
The Binford-Horn LINEFINDER

VISION FLASH 16

B.K.P. Horn

Massachusetts Institute of Technology

Artificial Intelligence Laboratory

Vision Group

July 1971

ABSTRACT

This paper briefly describes the processing performed
in the course of producing a line drawing from vidisector
information.

II '





THE LINE=FINDER:

Programs able to produce line-drawings of images of single

convex polyhedra have existed for several years. It was

thought that it should be easy to generalize these to

handle more complex scenes. Only recently, however, has it

become possible to reliably produce line-drawings of images

of sets of polyhedra. There') are two main problems. Firstly,

the images of sets of polyhedra are not as simple as one might

at first expect. Secondly, current scene-analysis programs

demand a line-drawing complete with well-defined vertices.

One might conjecture that the image of a set of polyhedra ought

to consist of polygonal areas of more or less uniform intensity

separated by step-transitions in intensity at the lines

corresponding to the projections off the edges of the objects.

Due to mutual illumination, scattering, smudges, shadows,

incomplete opacity and a number of instrument defects <1):

this Is not the case and usually the variations in intensity

within one region (corresponding to a face or the visible

portion of a face of an object) is often larger than the

variation between adjacent polygons. Furthermore only the

most obvious edges are associated with anything like a

step-like transition of intensity, other transitions being

roof-shaped or flat except for a small peak right on the



-2-

edge due to an edge-effect:Z. The most obvious image

degrading effect of the sensing device is noise. In our case

this was of the order of 1 % of the signal, there being

little point in improving on this, since the surface visual

noise is about this magnitude even for clean, evenly

painted polyhedra.

Line-finders can be classified according to whether they

use a raster scan or a scan pattern which follows lines. The

first method is convenient from the point of view of

asynchronously reading intensity values and programming

simplicity. In some cases the image sensing device forces

the use of a raster scan, particularly with integrating devices.

Line-following on the other hand can be made to be more

sensitive and accurate at the price of program complexity.

Line-finders ean also be ciassified according to whether the

predicate applied to each small region to establish whether

it belongs to an edge or not is linear oft not. If the visual

noise was spatially independent, a case could be made for

an optimal linear predicate. This however is not the case,

since smudges for example have a definitly non-random

spatial distribution. Non-linear methods, while more complex

have a clear advantage 6n real images.



-3-

EDGE-MARKING:

The line-finder here described consists of an edge-marker

due to T.Binford and a line-drawer due to B.K.P.Horn.

Input is obtained from a random access image disector camera.

The edge-marker is a non-linear parallel line-follower.

Several lines are followed simultaneously while the image

is Scanned in a raster fashion, thus combining the good

features of raster-scan with those of line-following.

The separation between scan-lines is larger than the

spacing of points along one line and three lines are

considered at any one time. The intensities are correlated

with the three most common intensity transitions as described

above; step, roof and peak. Up to here processing is

linear. If any value exceeds a threshold calculated from

the known signal-to-noise ratio, it is checked for a local

maximum both along the line and in angular orieniation.

Once declared a likely edge-point or feature point, it is

checked whether it could feoom the continuation of a line

already being followed. The test involves a check on

proximity and a match of attributes such as direction

and size of the intensity step. If it cannot form the

continuation of an existing line and it is particularly

strong and not too close to another line, it will be used

as the starting point of a new line to be followed.



-4-

Otherwise it is ignored. So we have a list of lists of

likely edge-points. The head of each such list contains

various attributes such as the probability that the line

is purely a noise effect.

If a line cannot be continued in this manner it is

discarded unless it exceeds some minimal size. NOte

that there are certain adjacency effects; lines cannot

encroach too closely. For this and other reasons connected

with the correlation process, lines are usually not

followed right up to the vertices. One scan consisting

of succesive hoizontal lines picks up all edges within

about 50 degrees of vertical. A second scan consisting of

vertical lines does the same for edges within about 50

degrees of horizontal. In total about a million points

are scanned for a typical scene and the whole process takes

a few minutes (The scanning and first levels of correlation

can be performed by an attached processor for extra speed).

We end up with a list of lists of tenative edge-points, also

called feature points of- inhomogeneous points. Some of these

lists will represent more than one edge and some edges will

bep;represented by more than one list. The lists will not usually

contain points very close to vertices, except two-edge vertices.



-5-

Up to this stage not very many heuristics have to be invoked

and consequently the possibility of corruption of the data

is small. Numerous line-finders have been developed to this level,

few however produce as clean a set of tentative edge-points

as Binford's program. Very few line-finders have proceeded

beyond this level of competence to create the cleaned up

line-drawing demanded by current higher-level scene-analysis

programs. In part this is often due to poor edge-marking,

but more oftem the unexpected difficulties encountered in

what at first sight seems the simple process of forcing

this data into the form of a line-drawing with well-defined

vertices.

GENERATING LINES:

Since some lists may contain feature points of more than

one edge, they have to be segmented. This is done

recursively at the point of maximum distance from the line

joining the end-points. A little subtlety is needed to cope

with portions that are parallel to this line. Once

segmented, least-squares lines are fitted to the lists.

