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Abstract: Refactoring is a technique used by computer scientists for improving program design.
The Endy Laboratory has adapted this process to make the genomes of biological organisms
more amenable to human understanding and design goals. To assist in this endeavor, we
implemented GeneJax, a prototype JavaScript web application for the dissection and
visualization stages of the genome refactoring process. This paper reviews key genome
refactoring concepts and then discusses the features, development history, user-interface, and
underlying implementation issues faced during the making of GeneJax. In addition, we provide
recommendations for future GeneJax development. This paper may be of interest to engineers
of CAD tools for synthetic biology.

Introduction: Genome Refactoring

Refactoring is a technique traditionally used by software engineers to redesign computer
software (Fowler et. al., 1999). By refactoring, engineers modify the design of an existing
program without adding new features or functionality. Instead the new design improves program
readability and maintainability:

Refactoring does not fix bugs or add new functionality. Rather it is designed to improve the
understandability of the code or change its structure and design, and remove dead code, to make it
easier for human maintenance in the future. In particular, adding new behavior to a program might
be difficult with the program's given structure, so a developer might refactor it first to make it easy,
and then add the new behavior. (Wikipedia contributors, 2006)

 
Inspired by this technique, the MIT Endy Lab has begun refactoring genomes. In particular, the
team seeks to precisely understand how the encoded genetic elements interact with one another
to generate an entire functioning organism. However, the sequences encoded by natural
genomes are usually hard to study for a variety of reasons. For example, in natural genomes
multiple genes and functions often overlap on the same DNA sequence making it hard to
determine each gene's contribution to the organism. One way to simplify such a genome would
be to engineer a new genome where each region of the DNA sequence encodes a single genetic
function. By isolating these functional elements from one another, each element's function
becomes easier to model and simpler to manipulate. As a result, this "refactored" genome is
easier for humans to understand and modify.



For example, the Endy Lab recently disassembled the genome of bacteriophage T7, a bacterial
virus, and constructed a new man-made “T7.1” virus sequence (Chan et. al., 2005). This T7.1
virus was functionally similar to the natural T7 virus but with a more structured design that
removed overlaps between genetic elements. Removing these overlaps allowed the team to
independently manipulate each specific gene element, and by doing so, fully describe its
function. Figure 1 compares a region from the T7 virus and its refactored T7.1 variant,
illustrating the improved isolation between genetic elements in the refactored version.

Figure 1: Refactoring the T7 bacteriophage virus. The figure shows the natural T7 genome
(top) and a region on the natural T7 genome that has been magnified to show the genetic
parts (middle). The Endy Lab refactored this region by isolating these genetic parts and
reassembling them without any overlaps (bottom). Image is not to scale.  Adapted from
Chan et. al., 2005.

The process of genome refactoring can be broken down into five steps (visualization, dissection,
editing, synthesis, comparison) outlined in Figure 2. First a naturally occurring genome and its
annotations are examined during the visualization phase. These annotations indicate the known 
functionality of various sections in the genome DNA sequence. Using this knowledge the genome
is dissected into parts that isolate each gene function from the natural genome. Since naturally
occurring sequences often have overlapping functional elements, the resulting parts may overlap
or contain sequences for additional, unintended functions. These naturally occurring parts must
therefore be edited to refine their isolation from other genetic elements. The refined parts are
then synthesized into a refactored genome. Additional parts may come from other refactored
genomes as shown in the figure. Finally, the naturally occurring and refactored genome may be
compared against each other to examine the differences where the genome has and has not
been changed. The refactoring process described here is adapted from the genome design
algorithm presented in the supplementary materials for (Chan et. al., 2005).



Figure 2: The Genome Refactoring process. First, a natural genome is visualized and then
dissected into raw parts. Next, these raw parts are edited to refine their function. The
refined parts are then combined with parts from other genomes to synthesize a new
refactored genome. Finally, the refactored genome and natural genome are compared to
examine where the genome has and has not been changed. Adapted from Chan et. al.,
2005.

