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Abstract

Robotic and embedded systems have become increasingly pervasive in applications
ranging from space probes and life support systems to robot assistants. In order to act
robustly in the physical world, robotic systems must be able to detect changes in operational
mode, such as faults, whose symptoms manifest themselves only in the continuous state. In
such systems, the state is observed indirectly, and must therefore be estimated in a robust,
memory-efficient manner from noisy observations.

Probabilistic hybrid discrete/continuous models, such as Concurrent Probabilistic Hy-
brid Automata (CPHA) are convenient modeling tools for such systems. In CPHA, the
hidden state is represented with discrete and continuous state variables that evolve prob-
abilistically. In this paper, we present a novel method for estimating the hybrid state of
CPHA that achieves robustness by balancing greedy and stochastic search. The key in-
sight is that stochastic and greedy search methods, taken together, are often particularly
effective in practice.

To accomplish this, we first develop an efficient stochastic sampling approach for CPHA
based on Rao-Blackwellised Particle Filtering. We then propose a strategy for mixing
stochastic and greedy search. The resulting method is able to handle three particularly
challenging aspects of real-world systems, namely that they 1) exhibit autonomous mode
transitions, 2) consist of a large collection of concurrently operating components, and 3) are
non-linear. Autonomous mode transitions, that is, discrete transitions that depend on the
continuous state, are particularly challenging to address, since they couple the discrete and
continuous state evolution tightly. In this paper we extend the class of autonomous mode
transitions that can be handled to arbitrary piecewise polynomial transition distributions.

We perform an empirical comparison of the greedy and stochastic approaches to hybrid
estimation, and then demonstrate the robustness of the mixed method incorporated with
our HME (Hybrid Mode Estimation) capability. We show that this robustness comes at
only a small performance penalty.



1. Introduction

Robotic and embedded systems have become increasingly pervasive in a variety of appli-
cations. Space missions, such as Mars Science Laboratory (MSL, 2005) and the Jupiter
Icy Moons Orbiter (JIMO, 2005), have increasingly ambitious science goals, such as oper-
ating for longer periods of time and with increasing levels of onboard autonomy. Manned
missions in space and in polar environments will rely on life support systems, such as the
Advanced Life Support System developed at the NASA Johnson Space Center(Hanford,
2002), to provide a renewable supply of oxygen, water, and food. Here on Earth, robotic
assistants, such as CMU’s Pearl (Montemerlo, Pineau, Roy, Thrun, & Verma, 2002) and
iRobot’s Roomba (iRobot, 2005), directly benefit people in ways ranging from providing
health care to routine services and rescue operations.

In order to act robustly in the physical world, robotic systems must handle the uncer-
tainty and partial observability inherent in most real-world situations. Robotic systems
often face unpredictable, harsh physical environments and must continue performing their
tasks (perhaps at a reduced rate), even when some of their subsystems fail. For example, in
land rover missions, such as MSL, the robot needs to detect when one or more of its wheel
motors fail, which could jeopardize the safety of the mission. The rover can detect the
failure from a drift in its trajectory and then compensate for the failure, either by adjusting
the torque to its other wheels or by replanning its path to the desired goal.

In our previous work we have developed methods for estimating the state of systems that
evolve in a discrete manner, where system behavior is modeled by Concurrent Probabilistic
Constraint Automata (CPCA), one automaton per component. The Livingstone model-
based diagnosis system(Williams & Nayak, 1996) flew on the Deep Space One probe, which
had approximately 4%° modes of normal and faulty operation. Monitoring and diagnosis was
performed in real-time, by approximating the belief state through enumeration of the £ most
likely mode trajectories at each step. Best-first enumeration of the concurrent automata
mode transitions was enabled by exploiting conditional independence between transitions.
Recent advances in model-based diagnosis (Williams, Chung, & Gupta, 2001)(Sachenbacher
& Williams, 2004)(Martin, Williams, & Ingham, 2005)(Mikaelian, Williams, & Sachen-
bacher, 2005) have further increased the capabilities of estimation for discrete models
through model compilation, structural decomposition and symbolic encoding methods that
accelerate search, and richer encodings for mixed software/hardware systems.

In many situations, however, a purely discrete model is insufficient. Probabilistic hybrid
models represent the system with both discrete and continuous state variables that evolve
probabilistically according to a known distribution. The discrete state variables typically
represent a behavioral mode of the system, while the continuous variables represent its
continuous dynamics. Probabilistic hybrid models can be used to provide an appropriate
level of modeling abstraction when purely discrete, qualitative models are too coarse, while
purely continuous, quantitative models are too fine-grained.

In this paper, we investigate the problem of estimating the state of systems with proba-
bilistic hybrid models. Given a sequence of control inputs and noisy observations, our goal
is to estimate the discrete and continuous state of the hybrid model. Probabilistic hybrid
models are particularly useful for fault diagnosis, the problem of determining the health
state of a system. With hybrid models, fault diagnosis can be framed as a state estimation



problem, by representing the nominal and fault modes with discrete variables and the state
of the system dynamics with continuous variables.

Our previous work (Hofbaur & Williams, 2002a) developed the HME (Hybrid Mode
Estimation) system, extending our work on discrete model-based diagnosis for Concurrent
Probabilistic Constraint Automata, to reason about probabilistic hybrid models, known as
Concurrent Probabilistic Hybrid Automata (Hofbaur & Williams, 2002a). As with CPCA,
CPHA represent the system as a collection of concurrently operating automata, one au-
tomaton for each component in the system. Each mode in an automaton has an associated
set of stochastic difference and algebraic equations, which are solved to obtain a complete
dynamical model of the system. An alternative representation, developed in parallel by the
hybrid Bayes Network community, is the hybrid Dynamic Bayes Network (DBN), where the
system is represented as a directed acyclic graph, in which vertices represent the random
variables in the system and edges capture the conditional dependencies among them.

We present here a novel method for hybrid estimation with CPHA that achieves robust-
ness by balancing greedy and stochastic search. The key insight behind the new algorithm
is that, in many AI methods, a combination of stochastic and greedy search methods can
be effective in practice. This is analogous to the ‘exploration vs. exploitation’ tradeoff,
which has been used with great success in Constraint Satisfaction Problems (CSP) (Gomes,
Selman, & Kautz, 1998) and reinforcement learning (Sutton & Barto, 1998), for example.
Previous methods have used either greedy search (for example, Hofbaur & Williams, 2004)
or stochastic sampling (for example, Verma, Langford, & Simmons, 2001). In this paper we
show empirically that these methods can have limited performance depending on whether
the belief state is concentrated in a few mode sequences, or is relatively flat. The mixed
greedy /stochastic method, by contrast, is robust to changes in the variance of the posterior
distribution.

Developing this method requires three main technical contributions. First, we introduce
an efficient stochastic sampling approach for CPHA based on Rao-Blackwellised Particle Fil-
tering. Second, we perform an empirical study of the greedy and stochastic CPHA methods
on a simulated acrobatic robot example. Third, based on the comparative insights gained
we propose a mixed exploration/exploitation strategy, and demonstrate its superiority over
the separate approaches.

We first consider existing methods for estimation with hybrid models. In the general
case, inference in hybrid models is NP-Hard(Lerner & Parr, 2001). Approximate inference
using techniques in k-best Gaussian filtering (Hofbaur & Williams, 2004; Lerner, 2002a)
have been effective for hybrid state estimation. These methods represent the system state
as a mixture of Gaussians that are enumerated in decreasing order of likelihood. Using
this approach, our prior work developed a method that can be applied to models that
have autonomous mode transitions, that is, transitions that depend on the continuous state
variables, nonlinear dynamics, and many components (Hofbaur & Williams, 2004). Owing
to their efficient representation and focused search, the k-best method has been successfully
applied to large systems with as many as 450,000 discrete states. Excessive focusing during
search may, however, lead to diagnostic errors if the correct diagnosis is not among the
leading set of hypothese. In this paper, we demonstrate this empirically using a simulated
acrobatic robot.



An alternative approach is to use stochastic sampling to allow the system to perform
greater exploration, rather than performing a purely greedy search. An example of such
as method is Particle Filtering, which approximates the posterior state distribution using
a finite number of particles(Doucet, 1998)(Morales-Menéndez, de Freitas, & Poole, 2002).
Examples of diagnosis systems include (Verma et al., 2001) and (Dearden & Clancy, 2002).
These particles are evolved stochastically and resampled based on an appropriately defined
importance weighting. The inefficiency of sampling in high-dimensional spaces has limited
the effectiveness of Particle Filtering for state estimation in hybrid systems(Doucet, de Fre-
itas, Murphy, & Russell, 2000). To avoid these problems, we therefore propose an efficient
stochastic sampling approach for CPHA based on Rao-Blackwellised Particle Filtering. Rao-
Blackwellised Particle Filtering exploits a tractable substructure in the underlying model
by sampling only a subspace of the system state, while estimating the remainder using an
efficient analytical method.

Rao-Blackwellised Particle Filtering has been used for hybrid state estimation in Switch-
ing Linear Dynamic Systems(Freitas, 2002)(Morales-Menéndez et al., 2002), in which the
discrete state d is a Markov chain with a known transition probability p(d¢|d;—1), and the
continuous state evolves linearly, with system and observation matrices dependent on d;.
Under such conditions, the continuous estimate for each sequence of discrete state assign-
ments can be computed with a Kalman Filter.

In many domains, however, such as rocket propulsion systems (Koutsoukos, Kurien,
& Zhao, 2002) or life-support systems (Hofbaur & Williams, 2002a), simple Markovian
transitions p(d¢|d;—1) are not sufficiently expressive. In these domains, the transitions of
the discrete variables often also need to depend on the continuous state. For example,
the probability of a failure transition for a certain component may depend on its current
operating temperature, which is part of the continuous state. Such transitions are called
autonomous. In the terminology of hybrid Bayesian networks, these correspond to discrete
nodes with continuous parents. Furthermore, many systems consist of several interconnected
components, each of which is in its own behavioral mode. Representing the joint mode of
all the components would be inefficient. In these cases, it is desirable to represent the mode
with several mode variables. Finally, many systems have nonlinear dynamics. Each of these
properties - autonomous transitions, interconnected components, and nonlinear dynamics,
are expressed naturally in CPHA.

In this paper, we first extend Rao-Blackwellised Particle Filtering to handle autonomous
mode transitions, nonlinearities and concurrency. Applying Rao-Blackwellisation schemes
to models with autonomous transitions is difficult, since the discrete and continuous state
spaces of these models tend to be coupled. The key innovation in our algorithm is that
it reuses the continuous state estimates in the importance sampling step of the particle
filter. We extend the class of autonomous transitions that can be handled over our previous
work in (Funiak & Williams, 2003) and (Hofbaur & Williams, 2002a) to multivariable linear
transition guards, in the case of piecewise constant transition distributions, and to polyno-
mial transition distributions of arbitrary order, in the case of single variables. Our RBPF
algorithm handles nonlinear dynamics by using an Extended Kalman Filter (Anderson &
Moore, 1979) or an Unscented Kalman Filter (Julier & Uhlmann, 1997). We presented this
innovation in (Funiak & Williams, 2003), this was also proposed independently by (Hutter
& Dearden, 2003).



Next, these developments provide the foundation for introducing a a unified treatment
of k-best enumeration and RBPF approaches to hybrid state estimation. Both these ap-
proaches represent the belief state by a mixture of Gaussians for a subset of mode trajectories
traced by the discrete state. The former approach enumerates the trajectories in best-first
order, while the latter evolves them through sampling. While prior work (Hutter & Dear-
den, 2003) has compared the performance of RBPF to other particle filters, there has been
little empirical comparison of RBPF and k-best methods. Such an analysis is crucial to
understanding the trade-offs between the two methods, and to developing a new approach
that combines the strengths of both. In this paper we carry out the comparison and show
that both approaches have limitations, depending on whether the posterior distribution is
concentrated in few discrete mode trajectories, or is relatively flat across many different tra-
jectories. These results demonstrate the need for a new algorithm that is robust to changes
in the variance of the approximated posterior distribution.

