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ABSTRACT appropriate data, machine learning can capture the necessary

A significant barrier to applying the techniques of machineontextual and environmental information for a particular
learning to the domain of object boundary detection is theegmentation task. A learned boundary detection algorithm
need to obtain a large database of correctly labeled exampl&&n adapt and optimize its performance for different situations
Inspired by developmental psychology, this paper propos&ihout the need for extensive manual tuning.
that boundary detection can be learned from the output of We have created a new object boundary detection algorithm
a motion tracking algorithm that separates moving objectéat is trained on motion segmentations output by an algorithm
from their static surroundings. Motion segmentation solveieveloped by Stauffer and Grimson [14]. The data is used
the database problem by providing cheap, unlimited, labeld@ construct a probabilistic model that captures information
training data. A probabilistic model of the textural and shap8Pout the spatial properties of the observed objects. After
properties of object boundaries can be trained from this dafi@ining, a loopy belief propagation algorithm developed by
and then used to efficiently detect boundaries in novel imade@eman et al. [5] can efficiently find boundaries in novel static

via loopy belief propagation. images. This work contribute_s a splution to the segmentation
database problem, a low-dimensional, discrete object edge
|. INTRODUCTION representation, and the ability to construct high dimensional

Psychological studies by Spelke et al. [13] indicate thabject boundaries from noisy, low resolution data.
infants use motion as their primary mechanism for grouping
visual perceptions into objects. The ability to detect objects
via two-dimensional spatial cues, such as color, texture, orlmage segmentation algorithms are based on a variety of
shape, seems to develop later. The discovery of static objeutdels. Some methods, such as Felzenszwalb and Hutten-
boundaries, commonly referred to as image segmentatiogher’s algorithm [3] are based on local models of texture and
in computer vision literature, is a complex and ill-definedegion size, while Shi and Malik’s normalized cuts method
process. Typical segmentation algorithms rely on optimizir{@2] makes globally optimal divisions based on a matrix of
statistical criteria derived from information theory or Gestakimilarity measures. Most similar to our work is Geman and
psychology, but this psychological evidence suggests a n&eman’s image restoration algorithm [6], which uses two
approach, grounded in motion segmentation and machiitked Markov random fields (MRFs) to denoise images. One
learning. of these fields, the line process, divides images into regions

The developmental evidence suggests that humans mighsed on local image gradients and contour properties, such as
use their initial knowledge of motion segmentation to learedge continuity. Our model is very similar to the line process,
image segmentation. The most obvious problem in applyifgt it is learned from data, while their model was hand-crafted.
machine learning technigues to image segmentation is tAeggio et al. [10] described the use of MRFs to combine
need for a large set of pre-segmented data for training. Otifferent image features.
approach to this problem is to produce a large human-labeledRecent work in learning segmentation and edge detection
segmentation database [9], but this is inherently expensivelude Feng et al.'s work, which combined belief and neural
and in many images the identity of the object boundaries ri®twork techniques [4]. This work is closer to region or texture
unclear, even to a human. Are the drawers of a desk separatseling than pure segmentation: their goal is to apply a
objects, or parts of the whole? Does detecting these typesset of predetermined labels (e.g. sky, vegetation) to images.
boundaries diminish a model's ability to make more importattonishi et al. [7] have investigated the statistical optimality of
distinctions, such as separating the desk from the rug it sitsmmon local edge detectors. Both methods rely on manually
on? segmented training data, requiring a time consuming process

Using motion information removes this difficulty. Just ashat may produce subjective results. Weber et al. [17] perform
infants join visual elements together by their common motionpsupervised learning of object class models by assuming that
a video camera and computer can automatically distinguife class examples are the most prevalent element in their
between moving objects and their immediate surroundings anthge set. In many ways, this is the opposite of our approach
provide a learning algorithm with cheap, unlimited trainingo data extraction, in which we assume that the object samples
data. Furthermore, the training set will only contain objecre the novel, dynamic elements in a scene.
boundaries, so the model will not waste its explanatory powerBorenstein and Ullman have developed a model of class-
on the uncertain subdivision of an object into parts. Withpecific segmentation that learns to perform figure-ground