The Endy Lab has now begun work on a “T7.2” virus and is looking for software tools to assist in
this process. Instead of rearranging existing genetic elements within the organism (as was done
with T7.1), the T7.2 design will actively remove gene elements and substitute other elements
with new genes from other genomes:

Moving beyond our design of T7.1, we will actively erase or delete elements of unknown function. In
addition, efforts will be made to made to remove unknown genetic elements... To attempt to make
our modeling of gene expression easier, we will use standard synthetic elements in place of the
natural elements that regulate transcription and translation. (T7.2, 2005)

The original T7.1 virus was designed using existing tools such as Vector NTI and custom perl
scripts coerced into ad hoc refactoring tasks. In particular, these tools do not easily allow the
arbitrary definition genetic parts and their reassembly into multiple refactored genome variants.
As the goals of T7.2 increase the complexity of gene edits beyond that of T7.1, the team seeks
a new tool to streamline this process of part definition and manipulation.

Software programs for almost all phases of the refactoring process already exist. For the
visualization phase there are a plethora of tools available as stand alone programs or on the
web. For example, applications such as VectorNTI from Invitrogen and Workbench from CLC Bio
offer excellent visualization features. In addition, the National Center for BioInformatics, the
University of California at Santa Cruz, and University of California at Berkeley all maintain
online genome browsers for visualizing genomes and their annotations. Online tools for the
editing and synthesis phase are already under development at the MIT Registry of Standard
Biological Parts. The Registry supports the synthesis of genes from the parts in its database



using BioBricks and more recently as simple blunt-end concatenation (Sriram Kosuri, personal
communication). The Registry is also developing a JavaScript program for editing part sequences 
from within the web browser (Randy Rettberg, personal communication). Finally, BioViz is a web
application that uses SVG and JavaScript for comparing genomes (Lewis, n.d.). This list is by no
means exhaustive, but we are unaware of any tools designed specifically for the dissection
phase of the refactoring process.

This lack of tools for the dissection stage led us to the GeneJax project. Specifically, GeneJax
was intended to let users define and extract arbitrary parts from a natural genome sequence.
This dissection functionality also required a method to visualize newly defined parts and existing
annotations within a genome. As a result GeneJax necessarily had to minimally implement
visualization features already handled by the tools described previously.

The development of GeneJax used Google Maps as the starting point for these visualization
features. We were influenced by Google Maps for two reasons. First, we reasoned that at an
abstract level, the functionality of Google Maps could be applied to the visualization and
navigation of genomic sequences. Both genomes and geographic mapping programs must
provide a localized view of a very large data set at multiple resolutions. Put more plainly, the
map of the human genome is a map and Google Maps is an excellent tool for traversing maps.
These similarities are summarized in the following table.

Feature Google Maps GeneJax

Displays relevant subset of
larger a database

Maps a point of interest from a
map of the entire world.

Maps gene sequence of interest
from an entire genome.

Click-drag

Mouse “click-and-drag”
movement allows users to scan
adjacent maps without
reloading the browser page.

Mouse “click-and-drag”
movement allows users to scan
adjacent genes or gene
base-pairs without reloading
the browser page.

Zoom In/Out
Users can zoom in to street
level details, or zoom out to a 
world map view. 

Users can zoom in to see an
individual gene or base pairs 
and zoom out to view the
whole genome.

Overlayed maps Satelite views, road map
views, and an overlay

Functional, sequence, and
overlay views

Second, Google Maps and the accompanying AJAX movement demonstrated that application-like
interactivity can be built into a web based tool. This would allow us to go beyond the pure
visualization capabilities of Google Maps and add application-like functionality for defining and
manipulating genetic parts. Thus a Google-like map for the genomes was to provide the
navigational foundation upon which we would build the features for defining parts from the gene
sequence.

In the following sections we will describe the details of the GenJax project and the lessons
learned. We first describe the GeneJax features that have been completed and their
development from an end-user perspective. Next we don our programming hat and explore key
implementation issues faced during the project. Finally, we speculate and propose enhancements
for future versions of the project.

GeneJax Features



We now describe the current functionality of the GeneJax program, and the strengths and
weaknesses of those features from the perspective of the end-user. This section is not intended
to be a user manual for the program. Instead we critically assess the history, quality and
usefulness of the implemented features, since that information will be the most useful to
designers of future genome refactoring tools. Our discussion starts with GeneJax's layout, and
then moves on the basic map visualization and navigation features. These features form the
foundation for the part definition functions that we explore at the end of this section.

Before discussing the strengths and weaknesses of GeneJax, it is helpful for the reader to get a
feel for the program's interface. A screen shot of GeneJax running in the Firefox browser is
shown in Figure 3. In the top left a large box forms the viewing pane that displays the gene
sequence, annotations, and parts. Beneath the viewing pane, is a map of the entire genome 
sequence and a slider indicating the current position of the viewing pane on the map. Beneath
the map is a search field that lets the user search for a region of interest. The lower right
contains status fields that indicate the absolute base pair position of the sequence in the viewing
pane and the current zoom setting. Finally the upper right contains tool buttons that enable the
features of the program.