Finally, in this paper we develop such an algorithm. The new algorithm uses Rao-
Blackwellised particle filtering to generate, stochastically, additional candidates to add to
k-best enumeration that would not have been tracked by a purely greedy approach. The
algorithm maintains a set of particles, which are updated using RBPF, and a set of mode
trajectories with the highest posterior probability, generated by both RBPF and k-best
successor enumeration. This algorithm makes use of the efficient properties of both k-best
enumeration and RBPF, while being probabilistically sound.

We integrate the mixed algorithm with our HME system and demonstrate, using a
simulated acrobatic robot, that the mixed algorithm is effective for both a concentrated and
flat posterior distribution. The mixed algorithm shows a dramatic increase in robustness
for a small performance penalty.

2. Models and State Estimation Methods

Probabilistic hybrid models and hybrid estimation methods date back to the 1970s (Akashi
& Kumamoto, 1977) and are useful in many applications, including visual tracking (Pavlovic,
Rehg, Cham, & Murphy, 1999) and fault diagnosis (Narasimhan, Biswas, Karasai, & Zhao,
2000) (Hofbaur & Williams, 2002a). In this section, we review a formalism for modeling
probabilistic hybrid systems, known as Concurrent Probabilistic Hybrid Automata. We
then define the hybrid state estimation problem and outline the existing approach to hy-
brid state estimation for CPHA, based on greedy enumeration. This lays the groundwork
for the new approach, based on Rao-Blackwellised Particle Filtering, which is described in
Section 3.

2.1 Concurrent Probabilistic Hybrid Automata

We have previously developed Concurrent Probabilistic Hybrid Automata (CPHA) (Hof-
baur & Williams, 2004), a formalism for modeling engineered systems that consist of a large
number of concurrently operating components with non-linear dynamics.

A CPHA model consists of a network of concurrently operating Probabilistic Hybrid
Automata (PHA), connected through shared continuous input/output variables. Each PHA
represents one component in the system and has both discrete and continuous hidden state
variables. The automaton interacts with the other automata in the surrounding world
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Figure 1: A two-link acrobatic robot.

through shared continuous variables, and its discrete state determines the evolution of its
continuous variables.

Definition 1 A Probabilistic Hybrid Automaton is a tuple (x,w,F,T, X, Xq,Uq) (Hofbaur
& Williams, 2002a):

e x denotes the hybrid state of the automaton. x £ x;Ux,. where x4 denotes the discrete
state variables x4 € Xy and x. denotes the continuous state variables x. € R"= .1

e w denotes the set of input/output variables, which consists of command (discrete
input) variables uy € Uy, continuous input/output variables w. € R™* and Gaussian
noise variables v. € R™,

o I': X; — Fpg U Fag specifies the continuous evolution of the automaton for each
discrete mode, in terms of the set of discrete-time difference equations Fpr and the
set of algebraic equations F4ap over the variables x., w,, and v..

o T : X; — 2P U C gpecifies the discrete transition distribution of the automaton as
a finite set of transition probabilities p;; € P over the target modes Xy and their
associated guard conditions ¢; € C over X, U ug. The guard conditions ¢; form a
partition of the space R™= x U,.

e X is a distribution for the initial state of the automaton, with a Gaussian distribution
P(Xc,0|%4,0) for the continuous state x., conditioned on each discrete mode x4.

To illustrate this definition, consider the two-link acrobot, shown in Figure 1. The
robot swings on a bar and may catch a ball of known mass, whenever it is on the right side
(#1 > 0.55). The body of the robot can be modeled as a PHA, where the hidden continuous
state consists of four variables, representing the angles and angular velocities at two joints.
The hidden discrete state, as shown in Figure 2, consists of the variable ball, representing
whether or not the robot carries a ball of mass my,;. The continuous dynamics for each

1. We let lowercase bold symbols, such as v, denote both the set of variables {v1,...,v;} and the vector
[v1,... ,vl]T



Continuous dynamics:
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Figure 2: A PHA for the two-link body of the acrobot system. Left: transition model for
the discrete state of the body. Right: evolution of the automaton’s continuous
state, one set of equations for each mode.

mode can be derived using Lagrangian mechanics(see Paul, 1982) and turned into a set of
discrete-time difference equations, using the Euler approximation.

The transition function 7'(d), for some mode d, specifies the transition distribution
P(Xat|Xd—1 = d,Xc1—1,u4,). Bach tuple (pr,c) € T'(d) defines the transition distribution
as having a constant value of p, in the regions satisfied by the guard c. For the acrobot
example, when ball = no, the probability of transitioning to mode yes is 0.01, whenever
01 > 0.55, and 0 otherwise. The transition function can thus specify conditional distri-
butions p(xg¢|xqt—1 = d,Xc¢—1,uq+) that are piecewise constant in the continuous state
X¢,t—1. While in keeping with previous workwe retain this definition for PHA, in Section 4.2
we show that our efficient hybrid estimation method can handle piecewise polynomial tran-
sition functions.

Most engineered systems consist of several concurrently operating components. Compo-
sition of PHA provides a method for specifying a model for the overall system, by specifying
PHA models for its components and then combining these models. Composed automata are
connected through shared continuous input/output variables, which corresponds to connect-
ing the system’s physical components through natural phenomena, such as forces, pressures,
and flows.

In order to compose PHA, we combine their hidden state variables and their discrete
and continuous evolution functions:



Definition 2 The composition CA of two Probabilistic Hybrid Automata A1 and Ao is
defined as a tuple (x,w, F,T, Xq, Xq,Uy), where

X = XqUX., withxq = x41UXg2 and X, 2 X1 U Xeo,
w = w1 Uwg,
F(xq) 2 Fi(xq1) U Fa(xq2),
T(xa) = Ti(xq1) x Ta(Xq2),
Xo(x) = Xoi1(x2)Xo2(x2),
Xy & Xy x Xy, and
Uy =2 Uy X Uygo.

We define the transitions of each component as being independent, conditioned on x. ;1.
The overall continuous evolution of the CPHA is determined by taking the union of algebraic
and difference equations for each component PHA. The equations F'(d) are then solved using
Groebner bases (Buchberger & Winkler, 1998) and causal analysis (Nayak, 1995) into the
standard form

Xet = f(Xc,t— 1, Ucit—1, Ve, t—1; Xd,t)

Yet = g(}’c,tfla Uct—1, Vy,t—1; Xd,t)~ (1)

The composition of a set of PHA is well-defined, provided that they satisfy compatibility
conditions; see (Hofbaur, 2003) for an initial development of this topic. In particular, PHA
are closed under composition; composing two compatible automata results in a valid PHA.
Due to historical reasons, we use the term Concurrent Probabilistic Hybrid Automaton
(CPHA) to refer to a composed model and reserve the term PHA for a single-automaton
model.

Using composition, the PHA for an acrobot body can be augmented using a PHA
model of the torque actuator, and a model of the angular position sensor, measuring 6.
A schematic of the CPHA is shown in Figure 3, and the full discrete transition model is
shown in Figure 4. The actuator exerts the commanded torque in the ok mode, but exerts
zero torque in the failed mode. The position sensor is modeled as adding Gaussian white
noise to the true value of 6.

2.2 Hybrid State Estimation

Given a hybrid model of the system, our goal is to estimate its state from a sequence of
control inputs and observations:

Definition 3 Hybrid State Estimation Given a CPHA model of the system CA and the
sequence of control inputs ug,...,us and observed outputs yo,...,y:, at time t determine
the conditional probability (Xqt,Xct) = D(Xd,t,Xe,t|Y1:t, Wo:t)-

The hybrid estimate of (x4, X.¢) can take on several forms, depending on the task
addressed. In fault diagnosis, one is typically concerned about the most likely mode (MAP
mode estimate) of the system or the distribution over the set of possible modes. In tracking,
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health: {ok, failed} ball: {yes, no}

Figure 3: A composed model for the acrobatic robot in Figure 1. Each component is mod-
eled with one Probabilistic Hybrid Automaton. The component automata are
shown in rectangles, with their state variables shown beneath.

actuator 00995 ball
0.99
06,2055

0.0005

. 1.0

Figure 4: Discrete transition model for the acrobot CPHA. If the actuator has failed, it
exerts no torque. When the robot catches the ball, ball=yes, and the mass of
the lower link increases.



on the other hand, the primary goal is to filter out the continuous state of the system.
In general, we can frame the hybrid state estimation problem as that of approximating
the posterior distribution over (x4, X.) and use this distribution to compute the derived
characteristics, such as the MAP estimate.

2.3 K-best Enumeration

Existing methods for hybrid estimation with CPHA models have used a k-best enumeration
approach(Hofbaur & Williams, 2004). This section outlines the approach.

The desired distribution p(xdyt,xc7t|y1;t,u0;t) can be expressed as a sum of posterior
distributions for all discrete mode trajectories that end in state xq;:

P(Xd s Xet|Yi:t, o) = Z P(Xd,0:6,Xe ¢ [Y1:45 Uo:t).- (2)

Xd,0:t—1

Each summand can be further expanded as a product of the posterior probability of the
discrete mode trajectory x4 1., and the posterior distribution of the continuous state, con-
ditioned on this mode trajectory:

P(Xd,o:ta Xc,t|y1:ta Ulo:t) = p(Xd,O:t|Y1:t, uo:t)p(Xc,t\Xd,O:u Yi:t, Uo:t)~ (3)

This decomposition leads to a natural representation of the belief state as a mixture of
Gaussians, one for each reachable mode trajectory x4 1. Given x41., the second term
can be approximated as a Gaussian, using a combination of a Kalman Filter and numerical
integration techniques, such as Gaussian Quadrature and Exact Monomials (Lerner, 2002b).
The weight of each mixture component is then computed using the belief state update
(Funiak & Williams, 2003)

P(Xd,0:t|¥1:t) = b(Xa,0:¢) < Po - Pr - b(Xq,0:t—1)- (4)

In this equation, Pr £ P(Xd.¢|Xd,0:4—1,Y1:4—1, Uo:¢) is the prior probability of transitioning to
a state x4, given the past mode trajectory and past observations; we refer to this as the
transition prior. Po = P(¥t|Xd,04, ¥1:4—1, Uo:¢) is the measurement update. Both Pr and Pp
can be calculated approximately(Hofbaur & Williams, 2004).

Naturally, tracking all possible mode sequences is infeasible; the number of such se-
quences increases exponentially with time. Indeed, inference in probabilistic hybrid models,
including SLDS, hybrid Bayesian networks, and CPHA, has been shown to be NP-hard
(Lerner & Parr, 2001). Nevertheless, in many domains, efficient inference is possible by
employing two strategies: pruning (branching) and collapsing (merging) (see Figure 5).
Pruning removes some branches from the belief state, based on the evidence observed so
far, while collapsing combines sequences with the same mode at their fringe to a single
hypothesis (Blom & Bar-Shalom, 1988; Lerner, Parr, Koller, & Biswas, 2000).

For mode estimation in purely discrete systems, k-best filtering methods have been
demonstrated to great effect(Williams & Nayak, 1996). K-best filtering methods focus the
state estimation on sequences with high posterior probability. Typically, a k-best filter
starts with a set of mode sequences at one time step and expands these sequences to obtain
the set of leading sequences at the next time step.

10
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Figure 5: Pruning (left) and collapsing strategies (right).

K-best enumeration has also been shown to be effective for hybrid estimation. One
approach is to expand all the successors of all sequences and compute their transition prior
and observation likelihoods (Lerner et al., 2000). With additional independence assumptions
on the model, such as those in CPHA, an efficient solution is to frame the expansion as a
search and solve it using a combination of branch and bound and A* algorithms (Hofbaur &
Williams, 2004). The pseudocode for this algorithm applied to CPHA is shown in Figure 7
and Figure 8. At each time-step ¢, k distinct mode trajectories are tracked. The algorithm
finds the k& most likely mode trajectories at time ¢ + 1, by performing a tree search. An
example of this tree search is shown in Figure 6 for the acrobot in Figure 1. Each node of
the tree is a partial assignment to the modes of the PHA components in the CPHA. The
leaves of the tree are those nodes for which a full assignment x4+, has been made, and the
observation probability Po = p(yi+1|Xa,0:¢+1,¥1:, Uo:t) has been calculated.

