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Abstract

I performed computational analyses of various approaches to generating re-

engineered versions of the genome of bacteriophage T7. I analyzed a proposed design for a 

re-engineered genome by examining conservation of T7 genes across related phages, and 

looking for RNA secondary structure arising from the re-engineered genome that might 

contribute to unwanted regulation. In addition, I proposed two methods of generating 

libraries of T7 genomes, and implemented simulations showing that the proposed methods 

are theoretically feasible. I conclude with thoughts on how to further validate my proposed 

approaches to genome generation, and suggest a specific high-throughput method of 

characterizing rebuilt genomes.
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Chapter 1: Introduction

Recent years have seen an increased focus on understanding how all the components of 

a biological system interact to produce a functional whole (1-3). This shift in focus has been 

accompanied by the realization that rigorously-specified quantitative models of the dynamics 

and control of system behavior are an essential aspect of an effective systems-level view of 

biological processes (1, 2). However, this “systems biology” approach has encountered 

considerable practical problems: hand-in-hand with the increase in quantitative modeling in 

biology has come the realization that many computational models, even for relatively simple, 

well-studied systems, do not agree very well with experimental data, or cannot correctly 

predict the effect of novel perturbations (4,5). In addition, it is increasingly appreciated that 

whole-genome sequences provide only a rough outline of the functional elements encoded 

on the genome, and require extensive further investigation to elucidate the necessary and 

sufficient combinations of elements, and the interactions between these elements, needed to 

produce a viable organism (6). It is also becoming apparent that filling in the gaps in our 

knowledge by the brute force expedient of “measuring everything” may not be practical 

because of sheer scale. A physically accurate model of a biochemical network may require 

modeling thousands of possible reactions (7), yet measuring all the associated reaction rates 

in order to parameterize the model is infeasible with current technology. Similarly, trying to 

establish a list of all essential combinations of parts, by determining all synthetic lethal 

combinations of k genes in an organism that has a total of N genes would require 

performing N-choose-k = 
)!(!

!

kNk

N


 knock-out experiments, a number that rapidly grows 

beyond the practical even for relatively small N  and k. 
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In view of these difficulties in studying naturally-occurring biological systems, a 

potentially attractive alternative approach is to forward- or re-engineer an existing biological 

system, to construct surrogates that retain the system functions of interest, but make it easier 

to generate the data needed for better understanding. Here, the naturally-occurring system is 

dissected into a set of abstract, (putatively) independent parts of known function, and then 

reassembled de novo out of physical instantiations of the functions believed to be encoded by 

these parts. Reassembly allows the constructed system to be optimized for manipulation, 

dissection and analysis. These surrogate systems can be constructed in at least two ways: via 

an explicitly-specified redesign, yielding a single alternative system, or by combinatorially 

generating libraries of surrogate systems and then choosing library members of interest for 

further study. 

Previous work on rearranging and extending the genome of the vesicular stomatitis virus 

(VSV) supplies an illustration of the single instance redesign approach applied to a small 

system. In a series of papers, 15 specific variants of the 5-gene VSV genome were 

constructed, both by permuting the natural gene order and by inserting entirely new genes 

(60-63). Characterizing the gene and protein expression profiles of these genome variants 

confirmed previous reports that gene order and transcriptional attenuation are the primary 

mechanisms of gene expression regulation among the non-segmented negative-strand RNA 

virus family that VSV belongs to. In addition, all constructed genomes were viable, which 

revealed the insensitivity of VSV to large-scale genomic rearrangements. Re-engineering the 

VSV genome thus helped to both confirm existing knowledge as well as generate new 

insights.

Targeted re-design of a single instance has also been applied to bacteriophage T7. T7 is 

a lytic phage that infects Escherichia coli, was originally isolated in 1944 (8), and has been 
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extensively studied over the last 60 years. The T7 genome consists of 39,937 bp of linear 

double-stranded DNA, with 3 major E.coli RNA polymerase promoters (termed “host 

promoters”), 17 T7 RNA polymerase promoters (termed “phage promoters”), 3 

transcriptional terminators and 10 RNase III cleavage sites (12). Figure 1 shows the 

approximate genomic organization of these elements (with some elements omitted for 

clarity).  

In order to generate a version of T7 that is more easily modeled and manipulated, Chan 

et al. split the T7 genome into 6 regions, designated alpha through zêta, and abstracted it into 

73 functional parts (22), as shown in Figure 2. They then redesigned the genomic sequence

to remove sequence overlaps between the parts, and bracketed each part with unique 

restriction sites to allow easy experimental manipulation of individual parts. The resulting 

genome was designated T7.1, and Figure 2c shows the detailed design of section alpha that 

emerged from this process. Chan et al. constructed sections alpha and beta, spanning the left 

11.5kbp of the 40kbp genome, and combined them with the wild-type genome to produce 

the chimeric phages alpha-WT, WT-beta-WT, and alpha-beta-WT. The resulting chimerae were 

all viable, with growth characteristics comparable to the wild-type isolate. These results 

further illustrate the utility of the re-engineering approach in increasing our understanding of 

naturally-occurring systems, by confirming the hypothesis that no essential functionality is 

encoded in the overlapping elements of the wild-type T7 genome, and providing a proof-of-

principle that the T7 genome can tolerate large-scale sequence changes designed to make it 

easier to model viral development and manipulate physical instances of the genome.

The work described in Chapters 2 and 3 further explores the construction of alternative 

T7 genomes. Members of the Endy lab have continued the line of research begun with the 

construction of T7.1 by designing an updated version of the T7 genome, designated T7.2. In 
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Chapter 2, I describe my analysis of various aspects of the T7.2 design, specifically the 

conservation profile of the genes that are part of T7.2, and potential regulation encoded in 

the secondary structure adopted by the genome as it is transcribed. The work described in 

Chapter 3 is motivated by the observation that one limitation of approaches generating a 

single target genome is that they inherently only probe a single point in the vast genome 

design space, and targeted construction of multiple instances is generally too labor-intensive 

to consider on a large scale. The ability to generate and characterize genomes in a more rapid 

fashion is thus highly desirable. In Chapter 3, I propose two methods for combinatorial 

generation of T7 genomes, via facilitated loss of multiple non-essential genes or gene order 

rearrangement, and analyze the feasibility of these methods via computational modeling. 
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Chapter 2: Analyzing the T7.2 Design

While the T7.1 genome is, in principle, a surrogate that is easier to understand, model 

and manipulate than the wild-type genome, it is not an ideal surrogate. Seventy percent of 

the built and tested alpha-beta-WT version of T7.1 still consists of wild-type genomic 

sequence, containing 32 genes coding for 36 putative proteins (out of 56 genes coding for 60 

proteins in the entire genome). In addition, since no genes were eliminated in T7.1, the 

engineered genome still contains over 20 wild-type proteins that are non-essential, most of 

which are non-conserved, and many of which have not been assigned a function (13). It is

thus easy to envision a version of the T7 genome that is more strongly optimized for ease of 

understanding than T7.1. 