II. RELATED WORK



segmentations for a particular class of objects by building(a, ) to the nodes is
database of fragments that can be assembled like puzzle pieces

[1]. They hypothesize that motion could be a source of training Pr(5,6) = 2~ H (s, ¢:) H Ur(i g (@i €5) @)

data for their algorithm, which combines segmentation and : N

classification. 7= 1165 ed) [T e i) 2
The use of belief propagation to detect and reinforce image 8,8 1 N

contours is very similar to the work of Shashua and Ullman is the partition function, which normalizes the probability,
[11], which described a hand-built saliency network thdjut whose computation is intractable for all but the smallest
combined incomplete contours to minimize an error functioexamples.

IIl. OBJECTBOUNDARY MODEL

Our object boundary model is inspired by Freeman
al’s work on learning super-resolution [5]. We model th
object edges as an MRF with two sets of variables: t
visible “signal” nodes representing image data, and the hidd
“scene” nodes that represent the underlying object edges.
the following description, the possibility that no edge is prese
at a location is included among the set of edge scenes.

Cabove

----- Fig. 2. The edge scene values are represented by three parameters. Each
edge enters a scene patch at some border pixel, may change direction at an
inflection point, and exits at another border pixel.

Cbelow

In the general case, there is no known closed-form so-
lution for specifying the compatibility functions associated
with particular marginal probabilities in an MRF. lIterative
proportional fitting (IPF) is a gradient descent method that
repeatedly adjusts compatibility functions to match the net-
Rork’s marginal probabilities to match an empirically observed
set. Unfortunately, IPF requires us to perform inference on

. . ... the MRF after each descent, which is prohibitively expensive.

The MRF quel (Figure 1) POS'.tS. that the prObab.'“t)fnstead, we can substitute belief propagation for the exact

of an edge assignmemrt at locationi is dependent on its

e ; . .. inference step. An analysis of the resulting algorithm in the
compat!g!:!:y W'm me '003' |maget d?tat"h(wsi’.eﬁ)g an dits context of Wainwright's tree reparameterization [16] view of
compatibiiity wi € assignments 10 the Neighboring SCEeI ;¢ propagation reveals that it has a simple fixed point[15].
nodes {u(eien, i), Yr(eright, i), 1C.). The value of an edge edge node with signal nodei, and neighbors: =
node represents a 5 pixel by 5 pixel segment of an obj c?r ab: s
boundary (or the absence of a boundary) at a particular image’
location. Its associated signal node represents the value of the
convolution of several image filters at that location. The imagend
areas covered by neighboring nodes are adjacent, but non- Un(en,€) = . )
overlapping. Pr(n = e,) Pr(i = e)

If N is the set of neighborgi,j), and r(i,7) is their These compatibility settings are intuitively sound because they
neighboring relationship, the joint probability of an assignmeigive high compatibilities to pairs that co-occur frequently,

Fig. 1. Each edge node in our Markov random field is attached to a visi
data input node and to the edge nodes for neighboring image locations.

¢(s,e) =Pr(is =s,i=¢€)

Pr(n=e,,i =¢)




