-
fits of a consistency layer are twofold. First, it prevents the cre-
ation of transient inter-domain forwarding loops and the result-
ing packet loss, high latency, and connection failures. Second,
by taking the burden of forwarding consistency off the inter-
domain routing protocol, it enables inter-domain routing proto-
cols with more complex convergence characteristics than BGP,
such as protocols that optimize route selection based on perfor-
mance. We offer two possible designs for the consistency layer.
We prove that both designs are free of forwarding loops and show
they are easy to deploy in the current Internet.

1 INTRODUCTION

Currently, inter-domain routing and forwarding are
tightly coupled: any new route change is immediately
pushed to the forwarding plane. As a result, when the
inter-domain routing protocol exhibits transient loops, the
forwarding state also suffers from the same loops, lead-
ing to packet loss, increased delay, and connection fail-
ures. In contrast, the circuit-based design of ATM and the
centralized-routing model of RCP [3, 4] decouple routing
from forwarding. While this paper also advocates this de-
coupling, it substantially differs from prior work in that
it targets Internet inter-domain routing, where the rout-
ing is packet-switched and the route computation process
is inherently distributed among the autonomous systems
(AS’s). It is particularly focused on mechanisms for ensur-
ing the consistency of external (inter-AS) routes.

We propose an architectural modification to inter-
domain routing. Our design inserts an isolation layer —
a shim — between the routing plane and the forwarding
plane. The consistency layer accepts routes from the con-
trol plane and pushes them to the data plane in a way
that protects the consistency of the forwarding state across
AS’s. The consistency layer runs on the border routers,
which communicate with border routers in other AS’s to
coordinate on when and how a new external (inter-AS)
route should be pushed to the forwarding plane.

The benefits of the constancy layer approach are
twofold:

(a) Addressing packet loss and delay caused by transient
loops in today’s Internet. Labovitz et al have shown that

Dina Katabi
dk@mit.edu

John Wroclawski
Jjtw@mit.edu

BGP, the Internet inter-domain routing protocol, suffers
from transient loops and long convergence times, leading
to significant packet loss and latency [9]. Hengartner et
al have confirmed these results, showing that 90% of the
packet losses in traces from the Spring network are caused
by transient BGP loops [7].

Prior solutions to these problems have focused on re-
ducing BGP convergence times [10, 2, 8]. While it is de-
sirable to reduce BGP convergence times, there are inher-
ent limits to how fast protocols can converge. These arise
from the details of the protocol, the size of the network,
and the dampening timers. A consistency layer directly ad-
dresses the data plane problems, i.e., packet loss and delay.
It allows the routing protocol to converge uninhibited, but
pushes only loop-free routes to the data plane during this
convergence process.

(b) Enabling innovations in inter-domain routing and traf-
fic engineering. The consistency layer takes the burden of
forwarding consistency off the inter-domain routing proto-
col. As such, it allows network providers to explore more
richer routing and traffic engineering options. We provide
two examples:

1. It is desirable for inter-domain routing to react to per-
formance metrics by moving away from routes with
bad performance. However, such an adaptive protocol
is likely to generate far more update messages, and as
a result exhibit more transient inconsistencies. The con-
sistency layer facilitates running such protocols in the
Internet as it ensures that transient inconsistencies in the
control plane will not cause forwarding loops.

2. Recent research has shown that a link state approach to

inter-domain routing can substantially reduce the num-
ber of routing updates [13]. Yet, in a link-state-like pro-
tocol, each AS independently builds a map of the inter-
domain topology and computes the best routes. In a net-
work as large and diverse as the Internet, different AS’s
may take different times to collect the map and may
have inconsistent views of the topology. Thus, if each
AS pushes its routes to the data plane independently of
other AS’s, many forwarding loops may occur. A con-
sistency layer can ease the deployment of such protocols
and encourage the community to experiment with bolder
inter-domain routing protocols.

The objective of this paper is to provide an initial dis-

cussion basis for the design of inter-domain forwarding
consistency protocols. For the sake of concreteness, we
focus on the problem of transient inter-domain loops and
present our solutions within the context of BGP. However,
the ideas underlying our consistency protocols are BGP-
independent and work with other inter-domain routing pro-
tocols.

In the paper we first outline the concept and explore
the design space of routing protocol consistency layers.
We then offer two concrete approaches to the design of
a consistency layer, and discuss the trade-offs inherent
with each choice. Our first proposal, which we call C-BGP
(Consistent-BGP), ensures that at any time each prefix has
a consistent (i.e., loop-free) forwarding state. It works by
enforcing an order on when the various AS’s push a new
route to the forwarding plane. In particular, it ensures that
before an AS moves away from a path, all AS’s forward-
ing traffic along that path have been informed of the route
change, and have reacted appropriately.

Our second consistency protocol is called BGP-LP
(BGP with Lingering Paths). A forwarding loop occurs
when packets start their journey on a particular route,
but get deflected downstream as they traverse an AS that
moved away from the old route. Thus, forwarding loops
can be avoided if each packet is delivered from sender to
receiver entirely along the old route, or entirely along the
new route. In contrast to C-BGP, BGP-LP allows an AS
to immediately forward traffic on a new route even before
other AS’s have had the chance to move away from the old
route. To do so, BGP-LP requires that after a route change,
the AS continues to support the old route for a limited pe-
riod. BGP-LP has a built-in mechanism to recognize when
a packet started its journey on an old route. Such a packet
is forwarded along the route it has started on.

We have evaluated C-BGP and BGP-LP using analyt-
ical methods. We have proven they ensure the forwarding
plane is loop-free, while allowing BGP route updates to
progress without deadlocks. The protocols are also fairly
easy to implement and deploy in the current Internet. Our
future work will focus on more clearly defining the ar-
chitectural concept of the consistency layer, evaluating C-
BGP and BGP-LP benefits using the current AS topology
and logs of BGP updates, and exploring alternative de-
signs and functional capabilities for consistency layer im-
plementations.

