
WANDERING ABOUT THE TOP OF THE ROBOT

VISION FLASH 15

by

Patrick H. Winston

Massachusetts Institute of Technology

Artificial Intelligence Laboratory

Vision Group

ABSTRACT

Part I of this paper describessome of the new functions
in the system. The..discussion is seasoned here and
there with parenthetical code framents that may be ignored
by readers unfamiliar with PLANNER.

Part II discusses the scenario evoked in a simple sample
copy effort and Part III provides some technical notes
helpful to those who wish to use the system.

q),kL 19 4-

At the time of the first copy demonstration, the robot's command

structure was still heavily pass-oriented. : Lines were found, regions

were parsed into bodies, and support relations were discovered in sequentially

organized stages. This was done, however, with a view toward testing and

proving out the modules that our more heterarchical system now provides.

The newer top level organization gives us a strong foundation into which

we can dump more and more information and knowledge.

Part I of this paper describes some of the new functions in the

system. The discussion is seasoned here and there with parenthetical code

fragments that may be ignored by readers unfamiliar with PLANNER.

Part II discusses the scenario evoked in a simple sample copy effort

and Part III provides some technical notes helpful to those who wish to

use the system.

I: THE FUNCTIONS

TC-COPY

As figure 1 shows, TC-COPY simply activates theorems that handle

the three phases of a copying problem; namely, it calls for the spare

parts to be found and put away into the spare parts warehouse area, it

demands the purge of the data base to make way for information about the

new scene, and it initiates the replication of the new scene.

(DEFPROP TC-COPY
(THCONSE NIL

(COPY)
(Q (QUOTE (ARE YOU SURE THE RIGHT CALLIBRATION IS IN ?)))
($G (PUTAWAY) (THNODB) (THUSE TC-PUTAWAY))
(R (QUOTE (READY TO TRY FLUSHING PICTURE)))
($G (FORGETDRAWING) (THNODB) (THUSE TC-FORGET-DRAWING))
(R (QUOTE (DRAWING FORGOTTEN)))
($G (REPLICATE) (THNODB) (THUSE TC-REPLICATE)))

THEOREM)

I
TC-COPY

TC-PUTAWAY TC-FORGETDRAWING TC-REPLICATE

TC-PREPARE TC-STOREPARTS

TC-GETLINES TC-GOBBLE TC-CHOOSE-TO-REMOVE -FINDSTORAGE TC-FINGRIPANGLE -MOVE

TC-PROI

TC-1

TC-FIND-TALLNES

V4 s
TA-FH lDTYPE

TC-FLESH TC-SKELETON

Figure la. The top of the system.

ITUDE

TC-COPY

TC-REPLIC

TC-PREPARE

ATE

TC-MAKECOP

TC-CHOOSE-TO-PLAC
TC-CHOOSE-TO-PLAC

JI 44ý

Y

12..
E TC-FINDPART TC-FINDGRIPANGLE TC-MOVE

4141

The top of the ystem (cont.).Figure 16.

~

TC-PUTAWAY

TC-PUTAWAY divides the problem of storing parts into two phases.

During the first phase, lines are produced and bookkeeping is done.

During the second, all analysis from body conglomeration upward is

performed.

(DEFPROP TC-PUTAWAY
(THCONSE NIL

(PUTAWAY)
(R (QUOTE (PLEASE PLACE SPARE PARTS IN FRONT OF MY EYE)))
($G (PREPARE) (THNODB) (THUSE TC-PREPARE))
(R (QUOTE (ANALYSIS COMPLETE)))
($G (MOVEPARTS) (THNODB) (THUSE TC-STOREPARTS)))

THEOREM)

TC-PREPARE

The responsibilities of TC-PREPARE have been shrinking as more and

more of the analysis functions are carried out on demand rather than in

a pass. At the moment it first uses TC-GETLINES which handles the I/O

that interfaces with the Binford-Horn-Lehrman line finder. Then it processes

the hypothesized lines with TC-GOBBLE.