This tree can be searched efficiently using A* to find the k leaf nodes with the greatest
posterior probability p(xq o:+1|¥1:¢+1, Wo:t41) < Po - Pr - b(xq,0:¢). The transition prior Pr
can be separated into the transition priors for individual components, Pr;. Doing this and
taking the negative logarithm gives the cost of a leaf node, which is to be minimized:

~In(b(Xq 01411y 1:611, U0:)) = —In(b(Xq04)) — In(Po) Zln Pr;). (5)

For a node corresponding to an assignment to j of the n components, the cost g is
defined as:

J
g = —In(b(x4,0:t)) Z (Pr1). (6)

The cost to go can then be lower-bounded using the admissible heuristic function h:
n
- Z In(max py). (7)
I=j+1

Here, max p,; is the maximum value of p(xq¢11|Td s, Xc,t—1,Uq,) for component j over
all possible guard conditions. Since in the CPHA model this has a finite number of possible
values, computing this is straightforward.

11
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Figure 6: K-best successor enumeration for acrobot CPHA, framed as a tree search. The
root node is the initial mode at time ¢t = 0. Each node in the tree corresponds
to a partial assignment to mode variables at time ¢t = 1. With k& = 2, A* search
finds the two leaf nodes with the greatest b(x4,0.1), which correspond to the mode
trajectories up to t = 1 with the greatest posterior probability.
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1. Initialization

e create a node s corresponding to each non-zero value of p(x4,)
e initialize f(s) = —In(p(xq,0))
e initialize the estimate mean fcisg — E[xa,o\xfisé]

e initialize the estimate covariance P(()s) — Cov(xc,o|xf:()))

e add all nodes x((f()) to priority queue

2. Fort=1,2,...

(a) A* Search Step
o While size(new_kbest) < k do
— Remove node s from priority queue with lowest f = g + h: s « pop_from _queue()
— If s is a leaf node (has full assignment to component modes and Po computed), then
* Add s to new_kbest
— Else
* Expand node s to successors: expanded_nodes < expand_to_successors(s)
* Add expanded nodes to priority queue: push_onto_queue(expanded_nodes)
(b) Normalization Step

e Normalize new k-best nodes: normalize(new kbest)

Figure 7: Hybrid Estimation for CPHA using k-best Enumeration.

The algorithm in Figure 7 takes nodes from the queue starting with the lowest f = g+h.
The function in Figure 8 expands the node to its successors, which updates the cost g
using the transition function for the next component. If all of the components have mode
assignments, the cost is updated using the observation function Pp and put back onto the
queue. We use the modified observation function used by (Maybeck & Stevens, 1991), which
does not contain the pdf normalization term; the final step in the algorithm renormalizes
the posterior probabilities.

This search is guaranteed to find the leaf node with the lowest cost since h is an admis-
sible heuristic. The lowest cost node is removed from the tree, and the process repeats until
the k best leaf nodes are found. Hence the k-best mode sequences at ¢ + 1 successors can
be found without enumerating all of the possible mode sequences. The k-best enumeration
approach has been shown empirically to be an efficient technique for hybrid state estimation
in systems that exhibit autonomous mode transitions, nonlinear dynamics and concurrency
(Hofbaur & Williams, 2004).

This completes our review of CPHA and k-best enumeration. In Section 3 we develop
a complementary, stochastic method based on Rao-Blackwellised Particle Filtering. By
combining these methods, making use of the insight from the empirical comparison in
Section 6, we develop a robust, memory-efficient method that balances exploration and
exploitation (Section 5).
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1. Expand Node s to Successors

e If component number j < N
— Increment component number j: j «— 5+ 1
— For each possible transition of component j to mode x4,
* Update partial mode assignment with xq ¢
% Compute component transition prior: Pr; « p(xq ki‘xgl)«,o:tfl»YI:t*l’ u.t)
* Update node cost: g(s) < g(s) — in(Pr;)
* Update heuristic: h(s) « —>2)_,  In(maxpy)
— Return successor nodes
e Else
— Perform a Kalman Filter update: iﬁ“’f), f’gs),rgs), Sis) — UKF()%E‘?L17 Pi‘:)lx((;z)
— Calculate observation probability: Po «— p(y¢|Xd,1:t, ¥1:t-1)
— Update node cost: g(s) < g(s) — In(Po)
— Update heuristic: h(s) < 0
— Return successor nodes

Figure 8: Node Expansion for k-best Enumeration Algorithm.

3. Rao-Blackwellised Particle Filtering for CPHA

The key contribution of this section is an approximate Rao-Blackwellised particle filtering
(RBPF) algorithm for CPHA that handles autonomous mode transitions, that is, those that
depend on the continuous state, as well as nonlinear system dynamics and concurrency.

3.1 Overview of Rao-Blackwellised Particle Filtering for CPHA

Our first step in developing a mixed exploitation/exploration strategy for CPHA is to de-
velop a memory-efficient monte carlo filtering approach for CPHA, which complements
our greedy k-best approach for CPHA. To achieve memory-efficiency, we use particles to
represent Gaussian distributions conditioned on a particular mode sequence, and we de-
velop a Gaussian particle filter for CPHA as an instance of a Rao-Blackwellised Particle
Filter(Akashi & Kumamoto, 1977; Morales-Menéndez et al., 2002)

Our algorithm is illustrated in Figure 9. In the spirit of prior approaches to RBPF
(Akashi & Kumamoto, 1977; Morales-Menéndez et al., 2002), our algorithm exploits the
structure in the estimation problem and samples only the discrete mode sequences. Condi-
tioned on each sampled sequence, the new algorithm approximates the associated continuous
state distribution as a Gaussian in closed form, using an Extended (Anderson & Moore,
1979) or an Unscented Kalman Filter (Julier & Uhlmann, 1997). Each particle holds a sam-
ple trajectory xg}k , and the corresponding continuous estimate (fcgz, sz) ). This is described
in detail in Section 3.3.

The algorithm starts by taking a fixed number of random samples from the initial

distribution over the mode variables p(x40) (Step 1). For each sampled mode Xili)o’ the

corresponding initial continuous distribution p(xc,o\xgz]) is specified by the PHA model. At
each time-step, the algorithm then uses the model to expand the mode sequences of each
particle and to update the corresponding continuous estimates (see Figure 9, Step 2). This is

14



1. Initialization: 2.fort=1,2, ..

i) sample the mode sequences
acc. to proposal distribution q

° (@) q® q @ ®
AN (*)
o) ®
@ @ a® -
(o

. . ) iv) resample the mode sequences
with Kalman Filter importance weights w® acc. to importance weights

i j a&i Ye > / \ at(l) " ®
Q W 4./'.
V. \ @
i i a? |:1‘> a® O -~

[ (o)
a[(_? ::> a[(S) Q VV(Q) 4.\ @ ®
t

Figure 9: Rao-Blackwellised Particle Filter for PHA.

o

i) update continuous estimates iii) compute the

done by first evolving each particle by taking one random sample x((;;, for each particle, from
a suitably chosen proposal distribution q(Xd,t|x£Z)0:t_1, Y1:t, Uo:). Intuitively, the proposal is
a distribution close to the true distribution that we are trying to determine, p(xq+|Xq0.t—1 =
Xfi%;t_l,y'ht, u.); that is, the posterior probability of a given mode sequence given all of
the observations up to time ¢. The posterior distribution is difficult to calculate in closed
form, so instead we sample from the proposal distribution, which we choose to be easy to
calculate. We then compensate for the discrepancy between the proposal distribution and
the true distribution by assigning an importance weight wt(l) for each new mode sequence
xgz):t. Finally, the resampling step duplicates particles according to their weighting, thereby
adjusting the number of particles wherever the proposal distribution does not match the
desired distribution(Doucet, 1998).

In order to instantiate this algorithm we must define the proposal distribution and the
importance weight. For the proposal distribution we choose the distribution p(xq+|xq0.t—1 =
x&%:t_l,ylzt_l,u():t), which is the transition prior mentioned in Section 2.3. We show in
Section 3.4 that this distribution can be calculated efficiently, even when the model includes
autonomous mode transitions.

The importance weights then correct for the discrepancy between the proposal and the
posterior distribution by taking into account the latest observation y;. In Section 3.6 we
show that this can be computed using the Kalman Filter innovation.

Finally, in Section 3.7 the algorithm outlined in Figure 9 is extended to deal with

Concurrent Probabilistic Hybrid Automata.
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mok rT“ailed

P(X0%s0) ¢ (1) Initidization

(2) Importance sampling

TITT O (wY)

(3) Selection
Ly {Xl(l)}

Figure 10: The three steps of a simple particle filter for a PHA model with one discrete and
one continuous variable.

3.2 Rao-Blackwellised Particle Filtering

In this section we summarize briefly Particle Filtering for hybrid state estimation, and
review Rao-Blackwellised Particle Filtering.

Particle filters approx1mate the posterior distribution for the hybrid state x; with a set
of sampled sequences {Xo t} These samples are evolved sequentially and approximate the
posterior distribution p(x¢|yo.t, ug.t) as the probability density function

(@) = % > b0 (@) (8)

In the simplest solutions, the samples are taken from the complete hybrid state Xy x R™*,
and are evolved in three steps, as illustrated in Figure 10. In the first, initialization step,
the algorithm samples the initial distribution p(xg); thus, effectlvely approximating the

posterior at t = 0. Then, in each iteration, the sequences {x 4.0: 1 Xc0:t) are evolved by

< (9)

taking one random sample X;’ from an appropriately-chosen proposal distribution, and by
assigning importance weights that account for the differences between the proposal and
the posterior distributions. The final step selects a number of off-spring for each particle
according to its weight, thus duplicating the “good” ones and removing the “bad” ones.
In practice, sampling in high-dimensional spaces can be inefficient, since many particles
may be needed to cover the probability space and attain a sufficiently accurate estimate.
Several methods have been developed to reduce the variance of the estimates, including
decomposition (Ng, Peshkin, & Pfeffer, 2002) and abstraction (Verma, Thrun, & Simmons,
2003). One particularly effective method is Rao-Blackwellised Particle Filtering (Akashi &
Kumamoto, 1977; Casella & Robert, 1996; Doucet, 1998). This method is based on a fun-
damental observation that with some estimation problems, a particular part of the desired
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1. Initialization

e Fori=1,...,N draw a random sample r(()i) from the prior distribution p(ry) and let a(()i’) — p(so|r((;'))

2. Fort=1,2,...

(a) Importance sampling step
e Fori=1,...,N
— draw a random sample f“f') from the proposal q(rt|ré’;171,yojf,7u0:t)

— let f'(()li - (r(()’gl_l,i-iz))

. 0 2020
) . . ) p(yelES) yoe—1,u0)pEC IES) 1 yoie—1,uo;
e Fori=1,...,N, compute the importance weights: w{" — elFou Yor 5 Ojg (e IFoie 1 Yorem1 Moe)
q(F;" |Fg;_ 1 ¥0:e,U0:e)

e Fori=1,..., N normalize the importance weights wgi)

(b) Exact step

e Update agi) given 07@1: r,@, r,@l, Y, w—1, and u; with a domain-specific procedure (such as a Kalman Filter)

(c) Selection step

e Select N particles (with replacement) from {f((;l} according to the normalized weights {u?ti)} to obtain samples {rélz

Figure 11: Generic RBPF algorithm. (Murphy & Russell, 2001)

distribution can be determined efficiently without using a sampling approach. By factor-
ing out this portion, we obtain a more efficient approach that only samples the remaining
variables.