2 EXPLORING THE DESIGN SPACE

The proposal of a consistency layer raises a few impor-
tant questions. This section attempts to address some of
them.

(a) Is transient inconsistency the exception or the norm
for inter-domain routing? At its highest level our work is
motivated by a single but sweeping change in perspective.
Virtually all past routing work has assumed that conver-
gence is the goal to be achieved, and that transient incon-

sistency is an unfortunate reality to reduce as much as pos-
sible. Our work begins the exploration of a different point
of view. Fundamentally, we assume that in a sufficiently
large network some part of the core routing computation
is always in a transient state, and begin to explore ways to
accommodate this fact — to treat transient inconsistency as
the norm, not as an exceptional case.

(b) Should a consistency layer eliminate all transient
loops? A consistency layer should eliminate transient
loops for which the benefit of elimination is greater than
the cost. We distinguish two cases. The first case occurs
when an AS is switching between two paths that can both
deliver packets. Here, avoiding the forwarding loop is quite
desirable because the trade-off is enduring a sub-optimal
route for a short period, vs. the elimination of transient
loop packet-loss. We believe that this is the common case
in the current Internet where BGP’s path exploration of-
ten explores many available paths before settling on the
final path, and where BGP is customarily used for traffic
engineering [5, 11]. Additionally, as we consider the state
of inter-domain routing in the future, it’s clear that more
reactive Traffic Engineering (TE) protocols and any nego-
tiation based protocols will only cause additional updates
between available routes. Lastly, it’s worth noting that even
if a particular set of BGP updates is caused by a link going
down, most of the route changes can still be between paths
that are physically able to route packets. In particular, a
down link can cause an AS to move to using a different
path, thus making available a new path that was not avail-
able before, and setting off a series of updates to move
from one working path to a preferred one.

The second case occurs when an AS is switching away
from a path that can no longer physically route packets.
Here, the trade-off is less clear. The attempt at eliminating
forwarding loops, may result in a period with no reach-
ability. In this case we believe that the consistency layer
should forego consistency to ensure that packets can be
routed to an available path as quickly as possible. We note
that past work has shown that through the use of root cause
notification, this initial convergence period can be greatly
reduced [10].

(c) Isn’t it better just to reduce convergence time? Re-
ducing convergence time can help reduce transient rout-
ing loops, and is quite desirable. But relying solely on so-
lutions that reduce congestion time is problematic in two
important ways. First, there is a limit to how far the con-
vergence time can be reduced at the inter-domain level
while still allowing AS’s full control over their route se-
lection, and without greatly increasing the communication
overhead of the protocol. It has yet to be shown that tran-
sient loops at the inter-domain level can be reduced to a
negligible rate while leaving AS’s with an acceptable level
of autonomy. Second, the requirement of fast convergence
also greatly restricts the directions that inter-domain rout-
ing can be taken, significantly limiting innovation. In par-

ticular, it limits our ability to adapt inter-domain routing
to performance metrics, as such adaptations will increase
the update rate and the amount of transient inconsistency.
Additionally, protocols such as those proposed from the
game theory community to route traffic based on price [1,
6] may take much longer to converge than BGP, and cannot
be considered for this reason.

(d) Are forwarding loops/instabilities an important
problem? By injecting BGP updates into the network,
Labovitz et al [9] have shown that even when no link has
gone down, routing updates can cause up to 30% packet-
loss for 2 minutes or more after a routing change. Also,
two studies of packet traces from Sprint border routers
have shown that up to 4% of the packets in such a trace
are a part of a routing loop, and that greater than 90% of
these routing loops are transient [12, 7]. Additionally, they
found that in some traces up to 90% of the total packet-loss
was due to congestion caused by routing loops, and that
the load from these loops impacted the queuing delays of
packets traversing the same router.

To confirm these results, and to directly compare the
effect of routing updates on transient routing loops, we
performed a small study of our own. Similar to Labovitz’s
study, we looked at packet loss rates near routing up-
dates. However we also measured the rate of packet-loss
specifically attributable to forwarding loops, by listening
forICMP TTL Exceeded messages. We measured these
two packet-loss rates by sending packets every 30 sec-
onds to the first (non “.0”) IP address in every CIDR block
(IP block) in the BGP routing table. To remove locations
where the effect of BGP updates would be masked by con-
gestion based packet-loss, we looked only at destinations
with less than 10% packet-loss.

Fig. 1 plots the fractions of packet loss and TTL-
Exceeded packet loss as a function of their time-distance
from the closest BGP update for the same prefix. The fig-
ure shows high correlation between the occurrence of an
update and a packet loss. In particular, near BGP updates
(less than 10s from an update), one quarter of the packets
are lost, and 10% of the packets are dropped particularly
because they looped too many times. One should note that
our results are inherently an underestimate of the impact
of routing loops on packet loss because many routers do
notsend TTL Exceeded messages, and we have no way
to measure the impact of the congestion created by the for-
warding loop on non-TTL-Exceeded losses. Nonetheless,
our results are consistent with past results, and confirm that
forwarding loops have a significant negative impact on per-
formance.

(e) Don’t we also need to worry about intra-domain
consistency? In this paper, we do not directly address
intra-domain consistency. Current IGP protocols may ex-
hibit transient loops but the scale and duration of such
loops are much less than BGP loops [12]. Although a
detailed study of intra-domain consistency is beyond the

08 Total Packet Loss
0.25 TTL Exceeded Packet Loss - - - -

0.2
0.15
0.1

0.05

Fraction of packets lost

0 20 40 60 80 100 120 140 160 180 200
Time from the closest update (seconds)

Figure 1—Fraction of lost packets and TTL-Exceeded losses as a
function of the time between the occurrence of the loss and the closest
BGP update

scope of this paper, our ideas, particularly those in §3.1,
apply to any graph model of the network and thus should
be applicable to IGP routing. Adding iBGP to the picture
makes the problem more subtle and is left for future work.
Approaches like RCP [3] may create the need for a consis-
tency layer for intra-domain routing. Extensions of C-BGP
to that environment should be plausible.