Members of the Endy lab have designed a genome labeled T7.2 (22), which encodes a 

more stringently-specified version of the T7 genome than T7.1. Like T7.1, T7.2 eliminates 

sequence overlaps between elements. In addition, to make it easier to construct accurate 

computational models of phage gene and protein expression, the T7.2 design standardizes 

the promoters, ribosome binding sites and RNase III sites to a small set of “canonical” 

instances of these regulatory elements (23). To eliminate elements of unknown function, the 

design also calls for the removal of 21 non-essential genes. Below, I describe my efforts to 

contribute to the work on T7.2 by computational analysis of several aspects of the proposed 

design.

Phylogenetic analysis: The T7.2 design calls for the removal of 21 non-essential, non-

conserved genes. The initial list of non-conserved genes came from a review of the T7 

family (13), but the review did not clearly specify the criteria used to judge conservation.
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To obtain more explicit data about gene conservation in T7, and possibly refine the list 

of genes in T7.2, I analyzed the conservation of T7 genes across the family of T7-like phage 

(13):  T3 (24), øA1122 (25), gh-1 (26), and øYeO3-12 (27). I first extracted the coding 

sequences of genes in these phages annotated as being similar to T7 genes and converted the 

DNA sequence to the encoded amino acid sequence. I then used BLAST (51) to generate 

pairwise alignments of the T7 amino acid sequence to each appropriate amino acid sequence

from the other phages, and calculated pairwise percentage amino acid identities. Finally, I 

calculated the average amino acid identity between each T7 protein and the matching 

proteins in all the other phage genomes. The results are shown in Table 1.

Based on the data in Table 1,  the 21 non-essential genes showing the least conservation, 

according to number of genomes they are conserved in and average amino acid identity with 

respect to T7, are 0.3, 0.4, 0.5, 0.6A/B, 0.7, 1.2, 1.4, 1.5, 1.8, 2.8, 3.8, 4.1, 4.2, 4.7, 5.3, 5.5, 

6.3, 7, 7.7, 19.2, 19.3.  This list includes all T7 genes that are not conserved in any of its close 

relatives, those conserved in only one or two close relatives, and 8 of the 14 non-essential 

genes conserved in three out of four close T7 relatives. A phage genome based strictly on 

this list of genes to remove would differ from the genome specified by T7.2 by retaining 

genes 1.6, 5.7 and 5.9, and removing genes 0.3, 0.7, 1.2 and 5.5. However, genes 0.3, 0.7, 1.2

and 5.5 have all been assigned a function, whereas 1.6 and 5.7 have no known function. 

Thus, inclusion of 0.3, 0.7, 1.2 and 5.5 is potentially more defensible than inclusion of 1.6, 

5.7 and 5.9, and there is no compelling reason to update the T7.2 gene list. 

Eliminating potential new secondary-structure based regulation: Genomes encode 

information not just at the linear sequence level, but also in RNA secondary structure, which 

can produce regulatory signals affecting processes like translation (29-31) and mRNA 
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stability (32, 33). In the T7 genome, the only regions known to adopt secondary structure 

affecting transcription and translation are the RNAse III and transcription termination sites 

(12), and the 5’ and 3’ UTR regions of gene 10 (34). However, replacing the wild-type RBS 

with a standardized RBS, as proposed in T7.2, could introduce new secondary structure that 

might inhibit ribosome binding and mRNA translation, by allowing pairing between the RBS 

and the beginning of the coding sequence. 

To determine the extent of secondary structure introduced by the new RBS, I used 

RNAfold (52) to predict the folding energies of both wild-type and engineered RBS-CDS 

junctions. The folded sequences were 59 bp long and, for the engineered variant, consisted 

of the standardized (20 bp long) RBS assigned to the given gene in the T7.2 design and the 

first 13 codons of coding sequence. Similarly, 20 bp upstream of the ATG start codon and 

the first 13 codons of coding sequence were used for the wild-type variant. The length of 

sequence to fold was chosen based on the fact that most known secondary structure-based 

regulatory elements are relatively short, and also to limit the number of sequence variants 

that needed to be generated and evaluated. 

The average predicted ΔG of folding was relatively high (i.e. little secondary structure 

was predicted) for both the engineered and wild-type RBS-CDS junctions. The average ΔG 

was actually higher with the engineered RBS than with wild-type RBS sequences, -1.5 

kCal/mol for the engineered RBS versus -2.1 kCal/mol for the wild-type RBS sequences. 

However, there were instances when either the engineered RBS resulted in new extensive 

base pairing (shown in Figure 3), or the wild-type RBS itself led to extensive base pairing 

(shown in Figure 4). 

I also investigated the possibility of eliminating secondary structure at RBS-CDS 

junctions altogether. For each T7.2 gene, I generated all possible DNA sequence variants of 
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the first 12 codons after  the start codon, allowing up to 3 alternative codons at each 

position. The allowed codons were the top three most frequently used codons in E.coli, 

based on published data on tRNA abundance and codon usage (53). I then prepended the 

standardized RBS assigned to the gene, predicted the folding energy of each shuffled 

sequence, and retained the sequence with the highest ΔG (i.e. least amount of secondary 

structure). Figure 5a shows the results of these calculations. As can be seen, some RBS-

shuffled CDS sequences are predicted to have a ΔG of folding equal to 0.0 kCal/mol, and 

the ΔG of the RBS-CDS junction with the lowest ΔG of all the shuffled genes is still 

relatively high, at -5.4 kCal/mol. This RBS-CDS belongs to gene 14.3, and has the structure 

shown in Figure 5b, showing very little basepairing that could potentially disrupt ribosome 

binding and translation. From the results above, codon-shuffling allows elimination of 

almost all predicted secondary structure.