Figure 3: The GeneJax User Interface. A screen shot of the GeneJax program, identifying
the key features of the program's layout. The program has a viewing pane that displays 
genome data; a search box, genome map, and status fields for navigating the genome;
and tool buttons for enabling the different functions of the program.

Navigation in GeneJax is similar to the basic map navigation features of Google Maps. The
viewing pane shows the base pair sequence, annotations, and parts for a region of interest on
the genome. By using the MoveTool, users can click-drag to examine nearby regions of the
genome. In the current implementation mouse movements in the vertical direction are ignored



during the click-drag process, so only horizontal movements are translated into viewing pane
navigation. Users can also zoom in and out. Zoom levels are indicated in the status field and
indicate the font size of the text displayed in the viewing pane. Some examples of the viewing
pane at different settings are shown in Figure 4. The available zoom levels range from 250
pixels (showing two base pairs on the screen) to a single pixel (showing 500 base pairs on the
screen) but not all of the settings in this range are practically useful. Particularly problematic,
text is completely unreadable for small zoom settings that would be needed to completely
display large sized gene features (i.e. in excess of a 50 to a 100 base pairs long). For all intents
and purposes, the maximum usable zoom range is from 50 pixels (10 base pairs per screen) to
10 pixels (50 base pairs per screen). Even combined with the other navigational aides described
below, this is barely usable for dissecting large sized parts.

Figure 4: Sample zoom settings. The GeneJax viewing pane at 50 pixels, 20 pixels, 10
pixels, and 5 pixels zoom settings.

The preceding Google Maps navigation features were the only ones originally planned for
GeneJax. However it quickly became clear that moving about a genome with click-drag can be
cumbersome and additional navigational aides were needed. The most obvious problem is that
trying to move across thousands of base pairs can mean click-dragging thousands of times. Our
early assumption was that users could solve this the same way they do with Google Maps: by
zooming out, click-dragging, and then zooming back in. This was wrong for three reasons.

First, as mentioned above, our zoom implementation was unreadable at scales showing more
than a 100 base pairs. This made seeing the whole genome (more than 40,000 base pairs) and
then zooming in on a point of interest nearly impossible. Repairing the zoom function was a
technological hurdle we did not have time to correct. (The reasons for this hurdle will be
described later in the technology section).



Figure 5: Search box with auto suggest. GeneJax automatically suggests possible queries
(i.e. matching annotations) as the user types "ph" into the search box. 

  
Second, we failed to realize that search is a crucial part of Google Maps. Users do not start their
mapping sessions with a map but with a search query that retrieves a location of interest. This is
even more important when mapping a genome, since the user is more likely to jump around
from annotation to annotation along the genome than someone gradually traversing a direction
of travel in a geographic map like Google Maps. We solved this problem by adding a search box
to GeneJax. By typing a part name or an annotation into this search field, the viewing pane will
automatically jump to the region of interest. In addition, since all the possible points of interest
are known ahead of time (i.e. an annotation or a newly defined part), the search box will
suggest possible search queries as the user types into the search box. This is shown in Figure 5,
where the program has suggested possible queries as the user types "ph" into the search box.
The auto suggest implementation was adapted from (Zakas, et. al. 2006). We also let users
jump to an arbitrary base-pair location by clicking on the start position indicator as shown in
Figure 6. As obvious as it may seem in retrospect to add a search box, it was not an anticipated
feature nor the first solution that occurred to us for this problem.

Figure 6: Jumping to a base pair location. A user moves the viewing pane by entering a
base pair position in the genome.



Figure 7: Genome map and slider. The slider indicates the viewing pane's current position
on a map of the entire genome. The viewing pane can also be moved by click-dragging the
slider or clicking on the map. 