and they exactly correspond to Freeman et al’s conditionalMotion can only give us data about the object edges imme-
probability message passing algorithm [5]. diately around the moving object. Therefore, we disregard all
In Section IV, we will demonstrate that it is easy tof the original image and the binary foreground-background
generate training data, so it is a simple matter to estimate amage, except the areas containing the moving object and
discrete probability function by frequency counting. Thereforés immediate surroundings. Given the cropped foreground-
we discretize filter responses by counting them in 1000-bbackground image, we scan across all rows and columns
histograms. The set of potential edges is already discrete, bunt label every location at which there is a transition from
is too large to handle via simple counting. A 5x5 binary imag®reground pixels to background pixels as an edge. The output
can take or22° possible values. Even if we discard images thas a new binary image of edge and non-edge pixels. Our goal
could never represent an edge fragment, such as an all-wlistéo learn a model that will generate an equivalent object edge
image, noise and natural variability still leaves us with terimmage from a novel, static image. Each image and edge image
of thousands of edge images. Therefore, we have developgaai provide a complete set of assignments for an MRF object
simple edge parameterization (Figure 2) that reduces the sphoandary model of the image.
to 2717 possible edges and provides excellent coverage of th®uring training, we need to construct representations of the
examples in our training set. Each edge is represented by ¢hend« functions. We will do this by learning three sets of
boundary pixel at which it enters the 5x5 patch, a possibpgobability distribution functions from the training data, which
interior inflection point, and a patch boundary exit point. Thean be used to compute the compatibility values described in
“empty” edge, representing the absence of a boundary, Section Il using Bayes’ rule and marginalization. The edge
included as a special case. During training, each scene vatirels at any location are represented by their best-fit edge

is represented by its best-fit parameterized edge. in the parameterized edge model (Figure 2). Learrin(g),
Pr(sle), and the conditional probability functionBr(e,|e)
IV. TRAINING ALGORITHM for each neighboring relation (above, below, left, right) will

Just as simple neurons can detect motion due to thBlovide the necessary information. All the probabilities are
tendency to habituate to static input, computer algorithn§éscrete, and data is plentiful, so it is possible to learn them
can detect motion by background subtraction. By modelify storing the value frequencies.
the values observed at every image location across a vided he algorithm must combine the data from multiple filters
sequence, areas containing moving objects are highlighiBtP @ singlePr(s|e) value. Experience shows that no single
as outliers. In this work we used Stauffer and Grimsonfdter will be an adequate edge detector. In some simple
background subtraction algorithm [14], which models evei{nages, local horizontal and vertical image gradients respond
image pixel with a small set of Gaussian distributions. Th&rongly to object boundaries, but in highly textured exam-
algorithm is easy to compute and is robust to non-motigies they might respond more strongly to non-edge regions.
changes, such as lighting variations, that we wish to discafdne solution is to probabilistically combine many features.
The background subtracter works on a stream of images; fgie underlying signal for each scene is an n-tuple of the
each image it returns a binary image that labels every pixepgzgues of a set of filters at a particular location. We need to

either foreground (moving) or background (static) (Figure 32epresent the joint probability distributidP(s', s, ., s"[e)

or each possible edge. Incorporating more features requires
exponentially more data to estimate, and memory to store,
the resulting model. Therefore, we make the naive Bayes
assumption that the features are conditionally independent
given the underlying edge and approximate the joint likelihood
asPr(s!le)-Pr(s?|e)-...-Pr(s"|e). This assumption is clearly
incorrect, but the results it gives are still useful in practice. In
the future, we hope to employ new representations that will
better approximate the full joint probability of the features.
Konishi et al. [8] have discovered an adaptive histogramming
algorithm that efficiently combines edge detection features.

If the training data were noiseless, from a perfect back-
ground subtraction algorithm, the learning algorithm would
only experience closed contours, and for any neighboring
pair of candidate edges whose endpoints did not match the
compatibility ¢, (e, ) would be zero. Unfortunately, this is
not the case, so we encourage the formation of closed con-
s T - The back 4 subtraction aldorithm | he back tours during inference by setting the compatibilities for non-
ctl)?(.)rs: at %F;E%Wp;ixelean?jcrgtfr?\g asgin;?;/: :(r?ﬁnageg (i)r:I(jicrgtiflgTife I(?cailigng(;cf)l:ﬁgat(:hlng neighbors to be ngarly zero. Setting the compa'tlbll—
moving object. Bottom row: The moving object is cropped out of the imagéies to exactly zero would violate the MRF definition, which
and the binary image is processed to produce the object edge image.  forbids zero probability states. This produces cleaner contours




and fewer spurious edges, but does not completely rule (
incomplete contours, because our edge parameterization d
not allow multiple contours to combine via T-junctions.