(DEFPROP TC-PREPARE
(THCONSE NIL

(PREPARE)
($G (GETLINES) (THNODB) (THUSE TC-GETLIF!ES))
($G (GOBBLE) (THNODB) (THUSE TC-GOBBLE)))

THEOREM)

(DEFPROP TC-GETLINES
(THCONSE NIL

(GETLINES)
(THDO (P (QUOTE (STARTING LINE FINDER)))

(BARF (QUOTE (SCAN)) EYE CALL DSK VIS)
(OR (AND (ERRSET SOURCE NIL)

SOURCE
(APPLY (QUOTE WAITFOR)

(CONS (QUOTE LINES) SOURCE)))
(WAITFOR LINES EYE RETURN DSK VIS))

(P (QUOTE (LINES RECEIVED)))
(AND (Q (QUOTE (SHOULD I DELETE EYE RETURN FILE ?)))

(KILL)
(Q (QUOTE (SHOULD I SAVE IT UNDER LINES >)))
(BARF LINES LINES > DSK VIS))))

THEOREM)

TC-GOBBLE

TC-GOBBLE prepares the PLANNER data base used by remaining programs.

It makes assertions of the following sort: -

(R3 IS-A REGION)

(L-V1-V2 IS-A LINE)

(VI IS-A ARROW)

(Vl IS-END-OF L-V1-V2)

(VI LOCATED-AT 523. 627.)

(L-V1-V2 BOUNDS R3)

V2 R3 V3 R)(ANGLE V1

The last assertion type illustrated is the most useful.

2 helps show, the parts of the assertion are:

(1) the mnumonic ANGLE,

(2) the name of the vertex being described,

(3) an adjoining vertex,

(4) the region found next counter-clockwise from this

adjoining vertex,

(5) the next counter-clockwise vertex,

(6) and an indicator specifying the angle as

(1800 --. R

= 1800 -* CA

>1800-- L

VI

Figure 2. Elements of the ANGLE assertion

As figure

(The mnumonic for this is to imagine walking toward the central vertex

from the reference spoke in this case from V2 toward Vl.) If the other

vertex is involved is on the right (as is V3), the indicator is R, if

straight ahead CA, and if left'L.

This ANGLE assertion has proven invaluablein crawling around a

line drawing. In practice, a given situation may call for accessing

it through a region name, a pair of vertex names, or a variety of other

combinations.

TC-GOBBLE uses Eugene Freuder's TC-PROPOSE to propose potentially

missing lines and to check them out with the BINFORD-LERMAN verifier.

TC-STOREPARTS

To disassemble a scene and store it, TC-STOREPARTS loops through

a series of operations. It calls appropriate routines for selecting

an object, finding a place for it, finding the proper angle to grip it at,

and for enacting the movement to storage.

(DEFFDP TC-STOREPARTS
(THCONSE (PART NEWPLACE GRIPANGLE)

(MOVEPARTS)
(LOAD (QUOTE (SKELETON PICKUP SUPPORT)))
LOOP
(THOR ($G (CHOOSE $_PART) (THNODB) (THUSE TC-CHOOSE-TO-REMOVE:

(THAND (OR ACT
(AND (P (QUOTE (STORAGE PLAN IS COMPLETE)))

(Q (QUOTE (SHOULD I EXECUTE IT ?)))
(PLANEVAL PLAN))

T)
(UNLOAD (QUOTE (SKELETON PICKUP SUPPORT)))
(THSUCCEED THEOREM)))

($G (FINDSTORAGE $_NEWPLACE) (THUSE TC-FINDSTORAGE))
($G ($?PART HAS-GRIPANGLE $?GRIPANGLE)

(THNODB)
(THUSE TC-FINDGRIPANGLE))

(THOR ($G (MOVE $?PART $?NEWPLACE $?GRIPANGLE)
(THNODB)
(THUSE TC-MOVE))

(THAND (P (QUOTE (I CANNOT MOVE)) $?PART)
(THERT I AM WAITING)))

($A ($?PART IS-A SPAREPART) (THUSE TA-REMOVE-BRICK))
(THGO LOOP))

THEOREM)

TC-CHOOSE-TO-REMOVE

The first body examined by TC-CHOOSE-TO-REMOVE comes directly from

a successful effort to amalgamate some regions into a body using

TC-FINDNEWBODY. After some body is created, TC-CHOOSE-TO-REMOVE uses

TC-FIND-BELOW to make sure it is not underneath something. Frequently,

some of the regions surrounding a newly passed body are not yet connected

to bodies, so TC-FIND-BELOW has a request link to TC-BINDREGION. (The

bodies so found of course, are placed in the data base and are later selected

by TC-CHOOSE-TO-REMOVE without appeal to TC-FINDNEWBODY.) If then the body

under scrutiny is found to have nothing above it, TC-CHOOSE-TO-REMOVE makes

a further effort to get its dimensions and position, both sets of numbers

being necessary for placing the hand in the correct place.