3 A CONSISTENCY MANAGEMENT LAYER

The consistency layer is a distributed protocol that runs
on the border routers. It can be thought of as taking data
plane update requests from the routing protocol, and then
performing these updates in a way that ensures packets are
always forwarded along a loop-free path to their destina-
tion AS. As discussed in section §2, we make the design
decision to forgo consistency guarantees when its current
route can no longer deliver packets (is physically unavail-
able).

In order to keep the consistency layer as lightweight as
possible and reduce its communication overhead, we pig-
gyback consistency messages on the BGP updates. Though
this may virtually blur the distinction between the rout-
ing protocol and the consistency layer, it allows us to con-
cretely describe the consistency protocols, analyze them,
and show that they are easy to deploy.

We present two possible designs for the consistency
layer. These protocols target one type of routing inconsis-
tency: data plane forwarding loops. It is future research
to extend these to other forms of routing inconsistencies.
In the rest of this section, we describe these algorithms
in detail, show they prevent forwarding loops and do not
deadlock, and discuss the resulting trade-offs.

3.1 Consistent-BGP
Our first approach is called Consistent-BGP or C-BGP.

3.1.1 Intuition

Transient routing loops can occur when an AS pushes a
route change to the data plane, but other AS’s, unaware yet
of the move, try to send packets on the old route. C-BGP
works by enforcing an order on when the various AS’s
push a new route to the forwarding plane. It ensures that
before an AS moves away from a path, all AS’s forward-
ing traffic along that path have been informed of the route
change, and have reacted appropriately.

C-BGP has three types of messages: update mes-
sages, acknowledgement messages, and timeout messages.
It continues to generate and send update messages exactly
as BGP does. Syntactically these messages are exactly the
same as BGP updates, except for the addition of a unique
identifier to each message and the addition of a forced bit
that we will explain below. However, because these mes-
sages act as announcements before an update has hap-
pened, their meaning differs slightly. Additionally, at the
communication level, the only difference between BGP
and C-BGP is that C-BGP sends acknowledgment mes-
sages to each update and timeout messages if acknowl-
edgements take too long to arrive. Once an AS can ensure
that all AS’s using a path through it to get to the destina-
tion have both heard the update and appropriately reacted
to it, it performs the update and sends a small acknowledg-
ment message containing only the unique identifier of the
update it is acknowledging. If acknowledgements do not
arrive in a timely manner, then the AS performs the update
anyway, and sends a timeout message indicating that the
update has already been performed.

Thus, with C-BGP, the control plane convergence hap-
pens exactly as it does today, C-BGP does not slow down
this convergence process at all. Additionally, the data plane
will converge within the time it takes the control plane to
converge, plus the time it takes to process and send ac-
knowledgement messages on O(d) machines, if d is the
diameter of the network. This additional delay is similar to
the time that it currently takes BGP withdrawal messages
to reach the entire network.

3.1.2 Algorithm Description

We explain C-BGP at a high-level. The reader can find
the protocol details and analysis in the appendix. For sim-
plicity, the entire discussion is within the context of a sin-
gle CIDR block (a single prefix). We distinguish between
two cases.

Case 1: The current route is still available. When an AS
decides to move away from the current path, it sends an
update with the new path to the appropriate neighboring
AS’s (the neighbors to whom the policy allows exporting
paths). The AS declares the routing update as pending and
waits to receive acknowledgements from all of its neigh-
bors. An AS that receives a routing update from a neighbor
checks whether it is currently using that neighbor to send
traffic to the updated prefix. If not, the recipient AS im-
mediately acknowledges the update message, and updates
its own routes according to BGP rules. However, if the AS
is using the neighbor to reach the prefix then it needs to
inform its own upstream AS’s of the route change before
it can acknowledge the update. First the AS decides how
to change its own route in reaction to this update. Then,
it generates its own update message, broadcasts it to its
neighbors, and waits for the acknowledgements. Once an
AS receives all the acknowledgements for a pending up-

date, it can push the new route to the forwarding plane and
acknowledge any downstream AS’s.

The above description ignores an important complica-
tion: what happens if while waiting for an acknowledge-
ment, the AS receives a new update for the same prefix?
Here we emphasize the fact that BGP update messages
will be sent in C-BGP, exactly as they are with BGP, i.e.,
according to the BGP route selection algorithm. However,
the BGP decision algorithm runs as if all pending updates
have already been committed. Thus, when an update is re-
ceived, the normal BGP algorithm is run to see if an up-
date should be performed in response, and if so, the update
is put into a pending state, and the AS sends new update
messages to its appropriate neighbors. This leaves only the
question of when the acknowledgements are sent and the
data plane is actually updated. In order to avoid deadlock
and ensure that an update does not get starved, acknowl-
edgements for pending updates are sent as soon as all of the
up stream AS’s have sent their acknowledgements. How-
ever, in order to ensure consistency, updates to the data
plane are performed only once all acknowledgements have
been received for the pending update, and all earlier pend-
ing updates.

Finally, we need to deal with the special case when the
AS receives an update whose AS-path contains the AS
receiving the announcement. These are the updates that
could cause routing loops, and so they must be treated
specially. To begin with, the standard case algorithm de-
scribed above is performed on these updates. In addition,
however, when such an update is received from a neighbor,
any pending updates to move to that same neighbor are
canceled (because it will cause a loop). A pending update
is canceled by removing it from the pending update list,
and associating all its pending acknowledgements with the
following update (in the list of pending updates). No ad-
ditional special messages are required, because the normal
BGP decision making algorithm will make sure that an AS
moves away from using a path that contains itself.