Formally, if we partition the state variables into two sets, r and s, we can use the chain
rule to express the posterior distribution p(xo.¢|y1.¢, uo:t) as

p(x0zt|y1:ta uO:t) = p(SO:ta I.0:1€|}’1:t> uO:t)
= p(SO:t|rO:t> Yi:t, uO:t)p(I.O:t‘YI:ta uO:t) (9)

Thus, we expand the posterior in terms of the sequence of random variables rg.; and in
terms of the sequence sg.; conditioned on rg;. The key to this formulation is that if we
can compute analytically the conditional distribution p(so.¢|ro.¢, y1:¢, Uo:¢) or its marginal
p(8t|ro:¢, ¥1:4, Uo:t), then we only need to sample the sequences of variables r.;, not (So.¢, ro:t)-
Intuitively, far fewer particles will be needed in this way to reach a given precision of the
estimate, since for each sampled sequence rg.;, the corresponding state space s is covered
by an analytical solution, rather than a finite number of samples.

In Rao-Blackwellised particle filtering (RBPF), each particle holds not only the samples

rgi:i, but also a parametric representation of the distribution p(s; \r((ﬁ?t7 y1:t) for each sample 1,
which we denote by agl). This representation holds sufficient statistics for p(s; |rg:1, ¥1:t), such
as the mean vector and the covariance matrix of a Gaussian distribution.? The posterior is

thus approximated as a mixture of the distributions agi) at the sampled points r(()g:
N
p(S0:t, To:t|Y1:4, Uoe) & Z o (1)6 i) (To:t)- (10)
1 0:t

2. Certain distributions can be encoded compactly in terms of a sufficient statistic. Given this statistic,
the distribution is defined completely.
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A generic RBPF method is outlined in Figure 11, and, except for the initialization and
the addition of the exact step, it is identical to the particle filter, illustrated in Figure 10.
Under weak assumptions, the Rao-Blackwellised estimate converges to the estimated value
as N — 4o00, with a variance smaller than the non-Rao-Blackwellised particle filtering
method with the same number of particles(Doucet et al., 2000). Hence the RBPF is superior
given a fixed number of particles; however, the run-time performance of the filter will depend
on the cost of the exact update for ail).

Having reviewed Rao-Blackwellisation, we now describe how we apply this concept to
PHA.

3.3 Rao-Blackwellisation for Hybrid Estimation with PHA

When estimating the hybrid state of Probabilistic Hybrid Automata, the posterior distri-
bution over the continuous state, p(Xc ¢|Xq,0:, Uo:t), can be approximated efficiently in an
analytical form using an Extended or Unscented Kalman Filter. We can, therefore, ap-
ply Rao-Blackwellisation to the hybrid estimation problem for PHA by taking r = x4 and
S = X. ‘

We sample the mode sequences X&%:t with a particle filter and, for each sampled sequence
ng); ;» we estimate the continuous state with a Kalman Filter. The result of Kalman Filtering
for each sampled sequence X((;)():t is the estimated mean )Acgz and the error covariance matrix
Pgi). The samples Xg)():t serve as an approximation of the posterior distribution over the

mode sequences, p(X4,0:t|¥1:¢, Uo:¢), while each continuous estimate (f(g%,Pgl)) serves as a

Gaussian approximation of the conditional distribution p(x¢¢|x40.+ = xS}OZ YLt up.t) £ ai.
Since the estimate <§cg, sz’)> merely approximates af, we are not performing a strict Rao-
Blackwellisation; nevertheless, the distribution will be accurate up to the approximations
in the Extended or the Unscented Kalman Filter. ‘

The continuous estimate for each new mode sequence xfl%:t is updated as shown in
Figure 9ii). Since in a PHA, each mode assignment d over the variables x, is associated

with transition and observation functions

Xet = f(xc,t—lv Ut—1; d) + vy (d>
Yetr = g(XC,taut;d)+Vy(d)7 (11)

we update each estimate fc((jz_l,ﬂ(i)l with a Kalman Filter, using the transition func-

tion f(x¢—1,u;—1;d), observation function g(x.¢, us;d), and noise variables vx(xgi) and
Vy (xfji), to obtain a new estimate <5<£Zz, Pt(i)>.
Hence Rao-Blackwellisation can be applied to hybrid estimation with PHA. We now

describe the rest of the algorithm in detail.

3.4 Proposal distribution

In particle filtering, the proposal distribution is chosen to be one that is close to the desired
distribution, but that can also be calculated efficiently in closed form. In this section
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Xgp1

Figure 12: Conditional dependencies in PHA among the state variables x., x4 and the out-
put y, expressed as a dynamic Bayesian network (Dean & Kanazawa, 1989).
The edge from x.; 1 to x4 represents the dependence of x;; on x.;_1, that is,
autonomous transitions.

we specify the proposal distribution q(xd7t|xg’)0:t_1, V1, Up:t) and show how it is calculated
efficiently, while taking into account autonomous mode transitions.

An autonomous mode transition is a form of guarded transition for which the transition
distribution p(Xg4.¢|Xd,¢—1,Xct—1,us—1) depends explicitly on the continuous state x.;—1. In
PHA, the transition distribution is specified as a finite set of guard conditions ¢ and their as-
sociated transition probabilities p,. Each guard condition specifies a region over the continu-
ous state and automaton’s input/output variables, for which p(x4¢|Xq¢—1,Xct—1,Ut—1) = Dr.
Hence the transition distribution is piecewise constant over x.;—1 (see Figure 13).

We choose the proposal distribution to be p(x44|Xq4,0:t—1 = X&%;t_p}’Lt—huo:t)- This
distribution expresses the probability of the transition from the mode x(%:t_l to each mode
Xq¢ € Xy and is similar in its form to the transition distribution p(x|x;—1) in a Markov
process. However, it is conditioned on a complete discrete state sequence and all previous
observations and control actions, rather than simply on the previous state. This is because
{xq+} alone is not an HMM process: due to the autonomous transitions, knowing only
Xg,—1 does not tell us what the distribution of x4, is. The distribution of x;4; is known
only when conditioned on the mode and the continuous state for the previous time step
(see Figure 12). Since the continuous state must be estimated, rather than being observed
directly, autonomous transitions make calculation of the proposal challenging.

We are able to calculate the proposal distribution efficiently for each tracked mode se-
quence x%:t_l by using the corresponding continuous estimate <§<2LI,P§21> as follows:
From the total probability theorem, the proposal distribution is equal to the joint distribu-
tion of x4 and x. 1, marginalized over x.;_1. The joint distribution can then be expressed
in terms of the discrete transition probability conditioned on the prev1ous state, and the con-
tinuous state distribution conditioned on the i-th sequence, p(x. ;- 1|X d.0:t—1> Y Lit—1, Uo; 1) = £

Oétfl‘
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Figure 13: Probability of a mode transition ball=no to ball=yes as a function of 6 ;1.

(4)
Xd70:t—17 Yiit—1, u0:t)

P(Xd,t

(4)
= / p<xd,t7xc,t—1’Xd70:t_17 Yit-1, uO:t) dxc i1
Xe,t—1
= (x4, /x5 (i1 |5} ) d
= P(Xdt1Xg 0:t—1> Y1:t—15 Xt =1, W0:t )P Xt —11X g 0.4 15 Y1:2—15 U0:t) GXep—1
Xe,t—1

=/ P(Xd,t|x((;,35_17xc,tfl,utfl)p(XC,t71|X,(jl7)o:t_1aYI:t—lauO:tfl) dxci—1 (12)
Xe,t—1

Here, the third equality comes from the independence assumptions made in the model;
the distribution of x4 is independent of the observations y1.;—1 and mode assignments prior
to time t — 1, given the state at time ¢t — 1.

The proposal distribution can therefore be expressed as an integral over two known

quantities; first, the transition distribution p(xd7t\x£z)t_1, Xc,t—1, Us—1), which is expressed in
the PHA model; and second, the continuous state distribution ai_l. The latter is approxi-
mated by the continuous estimate (f(((jz_l, PE?Q.

Typically, when performing Rao-Blackwellisation, the integral in Equation 12 is difficult
to evaluate efficiently(Murphy & Russell, 2001). In this section we show that for PHA,

however, efficient evaluation of this integral is possible.

For the piecewise constant transition distribution in PHA, the left term in the integral
in Equation 12, p(Xd,t|X§Z1,1,Xc,t71, u;_1) takes on only a finite number of values pr;(x4+).
Hence we can split the integral domain into the sets X; that satisfy the guard condition c;
and factor out the transition probability p;:

/ P(Xd,t\Xg,p Xet—1 ut—1)p(Xc,t—1 \X%:t,l yY1:it—1, uo:t—l) dXc 1
Xe,t—1

= § / P(Xd,tlx,(;)t,pXc,t—17ut—l)p(Xc,t—1|X£%;t,1,Y1;t—1,uo:t—1) dXc—1
— Jx.
J J

= pri(xas) / (et Xy 10 ¥ 1:0—1, or—1) A1
7 J

= _pri(xas) PrlX;] (13)
j Q1
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Here, Prai}l [X;] is the probability that guard condition c; is satisfied.

The second equality holds because, for the region X;, the conditional distribution
p(Xd,t|X£Z)t,1,Xc,t—1, u;_1) is fixed and equal to prj. Therefore, in each summed term, we
multiply the transition distribution p,; by the probability of satisfying the guard condition
¢; in the distribution agi_)l. Hence, the key contribution for PHA is that, given the prob-
ability of satisfying each guard condition c;, the proposal distribution for each sample ¢ is
calculated by summing over all of the possible guard conditions.

3.5 Evaluating the probability of satisfying transition guards

Given the derivation in the previous section, the remaining challenge in computing the
proposal distribution is to evaluate the probability of satisfying the guard condition cj,

(4)

given the distribution «,"”; = p(xcyt_llxg’)o:tfl, V1:t—1,Ug:t—1). For the following derivation,
we assume without loss of generality, that the guard conditions are only over the continuous
state.3 )

As described in Section 3.3, the posterior distribution agl_)l is approximated using a
Gaussian distribution with mean fcngl and covariance Pﬁ)l. The probability of x.; being
in the guard region X is then simply an integral over a known Gaussian distribution:

-1

(chﬁgfl—l)TPgl (xcfkg—l) dXC (14)

NI

1
Pr(X;] = 5 / e
agz) (27T)7Lc/2|PtZ 1|1/2 X]_

When the guard conditions are of the form =z < ¢ or z < ¢, for some constant ¢, such
as 01 < 0.55, the integral in Equation 14 simplifies to evaluating the cumulative density

(fz—l)x is the mean of variable

function D(c) of the normal variable N (i, 02), where p = (X,

(4)

x in kc;t_l and o2 = (Pgl))x is its variance (Figure 14):

D(c) & 1 / e~ @)/ gy (15)
— 0

oV 2T

The cumulative density function D(c) is evaluated using standard numerical methods, such
as a trapezoidal approximation or using a table lookup. In order to evaluate the probability
of the complementary guards x > c or x > ¢, we take the complement of the cumulative
density function, 1 — D(c).

The above forms of guard conditions can be viewed as a special case of a more general
form, in which x falls into an interval [I,u].*, where I,u are in the extended set of real
numbers Rt £ R U {—o0, +o0} that includes positive and negative infinity. In these cases,
the probability of satisfying a guard condition can be expressed as the difference of the c.d.f
at the endpoints of the interval, D(u) — D(1).

3. Guard conditions involving discrete or continuous input variables, such as cc(x¢) A cq(uq), are handled
by setting Pr_¢) [X;] = 0 whenever cq(ua) is not satisfied. More complex guards are transformed to a
t—1

number of simpler guards using elementary rules of logic.
4. Whether the interval is closed or open matters only if = can have a zero variance. It is straightforward
to generalize the discussion here to open and half-open intervals.
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Figure 14: Evaluating single-variate guard conditions.