(DEFPROP
TC-CHOOSE-TO-REMOVE
(THCONSE (B)

(CHOOSE $?B)
START
(THOR ($G ($?B IS-A BODY)

(THNODB)
(THUSE TC-FINDNEWBODY)
(THDBF .THTRUE))

($G ($?B IS-A BODY))
(THAND ($G ($_PART IS-A BODY) (THUSE TC-FINDNEWBODY))

(THNOT ($G ($?PART IS-A SPAREPART)))
(P (QUOTE (I DID NOT GET EVERYTHING)))
(THOR (Q (QUOTE MAY I WOK AGAIN ?)))

(THERT READY TO DEBUG))
($G (FORGETDRAWING)

(THNODB)
(THUSE TC-FORGET-DRAWING))

($G (FORGETBODY) (THNODB) (THUSE TC-FORGET-BODY))
($G (PREPARE) (THNODB) (THUSE TC-PREPARE))
(THGO START)))

(THNOT ($G ($?B IS-A SPAREPART)))
(THNOT ($G ($?B IS-BELOW ?) (THNODB) (THUSE TC-FIND-BELOW)))
($G- ($?B IS-AT ?) (THUSE TC-FIND-LOCATION))
($G ($?B HAS-DIMENSIONS ?) (THUSE TC-FIND-DIMENSIONS))
(P $?B (QUOTE (HAS BEEN LOCATED AND MEASURED)))
(THFINALIZE THEOREM))

THEOREM)

TC-FINDNEWBODY

TC-FINDNEWBODY merely locates some unattached region and sets TC-

BINDREGION to work on it. TC-BINDREGION then appeals to a collection of

theorems by Eugene Freuder which do a local parse and make assertions of

the form:

(R17 IS-A-FACE-OF B2)

(B2 IS-A BODY)

(DEFPROP TC-FINDNEWBODY
(THCONSE (B R)

($?B IS-A BODY)
($G ($?R IS-A REGION))
(THNOT ($G ($?R IS-A-FACE-OF ?)))
($G ($?R IS-A-FACE-OF $?B) (THNODR) (THUSE TC-BINDREGION))

THEOREM)

TC-FINDBELOW

As mentiohed,some regions may need parsing before it makes sense

to ask if a given object is below something. After assuring that an ad-

jacent region is attached to a body, TC-FINDBELOW calls TC-FINDABOVE to do

the work of determining if the body originally in question lies below the

object owning that adjacent region.

TC-FINDABOVE1 and TC-FINDABOVE2

The heuristics implemented for my thesis and many of those only

proposed there are now working in the TC-FINDABOVE theorems. They

naturally have a bag of subordinate theormes and a link to TC-BINDREGION for

use in the event an unbodied region is encountered. The assertions made

are of the form:

(B3 IS-ABOVE B7)

TC-FINDLOCATION

The work of calculating location and dimension is supervised by

TC-FINDLOCATION. (TC-FIND-DIMENSIONS does its job by a call to TC-

FINDLOCATION.) The first task in making the calculations is to identify

line-drawing coordinates of a block's top. This is done by TC-TOPLOCATEl

or TC-TOPLOCATE2. Then TC-FIND-TALLNESS and TC-FIND-ALTITUDE supply

other information needed to properly supply the routine that transforms

line-drawing coordinates to X Y Z coordinates. Resulting assertions are:

(Bl HAS-DIMENSIONS (2.2 3.1 1.7))

(Bi IS-AT (47.0 -17.0 5.2 .3))

Where the number lists are of the form:

(<smaller x-y plane dimension> <larger> <tallness>)

(<x coordinate) <y> <z><angle>)

The x y z coordinates are those of the center of the bottom of the brick

and the angle is that of the long x-y plane axis of the brick with respect

to the x axis. Note that when TC-FINDLOCATION makes the dimension assertion,

a $T results in an implicit call to two antecedent theorems by Tim Finin

if they have been read in from the appropriate file. These theorems

make assertions of the form: DI
-STANDING

(B12 HAS-ATTITUDE LYING)

CUBE
BRICKand (B12 IS-A STICK
STICK
BOARD

wherever appropriate. (See Vision Flahl2.)