Case 2: The current route becomes unavailable. In the
case the current route is physically unable to route packets
(because of a down link, as opposed to a policy based with-
drawal), the consistency layer should avoid slowing down
changes to the data plane because, as discussed in section
2, the cost of consistency is too high. Instead, the consis-
tency layer should use the normal uncoordinated method
of data plane update, until all AS’s previously using the
down path have moved away from it. In particular, the AS
with the failed path will immediately update it’s data plane,
without waiting for an acknowledgement and then send an
update with the forced bit set. If an AS receives an update
with the forced bit set for a path that it is currently using,
then it immediately performs any necessary updates, and
sets the forced bit on any updates it sends as a result. If
however an AS receives a forced update for a path that it
is not currently using, then it simply follows the Case 1

algorithm, and does not set the forced bit on any updates
that it sends. It’s important to recognize that the result of
this algorithm is that Case 2 only affects the first round of
updates for AS’s who were using a path that has a link go
down. Once the forced updates have reached all nodes, all
other updates that result from this initial set of updates will
follow Case 1.

3.1.3 Misbehaving AS’s

The previous discussion assumed that all AS’s will al-
ways correctly follow the protocol. Internet protocols how-
ever, must be designed with exactly the opposite in mind.
There are two ways in particular that this assumption could
be broken. The first is some kind of problem, and the sec-
ond is malicious gaming. We’ll attempt to deal with the
first and help with the second. We consider the game-
theoretic aspects of the consistency layer to be an interest-
ing area for future research, however, they are out of scope
for this paper, and we will not discuss them in any detail.
1t’s clear however that in order for C-BGP to be practical it
needs some way to deal with AS’s that do not acknowledge
updates.

We propose dealing with this problem through time-
outs associated with each pending update. Upon timing
out on a particular update, the AS would act as if all the
acknowledgments had been received for that update. The
AS would then send out another message to all the AS’s to
which it sent the original update containing only the mes-
sage ID of the original message. Similar to forced updates,
upon receiving such a message, an AS will act as if it timed
out the update as well, perform any updates, and forward
on the message to the appropriate neighbors. Finally, in the
absence of malicious behavior, the timeout rule is unlikely
to be invoked often as BGP updates are sent using TCP,
which provides reliable communication.

3.1.4 Consistency Analysis

Our analysis shows that C-BGP achieves its goal in
preventing transient loops, and that the execution of one
update cannot be held up by any other updates occurring
on the network. In particular, in the appendix, we prove the
following:

THEOREM 3.1. C-BGP prevents forwarding loops if
Case 1 is followed for all updates.

THEOREM 3.2. In C-BGP, all updates continue to
make progress, and an update cannot be slowed down by
other updates happening contemporaneously.

3.2 BGP-LP

Algorithms like C-BGP are fairly easy to implement in
the current Internet architecture. But, they force an update
to wait until it can ensure no transient loops. Below, we
describe an alternative and more responsive approach to
inter-domain forwarding consistency.

3.2.1 Intuition

The fundamental problem causing transient forwarding
loops is that an AS pushes an update to the data plane, but
other AS’s are not yet aware of that change. We can imag-
ine the AS’s that have been announced a path through an
AS, A, as arranged in a tree starting from A. If we imag-
ine the branches of this tree follow the update messages,
then when an update is pushed to the data plane, the an-
nouncement of that update is propagated along that tree.
If the update has not yet reached the entire tree however,
then there exists an update horizon along each branch of
the tree, representing the boundary between the farthest
AS that has heard the update, and the closest AS that has
not yet heard the update. We call the period between up-
date horizons an update incarnation, and observe that if a
packet is forwarded at each router using the information
derived from a single update incarnation it will follow a
consistent path through the network. In the general case,
there may be several updates active at the same time, and
thus several update horizons moving through the network
at the same time.

Routing loops can occur when the AS’s on the opposite
sides of an update horizon have different views of the net-
work. When packets start their journey they are forwarded
along a particular path, using the information from a spe-
cific update incarnation. But they may at some point cross
an update horizon and be deflected to a second path, cre-
ated by a later update incarnation. It is quite possible that
the second path points back at an AS along the first path,
causing a forwarding loop.

These loops could be avoided if the forwarding pro-
cess at each router could distinguish between packets that
originated within different update incarnations, and con-
sistenly forward each packet using information from that
packet’s original update incarnation—as long as that path is
available. Intuitively, this implies that the data plane must
maintain multiple active routes, one for each active update
incarnation.! In contrast with the C-BGP protocol, this
approach offers superior update performance by allowing
multiple update incarnations to be active at the same time,
at the cost of the extra state required to maintain the addi-
tional information. This state can be located in either the
data packets or the forwarding tables.

3.2.2 Implementation Details

The simplest way to ensure that each packet is for-
warded consistently is to collect the information from a
single update incarnation at the packet origin and add it
to the packet as a (AS-level) source route. This approach
is well understood and would in theory be easy to imple-
ment because BGP naturally provides the appropriate path
vector. However, it suffers from the packet size and perfor-
mance overheads and perceived security drawbacks of IP

! An update incarnation becomes inactive when the information from later
incarnations has propagated to all parts of the network.

source routing.

An alternative is to use the information propagated by
each update horizon to build some form of label switched
path (LSP) for that update incarnation through the net-
work. In essence, AS’s would need to maintain multi-
ple source routes, one for each active update incarnation,
through their networks and across boundary points. Pack-
ets entering the network within a particular update incarna-
tion at their origin AS would remain on the source route as-
sociated with that update incarnation throughout their pas-
sage through the network. They would using the label in-
formation to identify at each AS boundary the next hop AS
associated with the correct update incarnation. The cost of
this implementation approach is the extra state associated
with per-update-incarnation LSPs. Note that in practice the
path labeling can be implemented with a variety of mecha-
nisms such as MPLS or IP-level tunnels; our use of labeled
path as a concept does not mandate a specific implementa-
tion.