V. INFERENCEALGORITHM

There is no known efficient algorithm for exact inference o=

a Markov random field, so we employ the belief propagaticE- e

algorithm, a speedy approximation that works well in practicf

Once the model is trained, belief propagation can comp
an approximate maximuna posteriori (MAP) estimate of

t'lzéﬁ'l 4. Top: MAP estimates after 0, 5, and 10 iterations on a sample disc

the ObJeCt edges presen_t In-a S,tatlc scene. Belief prOpagalmage. Bottom: MAP estimates after 0, 10 and 20 iterations on a sample robot
produces exact MAP estimates in loopless MRFs [19][18]. Oage.

network has loops, but belief propagation still works well in
practice [5].

The belief propagation algorithm, as described by Freeman VI. RESULTS
et al., begins by selecting a set of locally likely candidate We trained models on three video sequences: a dark disc
edges at each location. In our implementation, we first vigiioving against a white background, a toy robot traveling
each edge node and select the empty edge and tNe— 1 across a highly textured carpet, and cars driving along a
edges (where we have experimented with < N < 100) highway. The first two sequences contained approximately
with the largestPr(s;, e;). Because the edge candidates at 2200 frames, and the third sequence contained 7000 frames.
node have only been selected based on local information, iiseach case the first 200 frames were used to initialize the
possible that the node may have no assignments compatiséekground subtraction algorithm and were not included in
with some of the potential values of its neighbors. Thereforghe training set. The detection results presented are all drawn
we visit each node a second time, and add additional scefesn these discarded video frames or from other non-training
so that the node can continue any edge that enters and egéss.
it from its neighbors. Different numbers of candidate scenes and iterations were

On every iteration of the algorithm, every node is visitedequired for each result, depending on the complexity of the
and its messages are updated. A nodmn be described by object and the quality underlying data. Because we select an
the signal associated with it,), a set of candidate scenesnitial set of N possible values at each edge node, and then
(F;), a set of neighborsk;), and an array of messages fronaugment them with extra possibilities to allow for contour
each neighbor indexed by scene;(_;, j € N;). Al messages completion, each node in a particular MRF may consider a
are initialized to 1. The index(i, j) indicates the position of different number of possible edges. Disc results used N=20
j relative toi (left, right, above, below). On every iteration,candidates and 10 belief propagation iterations. The robot
we simultaneously update the messages at each node byréselts used 100 candidates and 20 iterations, due to the robot's

following equation: irregular shape and the “noise” provided by the textured carpet.
The cars required 40 candidates and 20 iterations.
mij(e € E;) = Although we have experimented with texture-sensitive fil-

ters, such as Gabor functions, all of the results presented here

cer, ORI CRD H mi—n(e;)- B) \yere computed using four local gradient operators, oriented to

' Re{N;\i} 0, 45, 90, and 135 degrees, as the input signals. These filters

jvere computed on the grayscale image values; color was not
used. We trained a four-neighbor model in which each node
is connected to its first-order (above, below, left, and right)

Each message:;;(e) represents the compatibility betwee
node i having assignment and the information from its
neighboring nodg/. The message is updated by maximizin

a function over the neighboring assignments which combin glighborsf. | he initial MAP esti de before belief
their fit to the local data af and their match to information " @ typicalrun, the initia estimate, made before belie

from the other neighbors of. After sufficient propagation propagation oceurs, con_tains approximate qu?Ct edges, which
(convergence is not guaranteed in loopy networks), we cgﬁ9 'mPro"ed py enf_orcmg local edge continuity and Iearne_d
approximate the MAP estimate for the MRF by computing shape mfprmauon. Figure 4 demonsftrates the progress of belief
propagation on samples from the disc and robot sequences.
MAP; = arg max é(s;, e) H mic;(e) (4) Figure_ 5 displays a sampl_e result from each trained model.
e€E; Unsurprisingly, the simple disc case was the most successful,
due to its highly regular shape and the strong spatial derivatives
at each node. This selects the edge that is maximally along its boundaries. The robot was the most difficult, given its
compatible with local evidence and the information propagat&degular shape and the fact that the carpet produced spurious
from the remainder of the graph. image gradients that the model had to learn to ignore. The