We have previously used this technique with our k-best enumeration approach for
CPHA (Hofbaur & Williams, 2002a). Using this approach for RBPF, we are able to calcu-
late the proposal distribution in Section 3.4 efficiently for a particular class of autonomous
mode transitions; those whose guard conditions are singlevariate intervals. In Section 4.1
we generalize this method to apply to CPHA with multivariate linear guard conditions.

Within the CPHA modeling formalism, however, the transition distribution, that is,
p(xd7t|xfﬁ_1,xc,t,1, u;_1), is still constrained to be piecewise constant in x.;—;. We present
results that show that this contraint can be relaxed. In Section 4.2 we generalize the
approach in this section to calculate the transition prior p(xd7t\x((;’)0:t71,y1;t,1,u0:t) for
arbitrary polynomial transition distributions. This transition prior is used in the Rao-
Blackwellised Particle Filter, as the proposal distribution, and in k-best enumeration. Hence
this contribution expands the class of autonomous mode transitions that can be handled by
both approaches to hybrid estimation.

3.6 Importance weights

In this section we describe how, given our choice of proposal distribution, the importance
weight can be calculated. The importance weight compensates for the discrepancy be-
tween the proposal distribution, which we chose to be the transition prior p(xd’tlxd,oﬁ_l =
Xg%];tfpylit*l? ug.), and the desired distribution, p(xg¢|x40:—1 = xg)():tfl,ylzt,u():t). The
im7portance weight determines how many duplicates of a given pafticle are generated,
thereby adjusting the number of particles for which the proposal distribution did not match
the desired distribution. In our case, the importance weight incorporates the latest obser-
vation in order to update the prior distribution, to give the posterior distribution.

Given our choice of proposal distribution, the weights w§l) simplify to

%) < (1) 2 (7)
(@) & p(Yt‘Xd,O:w YO:t—l)p(det‘deozt_l’ Yoii—1) "
wy = L) (D) = p(yelXY s Yor—1, t0t) (16)
q(xd,t; Xd,O:t717 yO:t)

This expression represents the likelihood of the observation y;, given a complete mode
sequence ig’,)&t, inputs ug.¢, and previous observations yo.;—1. PHA, like most hybrid models,
do not directly provide this likelihood and only provide the probability of an observation
y, conditioned on the discrete and continuous state. This likelihood is approximated using
the Kalman Filter innovation at time t as follows: "

(2

In the Kalman Filter predict/measurement cycle, the Gaussian distribution o, =

N ()22?5_1, Pgi_)l) is propagated through the continuous transition and observation functions

22



for mode xfﬁ (Equation 11). For SLDS models, this gives a Gaussian distribution for

)

the observed value y;, with mean y, and covariance St(i . The Kalman Filter innovation,
r =Yy; — Yy, is defined as the difference between the expected observation and the actual
observation. For SLDS models, the observation likelihood in Equation 16 is calculated

exactly as

'U)(Z) — 1 6—0.5I'T(S§i))_1r (17)
(2m) /218712

(Blom & Bar-Shalom, 1988).

A similar approach leads to an efficient approximation of the weight in the case when the
model contains nonlinear dynamics and autonomous transitions. Due to the nonlinearities
and autonomous transitions, the conditional distribution ozgi)l = P(Xc,t71|5<((1%:t7 Y0:t—1, Uo:t)
is no longer strictly Gaussian. Nevertheless, if we approximate it with the estimated Gaus-
sian NV (fcngl,Pgif)l), as we have done in the previous subsections, we can compute the
weight in Equation 16 from the Extended(Anderson & Moore, 1979) or the Unscented (Julier
& Uhlmann, 1997) Kalman Filter measurement update. For example, with an Extended
Kalman Filter, the observation likelihood is computed by first propagating the Gaussian

distribution N/ (fcgz_l, Pgi_)l) through the system model in mode x((;%:

200 = £x0)ue) (18)
of  _u

A = SR (19)

P = AP[TAT+q, (20)

where Q = cov(v, (ng) is the system noise in mode xg%. This leads to the observation

prediction y, with covariance Sgi):

o (i—)

Yp = g(xc,t 7ut) (21)
8g ~(i—

C = ol (22)

s = cpP!cT +R, (23)

where R = cov(vy(xg%)) is the observation noise in mode XS?&' The observation likelihood

in Equation 16 can then be approximated with normal p.d.f.

w® — 1 o057 (8{) e (24)
(2m)/2(8; /2 |

We have therefore presented an novel, approximate Rao-Blackwellised particle filtering
algorithm for Probabilistic Hybrid Automata. This is able to handle autonomous mode
transitions and nonlinear dynamics. in Section 3.7 we extend this method to handle con-
current Probabilistic Hybrid Automata (CPHA).
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3.7 Rao-Blackwellised Particle Filtering for CPHA

In practice, a model will be composed of several concurrently operating automata that rep-
resent individual components of the underlying system. In this manner, the design of the
models can be split on a component-by-component basis, thus enhancing the reusabiliy of
the models and reducing modeling costs. In this section we extend our Rao-Blackwellised
Particle Filter for PHA, developed in the previous section, to handle concurrent PHA mod-
els; see Section 2.1 for an overview of CPHA.

In CPHA, components transitions are conditionally independently, given the current dis-
crete and continuous state. Therefore, it is possible to compute the transition probabilities
P}l) for each tracked mode sequence component-wise (Nayak & Williams, 1997)(Hofbaur &
Williams, 2002a). This property is exploited by our algorithm in the importance sampling
step, whereby the samples are evolved according to the transition distribution Pz on a
component-by-component basis.

Recall that the algorithm in Section 3 sampled the mode sequences accordmg to the
proposal distribution q(xdt\det Y1 o) = p(th‘XdOt 1»Y1i—1, Up: 4) = Pq(—l)t This
represents the prior probablhty of being in the mode x4; at time t, conditioned on the
previous sequence of modes X((;,)Ozt_l and observations y1.;_1, leading to that mode. Given
this choice of the proposal, the importance weights simplify to

w = plyex(h, yi-1,u0:4) 2 P, (25)

When sampling mode sequences in CPHA, we use the same proposal distribution. The
only difference is that now, instead of computing the transition probability for every value in
the domain X; of the discrete variables x4, we evaluate it only for the individual component’s
discrete domain Xy ;, and obtain the joint transition distribution p(Xd,t’X&%i_pY1:t—1,u0:t)
as a product of component transition distributions Hj P(Xd;j¢|Xdj,0:t—1,Y1:4—1, Uo:t), for all
components j in the model (see Section 3.4).

The final algorithm is shown in Figure 15.° To summarize, using a Rao-Blackwellised
Particle Filtering approach, this algorithm is able to estimate efficiently the hybrid state
of Concurrent Probabilistic Hybrid Automata, which have autonomous mode transitions,
nonlinear dynamics, and many concurrently operating components.

4. Generalizing Autonomous Mode Transitions

In this section we extend the class of autonomous mode transitions that can be handled by
both k-best enumeration and Rao-Blackwellised Particle Filtering for CPHA. We describe
the generalization to multivariable linear transition guards, in the case of piecewise constant
transition distributions, and to polynomial transition distributions of arbitrary order, in the
case of single variables.

5. Note that, compared to the generic RBPF algorithm in Figure 11, the importance weight is now calculated
after the exact step, because the innovation mean and covariance, computed in the Kalman Filter update
step, are used to compute the importance weight.
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1. Initialization

e Fori=1,...,N

— draw a random sample x&) from the prior distribution p(x4,)

()

— initialize the estimate mean X, < ]E[XC,O‘X[(;})

— initialize the estimate covariance P(()i) — C()U(cholx(;.)o)

2. Fort=1,2,...

(a) Importance sampling step
e Fori=1,....N
— For each component k

* compute the transition distribution p(xdk,t|xfji.0:t_17yu,l,u();t)

+ sample %0/} ~ (x |x(i) ug.t)
p dit k ~ P\ Xdkt1Xgp 0410 Y1:t—1, 002

—let X, — (X1 Ry 1002y )
(b) Exact step
e Fori=1,...,N
— perform a KF update: 5<£2 t> r,@,Sgi) — UKF(X(,)f 1,P£ )1, ~[(135)
— compute the importance weight: w§i> — /\/(rgi), sﬁ“)
(c) Selection step
(@)

e normalize the importance weights w,

e Select N particles (with replacement) from {(xd " ~£’§, ~t(i)>} according to the normalized

weights {1\"} to obtain particles {(xdm7 A((Zg Pgl))}

Figure 15: Rao-Blackwellised Particle Filter for CPHA.

4.1 Multi-variate guard conditions

The key challenge in handling autonomous mode transitions is to compute the transition
prior p(Xg, t\Xd 0:—1> Y1:t—1, Uo:t) efficiently.
In the case of CPHA, this probability can be expressed as a sum over a finite number
of terms, where each term is a product of the probability Pra(i) [X;] of a guard condition
t—1

¢; being satisfied, and the corresponding transition probability pr; (Equation 13). The
remaining challenge is to calculate Pra@) [X;]. Our previous work showed how this can
t—1

be carried out efficiently for guard conditions that are single-variate intervals(Funiak &
Williams, 2003)(Hofbaur & Williams, 2004). In this section we show that this can be
generalized to rectangular and linear multivariate guard conditions.

4.1.1 RECTANGULAR MULTIVARIATE GUARD CONDITIONS

Multivariate guard conditions are often needed to represent more complex constraints on
transitions than can be handled by single-variate interval conditions. For example, consider
a system with two tanks, connected by a pipe at height A. The mode transitions for the
flow between the two tanks are constrained by how the fluid heights in the two tanks, A
and ho, compare to h. In this system, the transition into the no-flow mode would be
conditioned on the guard condition (h; < h) A (ha < h).

In general, the rectangular multi-variate guard conditions will take the form A;.;(z; €
[l;,u;]), where z; are distinct continuous state variables and I = {i1, ... i, } are their indices.
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Figure 16: Rectangular integral over a Gaussian approximation of the posterior density of
hy and hy, p(hi, h2\X£Z%:t,17Y1:t—1,uo:t—1)-

Evaluating the probability of such a multi-variate guard condition amounts to evalu-
ating the multi-dimensional (hyper)rectangular integral over a Gaussian distribution (see
Figure 16):

Pr [X } ~ ; /Uil /Ui2 e /uzn e_%(xc—f(c,l)TPI71 (Xc—f(c,[) dX (26)
~ CH
o0 e e S

where X, 1 is the mean of guard values, selected from the continuous state estimate fc((fz_l,

and P; is the covariance matrix of guard values, selected from the estimate covariance Pgl_)l.

Rectangular integrals over Gaussian distributions are evaluated efficiently using numerical
methods, such as those presented in (Joe, 1995; Genz & Kwong, 2000). As an alternative,
one could use Monte Carlo methods to evaluate the integral 26. Numerical methods tend
to perform better, hence this is the approach used in our system.

4.1.2 LINEAR MULTI-VARIATE GUARDS

Sometimes, transition guards are best represented by a linear combinations of continuous
variables. For example, in a two-tank system, the direction of the flow between the two tanks
depends on the heights in the two tanks. Hence, the mode variable for the flow direction
would be guarded by the linear guards hy — he > 0 and h; — he < 0 (see Figure 17).
While it would be possible to include h; — hy as a derived state variable in the model,
doing so would increase the computational complexity of the Kalman Filter update by
one dimension, and would make the covariance matrix singular. A singular covariance
matrix prevents the Kalman Filter update essential to the Rao-Blackwellised Particle from
being carried out. Instead, we apply a linear transform to the Gaussian distribution, thus
reducing the computation to an instance of the rectangular multivariate integral performed
in Section 4.1.1.
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Figure 17: Linear guard condition ho < h; over the Gaussian approximation of the posterior
density of hy and he.