(DEFPROP TC-FIND-LOCATION
(THCONSE (B Z HEIGHT LOCATION DIMENSIONS TOPS)

($?B IS-AT $?LOCATION)
($G (TOPLOCATE $?B $JTOPS) (THNODB) (THUSE TC-TOPLOCATE1

TC-TOPLOCATE2))
($G ($?B HAS-TALLNESS $?HEIGHT) (THUSE TC-FIND-TALLNESS))
($G ($?B HAS-ALTITUDE $?Z) (THUSE TC-FIND-ALTITUDE))
(THOR (THMATCH (QUOTE ($?LOCATION $?DIMENSIONS))

(FINDNUMBERS $?Z $?HEIGHT $?TOPS))
(THERT FINDNUMBERS FAILED))

($A ($?B IS-AT $?LOCATION))
($A ($?B HAS-DIMENSIONS $?DIMENSIONS) $T)
(THOR T (THFAIL THEOREM)))

THEOREM)

(DEFPROP TC-FIND-DIMENSIONS
(THCONSE (B DIMENSIONS)

($?B HAS-DIMENSIONS $?DIMENSIONS)
(THNOT ($G ($?B IS-AT ?)))
($G ($?B IS-AT ?) (THNODB) (THUSE TC-FIND-LOCATION))
($G ($?B HAS-DIMENSIONS $?DIMENSIONS))
(THOR T (THFAIL THEOREM)))

THEOREM)

TC-TOPLOCATE1

A program by Freuder finds the four top vertices of a block if all

four are visible. TC-TOPLOCATE1 and TC-TOPLOCATE2 have substanti&lly different

approaches which result in complimentary abilities.

TC-TOPLOCATE2

This program for finding the top vertexes of a brick uses TC-FLESH

by Freuder and TC-SKELETON by Winston. It produces the coordinates of the

actual vertexes if present, or imagined vertexes if the real ones are

obscured.

TC-SKELETON

TC-SKELETON was written to cope with line finders that find only a

few lines of each brick and has been adapted to its present function of

identifying connected sets of 3 lines which define the dimensions of a

brick. The set supplied depends on the obscuring and it is up to TC-

FLESH to convert the set of 3 lines into a set of coordinates for TC-

TOPLOCATE2. Figure 3 illustrates tome of the 3 line skeleton sets that

various flavors of obscuring cause to be generated.

TC-FIND-TALLNESS

Determining the tallness of a brick requires observation of a

complete vertical line belonging to it. TC-FIND-TALLNESS uses some of

TC-SKELETON's repertoire of subroutines to find a good vertical. Ad-

ditionally, the altitude of the brick must be known.

t%: I-

Some skeletons

-I

-,

I
I
I
I

F-
r

I

lI

Figure 3.

TC-FIND-SUPPORTS

This subroutine uses TC-FIND-ABOVE to identify the objects below

the one in question and then finds those objects' tallness and altitude.

Adding the tallness and altitude of those objects below gives the required

altitude and supports (assuming the object lies flat and so on). TC-

FIND-SUPPORTS also makes an altitude assertion thus permitting TC-FIND-

ALTITUDE to work by simply arranging a call to TC-FIND-SUPPORTS.

TC-FINDSTORAGE

Once an object is chosen for removal, TC-FINDSTORAGE checks the

warehouse area for an appropriate place to put it. (When objects are re-

moved from the warehouse, their bin can be reused.)

(DEFPROP TC-FINDSTORAGE
(THCONSE (S CN CS XY)

(FINDSTORAGE $?CN)
(THAMONG $?XY (QUOTE ((45.0 -17.0) (40.0 -17.0)

(45.0 -11. 0)
(40.0 -11.0)
(45.0 11.0)
(40.0 11.0)
(45.0 17.0)
(40.0 17.0))))

(THSETQ $?CN (APPEND $?XY (LIST (APPLY (QUOTE TABLEZ) $?XY)
(QUOTIENT PI 2.0))))

(THNOT -(THAND ($G ($?S IS-A SPAREPART))
($G ($?S IS-AT $?CS))
(EQUAL $?CN $?CS)))

(THOR T (THFAIL THEOREM)))
THEOREM)

TC-FINDGRIPANGLE

The angle of the main axis and the dimensions of a block both

enter into the computation of a proper approach by the grippers. This

subroutine always chooses the angle that gives the smaller of the two

possible gripper widths if the larger is above its maximum jaw opening of

2.3 inches. Otherwise it chooses the angle that puts the grippers more

closely aligned with the x-axis, recognizing that our scenes tend to be

spread out from left to right in front of the eye rather than from front

to back and that an alignment with the x-axis therefore reduces the chance

of collision with another object as the grippers come down.