4 DISCUSSION & FUTURE WORK

This paper has presented a new architectural compo-
nent for inter-domain routing. In particular, it has proposed
the introduction of a new protocol layer between the rout-
ing layer and the data plane in order to ensure the con-
sistency of the data plane. Additionally it has proposed
two implementations of this consistency layer that resolve
specificially the inconsistencies causing forwarding loops.
There is much to be done, however, both on the architec-
tural abstraction, and on the implementation itself.

This work has just begun to explore the details of what
a consistency layer abstraction would actually look like.
In particular, we need to explore the trade-off between ef-
ficiency and the crispness of the abstraction between the
routing protocol and the consistency layer. This abstrac-
tion needs to be clarified in order to maintain efficiency
while ensuring that it is logically independent of the rout-
ing protocol.

Additionally, a key future area of research with respect
to consistency layer functionality is the possibility of dy-
namically trading off the benefits of consistency with the
cost to achieve that consistency. So far, we have only con-
sidered distinguishing between the case where the current
path is physically available, and the case where it is not.
The set of possible trade-offs here is rich, including in-
formation about available routes, location in the Internet
(edge vs. core), actual packet congestion and loss metrics,
and a host of other factors which may affect this trade-off.

Lastly, we have considered only forwarding loops in
this paper, but routing inconsistencies can also cause an
AS to believe that it has no route to the destination even
though a neighboring AS could easily route the packets.
We believe that the consistency layer model can be ex-
tended with efficiently encoded back-up paths to deal with
these types of inconsistencies as well.

REFERENCES

[1] M. Afergan and J. Wroclawski. On the Benefits and
Feasibility of Incentive Based Routing
Infrastructure. In Proceedings of the ACM
SIGCOMM Workshop on Practice and Theory of
Incentives in Networked Systems, pages 197-204.
ACM Press, 2004.

[2] A. Bremler-Barr, Y. Afek, and S. Schwarz.
Improved bgp convergence via ghost flushing, 2003.

[3] M. Caesar, D. Caldwell, N. Feamster, J. Rexford,
A. Shaikh, and K. van der Merwe. Design and
implementation of a routing control platform. May
2005.

[4] N. Feamster, H. Balakrishnan, J. Rexford,

A. Shaikh, and J. van der Merwe. The case for
separating routing from routers, 2004.

[5] N. Feamster, J. Borkenhagen, and J. Rexford.
Controlling the impact of bgp policy changes on ip
traffic, 2002.

[6] J. Feigenbaum, R. Sami, and S. Shenker.
Mechanism design for policy routing, 2003.

[7] U. Hengartner, S. Moon, R. Mortier, and C. Diot.
Detection and analysis of routing loops in packet
traces, 2002.

[8] L. Jiazeng, X. Junqing, H. Ruibing, and L. Xin. An
approach to accelerate convergence for path vector
protocol. In Globecom, 2002.

[9] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian.
Delayed internet routing convergence. In
SIGCOMM, pages 175-187, 2000.

[10] D. Pei, X. Zhao, L. Wang, D. Massey, A. Mankin,
S. F. Wu, , and L. Zhang. Improving bgp
convergence through consistency assertions. In In
Proc. IEEE INFOCOM. IEEE,, 2002.

[11] B. Quoitin, S. Uhlig, C. Pelsser, L. Swinnen, and
O. Bonaventure. Interdomain traffic engineering
with bgp. IEEE Communications Magazine, 2003.

[12] A. Sridharany, S. B. Moon, and C. Diot. On the
correlation between route dynamics and routing
loops.

[13] L. Subramanian, M. Caesar, C. T. Ee, M. Handley,
M. Mao, S. Shenker, and I. Stoica. HLP: A
Next-generation Interdomain Routing Protocol. In
ACM SIGCOMM, Philadelphia, PA, August 2005.

APPENDIX
A A CONSISTENCY SHIM
A.1 Consistent-BGP

Intuitively, an update in C-BGP can be performed to
the consistency shim, or to the data plane itself. Updates
that have been performed to the consistency shim, but not
yet performed on the data plane are maintained in queue.
Entries in this queue maintain:

ASPath This is the ASPath to be used when this update
is commited to the data plane. This not neccessarily
the ASPath of the original update, but the ASPath that
will be moved to as a result of this update. Note that if
the next hop AS is not changing then such an update
may not require a change to the data plane.

Pending Acknowledgements This is the set of message
update acknowledgements that will be sent once the
all neccessary acknowledgements are recieved and
the ASPath has been commited to the dataplane.

For ease of explanation, we will assume that each AS has
only a single router?.
There are two types of events that an AS can receive,
Update events and acknowledgment events. These are
outlined below with pseudo-code in the PROCESS-BGP-
UPDATE and PROCESS-LAST-ACKNOWLEDGEMENT
procedures respectively. The rest of the pseudo-code
gives more detail on the procedures used by these two.
For simplicity, the entire discussion is within the context
of a single CIDR block. To clarify the pseudo-code,
THIS-FONT will be used for names of pseudo-code pro-
cedures that are located elsewhere in the document, and
This-Font for data structure members. Additionally we
will consistently use a few variables names throughout the
pseudo-code. These can be thought of as global variables:

A = the current AS

O = the update Queue

U = the update just recieved

K = the acknowledgement just recieved

Lastly, we’ll consistency use the data members
NextHop and ASPath to refer respectively to the first AS
in an ASPath, and the ASPath itself, associated with an
update message, or with a queued update.