Based on the hypothesis that eliminating secondary structure would eliminate the 

potential for translational inhibition at the RBS-CDS junction, all T7.2 genes with a 

predicted energy of folding less than -9.0 kCal/mol at the RBS-CDS junction were updated 

to incorporate the shuffled coding sequence resulting in the least predicted secondary 

structure. The -9.0 kCal/mol cutoff was chosen manually, by looking at the energies of 

structures predicted to have extensive basepairing (>= 10 basepairs). 

Finding existing potential secondary-structure based regulation: To find regions in the 

protein-coding regions of the T7 genome that might encode secondary structure-based 

regulation, I utilized the DicodonShuffle algorithm developed by Katz and Burge. This 

algorithm generates variants of an mRNA sequence that preserve the encoded amino acid 

sequence, codon usage and dinucleotide composition (35). By predicting the secondary 
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structure adopted by these variants and using their folding energies to establish the expected 

background distribution of folding energies, it is possible to estimate whether the folding 

energy of the wild-type sequence differs significantly from what would be expected at 

random (i.e. in the absence of selection for secondary structure); such sequences are 

candidates for encoding biologically-relevant information in their secondary structure.

By combining a C implementation of the DicodonShuffle algorithm and the source code

for the RNAfold package (52) into a single C program, I obtained a program that allowed 

the efficient generation and folding of shuffled sequence variants.  I used this program to 

generate 1000 shuffled variants of each protein-coding RNA sequence in the T7 genome and 

calculated the predicted energy of folding for each position of a window sliding across the 

sequence. I gathered data for 50, 60 and 70 bp windows, with a step size of 10 bp between 

window positions. For each window position, I calculated the average and standard deviation 

of folding energies of the sequence variants, and then derived a z-score for the folding 

energy of the wild-type sequence. To find segments of the wild-type sequence that have 

folding energies that are significantly different from the background distribution, I looked 

for segments with a z-score >= -2.5758, which corresponds to sequences in the top 0.5% of 

the energy distribution (Figure 6 shows an example of the distribution of folding energies 

obtained; as can be seen, the distribution is approximately normal, justifying the use of a z-

score to evaluate the significance of a particular folding energy).

Table 3 shows all 50, 60 and 70 bp regions that had highly significant folding energies.

As the data show, whether a particular segment of sequence has a folding energy above the 

cutoff is highly dependent on the window size – most regions are not considered significant 

for more than one window size. Thus, the regions of most immediate interest are the ones 

which do exhibit a significant amount of predicted secondary structure across multiple 
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window sizes for the same, or closely-spaced, starting positions. There appear to be 3 such 

regions in the T7 genome (highlighted in Table 3): positions 1030-1130 in gene 8, positions 

380-470 in gene 15, and positions 2380-2470 in gene 16. None of these locations is near the 

transcriptional terminators, RNAse III sites or other sites known to have secondary 

structure-based regulatory functions in T7 (12, 34).  The minimum-energy secondary 

structures predicted for these 3 regions by the Mfold server (58, 59) are shown in Figure 7. 

As expected, these sequences show extensive basepairing, and thus may affect translation

(29-31).

Based on this analysis, the three regions listed above seem to be the best initial 

candidates for codon-shuffling to remove potential “cryptic” regulation encoded by the 

RNA secondary structure of protein-coding regions of the T7 genome. Should the T7.2 

work ever proceed to the point of constructing regions of the genome that include genes 8, 

15 or 16, it would be worth considering codon-shuffling these regions to remove/reduce 

their secondary structure, if this can be done without introducing significant new structure in 

nearby sequences. 
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Chapter 3: Library-based Approaches to Genome Generation 

As mentioned earlier, there are limits to the scalability of the re-engineering approach 

based on constructing specific genome instances. Below, I describe and analyze two 

potential approaches to generating libraries of T7 genomes with reduced or re-ordered gene 

sets. 

Design of a “lossy” genome: A systems-level understanding of a biological entity requires 

knowing which combination of parts is essential to system function. However, 

determination of synthetic lethal subsets of genes by direct deletion of gene sets is largely 

infeasible due to the combinatorial explosion of possible gene subsets to delete. To allow 

efficient generation of a large number of genomes with reduced gene sets, one possibility is 

to construct a genome that is prone to gene deletions, and evolve it over many generations 

to allow accumulation of gene deletions. Construction of such a “lossy” genome could utilize 

the fact that direct repeats in the T7 genome can recombine during T7 DNA replication, 

leading to deletion of the intervening sequence, as initially reported by (37-39). Recent data 

also confirms the phenomenon of recombination between repeats: experimental evolution 

of the T7.1 genome resulted in elimination of several of the repeats introduced into the T7.1 

genome (IJ Molineux, personal comm.).

This mechanism of sequence deletion could possibly be exploited to design a lossy

genome, by extending the T7.2 genome design to include repeat regions around all 

remaining non-essential genes. The repeat-enriched genome could then be subjected to 

multiple rounds of evolution to generate genomes with differing gene sets (Figure 8), and 

isolates exhibiting growth and fitness characteristics that differ significantly from the 

progenitor phage could be sequenced. Analysis of the final set of sequenced genomes would 
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then allow determination of which genes have been lost over the course of the experiment 

and hence are dispensable (or important) for viability.

To determine whether this approach was even theoretically feasible i.e. would result in 

enough genomes with reduced gene sets, I simulated the rate of gene loss across multiple 

cycles of phage growth. Specifically, I simulated the effect of inserting repeats between each 

of the T7 genes 1.1 – 1.8, and then subjecting the resulting phage genome to multiple growth 

cycles, interspersed with serial dilutions and transfers, similar to the protocol described in 

(43, 44). This set of genes was chosen for being a mix of genes of known and unknown 

functions, and thus potentially a good candidate set for investigation using my proposed 

genome construction scheme.

My simulation was based on the following assumptions:

• The same repeat is inserted between all eight genes, leading to multiple possible 

recombination events

• The repeats are 20bp long

• The recombination rate per lysis cycle varies linearly with the distance between 

repeats, with the following recombination rates used to calculate the probability of a 

particular recombination event: 1 in 1600 for repeats 100bp apart, 1 in 8000 for 

repeats 900bp apart, and no recombination if repeats are > 1100 bp apart. These 

recombination rates are based on data from (56, 57). 

• Each gene is 350bp long i.e. the distance between repeats is 350bp; this corresponds 

to the actual average length of genes 1.1 – 1.8. 

• The burst size is 100 i.e. 100 new virions are produced per each infected cell, based 

on (9). This corresponds to the parameter b below.
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• There are 3 cycles of viral growth and cell lysis between each serial dilution and 

transfer; this is represented by the parameter r below.