(DEFPROP TC-FINDGRIPANGLE
(THCONSE (LOCATION DIMENSIONS ARELATIVEA B S L)

($?B HAS-GRIPANGLE $?ARELATIVE)
($G ($?B IS-AT $?LOCATION) (THUSE TC-FIND-LOCATION))
($G ($?B HAS-DIMENSIONS $?DIMENSIONS)

(THUSE TC-FIND-DIMENSIONS))
(THSETQ $?S

(CAR $?DIMENSIONS)
$?L
(CADR $?DIMENSIONS)
$?A
(CADDDR $?LOCATION)
$?ARELATIVE
0.0)

(THDO (THAND (GREATERP $?S 2.3000000) (THERT BLOCK TOO BIG))
(THAND (THOR (GREATERP $?L 2.3000000)

(GREATERP (TIMES 0.75 PI) $?A (TIMES 0.25
PI)))

(THSETQ $?ARELATIVE (QUOTIENT PI 2.)))
(THOR T (THFAIL THEOREM))))

THEOREM)

TC-MOVE

To move an object to its spare parts position, the locations, and

dimensions are gathered up and the gripping angle is received from
the

calling theorem. Then TC-PICKUP and TC-DROP interface to the machine

language programs driving-the arm. After TC-MOVE succeeds, TC-STOREPARTS

makes an assertion of the form: (B12 IS-A SPAREPART)

(DEFPROP TC-MOVE
(THCONSE (BODY DIMENSIONS

NEWPLACE
OLDPLACE
NEWANGLE
OLDANGLE
GRIPANGLE
WIDTH)

(MOVE $?BODY $?NEWPLACE $?GRIPANGLE)
-($G ($?BODY IS-AT $_OLDPLACE) (THUSE TC-FIND-LOCATION))
($G ($?BODY HAS-DIMENSIONS $_DIMENSIONS)

(THUSE TC-FIND-DIMENSIONS))
(THDO (THSETQ $?WIDTH (CADR $?DIMENSIONS))

(THAND (GREATERP $?GRIPANGLE 0.0)
(THSETQ $?WIDTH (CAR $?DIMENSIONS)))

(THSETQ $?OLDANGLE
(PLUS $?GRIPANGLE (CAR (REVERSE $?OLDPLACE))))

(THSETQ $?NEWANGLE
(PLUS $?GRIPANGLE (CAR (REVERSE $?NEWPLACE))))

(THAND (OR (GREATERP $?NEWANGLE PI)
(GREATERP $?OLDANGLE PI))

(THSETQ $?OLDANGLE (DIFFERENCE $?OLDANGLE
$?GRIPANGLE
$?GRIPANGLE))

(THSETQ $?NEWANGLE (DIFFERENCE $?NEWANGLE
$?GRIPANGLE
$?GRIPANGLE))))

(THGOAL (PICKUP $?BODY $SE (HACKCOOR $?OLDPLACE
$?DIMENSIONS
$?OLDANGLE
$?WIDTH))

(THNODB)
(THUSE TC-PICKUP))

(THERASE ($?BODY IS-AT $?OLDPLACE)
(THUSE TE-REMOVE-ABOVES TE-REMOVE-SUPPORTS))

(THGOAL (DROP $?BODY $E (HACKCOOR $?NEWPLACE
$?DIMENSIONS
$?NEWANGLE
$?WIDTH))

(THNODB)
(THUSE TC-DROP))

($A ($?BODY IS-AT $?NEWPLACE)))
THEOREM)

(DEFPROP TC-PICKUP
(THCONSE (SEND BODY)

(PICKUP $?BODY $?SEND)
(THDO (TERPRI)

(P (QUOTE (PICKUP AT:)))
(PRINTPLACE $?SEND)
(AND ACT

(BARF (CONS (QUOTE PICKUP) $?SEND) ARM CALL DSK VI
(WAITFOR MESSAGE ARM RETURN DSK VIS)
(KILL ARM RETURN DSK VIS))

(SETQ PLAN (REVERSE (CONS (CONS (QUOTE PICKUP) $?SEND)
(REVERSE PLAN))))))

THEOREM)

TC-FORGETDRAWING

Before the scene to be copied may be analyzed, the old drawing must

be purged. TC-FORGETDRAWING does this through three theorems, TA-FORGET-LINES,

TA-FORGET-VERTEXES, and TA-FORGET-REGIONS.