Upate Messages

When an update is recieved at the control plane,
PROCESS-BGP-UPDATE is called:

1 PROCESS-BGP-UPDATE(update U)

1 if no queued or current use of a path thru U.NextHop
2 Acknowledge U

3 if BGP would prefer U.ASPath over Q.Tail. ASPath
4 QUEUE-UPDATE(U.ASPath, NULL)

5 elseif U.ASPath contains A

6 REMOVE-ALL-QUEUED-MOVES-TO(U)

7 elseif Q.Tail. NextHop == U.NextHop

8 P =BGP’s new best ASPath given update U
9 QUEUE-UPDATE(P, U.ack)
10 else
11 APPEND-TO-LAST-MOVE-AWAY(U)
12 if BGP would prefer U.ASPath over Q.Tail. ASPath
13 QUEUE-UPDATE(U.ASPath, NULL)

2Tt can be shown that the protocol generalizes to the case where there are
many routers

In PROCESS-BGP-UPDATE, if A is not currently using
a path through U.NextHop and has not queued any updates
to move to a path through it, then A will acknowledge the
update immeadiately. Then, using the normal BGP path
preference ranking algorithm, it will consider whether it
would like to move to the newly available path. If A de-
cides that it would like to move to U.ASPath, then it sends
out the corresponding BGP update, and queues the update
to the data plane to be executed once all the acknowledge-
ments are recieved (as outlined in QUEUE-UPDATE).

2 QUEUE-UPDATE(ASPath P, ack K)

Generate a new queue entry E with path P
Associate acknowledgement K with E

Add E to the queue

Generate new BGP update msg. V with ASPath P
Send V to all appropriate neighbors

DA W =

If however A is currently using a path through
U.NextHop, or has queued an update to move to a path
through it, then there are three cases. The first case (lines
5 to 7) is the special case where U.ASPath contains A,
and moving to this path would cause a routing loop. In
this case, A will revoke all currently queued moves to use
paths through U.NextHop and wait to acknowledge the up-
date until it is no longer using a path through U.NextHop.
This special case is outlined in REMOVE-ALL-QUEUED-
MOVES-TO:

3 REMOVE-ALL-QUEUED-MOVES-TO(update U)

1 for entries e in Q
2 if U.NextHop == e.NextHop
3

append all of ¢’s pending acknowledgements to

the previous entry in the queue
4 remove e from the Queue
5 if A is not currently using a path through U.NextHop
6 Acknowledge U
7 elseif A has no queued updates
8 P =BGP’s new best ASPath given update U
9 QUEUE-UPDATE(P, U.ack)
10 else
11 APPEND-TO-LAST-MOVE-AWAY(U)

In the second case (lines 7 to 10), the ASPath in the
update does not contain A, but the most recently queued
update, Q.7ail, would update A to using a path through
U.NextHop. Since the BGP algorithm is always running
on the most recently queued update, in this case, A runs
the normal BGP algorithm to determine whether it would
like to continue using the path through U.NextHop despite
the update, or if it would like to move to a different path.
Either way, it queues an update to whatever is the new best
path.

In the third case (lines 10 to 13), A has queued a move
to a path through U.NextHop, but has later queued a move

away from paths through U.NextHop.Since it is already an-
nounced it’s move away from paths through U.NextHop to
the appropriate neighbors, there is no need to send another
announcement. However, A cannot acknowledge U until
it has actually performed this move. Thus, the acknowl-
edgement is associated with the last queued update which
moves away from a path through U.NextHop. This associ-
ation is outlined in APPEND-TO-LAST-MOVE-AWAY.

However, in order to both ensure that there are no rout-
ing loops, and that starvation does not occur, the algorithm
needs to make a special distinction for updates to paths
that are not yet being used. To better understand this, let’s
take an example where an AS, B, is currently using path
B:C:P,3. AS C then announces a transition from C:P; to
C:D:P5, and as a result of this B announces a transition to
B:E:P,. Before either of these updates occurs however, D
announces a transition from D:P, to D:P3. Let’s assume
that AS C would like to continue to move to using a path
through D despite this update.

At this point C has two options. (1) Since it has not yet
moved to using the path through D, it can immeadiately
acknowlegde the update, announce the change upstream,
and then not actually move to using D until it has recieved
the acknowledgements for the update to D:P3. (2) Alterna-
tively, C can annouce the update from C:D:P; to C:D:P5 to
the AS’s upstream of it, move to using a path through D as
soon as it recieves acknowledgements to C:D:P,, and then
only acknowledge D’s update when it recieves acknowl-
edgements of C:D:P3 from the AS’s upstream of it. If (1)
is used, then C may be starved from ever moving to using a
path through D in the case where D is continuously updat-
ing it’s path. Thus C must announce C:D:P; to B and wait
for acknowledgement from B before it can acknowledge
D:P5 to D. Thus we must decide what B should do when
it recieves such an announcement from C. Naively, B can-
not acknowledge any update to C’s path until it has moved
away from using a path through C, and so it would wait
to acknowledge C:D:P; until it had transitioned to B:E:Pj.
However, since it will never use a path through D, it actu-
ally doesn’t care if D updates it path from P, to P3, and so
this creates an artifical dependancy. And in fact, it can be
shown that such an artificial dependancy can cause a dead-
lock in the algorithm. For reasons of brevity, we will not
give an example of this here.

In order to avoid this problem, we take advantage of
the fact that within a given AS, updates to the data plane
are not performed until all previous updates have been
acknowledged. Thus we recognize that B can immeadi-
ately acknowledge C:D:P3 because it knows that C cannot
move to using a path through D until B has acknowledged
C:D:P;. In this case, we’ll call the acknowledgement to
C:D:P, an enabling acknowledgement for C:D:P; be-
cause C cannot move to C:D:P3 until C:D:P, has been

3We’ll use the notation B:C:P; to mean an ASPath starting with AS B
followed by AS C, followed by path P; (which may contain zero or more
AS’s)

acknowledged, even if C:D:P3 has already been acknowl-
edged. More generally, acknowledgement K is said to
be an enabling acknowledgement for update U, if path
UASPath cannot be used until K is sent. We recognize that
for an AS, A, enabling acknowledgements for a given up-
date, U, include only acknowledgements for updates that
were both sent before U, and originated at the same AS
as U, or at an AS closer to A, than the as originating
U. This special case is outlined in APPEND-TO-LAST-
MOVE-AWAY on lines 7 through 9.