• The probability of multiple recombination events occurring in a single genome 

during one viral growth cycle is low enough to be negligible

The algorithm for calculating gene loss across multiple cycles of phage growth is

described below, where a “genome family” is defined as a set of genomes with a particular 

number of genes (regardless of what the actual genes are):

1. Start with a founder population consisting of a single genome family, with all 8 genes

2. During each round of cell culture, for each genome family k (ie consisting of 

genomes with k genes and k+1 repeats), with k decreasing from 8 to 0: 

a. Calculate the number of progeny phage expected as Nnew = Nk
current * br , 

where Nnew is the total number of new progeny phages from genome family 

k, Nk
current  is the current number of phages in genome family k, b is the 

burst size and r is the number of cell lysis cycles 

b. Calculate the probability distribution of a particular number of genes being 

lost from a member of genome family k

c. Use the probability distributions created in the previous step to calculate the 

partition of the Nnew  phages into phages with i <= k genes i.e. set

Ni
new = Nnew * pk

i , where Ni
new  is the new number of phages with i genes 

and pk
i  is the probability of a genome with k genes losing (k-i) genes to result 

in a genome with i genes

d. Update the number of phages in each genome family with j <= k genes with 

the numbers calculated in the previous step ie set Nj
current = Nj

current  + Nj
new
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3. “Dilute” the phage population by proportionally dividing up the number of phages 

in each genome family to maintain a constant phage population size. (This is the 

equivalent of performing a serial dilution and transfer of the lysate from a viral 

culture into a fresh culture of the host cells). 

4. Repeat step 2 for the desired number of serial transfers

5. The final result is the number of phages in each genome family  

The probability distribution for losing i genes from a k-gene genome was calculated by 

calculating the probability of each of the (k+1)-choose-2 = 
2

)1( kk
 possible recombination 

events, based on the distance between repeats, and summing up the probabilities for the 

number of genes eliminated by each possible recombination event. 

The results of this simulation are shown in Figure 9 and Table 2. As the data show, the 

estimated rate of recombination, and hence gene loss, between 20bp repeats is too low to 

allow easy generation and isolation of genomes that have lost multiple genes. However, 

increasing the recombination rate by a factor of 50-fold would result in a phage population 

in which virtually all phages have lost at least one gene, and the majority have lost multiple 

genes. Since the rate of recombination increases 500-fold when the repeat length increases 

from 20bp to 10bp (38), it seems reasonable to think that the desired 50-fold increase in 

recombination rate could be achieved by increasing the repeat length to 30 or 40bp. Thus, 

the repeat-based approach to constructing a lossy genome seems at least theoretically 

feasible.

Generating shuffled genomes: Due to the relatively slow rate of entry of the T7 genome into 

an E.coli cell during infection (14, 15), there are large differences in the total time available 
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for transcription and translation of genes that are widely separated on the genome. In 

addition, the promoter organization on the genome leads to genes being transcribed from 

differing numbers of promoters (12). Thus, the overall amount of mRNA and protein 

produced by a gene is affected both by the strength of genomic regulatory elements driving 

its transcription and translation, and its position on the genome. 

A systems-level understanding of the effect of genomic organization on the T7 lifecycle 

would be reflected in an ability to accurately model the effects that reordering genomic 

elements has on gene expression. The work by Endy et al. to characterize reorganized 

genomes (21) was a step in this direction, but was limited in the amount of data that could 

be gathered, due to the large amount of work needed to construct these genomes. Thus, the 

possibility of being able to easily generate and characterize many rearranged genomes, and 

use the generated data to refine our model, is appealing. 

One possible method of generating a library of permuted genomes is to use a 

combination of the DNA shuffling technique pioneered by WP Stemmer (45, 46) and work 

by Tsuge et al. that demonstrated efficient in vitro assembly of multiple DNA fragments in a 

designed order and orientation (47). In DNA shuffling, DNA sequences containing regions 

of homology but differing from each other by, for example, point mutations, are fragmented 

by DNase I treatment and then allowed to reassemble by multiple cycles of annealing and 

extension in the presence of DNA polymerase. The regions of homology guide the 

reassembly, resulting in a shuffling of the sequences as depicted in Figure 10a. Tsuge et al.

were able to assemble multiple genes in a designed order and orientation by ligating together 

gene sequences with protruding sequences at both ends; the protruding ends determined the 

order of assembly, as shown in 8b. 
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Combining a homology-based approach to shuffling sequences with a mechanism 

allowing control of the order and orientation of reassembly would allow creation of a library 

of elements assembled in various orders. Such a library could be constructed by generating 

an ensemble of individual elements flanked by protruding sequences and allowing these 

sequences to guide assembly via annealing and ligation. An example of this, applied to three 

elements, denoted E1 – E3, is depicted in Figure 11.

As shown, arbitrary permutations of elements could be generated via the appropriate 

ordering of overhang sequences annealing to each other and being ligated together. The 

length of the assembly could be controlled via the 5’ and 3’ “caps”, which are sequences that 

stop extension in either the 5’ or 3’ direction, by having an overhang on only one end. In 

addition, the overhang sequences can be designed to have a unique pairing, thereby avoiding 

“cross-talk” that could lead to arbitrary-length assemblies despite the presence of the 

capping sequences. The caps would also allow amplification and purification of generated 

assemblies: PCR primers specific to the caps can be used to amplify only capped assemblies, 

which can then be purified via gel electrophoresis and extraction of bands of the appropriate 

length. Thus, this approach could allow generation of permuted T7 genome segments by 

shuffling individual segments containing one or more genes. 

One potential problem with my proposed library construction scheme is that the 

desirable assemblies, specifically the ones containing a complete set of the shuffled genes, 

with no repeated genes, may be a very small fraction of the total assembly pool. Analytically, 

if k genes are being shuffled, there are kk possible k-gene assemblies, of which k! contain no 

repeated genes (hereafter called “complete” assemblies). Thus, complete assemblies make up 

kk

k!
 of the total assembly pool, which may be a relatively small fraction. However, 
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purification of complete assemblies can be optimized by observing that assembly length 

provides a rough guide to the contained genes. Thus, it is possible to enrich for complete 

assemblies by running the assembly pool out on a gel and extracting only bands that are 

approximately the length of a complete assembly, thereby generating a pool of “restricted 

length” assemblies.