Suppose that the guard condition ¢ is expressed as a conjunction of clauses A7l <
a;x. < u;, where a; is the vector of guard coefficients that specify condition ¢;. Such guard
conditions correspond to a convex space that is formed as an intersection of hyper-planes
l; < a;x, and a;x, < u;. A = [al as ... an]T be the matrix of the guard coefficients
and define z £ Ax.—1 be the derived vector with n elements. Then the guard condition
c 2 N1l < ajx. < u; is equivalent to the guard condition Al l; < z; < u;. The
probability of the guard condition ¢ being satisfied can thus be evaluated as an integral

Uiy [Uig Uiy, (@)
/ / e / P(Ze|Xg 0.4 1, Y1:—1, Uoi—1) dXe, (27)
by, Ji, L,

over the rectangular region [I1,u1] X [lo, us] X -+ X [ln, Up].
For this general case, the posterior distribution of z is as intractable as the posterior

(4)

distribution atz_l of x.¢—1, thereby defeating the purpose of the proposal distribution. How-

ever, since we approximate ozgi)l with a Gaussian N (fcgizfl,Pg?l), the distribution of z is
Gaussian, with a mean Afc((fz_l and a covariance AP§Z_)1AT. Therefore, the key result is
that the linear guard conditions can once again be evaluated as a rectangular integral over

a Gaussian distribution.

4.2 Polynomial Transition Distributions

The PHA formalism specifies a finite set of guarded transitions between discrete modes, each
with a constant transition probability, given that the guard condition is satisfied. Hence the
transition distribution p(xd’t]x((jg_l, Xc,t—1,W—1) is piecewise constant in x.;—; (Figure 13).

In this section we present a method for calculating the transition prior, in other words
p(Xd,t|Xé%;t_1, V1:t—1, Up:t), when the transition distribution p(Xd,t|X£Ig_1,Xc,t—1, u;_1) is not
piecewise constant. In particular, we show that the integral in Equation 12 can be calculated

27



0.01 -

T

Tsafe crit

Component Temperature

Figure 18: Probability of transition into failed mode for a simple component as a function
of temperature. Below the safe temperature, Tyq., there is a small failure
probability. Above this, the failure probability increases linearly until T..;, at
which point failure is guaranteed.

efficiently when the transition distribution is described by a piecewise polynomial function
of arbitrary order, for transition distributions defined over a single variable. An example of
a piecewise polynomial transition distribution is shown in Figure 18.

This contribution greatly expands the class of models about which our hybrid estima-
tion approaches can reason, since piecewise polynomial functions of arbitrary order can
approximate any piecewise smooth function to arbitrary accuracy.

For a transition distribution defined over a single variable z in x.;_1, meaning that,

p(xd,t|xg_1,xcyt_1, uq) = p(xd7t|x£;1_1,x, u;_1) the transition prior can be written as:

(X, |X£ll,)0:t—l’ Vi:—1,U0:¢)

= /p(xd,t|x¢(ﬁ_1v Zz, utfl)p(myxt(jl;)o;t_p Yit-1, U—U:tfl) dx. (28)

As in Section 3.5 we approximate p(a:|x§l%:t_1,y1:t,1,u0;t,1) using a Gaussian distri-
bution with mean p and covariance o. As before, we assume the cumulative distribution
function D(c), given by Equation 15, can be calculated efficiently.

If p(xd,t\ngl,x, u;_1) is piecewise constant in x, the transition prior is evaluated using
the method described in Section 3.4. This requires the evaluation of D(c) at the boundary
values of every guard condition. Consider now the case where the transition distribution is
piecewise linear in x:

(4)
Xd,t—l,%ut—l) = ao,j + a1

x e Xj (29)

P(Xd,t
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When calculating the transition prior in Equation 28, the integral can be split into a
finite number of integrals of the following form:

/ p(xaex$)_y w w)p(alxh, . yie-1,u0s1) da
X

1
G Z/ (a0, + a1,j)ze” @127 gy (30)
TS

oV2m

The integral for each guard condition can be rewritten as:

/ ayj(x — p)e” @) gy 4 / (a0 + a1 jp)e @M/ gy (31)
i X;
We now use the result that the integral,
Y e @—)?/(20%) _ [ 2 —(z—p?/202 "
/l (x —pe dx { o‘e L (32)

can be calculated in closed form using a substitution of the form v = (z —u)?. Assuming
the guard region X; takes the form x € [I, u] this means the first term in Equation 31 can be
calculated in closed form. The second term in Equation 31 is an interval integral over the
Gaussian p.d.f. for x, and this is evaluated using the the cumulative distribution function
D(c), as in Equation 15. Hence for linear transition functions, the transition prior can be
calculated efficiently.

We now generalize this result to polynomial transition functions of the form:

p
P(xaalxg) s u1) = Y aiga’
=0
T € Xj. (33)

The transition prior in Equation 28 can now be decomposed further, according to each term
of the polynomial:

/p(Xd,t!X,(ﬁg_l , T, ut—1)p($|X£Z2):t_1 ,Y1:t-1,U0:¢—1) dv
X
:E E / az‘,jxip(xfxg,)o;t,pY1:t—1,uo:t—1) dx. (34)
i 7

The polynomial in Equation 33 can be rewritten as:

np Np
Z azﬂmz = Z a;,j(x - :U')Zv (35)
1=0 =0

and correspondingly the transition prior can be written as:

/p(Xd,t!X((ﬁ_pwv ut—l)p($|X$)0:t_1,Y1:t—1, ug-1) dx
1 ' i —(2—p)?/(20%)
= — a; (x —pu)'e dx 36
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By repeated integration by parts, the more general form of the integral in Equation 32,

/ (2 — p)ie= @212 gy
l

= {—02(:17 — M)i_le_(x_ﬂ)2/20'2:|

u

T / (i — 1)(z — p) 202 =W 129% g (37)
l

can be reduced to a summation of closed form terms, plus either the integral in Equation 32,
in the case of odd i, or the integral in Equation 15, in the case of even 7. In the first case the
integral is evaluated entirely in closed form, while in the second case the only non-closed
form term is the integral over the p.d.f., which is evaluated using D(c). Furthermore, all of
the terms that cannot be evaluated in closed form are scaled versions of the same integral
over the p.d.f.; hence, D(c) needs only to be evaluated at the boundaries of the guard
regions, as was the case for the piecewise constant transition function.

Thus, for transition distributions over single variables, the transition prior is calculated
efficiently for transition distributions that are piecewise polynomial. This contribution
greatly expands the class of models about which both Rao-Blackwellised particle filtering
and existing k-best methods for CPHA can reason, since piecewise polynomial functions of
arbitrary order can approximate any piecewise smooth function to arbitrary accuracy.

5. Hybrid Estimation using a Mixed Stochastic/Greedy Method
5.1 A Unified Treatment of k-best Enumeration and RBPF

Our objective, as stated in the introduction, is a robust, memory efficient method for Gaus-
sian filtering of CPHA. Robustness is achieved by balancing exploration with exploitation,
while memory efficiency is achieved by using a mixture-of-Gaussians representation. To this
end, Section 2.3 described our previous method for Hybrid Estimation with CPHA based
on greedy successor enumeration. Section 3 described a new exploration method based on
Rao-Blackwellised Particle Filtering. These methods lend themselves to unification, in that
they represent the belief state as a mixture of Gaussians, with each Gaussian representing a
mode trajectory X4 o.t, and in both methods the continuous distribution, conditioned on each
trajectory, p(Xc ¢|Xq,0:4,¥1:+) may be approximated using a Kalman Filter. In addition, both
methods use the same approach to evaluating the transition prior p(xa+|X4,0:t—1, Y1:t—1, Uo:t)
in the presence of autonomous mode transitions.

Finally, both methods approximate the posterior belief state by tracking only a subset
of the reachable mode trajectories. The key difference between the two methods is the
approach used to select which mode trajectories to track; k-best enumeration greedily selects
the k trajectories with the highest posterior probability p(x4,0.t|y1:¢), while RBPF uses
stochastic sampling. To gain insight into the relative behavior of these two methods, and
their appropriate combination, in Section 5.2 we evaluate their performance on a fault
detection scenario. We show that for a posterior distribution that is flat across many
distinct hypotheses, stochastic methods can be more successful than greedy enumeration.

However by representing the posterior probability p(x41.|yi:+) using the number of
repeated particles, RBPF introduces additional approximation and typically reduces the
number of distinct trajectories tracked at any time. This means that for a relatively con-
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(a) Failure detection with k-best enumeration (b) Failure detection with RBPF

Figure 19: In (a), the trajectories are shown ordered in terms of their posterior probability,
with the most likely at the top. Trajectories below the dashed line are discarded.
The true mode trajectory is shown in bold. In (b), the question mark indicates
that the generation of the successor corresponding to the true trajectory is gen-
erated stochastically.

centrated posterior, k-best enumeration will typically outperform RBPF. These results are
demonstrated in Section 6 using the simulated acrobatic robot.

In Section 5.3 we develop a new algorithm that unifies the two approaches, exploiting the
differences between them in order to increase the robustness of the algorithm to changes in
the variance of the posterior distribution. In Section 6.1 experimental results are presented
that validate this insight.

5.2 Comparing Greedy and Stochastic Search

Consider the acrobatic robot modeled in Figures 1, 2 and 3.

Suppose that the robot does not carry a ball, and its actuator is functional, up to time
step tp, when a failure occurs. As illustrated in Fig. 19(a), the k-best enumeration algorithm
maintains the nominal trajectory, and will detect the failure, as long as a trajectory with the
fault transition is among the set of leading trajectories at (or near) the time when the actual
fault occurs.® By contrast, with the RBPF, mode transitions are sampled stochastically
(Fig. 19(b)). For the true trajectory to be tracked, the mode transition into the failure

6. It is insufficient to consider the fault transition several time steps later. A mode trajectory that has the
fault trajectory occurring much later will have an estimate of the continuous mode that does not match
the observations.
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state must be sampled. Since this transition has a low prior many particles will be needed,
in order to detect the fault.

Now, consider a modified model, in which the probability of catching a ball is 0.5, rather
than 0.01. In addition, let the mass of the ball be small, so that the effect of catching a
ball, on the observations, is relatively small. In this case, the posterior distribution over the
trajectories will be flat, as there will be many trajectories in the belief state that oscillate
between the robot having and not having a ball. Initially, these trajectories will have higher
posterior probabilities than the ground-truth trajectory, because they have much higher
priors than the failure, and it takes several time steps before the evidence for the failure
builds up. The RBPF, on the other hand, will occasionally generate a fault sample even if
there are many alternative trajectories that have a higher posterior probability. The fault
trajectory may thus be present in the set of trajectories despite having a lower posterior
probability than other candidate trajectories. This behavior makes the RBPF more robust
to local maxima.

To summarize, the advantage of k-best enumeration is that it stores the posterior prob-
ability of each trajectory exactly, rather than approximating the probability by a number of
repeated particles. This observation has been noted in the past (Lerner, 2002b). However,
the ability of k-best enumeration to track the true trajectory is critically dependent on the
number of alternative trajectories with high posteriors in relation to the number of tracked
trajectories k. In particular, if the posterior distribution over the trajectories is flat, k-best
enumeration will not consider the right trajectory, and the RBPF performs better. This
observation motivates the development of our algorithm that combines k-best enumeration
and RBPF in a greedy and stochastic search.

5.3 A Novel Combined Greedy/Stochastic Algorithm

In this section we present a novel algorithm that combines the greedy and stochastic ap-
proaches, of k-best enumeration and RBPF respectively, to explore the discrete mode tra-
jectories of the system (Fig. 20). The algorithm maintains two sets of trajectories: one set
of stochastically generated trajectories, updated with RBPF, and a separate set of leading
trajectories, enumerated according to their posterior probability. The key idea is to generate
successors to the leading k trajectories through both previously deterministically generated
successors to the current k leading trajectories and the candidates generated by the RBPF.
In this manner, the true trajectory that was discarded by simple k-best enumeration on the
basis of having a lower posterior probability than other trajectories can still be tracked in
the RBPF particle set and included in the deterministic set at a later time. In Section 6
we show empirically that the new algorithm is more robust than k-best and RBPF taken
individually, with only a minor performance penalty.