The partial results of this first fit are stored with the line

to allow combining lines later on without loss of accuracy.

The first lines to be combined are those that appear to

overlap. A number of tests are applied to avoid combining

unrelated lines. These tests check on proximity, relative



-6-

angle, perpendicular distance of the end-points from the

combined line and so on. In a similar manner co-linear lines

are combined if the gap between them is relatively small. Any

short lines remaining at this stage are discarded.

The line-drawing is now fairly complete, lacking only vertices.

The lines have been distorted very little in this process

unless unrelated lines were combined. The more difficult and

less conservative part Is yet to come.

CONCOCTING VERTICES:

Some vertices are clearly indicated from the close convergence

of lines. A first estimate of the location of the vertex

is made from the centee of gravity of the end-points being

considered (unless there are only two, in which case they

are intersected). A search is then made for all lines

whose extension passes close to this point and with one end

near this point. The point with least-squares perpendicular

distance from these lines is then declared the vertex and

the lines connected to it.

At the next step, a search is made for the lines with

end-points close to a line. These give rise to T-joints,

while vertices close to existing lines are potential K-joints.

Finally crossing lines give rise to X-joints. Numerous



-7-

heuristics inform this process; lines already connected

at one end are treated preferentially to those still free

on both ends for example. All vertices are now established and

an attempt is made to extend unattached lines. Following this

vertices which are very close together are comglomerated.

The data-structure is then re-ordered for optimal plotting

and ready for output in LISP-readable format.

The heuristics used depend on certain tolerances

which are intially calculated in terms of the line-scan

interval and the known resolution of the imaging device. These

factors could be "tuned" to improve the performance and

accuracy in critical cases. This is probably not worth the

effort, the time would be better spent on designing new heuristics

to direct the vertex creation phase. A large protion of this

assembler language program is concerned with debugging and

performing the required list-processing. To a large degree

the various heuristics developed empirically and this

program could not have been written without the aid of a

display device (Digital Equipment Company 340) amd a very

effective time-sharing system (The Incompatable Time-Sharing

System).

This second phase of the program makes use of four overlaying

rectangular grids covering the image to help in determining

proximity. This method is some-times referred to as multi-entry



-8-

coding, since each point is entered into four buckets, and each

line will appear in many. This makes for high speed (a few

seconds) despite the need for a large number of sucessive

applications of various heuristics to the whole data-structure.

PERFORMANCE:

No idea of how to produce a good line-drawing is any good

unless it is embodied in a demonst~qtable program. This program

produces excellent line-drawing of simple scenes. In more

complicated scenes a number of short-comings can be observed.

The simplest and easiest to deal with is the absence or

incompleteness of some fof the lines, due to lack of

contrast between adjacent faces. Occasionally extra lines

will be produced due to shadows, smudges and noise. There is

a trade-off between these two effects, and since present

scene-analysis programs can handle missing lines better than

extra lines, the threshold is set to favour the produklon

of the former. Occasionally too, a section of the line-drawing

will be garbled, usually beeause of the combination of two

unrelated vertices. This causes some distortion of the lines

and at times makes the line-drawing uninterpretable. The

incidence of all of these effects can be considerably reduced

by using a finer rester at the cost of an increase in scan

and calculation time.



-9-

For easy scenes the process is quite repeatable, coordinates

of vertices always being very close on successive trials. In

complicated scenes different lines may be missed at

different times.

COMMENTS:

Some fof the ways in which images of sets of polyhedra

differ from our simple model of equal intensity polygonal

areas have important implications in other areas. Mutual

Illumination for example is going to make color-constancy

a non-trimial problem. Further it should be noted that

some of the edges missed by this program will also be

missed by line-verifiers. Fortunately the better line-

proposers are very conservative and hardly ever propose

a line were there is none. One could tie the liberal

proposers to conservative line-verifiers and let the

conservative proposers work blind - that is just accept

their judgment.

The only features that can be reliably determined from

a corrupted image are those with significant spacial extension.

Without such extension we cannot apply the integrative processes

necessary to collect evidence for the existense of the

feature. Vertices for this reason cannot be considered primitive

elements of an image, but exist only as the intersection



-10-

of lines which have been shown toi intersect by the

higher-level scene-analysis programs. Letting the line-

drawing program establish vertices throws out accuracy,

because it may join up unrelated vertices.This is clearly

a place were increased communication between the line-

drawing program and the scene-analysis programs would

pay off.



REFERENCES

(1) Berthold K. P. Horn, "The Image Dissector
Artificial Intelligence Memo 178 (Cambridge, Mass.:
Intelligence Laboratory, M.I.T., August 1969).

'Eyes '"
Artificial

(2) Annette Herskovits and Thomas 0. Binford, "On Boundary
Detection," Artificial Intelligence Memo 183 (Cambridge, Mass.:
Artificial Intelligence Laboratory, M.I.T., July 1970).