TC-REPLICATE

To make the copy, TC-REPLICATE performs much as TC-PUTAWAY, but with

TC-MAKECOPY, TC-CHOOSE-TO-PLACE, and TC-FINDPART replacing TC-STOREPARTS,

TC-CHOOSE-TO-REMOVE and TC-FINDSTORAGE. Assertions of the form:

(812 IS-A SPAREPART)

(B2 IS-A-PART-OF COPY)

(B2 IS-ABOVE Bl)

are kept up to date throughout by appropriate antecedant theorems.

TC-CHOOSE-TO-PLACE

Objects are placed after it is insured that their supports are already

placed.

TC-FINDPART

The part to be used from the warehouse is selected so as to minimize

the difference in dimensions of the matched objects. Specifically, one

searched until:

< I <spare part dimensio>-<model part dimension)
dimensions

is less than a sliding threshold.

II: A SCENARIO

To illustrate how the robot functions, I use the following con-

ventions, together with the diagram of figure 4:

(1) Theorems are represented by the numbers

given in figure 1.

(2) The history of theorem calls proceeds from

left to right.

(3) Theorems called are placed directly under the calling

theorem.

3 6
L~5 1%

&6 10
9 9 itl . II 12 14 15

2 23J 22

1819 theorem number

I6 I~"

17

3 2 3 q' G 7 8 9 o I 2 - 4 5 6! 7 8 -9 0 1 2. 3 q 5 6 7 8 9 30 1

20, A 2Z 7
2-3 2.41&

2. 34 5 d 7 6 9 40 1 2 3 4 5 6S 7 8

event number

theorem number

Figure 4. A sample trace.

8io103
14 15

event number

4 5 31
S)j (35 23 IA theorem number

A Z7

9 •• I 3 4 5T 4 a 8 9 4a 1 3 4 56 7 8 9 70I 2. 3 event number

31 2A 22.

68 (2.1 's 2 A2d 8

4 5 7 8 9 8o 1 2. 3 4 5 (o T 9 .9 a 2z

theorem number

event number

Figure 4. A sample trace (cont.).

In what follows, the scenes are those of figure 5. Identical,

simple scenes without missing lines were chosen for ease of tracing

through the systems operation.

Events 1-5

TC-COPY begins the activities that carry through eventually to

event 92. For the scenes here, nothing interesting happens during

the first few events as no lines were missed by the line finder.

Event 6

TC-STOREPARTS begins supervision of disassembly. Note the two

7-20-21-22 sequences on the line below. The 7's are widely separated from

the 20's because of the many operations required to choose a brick for

removal.

Events 7-9

TC-CHOOSE-TO-REMOVE parses a few regions together into a body, Bl.

Events 10-13

A check is made to insure that the body is not below anything.

Note that B2 is parsed during this phase as required for the TC-FIND-ABOVE

routines. Unfortunately Bl is below B2 and therefore TC-CHOOSE-TO-REMOVE

must select an alternative for removal.

Objects to be used as parts

Scene to be copied

Figure 5.

Events 14-16

B2 was found while checking out Bl. TC-CHOOSE-TO-REMOVE now

notices it in the data base and confirms that it is not below anything.

Events 17-24

The top vertexes of B2 are obtained through TC-TOPLOCATE-1 which

works well on such highly exposed bricks. TC-FINDLOCATION then proceeds

to nail down other location and dimension parameters for B2. As in-

dicated by the depth of call, this requires something of a detour as one

must first kn6w 82'saltitude., which in turn requires some facts about

Bl. Note that no calls are made to TC-FIND-ABOVE routines during this

sequence as those theorems previously were used on both B1 and B2 in

determining their suitability for removal.

Events 25-26

Tim Finin's theorems establish that B2 is a lying brick, given

knowledge about the blocks dimensions.

Events 27-31

Space in the warehouse is found, a gripper angle is determined,

and the object is moved to storage.