Third, at scales showing individual parts or base pairs, users felt lost and requested a visual
indication of their position in the whole genome. We solved this by providing a graphical map of
the entire genome and a slider indicating the current position, as shown in Figure 7. As the user
click-drags to new locations in the viewing pane the slider's position on the map is dynamically
updated. In addition, users can move the viewing pane to a new location by dragging the slider 
or clicking a position on the map. The success of the slider is somewhat questionable. We had
initially planned that the slider's width should indicate the area under inspection, similar to
Google Finance as shown in Figure 8. Unfortunately, given the length of the genome and the
width of the map, a single pixel on the map corresponds to about 80 base pairs (41,326 base
pairs in the genome divided by 500 pixels map width). Because the viewing pane is unreadable
at this scale, all useful zoom levels are essentially condensed to the minimum width slider, a
single pixel. This high base pair to pixel ratio also makes the graphical features on the map less
indicative of the actual structure of the genome than they should be. For example, in Figure 9
the slider map indicates we should expect to see two continuous annotations in the viewing
pane, but instead we see some thing quite different. In later sections we will explore some
solutions to this problem but in the meantime note that by contrast Google Finance displays
financial data for only the past five years, which would correspond to a genome of less than
2000 base pairs (5 years times 365 days). This much more usable "base pairs" to pixels ratio of
3.65 makes their slider possible. Last but not least it should be noted that users can move to
any absolute position in the genome sequence (i.e. "take me to base pair 10,431"), which is
essentially a different kind of search.

Figure 8: The Google Finance map and slider. The width of the slider (top) indicates the
area under examination in the viewing pane (bottom).



Figure 9: Genome map inaccuracies. A screen shot illustrating how the features on the
genome map do always accurately indicate the actual layout of the genome. In the figure,
the viewing pane shows a clear gap in the annotations. However, in the genome map (the
region under the slider) this complex layout is reduced down to three continuous
annotations. (Only two of these annotations are visible in the figure because the third one
is only a single pixel wide and obscured by the slider itself.) These inaccuracies are caused
by the high ratio between the length of the genome (in base pairs) and the length of the
map (in pixels).

GeneJax's raison d'etre is to support the dissection of a genome into arbitrary parts.
Traditionally genome visualizers place annotations located on the main DNA strand above the
gene sequence and annotations associated with the complement strand below the gene
sequence. For refactoring the distinction between parts and annotations is more important than
knowing if a part or annotation is located on main strand or the complement strand. Thus
annotations are separated from parts by displaying annotations below the sequence and by
displaying parts above the main sequence as shown in Figure 10. Users create a part by clicking
on a base pair to define the part's starting point and then control-clicking on a base pair to
define its ending point. Subsequent control-clicks can resize the part by moving its end point.
With this dissection paradigm, very large parts can be created by defining a starting point and
then navigating (e.g via search or click click-drag) to a different position to set the part's end
point. Users can also select their own names for parts. These part names are valid search
queries and will show up in the search box autosuggestion field when appropriate. Finally users
can export all defined parts to FASTA format using the ExportTool.



Figure 10: Annotations and parts. The GeneJax viewing pane displays parts above the
genome sequence and annotations below it, irrespective of the annotations' association
with the main or complement strand of the sequence.

Last but not least, from a usability standpoint the tool buttons were well-intentioned but badly
conceived as toggles. Clicking on a tool button enables its functionality but also disables all
other tool buttons, as shown in Figure 11 for an active MoveTool button. The purpose of this
work flow was to disambiguate the purpose of certain mouse actions. For example, depending
on the currently active tool, clicking on a region in the viewing pane could start the click-drag
movement process or define the starting point for a new part. Unfortunately, the toggle
paradigm forced users to first disable the current tool and then enable the new one when
switching between tools. This turned out to be a cumbersome work flow and we painfully
watched users make repeatedly mix up this process (although they often recovered quickly). In
addition, the usage paradigm was inconsistent as some tools were not toggles (e.g. ExportTool),
did not appear to be toggles (e.g. ZoomInTool) and toggling excluded features that were not
necessarily mutually exclusive (e.g. click-drag movement and searching).

Figure 11: Tool button toggle behavior. In the figure, the MoveTool has been activated by
clicking on it. This disables some of the other tool buttons from being used. Enabling a
different tool button requires first disabling the MoveTool by clicking on it again. This
awkward work flow introduces an unnecessary mouse-click.

GeneJax Implementation



Having considered GeneJax from the user perspective, this section will review GeneJax's internal
architecture and lessons learned from its implementation. Just as the preceding section is not a 
user's guide to the program, this is not an implementation overview. Rather the goal is to
assess the history and challenges that arose during GeneJax development since that information
will be the most useful to engineers of future genome refactoring tools. The section first
explores key client and server design issues and then compares our design decisions with
another web based genome visualization tool.