4 APPEND-TO-LAST-MOVE-AWAY (update U)

E = the last entry in the queue
while E is not the head of the queue and
E.NextHop = U.NextHop
E = the entry in the queue before E
if E is not the head of the queue
E = the entry in the queue after E
if £ already has a pending ack that is an
enabling acknowledgement for U
Acknowledge U
9 else
10 add U.Ack to the pending acknowledgements of E

~N NN R W -

oo

Acknowledgement Messages

Updates are not performed to the data plane un-
til acknowledgements are recived for the update mes-
sages that were previously sent out. PROCESS-LAST-
ACKNOWLEDGEMENT outlines what an AS will do when
the final acknowledgement is recieved for a particular up-
date messages.

5 PROCESS-LAST-ACKNOWLEDGEMENT (ack K)

1 E = the queued update associated with K

2 Mark E as acknowledged

3 if E == head[Q]

4 while the head of the queue is marked acknowledged
5 E = the head of the queue

6 Pop E off the queue

7 Update the data plane to move to path E.ASPath

8 Send all acknowledgements in E.PendingAcks

First, the update is then marked as acknowledged. If
the update is at the head of the queue, then all the ac-
knowledged updates at the head of the queue are popped
off, and the last update is actually executed on the data
plane. All other updates are skipped, since they would just
be over written by the following update anyway. Lastly,
the AS will send all pending acknowledgements associ-
ated with that update. This will typically be only an ac-
knowledgement to the update itself, but will occasionally
include other acknowledgements that got queued by the
process described in APPEND-TO-LAST-MOVE-AWAY.

C-BGP Proofs
No Routing Loops

LEMMA A.l. In C-BGP, if Case 1 is followed for all
updates, then when A acknowledges the last enabling ac-
knowledgement for U, then either (i) or ((iia) and (iib)) is
true:

(i) A is notin U.ASPath

(iia) All updatesto move to a path through U.NextHop were
queued after U

(iib) A is not using a path through U.NextHop at the time
of acknowledgment

PROOF. Acknowledgements are only sent for updates
that are received, and there are four ways in which updates
are processed. These four cases are outlined in PROCESS-
BGP-UPDATE.

Case 1 In this case, there are no queued or current use of
a path through U.NextHop and so (ii) is statisfied

Case 2 In this case, the process outlined in REMOVE-
ALL-QUEUED-MOVES-TO is performed. This en-
sures that all entries moving to paths through
U.NextHop are removed from the queue and so (iia)
is satisfied. Additionally, this process outlines three
cases:

Case 2a A is not currently a path through U.NextHop
and so (iib) is satisfied

Case 2b Since A is in U.ASPath BGP will choose
a path P through a different neighbor than
U.NextHop. Additionally, since this update
is at the head of the queue, the update
will be performed before the acknowledge-
ment is sent, as outlined in PROCESS-LAST-
ACKNOWLEDGEMENT. Thus (iib) is satisfied.

Case 2¢ As outlined in APPEND-TO-LAST-MOVE-
AWAY lines 7 through 9 the enabling ac-
knowledgement will not be sent until the al-
ready queued move away from a path through
U.NextHop is performed, and so (iib) is satified.

Thus in all sub-cases of Case 2, (iia) and (iib) are sat-
ified and condition (ii) is fully satisfied.

Case 3 and 4 In these cases, A is not in U.ASPath and so
(1) is satisfied

Thus in all cases either (i) or (ii) are fully satified, and so

the conditions of the lemma are always fully satified. [

THEOREM A.2. C-BGP prevents forwarding loops if
Case 1 is followed for all updates.

PROOF. We’ll prove this by contradiction. Without loss
of generality, let’s assume that a routing loop is formed at
time ¢t when A, transitions to use a path, B:P, announced
by AS B, such that P goes through A. Let’s also assume
that at some earlier time #4 < f, A sends out the update, U,
for it’s transition to using a path through B. There are two
possible ways for B to be using path P at time .

Case 1: B is using P, or has queued a move to P, at time 74
and continues to use that path through time 7. In this case, B
must recieve update U since it’s using a path, P, through A
(or has queued a move to such a path), and continues to use
that path until after U has been fully acknowledged. Thus,
at some time fp.4x > 4, B sends the enabling acknowl-
edgement for U. However, at #p.4.«, we know that B cannot
be using path P, and cannot have queued a move to path P,
because otherwise it could not have sent the enabling ac-
knowledgement for U, as shown by lemma A.1. Addition-
ally, since B is actually using a path through A, we know
that A must recieve B’s enabling acknowledgement before
t, otherwise A cannot make the transition. Thus Case 1 can-
not occur.

Case 2: B transitions to using P after t4 and before 7, but
has not queued an update to move to P before 74. In or-
der for B to make such a transition, it must receive the en-
abling acknowledgment from A, for an update sent after 4,
to move to using B:P. However, as shown by lemma A.1,
A cannot send such an enabling acknowledgment while the
move to a path through B is still in the queue, and so it
cannot send such an acknowledgment before . Thus Case
2 cannot occur.

Thus no update can form a routing loop, and so as long as
the network begins in a loop free state, and all AS’s follow
the C-BGP protocol, it will remain in a loop free state. []

No Starvation

Next we’ll show that an update cannot be slowed down
by other updates happening cotemparaniously.

LEMMA A.3. If an AS is ever indirectly waiting on it-
self, in order to send an acknowledgment or perform an
update, then it should be able to immediately send the ac-
knowledgment on which it is waiting.

PROOF. An AS, A, can only wait on itself to perform
an update or send an acknowledgment, if there exists a
chain of dependencies such that A is waiting on a acknowl-
edgment from X;, who is waiting from an acknowledg-
ment from X, ... Xy, who is waiting on an acknowledg-
ment from A. For any give chain of acknowledgment de-
pendencies, let us break the AS’s on that chain into three
types, such that an AS, X; is one of:

Pass-through AS: has no queued updates, but is currently
using the path through X;_; and will continue to use
the path through X;_ after the update.