To estimate the enrichment provided in this manner, I simulated shuffling 5 segments 

covering the region from gene 1 to gene 3.5 in the T7.2 design. This region contains 5 

essential genes that are the main contributors to regulating transcription and duplication of 

the phage genome (genes 1, 2, 2.5, 3, 3.5), and are thus a good candidate set for exploring 

the impact of genome ordering on phage gene expression. The boundaries of the 5 segments 

were as shown in Figure 12. I simulated the generation of one million assemblies via the 

algorithm described below. 

I calculated the fraction of complete assemblies, as well as the fraction of assemblies that 

had lengths within 10% of the length of a complete assembly (the “restricted length” 

assemblies), and would be indistinguishable from complete assemblies on a gel.  The fraction 

of complete assemblies was 3.8% (in agreement with the analytical solution), and the fraction 

of restricted-length assemblies was 21.8%; thus, complete assemblies make up 3.8/21.8 = 

17.4% of the restricted-length assemblies, an approximately 4.5-fold enrichment.

Presumably, this technique could be made even more effective by optimizing the lengths 

of the shuffled elements to maximize the difference in length between complete assemblies 

and all other assemblies. It thus seems reasonable to assume that a ligation reaction 

containing the appropriate DNA sequences, coupled with length-based enrichment for 

complete assemblies will allow generation, isolation, and subsequent characterization of T7 

variants with permuted gene orders.
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Simulation algorithm:

L is the number of allowed ligation reactions per assembly and was set to 100; pCapping is the 

probability of a ligation reaction adding a cap to the current assembly and was set to 0.1.

 For N iterations

o Seed the assembly by uniformly picking a random starting segment and 

assigning it 5’ and 3’ linkers

o For the allowed number L of ligation reactions per assembly:

 Uniformly generate a random number randNum in the range 0 to 1

 If randNum < pCapping and the assembly can be capped on the 5’ end, 

cap the assembly on the 5’ end

 Else If (randNum >= pCapping && randNum < 2*pCapping) and the 

assembly can be capped on the 3’ end , cap the assembly on the 3’ 

end

 Else

 Uniformly generate a segment and 5’ and 3’ linkers

 If the new segment can be ligated to the current assembly on 

the 5’ or 3’ end (i.e. the segment’s 5’ linker matches the 3’ 

linker of the assembly, or vice versa), add it to the assembly

 If the assembly is complete (i.e. is capped on the 5’ and 3’ ends, and 

has the desired number of segments), terminate this set of ligation 

reactions

 Generate statistics for the number of complete and restricted-length  assemblies
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Chapter 4: Conclusions and Future Work

Portions of the T7.2 genome containing some of my proposed changes to reduce RNA 

secondary structure at the RBS-CDS boundary have been commercially synthesized and are 

currently being assembled. Assuming the designed genome passes the most basic test, 

namely whether it leads to a viable phage, the phage encoded by this genome will need to be 

carefully characterized to determine whether the desired ability to more accurately model the 

T7 system has been achieved.  

The simulations described in Chapter 3 show that my proposed approaches to 

generating libraries of T7 genomes are theoretically feasible. The obvious next step is thus to 

attempt to validate these approaches experimentally. Construction of a genome that easily 

loses genes (i.e. the “lossy” genome described in chapter 3) is predicated on being able to 

increase the rate of recombination between direct repeats by about 50-fold above the 

recombination rate measured between 20bp repeats. Whether this increase can be achieved 

via my suggestion of using longer repeats can be tested by constructing genomes with longer 

repeats and measuring their recombination rate via the method described in (38). Should the 

results appear encouraging, construction of a genome with multiple such repeats can then be 

attempted either via commercial synthesis of the desired genome or manual insertion of 

repeats into, for example, the T7.1 genome. This genome can then be evolved and isolates 

sequenced to determine whether gene loss is occurring at an acceptable rate. 

My suggested method of obtaining genomes with shuffled gene orders can tested on a 

small scale at first, by attempting to shuffle 2 or 3 segments. If each segment includes an 

essential gene, only assemblies containing all segments will lead to viable phages, thereby 

allowing the use of plaque formation as a strong screen for selecting phages that have 

incorporated complete assemblies. These phages can then be partially sequenced (for 
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example, via sequencing microarrays), or otherwise characterized (by PCR, for example), to 

determine whether the desired shuffling of segment order has occurred. It should be noted 

that even if these experiments show that the number of segments that can be effectively 

shuffled at one time is relatively small, the method can be applied in a hierarchical fashion to 

shuffle larger portions of the genome. For example, suppose one experiment shuffles genes 

1-3, a second experiment shuffles genes 4-6, and a third experiment shuffles genes 7-9. One 

complete assembly from each of these experiments can then be used in a fourth shuffling 

experiment, thereby permuting the order of genes 1-9. Although not all possible 

permutations are accessible via this hierarchical approach, it should allow generation of 

genomes with significantly changed gene ordering. 

Once the re-engineered genomes have been constructed, whether according to a specific 

design or in a combinatorial manner, their utility to the scientific and engineering enterprise 

will in large part be determined by how easy it is to characterize them, for example, how 

quickly they can be sequenced and their gene expression profile measured. If this data 

cannot be generated quickly enough to allow rapid testing of desired characteristics, or 

refinement of existing models of the system, the appeal of re-engineering genomes rapidly 

diminishes. From this perspective, the use of microarrays for high-throughput sequencing 

and gene expression measurements of the generated T7 instances is appealing. In particular, 

I conducted an initial survey of microarray manufacturers and found that, at the time of this 

writing, Nimblegen arrays custom-designed for T7 seem to offer the ability to sequence T7 

genomes variants, and measure gene expression profiles, at a reasonable price. Future work 

on re-engineering T7 would presumably benefit from continuing this line of investigation. 
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T7 genes conserved 

in 4 genomes (29)

T7 genes conserved 

in 3 genomes (14)

T7 genes conserved 

in 2 genomes (8)

T7 genes conserved 

in 1 genome (2)

P>=80%: 8 (84.5), 3.5 

(83.5), 5 (83.5), 5.7 

(82.3), 4A (80.3), 17.5 

(80.3)

70%<= P < 80%: 19 

(79.0), 1 (78.5), 3 (77.5), 

18 (77.0), 2.5 (75.5), 16 

(75.3), 6 (75.3), 12 

(71.75)

60%<=P<70%: 11 

(69.5), 15 (68.8), 10A 

(67.8), 18.5 (67.8), 17 

(65.0),1.3 (64.8), 13 

(62.0), 6.5 (61.8), 14 

(61.5), 18.7 (61.3), 9 

(60.0)