Before discussing design issues further, it is helpful for the reader to first understand the general
architecture of GeneJax. The overall server-client structure of GeneJax is shown in Figure 12.
Client software runs in the Mozilla Firefox web browser and is implemented in JavaScript. The 
server runs under the Apache web server and is controlled by a loose collection of Personal
Hypertext Preprocessor (PHP) scripts. Most of the application intelligence lies in the client side
JavaScript, which was the major focus of our development effort. Given our time constraints, we 
elected to control project complexity by limiting compatibility to the Firefox web browser; it is
known that Internet Explorer and Safari do not work. In contrast, the server side code is
simplistic and should run on any web server that supports PHP. All client server communications
are transmitted over the HyperText Transport Protocol (HTTP) but the communication format
depends on the direction of communication. In particular, client to server queries are HTTP GET
requests parsed in an ad-hoc manner, whereas server to client responses are formatted in
JavaScript Object Notation (JSON). This communication format asymmetry was initially done for 
expediency (PHP natively parses unstructured GET requests and JavaScript natively parses
JSON) but never corrected to conserve time for other features and because a planned refactoring
of the code was canceled as the project fell behind schedule.

Figure 12: GeneJax's Client-Server Architecture. The client runs as JavaScript in a web
browser and sends request to the server via HTTP GET requests. The server runs as PHP
code on a web server and issues responses in JSON format.

The click-drag functionality central to GeneJax navigation is achieved through JavaScript
animation running within the web browser and implementing this animation made up a more
significant amount of our development effort than planned, partly due to our development
inexperience with JavaScript. In an HTML document, the Document Object Model (DOM)
provides JavaScript programs direct control to any HTML element's positional properties,
including it's absolute horizontal and vertical coordinates on the screen. JavaScript click-drag
animation works by changing an element's screen position in response to browser events, such
as mouse movements or button clicks. The more elements the JavaScript must explicitly control
the slower the animation responsiveness, so the client must limit the amount of animated data.
For example, although in theory you could put 40,000+ base pairs of the T7 genome into the



browser and individually animate their movements, in practice the animation would be too
computationally and memory intensive to be usable. Instead the client only retrieves and
animates data for the area of the genome under inspection. However, due to the tool's
development history there are actually two click-drag animation algorithms used in GeneJax. 

We started our development by horizontally animating movement along the genome's base pair
sequence with click-drag navigation. The animation model was strongly based on the techniques
used by two-dimensional image viewers, such as Google Maps and the Giant-Ass Image Viewer
(GSV), but now collapsed into a single dimension. Figure 13 shows this animation model as the
display elements move to the right. There are a fixed number of display elements evenly spaced
across the viewable area. As a display element moves outside of the viewable area, two things
happen. First, its position wraps around to the other end of display elements, just outside the
viewable area. Second, the display element's content changes to match it's new position. This
creates the illusion of scrolling through an infinite row of display elements by using only a fixed
number of them.

Figure 13: The base pair animation model. In this hypothetical example the display
elements are moving to the right-hand side and simulating motion along a simple number
line (i.e. the integers ...,0, 1, 2, 3, 4,... in numerical order).  Display elements are evenly
spaced across the screen (top left). As elements move to right-hand side, the last element
exits the viewing area (top right). Once it has exited the viewing area, the last element
moves to the first position (bottom right). Finally the display element changes its value from
4 to 1 to reflect its new position at the front (bottom left).

This algorithm was acceptable for animating base pair movement of 10 to 20 base pairs but as
we increased the number of elements (i.e. base pairs) animation became sluggish and our CPU



meter showed the machine visibly taxed. Since we had yet to add annotations and parts to the
animation, we were quite concerned the browser platform may not be efficient enough to handle
the tasks we had planned. Examination of the code for performance optimizations described in
(Zakas, 2005) yielded significant gains. Recall that the Document Object Model (DOM) provides
JavaSrcipt programs direct control of any HTML element, and that this access forms the basis
for JavaScript animation in the browser. Our most useful optimization was to minimize the
frequency of these DOM manipulations. During animation our JavaScript code queried the DOM
for each HTML element by name before modifying its positional properties. By querying the
DOM at the start of the click-drag process and caching the results we were able to remove all
DOM operations during the run time of the algorithm. This removed most of the performance
bottleneck and made the click-drag animation usable for nearly all practical zoom settings.