Events 32-34

TC-CHOOSE-TO-REMOVE begins looking for another object. TC-FINDNEWBODY

fails as all bodies have been parsed, but Bl is picked up from the data

base. TC-FIND-BELOW notes that the only object above BI has become

a spare part.

Events 35-39

TC-FINDLOCATION fails in an attempt to use TC-TOPLOCATE-l on

Bl because it is badly obscured. TC-TOPLOCATE-2 works fine,however,

through calls to TC-FLESH and TC-SKELETON. There is no hint of the

complicated 15-16-17-16-17-15 altitude determining sequence because the

necessary observations about B1 were made in the codie of locating B2.

Events 40-41

B1 is a lying brick.

Events 42-46

81 is put away.

Events 47-48

TC-CHOOSE-TO-REMOVE fails to find anything else to move and

therefore success propagates to TC-COPY.

Event 49

The line drawing is purged.

Events 50-57

Brick B3 is parsed.

Event 58

TC-CHOOSE-TO-PLACE uses TC-FIND-ABOVE-l to determine that B3

is on the table and that a matching object may be placed in the copy

immediately.

Events 59-68

B3 is Tocated and measured.

Events 69-73

A matching spare part is found in the warehouse and moved into

position as the first block in the copy.

Events 74-76

A search is made for another object. 84 is parsed here, as that

parsing was not required to determine the suitability of placing an

object for B3.

Events 77-78

TC-FIND-ABOVE-l fails but TC-FIND-ABOVE-2 determfes that B4 is

supported by something already replicates in the copy.

Events 79-90

Dimensions and positions are determined, a mate is found, and the

mate placed.

Events 91-92

No more parts are found to be copied into the copy, so TC-COPY

succeeds.

III: TECHNICAL NOTES

The robot is run from a special MICRO-PLANNER that differs from

the standard one only in that it is larger and comes equiped with some files

already loaded. To get it, incant as follows to DDT:

PLNR(J

(L DSK:VIS;TS PLNR

as soon as the system responds with a *, type a(and wait for whatever

happens to be .the current announcement of the top-level THVAL loop to be

printed.

Then type:

K. (READY)

Then typing:

(THVAL GA)

does everything, as the value of GA is

(THGOAL (COPY) (THNODB)(THUSE TC-COPY)).

To walk through in smaller steps, with time to reflect and protect progress

so far, the user types

(THVAL Gx)

The value of GB, for example, is (THGOAL (PREPARE) (THNODB) (THUSE TC-PREPARE)).

The values of other current Gx's can be obtained by typing (GS).

Should the user wish to store the data base at some point anticipating

bugs later on in the analyses, he types (SAVE) which writes into DSK:

VIS; SAVE). Then (RESTORE) cleans out the data base and brings everything

back from SAVE).

In the course of analysis, the PLANNER based operations communicate with

other programs via disk files or the core link devise. A set of input

lines is a list of lists of four numbers Xl Yl X2 Y2. For example,

a rectangle would come over as:

((400 400 400 500)

(400 500 500 500)

(500 500 500 400)

(500 400 400 400))

As suggested, the numbers typically range over the midground between 0

and 1,000. They are decimal, fixed point numbers. They are found by

TC-GETLINES in the file EYE RETURN in the VIS disk directory. Requests

for line verification are answered through a new file of the same name.

(The files are deleted just after reading.)

Eye action is initiated through a file written on the disk with the

name EYE CALL. Its contents determine the eye action taken. Currently,

these contents might be (SCAN) or (VERIFY <xl> <yl; x2> <y2>).

Communication: with the arm is handled in a similar way, with the

file ARM CALL, which initiates action, and ARM RETURN, which reports on

the success or failure of the action, insofar as the arm itself can tell.

The arm calls are currently on the form of files with One of the following

ii them:

(PICKUP <x7

<y) coordinates of

<z) blocks

<angle)

(gripper width>

(block tallness>

(DROP

as above

The machine language arm program itself has some ability to cope

with variability. If one of the micro-switches mounted on the ends of

its two fingers is activated too soon, it moves over a bit and tries again.

If a micro-switch in the wrist is activated indicating that an attempt

is being made to push an object down through another, it backs off and tries

again with a modified altitude parameter. This is all in the wrong place

and will be moved over to PLANNER code eventually.