The combination of greedy and stochastic search introduces two challenges. First, in
order to enable the comparison of the two sets of trajectories, based on the posterior prob-
ability, each particle needs to be augmented with b(x41.¢), the posterior probability of a
mode sequence X4 1.¢. This can be updated with Eq. 4, by reusing the values Pr and Fop,
computed in the importance sampling step of the RBPF.

Second, trajectories generated by both greedy and stochastic search must be combined
to give the belief state maintained by the mixed algorithm. Both techniques maintain a
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Figure 20: Failure detection with our mixed method. At time ¢ the true trajectory (bold
line) is no longer among the trajectories with the k highest posteriors. However,
the true trajectory is sampled stochastically and becomes a member of the RBPF
particle set. At time tp,q, the posterior of the true trajectory becomes large
enough for it to be included in the leading k trajectories.

RBPF particles

number of trajectories and a Gaussian distribution over the continuous state, conditioned
on each trajectory xq1... The belief state representation in the new algorithm is a mixture
of Gaussians, obtained by summation over the k trajectories with the highest b(x41.+) from
both RBPF and greedy successor enumeration.

The pseudocode for the resulting algorithm is shown in Fig. 21. Part 2(b) of the al-
gorithm implements an A* search for the k successors with the highest posterior. As in
Section 2.3, partial paths in the search tree correspond to partial assignments of modes to
components. A goal candidate is one that has a full assignment of modes, and for which the
posterior probability b(x41.:) has been calculated. The two key additions to the method in
Section 2.3 are as follows:

1. Addition of RBPF particles to search queue: In 2(a), the RBPF update step is carried
out as described in Section 3.7, and the resulting particles are added to the search
queue as candidates. To ensure soundness of the A* search, candidates are added
with the unnormalized observation function used by (Maybeck & Stevens, 1991).

2. Checking for uniqueness: Many identical candidates are generated by RBPF and
added to the search queue. The set new _kbest, however, holds unique trajectories.
Part 2(b) ensures that unique trajectories only are added to the set of k best.
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1. Initialization

e Initialize Rao-Blackwellised Particle Filter with N — & particles
e Initialize k-best trajectories

2. Fort=1,2,...

(a) RBPF update
e Do RBPF update and add candidates to priority queue

(b) A* search for successors with highest posterior

e Add current trajectories to priority queue
o While size(new_kbest) < k do
— Remove candidate from priority queue
— If candidate is a goal then
x Pop candidates until a unique one is found
* Add unique candidate to new_kbest
— Else
* Expand candidate to its successors
* Add successors to priority queue
e Normalize new k-best trajectories

Figure 21: Belief state update using greedy and stochastic search.

In the code shown, uniqueness is ensured by removing duplicate candidates from the
priority queue until a unique candidate is found. This relies on the fact that identical
candidates will be neighbors in the priority queue. Alternatively, candidates can be checked
for uniqueness when they are pushed onto the queue.

6. Experimental Results

In this section we present three main contributions. First, using individual estimation
runs, we demonstrate empirically the insight in Section 5.2, that both k-best enumeration
and Rao-Blackwellised Particle Filtering can perform poorly depending on whether the
posterior distribution is concentrated in relatively few mode trajectories, or is flat across
many. Secondly, we perform a detailed empirical analysis of the relative performance of k-
best enumeration and RBPF that confirms this result and illustrates the need for our robust
algorithm that balances the complementary approaches of greedy exploitation and stochastic
exploration. Finally, we demonstrate that the new mixed algorithm is significantly more
robust than either approach alone. We do not compare the Rao-Blackwellised approach with
a standard particle filtering approach, since this analysis has been carried out extensively by
Doucet, Gordon, and Krishnamurthy (2001b), Morales-Menéndez et al. (2002), Hutter and
Dearden (2003); this analysis revealed that Rao-Blackwellisation increases the efficiency of
the particle filtering approach dramatically.

We consider the acrobatic robot introduced in Section 2.1. In this model, the system
dynamics are represented by four continuous variables: 61, the angle that the robot holds
with the vertical plane, 62, the angle between the robot’s torso and its legs, and the cor-
responding angular velocities wy and we. The discrete state of the hybrid model for this
system consists of two variables, representing whether or not the robot holds a ball on its
lower link (variable ball) and whether or not its actuator has broken (variable actuator).
The complete discrete transition model is shown in Figure 4. The goal of hybrid estimation
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Figure 22: The evolution of #; (left) and 03 (right) for the acrobot model scenarios.

in this case is to filter out the acrobot’s hybrid state from a sequence of noisy observations
of (92.

While the acrobot model is small, it demonstrates interesting challenges for hybrid state
estimation. First, the dynamic model for a two-link system such as the acrobatic robot is
highly nonlinear. Second, with four continuous state variables, the hybrid model is already
too large to be handled by non-Rao-Blackwellised particle filters in real time. Third, the
symptoms exhibited by mode changes are very subtle. Over ten time steps, the difference in
the continuous trajectory between the nominal and failure scenarios described below is less
than 0.04rad, which is the standard deviation of our chosen observation noise. Furthermore,
experimental results using a small model yield insight about the underlying algorithms much
more easily than a larger one. Finally, whether a particular hybrid estimation problem
is challenging or not is not necessarily related to the size of the underlying model; in
particular, we show in this section that other factors, such as the concentration of the
posterior distribution, can be more important.

We considered the following three scenarios for hybrid estimation with the acrobot
model:

1. In the nominal scenario, the robot remains in the nominal mode (ball=no, actuator=ok)
for the duration of the experiment.

2. In the ball scenario, the robot captures a ball at time t = 1.3s and keeps it for the
rest of the experiment. Capturing a ball increases the weight mo at the end of the
lower link and changes the resulting trajectory, as shown in Figure 22.

3. In the failure scenario, the robot’s actuator breaks at ¢ = 1.5. This event causes the
actuator to stop exerting any torque, and alters the robot’s trajectory, as shown in
Figure 22.
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Figure 23: A single run for the ball capture scenario with concentrated posterior.
Left: Maximum a posteriori (MAP) mode estimate computed by the Rao-
Blackwellised Particle Filter (rbpf) and the k-best filter (kbest). Right: proba-
bility of the correct diagnosis (ball=yes, actuator=ok) for ¢t > 1.3s.

6.1 Individual Estimation Runs

In this section we present results for hybrid estimation with the ball scenario and the failure
scenario for single executions of the k-best algorithm and the new Rao-Blackwellised Particle
Filter algorithm for CPHA.

6.1.1 CONCENTRATED POSTERIOR

First, we examine the original acrobatic robot model, shown in Figures 2 and 4. In this
model, the probability of a ball transition is 0.01 and the probability of an actuator failure is
0.0005. The mass of the ball is 4kg. Since all transitions have low priors, the true posterior
distribution is concentrated in a relatively small number of discrete mode trajectories.

Figure 23 shows the maximum a posteriori (MAP) estimate of the discrete state by
k-best and RBPF estimation filters for the ball scenario, for a single simulation run with
100 tracked sequences. Both k-best and RBPF algorithms estimate the MAP diagnosis
correctly, except for an uncertain area close to the transition. In this uncertain area, the
probability assigned by both filters to the correct diagnosis drops to less than 0.1, eventually
returning to approximately 1. The reason for the delay between when the ball transition
occurs, and when it is identified as the most likely diagnosis, is that the posterior probability
of the true mode trajectory builds up only over time. The low probability of a transition
to (ball=yes, actuator=no) biases the prior towards the (ball=no, actuator=ok)
diagnosis. Only over time does the observation likelihood due to the correct diagnosis build
up to compensate for this bias.

The new Rao-Blackwellised Particle Filter has tracked the continuous state of the ac-
robot system very well, even for the continuous states 61, w1, and we which were not directly
observed. Figure 24 shows the tracking of 8, for the ball scenario. The tracked estimate for
both k-best and RBPF is very close to the ground truth.
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Figure 24: Filtered 6; for an execution of the ball scenario.

Figure 25 shows the results for a single simulation run with the failure scenario. In this
case the k-best algorithm is able to diagnose the fault after a delay. 7 The probability
assigned to the ground truth drops close to zero immediately after the fault, but gradually
increases as the observations reveal that this is in fact the most likely diagnosis. However
the Rao-Blackwellised Particle Filter does not diagnose the correct mode, even after several
seconds. The probability assigned by the filter to the ground truth drops to zero just after
the transition, and remains there. As described in Section 5.2, this is because the low prior
of the fault transition makes it unlikely that the true mode trajectory is sampled unless
many more particles are used. The true mode trajectory is therefore discarded. By contrast,
k-best enumeration is able to retain the true mode sequence, since the posterior distribution
is concentrated in relatively few mode sequences.

6.1.2 FLAT POSTERIOR

We now consider single simulation results for a modified model, in which the posterior
distribution is spread out across many distinct mode trajectories. The modified acrobot
model has the same components as before, however the model parameters are different.
The new transition priors are shown in Figure 26. Note that the probability of the acrobot
catching a ball has changed from 0.05 to 0.5. Also, the mass of the ball is decreased to
1kg. The increased transition probability means that whenever #; > 0.55 the number of
mode sequences with a high prior grows exponentially. Because the effect of a transition on
observations is initially small, a large number of distinct trajectories will have high posterior
probability.

The modified acrobot model is an example where the fair sampling of the Rao-Blackwellised
Particle Filter can outperform the greedy search in the k-best filter. In the failure scenario,
for example, where the actuator stops exerting torque, over a small number of time steps
the difference between the failure dynamics and the nominal dynamics is very subtle. The

7. In the failure scenario the delay is greater since the transition prior to the actuator=failed mode is
far lower than for the transition to the has-ball=no mode.
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Figure 25: A single run for the actuator failure scenario with concentrated posterior.
Left: Maximum a posteriori (MAP) estimate computed by the RBPF and
the k-best filter. Right: probability of the correct diagnosis (ball=no,

actuator=failed) for ¢t > 1.5s.

actuator

Figure 26: Probabilistic hybrid automata for the body and actuator of the modified acrobot

example
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Figure 27: A single run for the actuator failure scenario with flat posterior. Left: Maximum
a posteriori (MAP) estimate computed by the RBPF and the k-best filter. Right:

probability of the correct diagnosis (ball=no, actuator=failed) for t >
1.5s.

k-best filter tracks the hypotheses in strictly best-first order and in this scenario there are a
very large number of distinct hypotheses with high posterior likelihoods. If k is too small,
no sequences with transitions to the actuator=failed mode will be tracked. RBPF, on
the other hand, does not suffer from this problem since transitions are sampled stochasti-
cally. This exploration method can stochastically choose the correct mode sequence even if
it is not strictly among the k best hypotheses, and hence will be more successful at tracking
a system such as this.

Figure 27 shows the results for a single hybrid estimation run on the failure scenario,
this time with the flat posterior distribution. The k-best enumeration approach fails to
diagnose the fault correctly, The stochastic sampling approach of Rao-Blackwellised Particle
Filtering, on the other hand, samples the failure transition fairly. When a particle samples
the transition close to where it occurred in reality, the observation likelihood of that particle
grows until it dominates the trajectory space, giving the correct diagnosis. With a flat
posterior therefore, RBPF clearly outperforms k-best enumeration.

Figure 28 shows the continuous tracking of #; for both k-best and RBPF algorithms.
The RBPF has much more accurate continuous tracking than the k-best algorithm for this
example as a direct result of its lower fraction of diagnostic errors. The state variable 6 is
not observed directly, hence without an accurate estimate of the discrete mode sequence,
the continuous dynamics of the system are unknown. This leads to large estimation errors
in the continuous state.