It should also be noted that the display elements in Google Maps and GSV are HTML IMG
elements. In these tools, different zoom levels change the image data shown by the display
elements but the number and size of the display elements remains the same at all zoom levels.
In contrast, GeneJax uses text elements from the browser's native fixed-width font as display
elements. This allowed us to leverage the font size property in our zoom implementation,
allowing more or less base pairs in the screen as the text size is decreased or increased. This is
why GeneJax zoom levels are described in terms of font sizes. Although the idea got us up and
running quickly, it had a number of unfortunate effects. First, the font size value was not always
an accurate indication of a character's true size. Second, it limited the range of usable zoom
levels to those at which the browser could display the text font legibly. Third, it limited our
display capabilities to pure text so implementing a more graphical (e.g. iconified) view of the
genome features would be difficult without making modifications to the algorithm.

A different click-drag animation algorithm was developed when it was realized the initial base
pair animation algorithm could not handle annotations and parts. The base pair animation model
assumes a fixed number of display elements evenly spaced across across the viewable area.
Unfortunately, the number of annotations and parts varies across the genome and is not evenly
spaced. In the alternate animation algorithm, the animates each annotation as an independent
display element. The client then dynamically creates a new display element for each new 
annotation as it moves into the field of view, and discards old display elements that have
moved far out of view. This process is illustrated in Figure 14 when the display elements are
moving to the right. Creating and discarding elements are necessarily DOM operations. Given
that the DOM operations formed a performance bottleneck in the first animation algorithm,
there was some concern they might do so here too. In practice however this was not the case
because creating and discarding elements was a relatively infrequent event. However, in a
genome with many more annotations this may be a problem.



Figure 14: Annotation animation model. In this example, the display elements are
annotations moving from left to right. As a display element moves far outside the viewable
region (Note 2), the element is destroyed. Simultaneously, a new element is created just
before it enters the viewable area (Note 0).

Since most of GeneJax's "intelligence" is in the client-side JavaScript, the server software is
fairly "dumb". By "dumb" we mean that the server answers stateless queries (e.g. give me the
base pairs between positions 100 and 150) without knowledge as to why the client requested
something or what it will request next. As a result the server implementation received little
attention and was designed for simplicity and minimal development effort. The server software
is implemented as loose collection PHP scripts. Each script is designed to answer a different type
of query from the client and operates relatively independently of the others. All scripts however
refer to two files for their genome data. The first file contains the raw genome sequence in plain
text. Because each base pair is a single byte, retrieving the gene sequence for a location is
easily translated to an offset in the data file, i.e. the nth base pair is located at the nth byte in 
the file. In essence, this turns the gene sequence look up problem into a disk seek problem.
Although a compact and fast representation, this would make future editing operations
extremely cumbersome (e.g. inserting a base pair into the sequence). Annotations are stored in
a separate file as PHP code for an array of structures containing the annotation information.
When a script wishes to retrieve annotation information, it evaluates this file into its execution
context. This is not a particularly scalable implementation but for T7 (355 annotations) it works
fast enough. Again, these scripts were designed for simplicity so we could focus our
development efforts on the client software, and in this respect they do their job effectively.

It is useful to compare GeneJax with GBrowse from U.C. Berkeley (Holmes, et. al., 2006).
Although designed purely for visualization GBrowse is the only other JavaScript genome web
browser of which we are aware. Both projects were proposed independently (and unaware) of
each other and took different approaches to implementing genome visualization. GBrowse is
more direct translation of Google Maps to genome visualization. Crucially, GBrowse client and
server do not do any rendering on the fly. The display elements in GBrowse are HTML IMG
elements that are pre-rendered ahead of time and the GBrowse server merely delivers these
pre-drawn images which are then positioned by the client. In contrast, the GeneJax client



requests genome sequence data from the server and then renders it into the browser. This
confers two key advantages to GBrowse. First, both the client and server have less work to do
since all the drawing has been done beforehand, making their implementation less taxing on
both the server and client than GeneJax. Second, because it works natively with pre-rendered
graphics, the browser can display any kind of graphical "annotation" for a genome feature (e.g.
photos, diagrams, etc.). However, despite these advantages it's less clear how part dissection
and other editing features could be overlaid onto GBrowse. For example, GeneJax can edit and
delete gene base pairs, annotations, and parts because it has rendered each of these items as
distinct DOM elements. Every part of the genome that the user sees is independently
manipulable by the GeneJax client. For the GBrowse client the base pairs and annotations are
inseparably commingled together into static image. Regardless, GBrowse is an impressive, well
designed, and arguably better implemented tool for genome visualization. Furthermore, their
documentation makes clear the team has considered possibly adding editing and custom
annotation features to GBrowse in the future (Uzilov, 2006).

