
Adaptively Parallel Processor Allocation for Cilk 
Jobs 

 
Siddhartha Sen, Kunal Agrawal 

Computer Science and Artificial Intelligence Laboratory (CSAIL) 
MIT 

 
 

Abstract— The problem of allocating processor resources 
fairly and efficiently to parallel jobs has been studied 
extensively in the past. Most of this work, however, assumes 
that the instantaneous parallelism of the jobs is known and 
used by the job scheduler to make its decisions. In this 
project, we consider different ways of estimating the 
parallelism of jobs during runtime, as well as different ways 
of using this information to allocate processors in a fair and 
efficient manner. 
 
The goal of our project is to design and implement a 
dynamic processor-allocation system for adaptively parallel 
jobs. Adaptively parallel jobs are jobs for which the number 
of processors which can be used without waste—in other 
words, the parallelism of each job—varies during execution. 
We call the problem of allocating processors to adaptively 
parallel jobs the adaptively parallel processor-allocation 
problem. 
 
We propose to investigate the adaptively parallel processor-
allocation problem for jobs running on a shared-memory 
multiprocessor (SMP) system. We focus on the specific case 
of parallel jobs that are scheduled with the randomized 
work-stealing algorithm, as is used in the Cilk multithreaded 
language (later, we will expand the scope of our research to 
include other kinds of parallel jobs). Our problem can be 
defined as follows: 
 
Consider an SMP system with P processors and J jobs. At 
any given time, each job has a desire dj, representing the 
maximum number of efficiently usable processors, and an 
allotment mj, representing the number of processors 
allocated to it. Our problem is to design a processor-
allocation system that achieves a fair and efficient allocation 
of processors among these jobs, where the terms “fair” and 

“efficient” are defined as follows: an allocation is fair if 
whenever a job receives fewer processors than it desires, 
then no other job receives more than one more processor 
than this job received (the allowance of one processor is due 
to integer roundoff); an allocation is efficient if no job 
receives more processors than it desires and, if there exists a 
job that receives fewer processors than it desires, then all P 
processors are in use. 
 
The successful design of such a system can contribute 
significantly to our understanding of the adaptively parallel 
processor-allocation problem. If the task of estimating 
processor desires is designated to the jobs themselves—and 
if algorithms are devised to perform this estimation for 
different types of parallel jobs—then the system can easily 
be generalized into a core scheduling service provided by the 
kernel. In addition, the system can be extended to respect the 
job priority mechanism supported by the kernel, or to take 
into account processor usage histories when making the 
allocation decisions. Moreover, we can consider other ways 
of characterizing the fairness and efficiency of processor 
allocations beyond the definitions we have provided above. 
 
Currently, the prototype of the processor-allocation system 
we are developing is a user-mode extension to Cilk that uses 
the steal rate of Cilk jobs to estimate processor desires and a 
randomized, pair-wise exchange of processors to achieve a 
fair and efficient allocation. The prototype has a well-
defined interface and a modular architecture, allowing us to 
investigate different desire-estimation and processor-
allocation algorithms without too much difficulty. 
 

 
[Full Text Not Available] 

 