JEN;



Fig. 5. Sample results from three different data sets. Each row shows, from left to right, an image outside the training set, the contrast-enhanced outputs
of the four coarse derivative filters, and the result of using our MRF model and belief propagation to find object edges in the scene. The disc border was
detected with approximately 20 candidates per location and 10 rounds of belief propagation. The robot required approximately 100 candidates per location
and 20 rounds, and the car used 40 candidates and 20 rounds.

car was very successful, especially considering that the @artputs. Gradients were only computed at the image locations
shadows were included as moving objects during training. Thesociated with the center of each edge node’s patch, so
model segmented the car and its shadow from the road, amdimage of height: and width w is represented only by
also detected other object and non-object edges in the imagg. inputs in each filtered image, and these filters were
In both the car and robot examples, non-object edgelen combined suboptimally by the naive Bayes assumption.
such as the lines on the road and internal color changBse shape model that inter-relates neighboring edge patterns
on the robot, were detected. In the robot, these extra edgesvides much of the output accuracy.
apparently prevented some of the robot object contours from
closing properly. Because our edge model only allows Ot
entry and one exit point in each patch, it is impossible
represent contour intersections properly. This clearly neg
to be addressed in the future. In the case of the car outq
a more sophisticated model of shape would be necessar
eliminate the road lines as potential objects, if we desired
do so. It is generally accepted, however, that some degree
oversegmentation Is F_’re.fe.rable to undersegmentation. Fig. 6. From left to right: boundary detection with our algorithm, with the
In all three cases, it is important to note that the contougsfault Canny edge detector, and with a hand-tuned Canny edge detector.
were detected remarkably well given the sparse, imperfect
information that was available. Next to each image in Figure Figure 6 compares our performance on the robot image to
5 is the four input signals used to produce the object edtee output of the Canny edge detector [2] included in the




Matlab Image Toolbox. Our detector significantly outperformthe conditional independence assumption in computing the
the results using the default threshold and smoothing settingsene likelihood function. Our experience with larger, more
and approaches the output of the Canny detector with manualymplex feature sets suggests that their distributions are not
chosen parameters (threshold = 1, sigma = 0.2). Our algoritlwell approximated by this assumption and will require better
has learned many of the boundary rules that are hand-coaeddeling techniques.

into the Canny algorithm, and is able to adapt itself to the We also need to capture more information about the shapes
requirements of the visual environment without the need fof objects in the training set and expand the features used
manual parameter tuning. The Canny algorithm also has tive detect potential edges. It is common to acquire shape
advantage of higher resolution gradient information than thiatformation with a multiresolution model, but our experiments
available to our algorithm. indicate that these models do not provide better results than

Figure 7 demonstrates that the model trained on the aariresolution models in belief propagation. We need to ex-
data sequence can be successfully applied to other simijdore other methods of capturing and enforcing high-level
situations. The images in this test set come from anotheoundary properties, such as closed contours and global shape.
road which was observed in the same wide-angle video Bspanding our feature set to include color and texture-sensitive
the training data. The model does a good job at detectifeptures such as Gabor filters should also help to improve our
the car boundaries. The errors arise from extremely lowsults.
image gradients at the borders of some of the cars, and the
incompatibilities caused by the intersection of car and road
contours. This research was supported by the Singapore-MIT Al-
liance, the National Science Foundation, and the Office of
Naval Research.
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