40%<=P<60%: 6.7 

(59.3), 7.3 (54.3) , 2 

(49.8), 1.1 (47.8)

P >= 80%: 5.9 (81.7), 

4.5 (81.3)

50%<=P<80%: 19.5 

(75.0), 1.6 (71.0), 4.3 

(61.0), 1.7 (59.3), 19.2 

(57.7), 1.8 (55.7), 1.2 

(54.0), 19.3 (53.3)

P<50%: 5.5 (46.0), 1.5 

(33.3), 0.3 (31.7), 6.3 

(18.3)

P >= 80%: 4B (86.0)

P <80%: 7 (66.0), 3.8 

(65.0), 0.7 (44.0), 4.2 

(42.0), 5.3 (25.0), 0.6A 

(45.0), 0.6B (25.0)

P >= 80%: 7.7 (99.0), 

4.7 (87.0)

Table 1: T7 genes conserved in close relatives of T7. Numbers in parentheses 
are average amino acid identity, P. T7 genes not conserved in any other genome: 0.4, 0.5, 
1.4, 4.1, 2.8.
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Genes 

lost
0 1 2 3 4 >= 5

Fraction 

of pop. 
0.89 0.067 0.034 0.0052 0.0004 ~0.0

Genes lost 0 1 2 3 4 5 >=6

Fraction of 

pop.
0.31 0.26 0.23 0.12 0.05 0.01 ~0.0

Genes 

lost
0 1 2 3 4 5 6 7 8

Fraction 

of pop.
0.001 0.011 0.048 0.125 0.21 0.26 0.22 0.12 0.005

Genes lost <3 3 4 5 6 7 8

Fraction 

of pop.
~0.0 0.004 0.03 0.14 0.33 0.465 0.03

Tables 2a-d: Population fractions after 20 serial transfers. a) 1x recombination rate 
b) 10x recombination rate c) 50x recombination rate d)100x recombination rate

a)

b)

c)

d)
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Table 3: T7 coding regions with predicted folding energies in the top 0.5% of 

the energy distribution. Position is in bp, relative to each gene’s start codon.

Gene Position Length ∆G(kJ/mol) z-score Gene Position Length ∆G(kJ/mol) z-score

gene 0.3 gene 3.5

280 50 -14.2 -3.64111 340 70 -30.4 -2.73884

280 60 -14.2 -2.96326 gene 3.8

gene 0.6B 0 60 -14.7 -2.59481

180 50 -16.8 -2.61144 20 60 -18.3 -2.61263

190 60 -17.6 -2.71198 gene 4B

190 70 -23.3 -2.62879 150 60 -14.42 -3.19413

230 50 -15.86 -2.71517 150 70 -18.52 -3.3531

240 70 -19.9 -3.07339 160 50 -13.12 -2.96982

250 70 -20.7 -2.82969 960 70 -18.1 -2.60082

260 60 -16.5 -2.59225 1000 60 -21.7 -3.09524

270 50 -16.5 -3.05621 1110 60 -18.9 -2.97165

270 60 -18.2 -2.94809 1110 70 -19.6 -2.57929

gene 0.7 gene 4A

540 50 -13.1 -2.80733 340 60 -14.42 -3.03881

540 70 -16.8 -3.12602 340 70 -18.52 -3.34022

550 60 -16.8 -3.51762 350 50 -13.12 -2.97091

550 70 -21.5 -2.94958 1000 60 -19.7 -2.94623

gene 1 1180 70 -23 -2.67322

460 60 -19.1 -2.73702 1190 60 -23 -3.33644

1150 50 -13.5 -2.73767 1300 60 -18.5 -3.08238

1980 60 -22.2 -2.61018 1300 70 -18.5 -2.57852

gene 1.2 gene 4.2

120 50 -12.6 -2.832 10 50 -12 -2.70659

gene 1.3 gene 4.3

90 50 -13.2 -2.75489 50 70 -25.4 -2.58209

100 50 -14.9 -2.81011 gene 4.7

800 60 -21 -2.62639 50 50 -8.8 -2.59975

gene 1.6 gene 5

70 50 -13.1 -2.60906 100 60 -29.1 -2.68677

70 50 -13.1 -2.60906 580 50 -17.8 -2.70545

gene 1.7 1010 50 -17.3 -2.97194

300 50 -11.3 -2.70597 1010 60 -17.8 -2.92285

430 70 -22.5 -3.64224 1050 50 -16.5 -2.9778

gene 1.8 1170 50 -15.7 -2.94948

60 60 -11.6 -2.60548 1260 50 -16 -3.08574

60 70 -16.6 -2.76666 gene 5.5

gene 2.5 210 50 -9.6 -3.09156

330 60 -12.3 -2.63428 gene 6

330 60 -12.3 -2.63428 380 60 -22.4 -2.73383

gene 3 540 70 -24.1 -2.80288

20 70 -26.6 -3.45901 570 70 -28.3 -3.04026

30 60 -22.7 -3.56705 780 60 -18.7 -2.58139

30 70 -22.7 -3.56958 gene 7.3

20 60 -15.2 -3.31563
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Table 3 continued:

Gene Position Length ∆G(kJ/mol) z-score Gene Position Length ∆G(kJ/mol) z-score

gene 7.7
Gene 15 
contd 410 50 -18.6 -3.4317

160 60 -17.2 -2.77539 410 60 -22.3 -3.44345

190 60 -14.3 -2.85222 450 60 -19.1 -2.88564

gene 8 820 50 -16.7 -2.72836

310 60 -15.8 -2.71693 1080 70 -20.6 -2.88472

490 70 -22.7 -2.88735 1470 50 -16.1 -3.39772

500 50 -17.1 -2.69651 1750 60 -17.8 -2.57624

880 60 -21.7 -2.93767 1760 50 -13.4 -2.73324

1030 70 -24.7 -3.00268 1760 60 -14.7 -2.92349

1040 50 -13.9 -2.81419 2040 70 -17.6 -2.61361

1040 60 -22.1 -3.41487 2050 60 -15.8 -2.70918

1040 70 -30.1 -3.43546 2200 44 -11.9 -2.87741

1050 50 -18.7 -2.81444 gene 16

1050 60 -26.9 -2.75018 580 60 -21.1 -3.08343

1060 50 -19.3 -3.02176 580 70 -22.8 -2.95061

1060 70 -26.8 -3.3436 600 50 -14.4 -2.76394

1330 50 -25.1 -2.81657 1030 70 -24.1 -3.50266

gene 9 2380 70 -24.5 -3.1373

210 60 -24.2 -2.64901 2390 60 -21.8 -2.7308

210 70 -30.4 -3.59211 2390 70 -27.4 -3.35353

220 50 -23.9 -3.05274 2400 50 -20.9 -2.94204

220 60 -24.7 -2.94155 2400 60 -23.9 -3.28397

440 50 -16.5 -2.60493 2400 70 -25.1 -2.92623

690 60 -21.8 -2.80847 2410 50 -16 -2.68987

gene 10A 2580 50 -14.8 -2.96855

810 70 -18.7 -2.70405 2610 60 -20.3 -2.69359

830 60 -18.3 -3.64819 gene 17

850 70 -21.3 -2.68848 80 50 -15 -2.62606

860 60 -21.3 -3.05664
gene 
18.5

860 70 -26.3 -2.89422 80 50 -10.6 -2.86737

gene 12 80 60 -12.4 -2.82055

650 50 -17.4 -2.79309 gene 19

gene 13 400 50 -16.6 -2.76465

1260 70 -22.2 -2.72393 640 50 -16.3 -3.30984

2000 70 -26.6 -2.74194 1010 60 -16.8 -2.99748

2400 70 -25.1 -2.92623 1020 50 -10.9 -2.91289

gene 14

210 60 -19.4 -3.30136

gene 15

380 70 -30.2 -3.94986

390 60 -19.8 -2.86099

390 70 -22.3 -2.62666

400 50 -17.1 -3.33304

400 60 -19.9 -3.25392

400 70 -23.3 -2.8975
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Figure 1: T7 genome organization. Vertical green lines with half bars: host 
promoters; vertical blue lines with half bars: phage promoters; vertical orange 
lines with full bars above the genome: transcriptional terminators; vertical 
purple lines with full bars below the genome: RNAse III sites. 

Genes 0.3-1.3 Genes 1.4-10A/B Genes 11 – 19.5

 TE   Tφ 
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Figure 2: T7.1 genome design. Partial reproduction of Figure 2 from Chan et al 
(22). (A) The wild-type genome was split into 6 sections, alpha through zêta, 
using 5 restriction sites unique across the natural sequence. (B) Wild-type 
section alpha genetic elements: protein coding regions (blue), RBSs (purple), 
promoters (green), RNAse III recognition sites (pink), a transcription 
terminator (yellow) and others (gray). Images are not to scale, but overlapping 
boundaries indicate elements with shared sequence. The five useful natural 
restriction sites across section alpha are shown (black lines). (C) T7.1 section 
alpha parts. Parts are given integer numbers, 1-73, starting at the left end of the 
genome. Unique restriction sites bracket each part (red/blue lines, labeled 
D[part #]L/R]. Added unique restriction sites (purple lines, U[part #]) and part 
length (# base pairs, open boxes) are shown. 



32

Figure 3. Predicted RNA structures at standardized RBS-CDS junction. 
Start codons in red. (A) Predicted RNA structure for gene 4A with 
standardized RBS. B) Predicted RNA structure for gene 11 with 
standardized RBS. 

A) B)
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Figure 4: Predicted RNA structures at wildtype RBS-CDS junction. Start 
codons in red. (A) Predicted structure for gene 17 (B) Predicted structure for 
gene 15

(A)                                                                (B)
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Fig 5. Effects of codon-shuffling. (A) Lowest, highest and average -ΔG across 
all genes in 7.2, for various RBS-CDS combinations. WT = wild-type. (B) 
Predicted RNA structure for gene 14.3; ΔG = -5.4 kCal/mol
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Figure 6: Histogram of shuffled segment folding energies for positions 60-110 
of gene 1
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Figure 7: Predicted secondary structures for regions of T7 genome with 
significant folding energies. 

(A)  Bases 1030-1130 of gene 8; predicted ∆G = -39.1 kJ/mol 
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Figure 7B) Bases 380-470 of gene 15; predicted ∆G = -37.8 kJ/mol
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Figure 7C) Bases 2380-2470 of gene 16; predicted ∆G = -31.0 kJ/mol
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Figure 8: Effects of recombination between direct repeats. Recombination 
during genome replication can lead to a library of genomes with differing gene 
sets.
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Figure 9: Distribution of genome population after 20 serial transfers

0 1 2 3 4 5 6 7 8
1 0

-5

1 0
-4

1 0
-3

1 0
-2

1 0
-1

1 0
0

N um b e r o f g e ne s  lo s t a fte r 2 0  s e ria l tra ns fe rs

F
ra

ct
io

n 
o

f t
o

ta
l p

o
pu

la
tio

n

1 x re c o m b ina tio n ra te
1 0 0 x re c o m b ina tio n ra te

Inc re a s ing
re co m b ina tio n
ra te



41

Figure 10: DNA shuffling and ligation. (A) DNA shuffling of homologous 
sequences. X: point mutation. (B) Ordered assembly of multiple genes via 
ligation.
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Figure 11: Ligation of fragments to generate permuted element assemblies. E1-
3: elements being permuted; Lxy: linker between position x and position y; 
(Lxy)’: complementary sequence to Lxy; LC: left cap; RC: right cap. The linkers 
guide ordered assembly of the fragments.
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Figure 12: Example segmentation of the T7.2 region spanning genes 1-3.5. 

Coloring indicates elements belonging to the same segment. 

1 Ø1.1A Ø1.1.21.1 R1.3 1.3 TE Ø1. 1.7 2 Ø2. 2.5 3 3.5
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Appendix A: Programs used for analysis and simulation

The programs used to generate the results described above are, with a single exception, 

written in Python, and designed to run on a Windows machine. Each program is 

commented extensively enough that it will hopefully be reasonably easy to understand. 

Phylogenetic analysis of T7 genes: 

Program: comparegenes.py:

Dependencies: There are unfortunately quite a few dependencies here, because I was 

experimenting with keeping all my data in the MySQL database when I wrote this bit of 

code. You’ll need to install: 

 MySQL database, available at http://mysql.com/

 Python interface to MySQL, available at http://sourceforge.net/projects/mysql-

python

Once these programs are all installed, you’ll need to create the necessary database and 

database tables, and populate them via the following steps:

 Create a MySQL database called “t7rebuild”

 Create the necessary database tables by running 

python createt7tables.py --user <your MySQL user name> --pwd <your MySQL password>

 Populate the database tables by running 

python loadt7tables.py --user <your MySQL user name> --pwd <your MySQL password> --

file t7_stripped.gb --file t3_stripped.gb --file gh-1_stripped.gb --file phiA1122_stripped.gb --file 

phiYe03-12_stripped.gb 

After the database has  been created and the tables populated, you can run 

comparegenes.py as described below. 
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Usage: python comparegenes.py --user <your MySQL user name> --pwd <your MySQL password>

Output: Self-explanatory. 