These experimental results, therefore, provide empirical validation of the insight de-
scribed in Section 5.2. While these are examples of single simulation runs only, in Section 6.2
we carry out an extensive performance comparison that confirms this result and provides

empirical motivation for a mixed method that balances greedy and stochastic approaches
to hybrid estimation.
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Figure 28: Continuous tracking of #; with the failure scenario for a flat posterior

6.2 Performance Comparison

In this section we carry out a detailed empirical comparison of the performance of k-best
enumeration and the new Rao-Blackwellised Particle Filter for CPHA. We show that the
new mixed method is significantly more robust than either method alone.

6.2.1 PERFORMANCE METRICS

One of the biggest obstacles to evaluating the performance of hybrid state estimation al-
gorithms is that inference with hybrid models is, in general, NP-hard (Lerner & Parr,
2001), and it is very difficult to obtain the true posterior distribution p(x¢.¢, X4.t|y1:¢, Uo:t)-
Sometimes, this distribution can be approximated by a particle filter with a large number of
samples; however, the accuracy of such approximations may not be bounded tightly enough.

Instead, we use the following two metrics for a given algorithm with a fixed number of
tracked sequences:

1. The percentage of the diagnostic faults, defined as Z-2L #w:i‘:zg gzsggoses. Wrong diag-
noses are defined as MAP estimates of the discrete state at the fringe that are not the
same as the ground truth.

2. The mean square estimation error of the continuous estimate corresponding to the
MAP diagnosis. This is defined as ((X¢,+ — Xc7t)T()A(c,t - xqt))l/Q, where X+ is the con-
tinuous estimate corresponding to the MAP mode estimate, and x.; is the continuous
state ground truth. This measure is averaged over all time steps and experiments.

Each algorithm was run on 20 random observation sequences with fixed mode assign-
ments. The results given here show the mean and standard deviation (shown as error bars)
of the performance metrics for these runs. For the mixed method, half of the trajectories
were evolved using the RBPF.
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6.2.2 CONCENTRATED POSTERIOR

Figures 29 through 31 show the percentage of diagnostic errors and the mean square tracking
error for the three scenarios considered for the acrobot model with concentrated posterior.

Figure 30 shows that for the ball scenario, the k-best algorithm makes almost no diag-
nostic errors. The Rao-Blackwellised Particle Filter on the other hand, makes more than
40 per cent diagnostic errors on average for small k; this decays to a minimum value as
the number of tracked sequences increases.® In addition, there is far greater variance in the
case of the RBPF; in an application such as fault diagnosis, this is particularly undesirable,
since reliable performance is essential.

The Rao-Blackwellised Particle Filter gives a higher number of diagnostic errors because
the approach is inherently stochastic; hence there is no guarantee that the correct mode
transition will be sampled. When the failure transition is not sampled close to where it
occurred in reality, the diagnostic error persists. Hence the fraction of diagnostic errors is
greater, and has a far higher variance, than for the k-best approach.

The k-best filter, on the other hand, tracks k distinct sequences and calculates the pos-
terior likelihood of these sequences exactly. When the posterior distribution is concentrated
in relatively few mode sequences, the k-best filter will track the sequence corresponding to
the ground truth as well as alternative sequences that are initially more likely, due to low
transition prior. Hence the k-best filter does not make as many diagnostic errors as the
Rao-Blackwellised Particle Filter with the ball scenario. Figure 30 shows that the mixed
method performs almost as well as k-best enumeration, with a similarly small variance in
the results.

Figure 31 shows a somewhat different trend for the failure scenario. For small k, both
RBPF and k-best have a high proportion of diagnostic errors; for £ > 20, however, the
k-best algorithm outperforms the Rao-Blackwellised Particle Filter as was the case with
the ball scenario. Also, whereas the performance of the RBPF improves gradually as k
increases, the k-best algorithm shows a large shift in performance between k£ = 20 and
k = 50. In this case the mixed method behaves in a similar manner to k-best enumeration,
except that the shift in performance occurs at approximately double the number of tracked
sequences. This is because only half of the sequences are being evolved greedily.

Finally, the results show that for a given algorithm, the failure scenario requires a
far higher number of tracked sequences to achieve the same diagnostic accuracy. This is
because the failure transition has an extremely low prior probability; hence a large number
of sequences must be tracked for the true sequence to be included for long enough for the
observation probability to dominate the low transition prior.

These results are the same when we compare the performance with respect to the run
time of the algorithms. Figure 32 shows this comparison. We found that the run times of
the three algorithms were different by a factor less than 1.5. This has a negligible effect on
the log scales against which we compare the performance of the two algorithms.

8. This minimum value is non-zero, because for a small fraction of the time steps immediately after the
true transition, the MAP diagnosis is not the same as the ground truth

41



— kbest B — kbest
051 rbpf ! rbpf
— | 4
[ - - mixed osr ‘ - - mixed
|
» 04F | :
S : 04 i
5] i !
Sl & |
% o3 i B osr :,
< i § I
= I = \
T oot % !
g L AN
g ! = o2 I \
i : N I A
E o ! N 01 : N
I N
i A B = 3
ol L = I
i ol
i L
1
10' o o 10°
Number of tracked sequences Number of tracked sequences
seq
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diagnostic errors. Right: Mean square estimation error of the continuous state

6.3 Acrobot Model with Flat Posterior

We now compare the performance of the k-best algorithm and the RBPF when estimating
the hybrid state of the modified acrobot model, which has a flat posterior distribution.
Figure 33 shows the performance of the k-best and particle filtering algorithms for the
failure scenario. In this case, the RBPF clearly outperforms the k-best method both in
terms of diagnostic errors and mean square estimation error. The large number of sequences
with high posterior prevents the strict enumeration of the k-best method from considering
the initially less likely failure sequence, except with very large k, while the RBPF samples
the actuator failure transition fairly. The mixed method exploits this stochastic approach,
performing only slightly worse than the RBPF alone.

6.4 Discussion of Results

In the experimental results an interesting pattern emerges: the k-best algorithm undergoes
a phase shift in performance, depending on whether or not k is large enough for trajec-
tories similar to the ground truth to be tracked. By contrast, the performance of the
Rao-Blackwellised Particle Filter converges less quickly than the k-best filter to a low frac-
tion of diagnostic errors (See Figure 31). Since the RBPF approximates the true posterior
and duplicates high likelihood hypotheses, increasing the number of particles simply makes
the approximation closer to the true posterior. Hence there is a gradual convergence and
not the phase shift seen for k-best.

The critical value of k£ that greedy enumeration needs to track in order to perform well,
depends on the concentration of the posterior distribution. If the posterior distribution
is concentrated in a relatively small number of distinct sequences, the k-best method will
perform well even for small k. In these cases, k-best enumeration typically outperforms
RBPF, since it does not duplicate hypotheses, leading to unnecessary approximation. For
a flat posterior, on the other hand, the critical value of k is so large when detecting rare
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events that many trajectories will need to be tracked, to reliably detect the fault. In these
cases, the RBPF will perform better for small k, since the distribution is sampled fairly.

We have shown, empirically, that the mixed method combines the benefits of the two
methods. While its performance is marginally worse than the RBPF or k-best in their best-
case scenario, by balancing greedy and stochastic search, the new method is much more
robust to the choice of model parameters than the RBPF and k-best individually.

7. Related work

Several algorithms have addressed the problem of the exponential growth of Gaussian mix-
tures. One class of solutions are multiple-model estimation schemes, which maintain a
pre-determined number of mode sequences. These include the generalized pseudo-Bayesian
algorithm (GPB) (Ackerson & Fu, 1970), the Detection/Estimation Algorithm (DEA) (Tug-
nait, 1982), the Interacting Multiple Model (IMM) algorithm (Blom & Bar-Shalom, 1988),
and residual correlation Kalman filter bank (Hanlon & Maybeck, 2000). All of these tech-
niques have a fixed-time, deterministic strategy for pruning discrete mode sequences.

More recently, Lerner et al. (2000) proposed a k-best filtering solution for SLDS models.
In addition to pruning, their algorithm implements several techniques not present in our
algorithm, including collapsing of the mode sequences, smoothing, and weak decomposition.
This approach was later extended in (Lerner, 2002a), to the setting of hybrid dynamic
Bayesian networks with SoftMax transitions, using numerical integration techniques instead
of the Kalman Filter. Similar to ours, their algorithm provides an any-time solution to the
hybrid state estimation problem.

In the particle filtering community, several papers (Avitzour, 1995; Kitagawa, 1996) have
proposed using the bootstrap particle filter to perform state estimation in hybrid models. An
early application of the Rao-Blackwellisation method to reducing the variance of sampling
in SLDS models was introduced by Akashi and Kumamoto (1977). Their algorithm, named
the Random Sampling Algorithm (RSA), sampled the sequences of mode assignments using
the distribution p(xq¢|X4,0:t, ¥1:¢, Uo:t). Metropolis and Ulam (1949) and Gordon, Salmond,
and Smith (1993) introduced the Selection Step, which is crucial for the convergence of
sequential Monte Carlo methods and framed the problem in the general particle filtering
framework. In addition, they proved several properties regarding the convergence and
variance reduction of Rao-Blackwellisation schemes. Doucet, Freitas, and Gordon (2001a)
further extended this work and described an algorithm for fixed-lag smoothing with MCMC
steps. Finally, Morales-Menéndez et al. (2002) introduced a procedure, called one-step look-
ahead, which computes the total probability for the sequences stemming from a given sample
and moves the selection step before the importance sampling step, at the cost of evaluating
the Kalman Filter residual for all successor modes. All of these techniques were designed
for linear switching models without autonomous transitions.

Concurrently with our work published in (Funiak & Williams, 2003), the combination
of a Rao-Blackwellised particle filter with an Unscented Kalman Filter for fault detection
was proposed independently by Hutter and Dearden (2003). In addition, they incorporated
the look-ahead step proposed by Morales-Menéndez et al. (2002).

Two complementary approaches for improving the performance of particle filters were
proposed by Thrun, Langford, and Verma (2001) and Verma et al. (2003). The first one,
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the Risk-sensitive Particle Filter, incorporates a model of cost into the sampling process.
The cost is implemented automatically using an MDP value function tracking. The second
approach improves the performance of particle filtering by automatically choosing an ap-
propriate level of abstraction in a multiple-resolution hybrid model. Maintaining samples
at a lower resolution prevents hypotheses from being eliminated due to a lack of samples.

8. Conclusion

In this paper, we investigated the problem of estimating the state of a system represented
with probabilistic hybrid models. We presented an efficient Rao-Blackwellised particle filter-
ing algorithm, developed in Section 3.7, that handles the autonomous mode transitions, con-
currency, and nonlinearities present in Concurrent Probabilistic Hybrid Automata (CPHA).
Through the technique of Rao-Blackwellised particle filtering, our algorithm significantly
reduces the dimensionality of the sampled space and improves the performance of particle
filtering. The key insight to addressing the autonomous transitions was to reuse the con-
tinuous estimates associated with the tracked mode sequences. We extended the class of
autonomous mode transitions that can be handled by both k-best enumeration and Rao-
Blackwellised Particle Filtering for CPHA to multivariable linear transition guards, in the
case of piecewise constant transition distributions, and to polynomial transition distribu-
tions of arbitrary order, in the case of single variables.

This new algorithm allows a unified treatment of approximate hybrid estimation through
both Rao-Blackwellised particle filtering and k-best filtering(Hofbaur & Williams, 2002a,
2002b). A simulated acrobatic robot was used to develop insight about the relative perfor-
mance of the two approaches. The results showed that when the posterior is concentrated
in a few nominal or single-fault sequences, the k-best filter is a clear winner. However, when
the distribution over mode trajectories is relatively flat, the trajectory corresponding to the
correct diagnosis may be left out of the leading set of mode sequences. In such situations,
the random sampling approach of the Rao-Blackwellised particle filter is more successful.

We therefore developed a new algorithm that combines greedy and stochastic search by
tracking two sets of mode trajectories with k-best and Rao-Blackwellised particle filters, and
uses both sets to generate the set of leading trajectories at the next time step. Simulations
showed that the algorithm is more robust than k-best and RBPF taken individually, with
only a minor performance penalty.
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