From-path AS: is currently using the path through X;_;
but has queued an update to move to a path not
through X i—1

To-path AS: is not currently using a path through X;_;
but queued an an update to move to a path through
X;_1 before it recieved the update.

Again, we’ll prove this by contradiction. Let’s assume
that an AS is waiting on itself in order to perform an up-
date and cannot immeadiately send the acknowledgement

on which it is waiting. The dependency chain cannot have
only pass-through AS’s and to-path AS’s, because that
would mean an AS would have knowingly queued an up-
date to move to a path that contains itself. Similarly, the
dependency chain cannot have only pass-through AS’s and
from-path AS’s, because that would mean that the current
path has a routing loop in it. Thus the dependency chain
must have both from-path and to-path AS’s in it. Since
the dependancies form a loop, this means there must be
a to-path AS indirectly waiting on a from-path AS. If we
call the AS making the to-path transition, X;, and the AS
making the from-path transition, Xy, then we know that
X; must have previously sent X; an update indicating it’s
move to using the path through X; 1, and that Xy has not
acknowledged this update yet, otherwise there would be
no dependancy here. Therefore, this acknowledgement is
an enabling acknowledgement for any updates to X;’s path
through X, ;. So when X, sends an update indicating a
change in the path through X, _;, Xy can acknowledge im-
meadiately since it already has pending an enabling ac-
knowledgement. This is outlined in line 8 of APPEND-TO-
LAST-MOVE-AWAY. Thus whenever such a loop exists at
least one AS in the loop can acknowledge the update with-
out waiting on any other AS, thus breaking the loop and
ensuring an AS can never be stuck waiting on itself. [

THEOREM A.4. As long as all AS’s follow the rules,
all updates are continuously making progress towards ac-
knowledgment and no update can get starved.

PROOF. We recognize the following facts:

e Given there are a finite number of AS’s, and no AS
indirectly waits on itself, there must be at least one AS
that is not waiting on any other AS.

e There are a finite number of AS-neighbor connections.

e As outlined by the protocol descrition, no AS ever
needs to acknowledge an update more than once per
neighbor.

Thus, at any time at least one of a finite number of AS-
neighbor connections can acknowledge the update, and
so we conclude that all updates are continuously mak-
ing progress towards completion, and no update can be
starved. [

A.2 BGP-SIM

As described earlier, there are two possible classes of
implementations of BGP-SIM: those that store the whole
route in the packet itself, and those that store the route in
the network. Since source routing is a well known concept,
we assume that an implementation of BGP-SIM with the
entire route stored in the packet, is straightforward. Thus
we describe in detail here only the possible implementa-
tion of BGP-SIM where most of the forwarding informa-
tion is stored in the network.

We’ll describe this process with the assumption that
when packets are sent between AS’s, these packets can be
marked in some way to indicate the update incarnation in

10

which they originated. This marking can be done in many
different ways, depending on the protocol used on the lo-
cal network between the two AS’s. It can be done through
MPLS, IP-level tunneling, or even the use of virtual in-
terfaces at the link-level. In the protocol description below
we’ll assume that packets can be marked with a label using
one of these schemes.

A.2.1 Protocol Description:

When a AS would like to update the route that it is
using to a particular destination, it performs the following
steps:

1. Tt chooses a label that is not currently being used by
any other route to the same destination (or if neces-
sary, it garbage collects the route that has been in-
stalled the longest in order to use it’s label)

2. It installs a route to the destination encoding four
pieces of information:

(i) the destination CIDR

(i1) the label chosen in (1)

(iii) the new next hop ip

(iv) the new next hop label (from the BGP announce-
ment)

Thus when a packet arrives to be routed, it’s route
lookup is indexed by both (i) and (ii). It’s label is
changed to be the label from (iv) and it is routed to
the next hop ip in (iii). Additionally, this new route is
set as the default route for this destination in order to
deal with packets with no label.

. It sends a BGP update for the routing change includ-
ing in it the packet label chosen in (1).

4. It sets a timer to time out the old route.

BGP-SIM Proofs

LEMMA A.5. As long as the old route has not timed
out on any router, any packet passing through an AS which
has not yet updated it’s data plane in response to the BGP
update will be forwarded along the old path from that AS
to the destination.

PROOF. We’ll prove this by induction.

Base Case: If an AS has not yet updated it’s data plane,
then it will continue to forward the packet to the same
next hop IP address and the same label as the old path.

Inductive Step: Since all the old paths remain installed,
if a packet is received with the old incoming label, at
any node then it will be forwarded to the old next hop
with the old outgoing label.

Thus, since the packet will follow exactly the same set of
hops that it would have with the old path, it will exactly
follow the old path. [

LEMMA A.6. Any packet originating in an AS which
has updated it’s forwarding plane in response to the BGP

update will be forwarded along the new path until it
reaches an AS that has not received the update.
PROOF. Again, we’ll prove this by induction.

Base Case: If the AS originating the packet has already
updated it’s data plane, then it will generate a new
packet that is sent with the label contained in the up-
date it received.

Inductive Step: If the packet is received with the label
that was published in the outgoing update, then the
AS will send the packet with the label that was pub-
lished in the incoming update that it received that
caused it to publish the outgoing update.

Therefore each AS that has recieved the update will
forward the packet along the path that is published in the
BGP update and all packets will exactly follow the new
path until they reach an AS that has not recieved the up-
date. O

THEOREM A.7. As long as the BGP update is pro-
cessed by all AS’s using this path before the ISP times out
the path, plus the maximum packet delay in the network,
there will be no routing loops:

PROOF. The above lemmas show that a packet will en-
tirely follow the new path until it reaches an AS that has
not recieved the update and will then follow the old path
to the destination. Thus, as long as neither the new or old
path has a routing loop, there can be no routing loops. Note
that a packet can pass through an AS twice, however the
second time through it will have the label of the old path,
and so it will be routed to the destination along the old path
avoiding a loop. [

11