Insights and Recommendations

Although GeneJax is a usable tool for its intended goal (dissecting T7 sized genomes), it
remains a primitive and unfinished experiment in need of further development before it can be
useful for a wider audience. In this section we'll discuss proposed features that were dropped
from the project, and avenues for improving the visualization, navigation, and usability of
GeneJax. Finally we'll consider the ability of GeneJax to scale to larger sized genomes. If the
GeneJax project continues these recommendations serve as a starting point for further GeneJax
development. Even if GeneJax does not continue, developers of other synthetic biology CAD
tools may find that this section offers valuable insights for their projects.

A number of proposed GeneJax features were not completed during the project, partly due to
time constraints. Chief among these missing features were cut-and-paste editing of parts and
drag-and-drop assembly of a genome from refined parts. These features were dropped when we
realized they subsumed the synthesis and part editing functions the MIT Registry of Biological
Parts was already developing. Consequently other features that built upon these functions such
as a workbench for assembling "super-parts" and editing history were also abandoned. Another
proposed feature, integration of GeneJax into the Parts Registry was not finished due to time
constraints and logistical difficulties. Given their complementary roles, the most logical
integration between the two systems would be to have GeneJax automatically upload newly
defined parts directly to the registry. This integration would be highly beneficial, since users
currently must import their dissected parts into the Registry by hand.

As described in preceding section, GeneJax's visualization features need serious fixing. The most
glaring problem is GeneJax's limited useful zoom range. Although rendering our display
elements in the browser's native fixed width font allowed us to get up and running quickly, the
first step to resolving our zoom problems should be to modify the rendering algorithms to
support images instead of text. By moving our click-drag display elements to images it will be
easier to add support for a more  "functional" visualization of the genome. In a functional
presentation of the genome different annotation and part types are represented by distinct
graphical icons. This functional view is a more sensible way to visualize a genome on any scale
that shows features larger than hundreds of base pairs in length. Finally, GeneJax's zooming
functions should work in concert with the alternative viewing modes, automatically switching
between base pair sequence, functional, or a hybrid base pair/functional visualization as the
zoom level changes. This is similar to zooming behavior in CLC Bio's Workbench software (CLC
Bio, n.d.).



In contrast to visualization, GeneJax navigation is fairly good although still open to
enhancements. GeneJax already provides multiple movement modes that let the user easily
move either locally (click-drag) or globally (search with auto suggest) through the genome.
However, as discussed previously, the slider/map needs further refinement, especially since it
can serve as both a visualization aid (conveying positional context) and a third navigational
mode (via the slider). One proposed solution would be to make the slider's map support
zooming in and out. In this case it would make sense for the map to support the full zoom range
(from the entire genome down to individual base pairs), in which case we've turned the map
itself into just another viewing pane when it was supposed to provide navigational assistance to
the original viewing pane. (Consider for example if the map zooms in further than viewing pane.
At that point it provides little  navigation assistance.) Another proposed solution is a
"multi-resolution" map, mocked up in Figure 15. In this setup a collection of map/sliders is used
with each map/slider operating at different pixel to base pair scale. Each map/slider is navigates
the viewing area for the map/slider above it and the top map/slider reflects the current viewing
pane. Unfortunately for large genomes this could mean an unusable number of slider maps. A
third option would be a "localized map" that provides a graphical overview of the current viewing
location zoomed out by a fixed ratio. For example, the map could always be an order of
magnitude zoomed out from the current viewing pane. The localized map seems to be the most
appealing compromise since it still manages to provide some positional context without being
unwieldy, although the sense of global position in the genome is completely lost.

Figure 15: A mock-up of the proposed multi-resolution map and slider. In this example, the
bottom map is a map of the whole genome whereas the top map covers a smaller section of
the genome. The top map's slider indicates the viewing pane's coverage area while the
bottom map's slider places the top map into the context of the whole genome. This design
breaks the normally large (i.e. unwieldy) base pair to pixel ratio in a single map into many
smaller (i.e. more manageable) base pair to pixel ratios across multiple maps. 