Analysis of RBS-CDS secondary structure:

Program: findbestss.py

Dependencies: 

 Cygwin, a Linux emulation environment available from http://www.cygwin.com, 

must have been installed to c:\cygwin

 RNAfold.exe, available from http://www.tbi.univie.ac.at/~ivo/RNA/windoze, 

must have been copied to c:\cygwin\bin

Usage: python findbestss.py --input t7_stripped.gb [--output <output file name>] [--top <number of seq 

variants to retain] [--noshuffle].

Warning: this program takes a long time [~24 hours, on my laptop] to run to completion.  

The input parameter specifies a GenBank file that will be parsed to extract the T7 gene 

sequences. The output parameter controls the prefix given to the FASTA output files 

produced; the prefix defaults to “bestss” (“best secondary structure”) if not specified. The 

top parameter specifies the number of sequence variants to retain, and defaults to 50. The 

noshuffle parameter can be used if you only want to generate data for the WT RBS + WT 

CDS and T7.2 RBS + WT CDS sequences, and not generate any shuffled sequences. 

Output: Produces a set of files named bestss_<gene number>.fa eg bestss_1.fa. These .fa output 

files are in FASTA format and contain a set of RBS-CDS sequences and their associated 

∆G’s of folding. The first sequence in each file is always the wild-type RBS + wild-type CDS 

and the second sequence is always the T7.2 RBS + wild-type CDS. Subsequent sequences 

are the T7.2 RBS + shuffled CDS variants, sorted from least to most secondary structure.
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The format of each file is:

>[gene number]_[sequence index]_[∆G of folding]
[actual DNA sequence]
>[gene number]_[sequence index]_[∆G of folding]
[actual DNA sequence]

For example, 

>1_0_-4.300000
taactggaagaggcactaaaatgaacacgattaacatcgctaagaacgacttctctgac
>1_1_-8.800000
ttaaagaggagaaatactagatgaacacgattaacatcgctaagaacgacttctctgac
>1_2_-0.100000
ttaaagaggagaaatactagatgaatacgataaatatagccaaaaatgacttcagcgat

are first three sequences for gene 1. The first sequence (WT RBS + WT CDS) has a ∆G of 

folding of -4.3kJ/mol, the second sequence (T7.2 RBS + WT CDS) has a ∆G of folding of -

8.8kJ/mol, and the third sequence (T7.2 RBS + shuffled CDS) has a ∆G of folding of -

0.1kJ/mol. The third sequence has the highest ∆G (i.e. least secondary structure) of all the 

gene 1 CDS variants. 

Analysis of secondary structure in protein-coding RNA:

Program: ShuffleAndFold.exe. This program is written in C and needs to be compiled; the list 

of files is given in “Dependencies” below. I used Microsoft Visual C++ Express Edition, 

available free at http://msdn.microsoft.com/vstudio/express/visualc/default.aspx, to 

compile it. . 

Dependencies: 

 All the files in the ShuffleAndFold\H, ShuffleAndFold\lib and 

ShuffleAndFold\Progs directories. 
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 The Microsoft Windows Platform SDK, available at 

http://msdn.microsoft.com/vstudio/express/visualc/usingpsdk/. 

Usage: shuffleandfold.exe <input file> <window size> <step size> [<number of sequences to generate>]

The <input file> parameter must specify a file that has the format

[gene name]:[gene DNA sequence]
[gene name]:[gene DNA sequence]
…
The file t7genes.txt is in the appropriate format. 

The <window size> parameter controls the size of the sliding window and the <step size> 

parameter specifies how far the window is moved on successive steps. The <number of 

sequences to generate> parameter can be used to specify how many shuffled sequences to 

generate via the DicodonShuffle algorithm and fold via RNAfold; it defaults to 100. 

Output: Two files, t7bias_all_<window size>_<step size>.txt  and t7bias_sig_<window 

size>_<step size>.txt.

For each gene, the t7bias_all_<window size>_<step size>.txt contains the folding energies 

for all window positions across all sequence variants. The first folding energy listed for each 

window position is that of the wild-type sequence. The format of this file is

Sequence:[gene name]
Position [zero-based start pos-end pos]
[Folding energy for WT seq] [Folding energy for seq variant 1] [Folding energy for seq variant 2] …
…

For example, a typical entry might look like 

Sequence:gene 4.2
Pos 0-50
-8.000  -5.610  -7.440  -8.100  -7.400  -9.500  -5.300  -6.100  -9.400  -8.100  -8.600  -9.200  -
9.000  -8.700  -6.600  -5.300  -5.860  -6.600  -4.420  -8.300  -6.500  -6.000  -8.600  -7.300  -
7.460
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indicating that the energy of folding of positions 0-50 of the wild-type sequence of gene 4.2

is -8.0kJ/mol, the energy of folding of positions 0-50 of the first sequence variant is -

5.61kJ/mol etc. 

The t7bias_sig_<window size>_<step size>.txt file contains only data about the wild-type 

sequence windows considered to have statistically-significant energies of folding. The format 

of this file is 

Sequence:[gene name]
WT seq in position [start pos-end pos] has z-score [z-score] ([∆G in kJ/mol])
[WT DNA sequence]
… 

For example, a typical entry might look like

Sequence:gene 4.2
WT seq in pos 10-60 has z-score -2.801749 (-12.000000)
TCGCCCCGTTTCTATTACTGACCTACGTGGTTCTGGCGCACTACGCCAAC

indicating that positions 10-60 of gene 4.2, with sequence TCGCC..AAC, have a z-score 

equal to -2.801749, and a folding energy of -12kJ/mol. 

Simulating gene loss in a lossy genome:

Program: simrecomb.py

Dependencies: None

Usage: python simrecomb.py

Output: Self-explanatory. 

Simulating genome shuffling via ligation:

Program: simulateligation.py

Dependencies: None

Usage: python simulateligation.py
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Output: Self-explanatory