Adding forward and back navigational buttons and expanding click-drag navigation to the second
dimension should also be considered among the more minor but still potentially useful
navigational enhancements. Forward and back buttons similar to those in a web browser could
bring sanity to a user that has to hop around between different parts of the genome. Continuing
the analogy further, user defined "bookmarks" that take a user to an often used location may
also be worthwhile. Also, sometimes the number annotations is so large they do not all fit in the
vertical space available in the viewing pane. Users need two dimensional click-drag to view
annotations that run off screen. Finally, the biggest implementation challenge to GeneJax
navigation may be to ensure existing navigational functionality still works as the visualization
features are enhanced.

GeneJax also made some minor, but annoying usability and deployment mistakes that should be
corrected. Implementing the tool buttons as toggles proved to be awkward and redundant. Once
a user clicks on another tool, they are implicitly disabling the current one. The implementation
should be cleaned up so that tools that do not need to be mutually exclusive can be used
simultaneously (e.g. click-drag movement and searching) and those tools that truly need to be
mutually exclusive (e.g. click-drag movement and part creation), should be selectable without



having to first disable the current tool. GeneJax was also developed and tested solely with the
Mozilla Firefox browser. Since the GeneJax project was nominally 96 hours (6 hours per week for
a single semester) this was an acceptable compromise to save precious development time.
Moving forward cross-browser support is crucial for the success of the GeneJax project. Any
browser application that does not work with the dominant web browser will be marginalized.

GeneJax will also require further changes to support larger sized genomes. On the server, our
method for base pair sequence retrieval will scale to larger genomes without difficulty, but the
annotation retrieval method will not. In addition, these methods store their genome data in
non-standard files that are unwieldy to modify. Finally, the genome data stored is stored as
plain files and primitive file system protections are the only mechanism for managing multiple
users reading and writing the data. Migrating the genome data to a full fledged database could
solve these problems.

In contrast to the server side, most of the GeneJax client code should scale to larger genomes
although there are some areas for concern. Because the client stores only a local subset of the
genome data, the size of the genome isn't an issue per se. Instead, the crucial weak point is the
number of annotations a genome may have in any given region. In the current implementation
each base pair and annotation is an individual animation element, and each independent
animation element imposes a computational overhead. Too many annotations leads to too many
animation elements which can swamp the animation algorithm. One way to mitigate this
problem might be to dynamically combine elements together just prior to animation. For
example, each base pair and its corresponding base pair on the complement strand will always
move in lock step, so they could be combined into a single animation element. In this manner
the number of animation elements might be reduced to a more manageable level. In the same
vein, performance gains could be achieved by migrating the base pairs to the annotation/part
animation algorithm (e.g. where each group of 5 base pairs would be considered a single
"annotation"). This would also reduce the maintenance headaches of having two different
animation algorithms instead of one. Last but not least, the implementation would be cleaner if
both client to server and server to client communication standardized on the same
communication format, i.e. JSON.

Conclusions

This paper has described the GeneJax prototype program. We started by introducing genome
refactoring and positioned GeneJax as a tool for the dissection stage of this process. Next, we
reviewed the program's end-user the interface and assessed the interface's features and flaws.
We also discussed the software implementation and the merits (or lack thereof) of GeneJax's
internal design. Finally we made recommendations for future GeneJax development. These
recommendations will be necessary to move GeneJax from a prototype to a practical and
deployable program.

Looking forward, GeneJax's future is questionable for two reasons. First, GeneJax is still a
prototype. Significant design and engineering is still required to turn it into practical tool for a
wider audience. Second, the GeneJax project was designed to address an unmet need in the
refactoring process. It is not unimaginable that this gap could be closed as existing, more
entrenched, and better funded projects expand to fill GeneJax's purpose. For example, GBrowse
and the MIT Biological Parts Registry border GeneJax on either side of the refactoring process
(GBrowse for visualization, the Registry for part editing and synthesis). Both projects are under
active development and could subsume the dissection stage as genome refactoring becomes
more widespread. Since it deals in genetic parts, dissection is arguably under the mandate of
the Parts Registry. Meanwhile GBrowse may prove to be the more scalable visualization



architecture, and if so, it would make more sense to layer a dissection tool on top of it.  Like
any program, GeneJax development should only continue if it fills a need and there is good
reason to believe it will fulfill that need well. Regardless of GeneJax's fate, we hope that
designers of future genome refactoring tools will find the information here useful.
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