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1. Introduction

The construction of a three-dimensional description from

the two-dimensional projection of planar solids is an impor-

tant goal in the development of any nontrivial vision system.

Analysis of a scene using only two-dimensional information

has inherent limitations; in particular, object identification

and stability analysis are rendered exceedingly difficult, if

not sometimes impossible.

The general problem of three-dimensional description has

three aspects:

(1) recognition of distinct objects in a scene;

(2) identification of an object, e.g., cube, wedge, etc.;

(3) three-dimensional coordinate generation.

The greatest success in the past has been with aspect (1)

(Guzman (3) and Huffman (4)). Guzman (2) was concerned with

aspects (1) and (2), but that work cannot generally be said to

have been successful. Roberts (5) attacked all three aspects,

and in my opinion produced the most significant results with

regard to aspects (2) and (3). The latter two works are dis-

cussed further in section 4.

This paper assumes that distinct objects in a scene have

been recognized and an appropriate description set up. Only

single trihedral planar solids subjected. to trimetric projections

are handled (these terms are defined in section 3.1). The



basic motivation for the present approach is that objects can

often be described as the projection of the most complex plane

along parallel lines eminating from vertices of the plane (as

used in this paper, plane will be taken to mean an area bounded

by straight lines). In many cases where direct application

of this procedure is not possible, the solid can be subdivided

into parts, each of which is amenable to this procedure. By

keeping track of the planes projected, it is possible to con-

struct a description of the object in terms of these planes,

thereby solving aspect (2).

Successful application of this procedure to the trimetric

projection of an object results in the determination of the

2-D coordinates of hidden vertices. When this is done, it is

proved in section 2.3 that for the class of objects under con-

sideration, knowledge of the 3-D coordinates of exactly four

independent vertices suffices to determine the 3-D coordinates

of the remaining vertices of the solid. This takes care of

aspect (3).



2. Exposition

2.1. Basic Propa-pH

The present approach grew out of the observation that one

plane often provides complete information about an object.

This circumatance occurs when the object can be described as a

parallel projection of this plans ( thus the acronym Propa-pH

for project parallel plane hack). For example, the description

of a cube is obtained as follows (Fig. 1).

(1) Move plane A along the parallel rays from the vertices

of the plane until the ends of the rays are reached.

Call the projected plane P(A).

(2) Connect corresponding vertices of A and P(A).

Many common objects, such as wedge, cube, and block, can be

described in this manner. Some examples of objects amenable

to this simple procedure are given in Figs. 2 and 3, along

with hidden lines and vertices found as a consequence of its

application.

A common feature of the objects in the previous figures

is that the plane projected can be considered to be the most

complex plane. To test whether a particular trimetric projec-

tion represents an object that is describable by projection of one of

its planes, it suffices to find the most complex plane and to

apply the afore-mentioned procedure to it. To be more precise,

a binary relation is-more-complex-than is defined below. If
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a plane has as an edge the shaft of a T, the relation is not

defined on it. Let n(A) be the number of edges of plane A and

p(A) be the number of pairs of parallel edges of A. Then A

is-more-complex-than B if and only if one of the following is

true.

(1) n(A)> 4 and n(A)> n(B).

(2) n(A)=3 and n(B)=4.

(3) n(A) = n(B) and p(A)( p(B).

Thus the most complex plane can generally be considered

to be the one with the greatest number of edges. Note, however,

that a triangular plane is considered to be more complex than a

quadrilateral ( see Fig. 2D). In the case that two planes have

the same number of edges, we choose the one with the least

parallelism among its edges (see Fig. 3C). Sometimes more than

one plane can be considered most complex (e.g., Fig. 1), in

which case any one of them can be selected.

Having found the most complex plane, it must be the case

that all rays eminating from the plane are parallel.

If not, the test fails (e.g. Fig 4A). By ray will be meant

an edge eminating from a vertex of a plane that is not an edge

of the plane itself. Since all vertices are taken to be

trihedral, this definition is unambiguous. The rays must also

be of equal length, excluding those that are shafts of T's

(see Figs. 2B and 3B). Finally, those rays that are shafts
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of T's must be shorter than those that are not (e.g., Fig. ~4B).

If all these conditions are fulfilled, the object formed

by connecting corresponding vertices of the most complex plane

A and P(A) is compared with the original object. If there are

no edges of the original object that are not also edges of the

object formed, the test succeeds. Another way of saying this

is that nothing should be left when the object formed is sub-

tracted from the original object. The conditions stated in the

previous paragraph are not enough to insure that the test

succeeds, as Fig. 5 testifies.

If the test succeeds, the object can be considered to be

described by its most complex plane. In the process of con-

necting corresponding vertices of A and P(A), the 2-D coordinates

of hidden vertices were computed. This knowledge is necessary

for finding the 3-D coordinates of all vertices by the method

given in section 2.3.

2.2 Compound Object Construct"ion

When an object is not describable as a projection of its

most complex plane, it is often possible to break this com-

pound object into pieces that can be so described. For example,

the object in Fig. 6A can be considered to be an L-shaped

block stuck at one end to a rectangular block. How Propa-pH

actually constructs this description is also demonstrated in

the Figure.
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There are two aspects to this construction. It must first

be decided what part to carve out of the object. Then the

remainder of the object must be reconstructed for further

processing.

2.2.1. The Hacksaw

Generally speaking, the carving process proceeds by attempting

to remove the most complex part that can be described as the

projection of a plane. The determination of this part can be

done by ordering planes in a list in terms of decreasing com-

plexity, and by marching down the list until a plane is found

that by its projection is useful in splitting up the object.

Plane A in Fig. 6A, for example, is the most complex plane, and

its projection as indicated is a good way to carve up the object.

For a plane to qualify as useful, the necessary requirement

is that its rays be parallel. When this condition holds, the

plane will be said to be projectable. How far to project the

plane is the next question, and is usually determined by the

shortest ray that is not the shaft of a T. Thus in Fig. 7 the

projection of plane A in Step I is limited by edge el. The

same holds for plane B and edge e2 in step IV. (The meaning of

the remaining steps will become clear in the course of this

section.) The distance of projection may be limited by a

concavity in the object, as indicated in Fig.8. Whether the

distance of projection is limited by the shortest ray or by
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a concavity depends of course on which of the distances is

smaller.

Though a plane be projectable, it is not always immediately

obvious in which direction to project it. This circumstance

occurs when the rays of the plane are parallel and some of them

are in opposite directions; e.g.,plane A in Fig. 6A. What

determines the direction of projection is the concavity of the

object. The general rule is that projection is along a ray

that has the characteristic that neither of the two edges of

the projectable plane that form a vertex with the ray are concave.

Thus ray el of Fig. 6A does not dictate the direction of

projection because edge e2 of planeA is concave. Ray e3, however,

satisfies the rule and consequently determines the direction

of projection. An edge can be determined to be concave by

selective Huffman labeling (4); that is, not all edges of the

object need receive a Huffman label, but only those that are

necessary to determine the label of the edge in question. The

selective Huffman labeling of edge e2 could proceed, for examplei

as in Fig. 6B.

Not all projectable planes can be profitably used to carve

up a compound object. It may happen that object reconstruction

is rendered impossible by rules to be described later. It is

then necessary to try the next plane on the list of planes

ordered by decreasing complexity. If all planes on the list

have been unsuccessfully used to carve up the object, then



Propa-pH fails. The backup facility of PLANNER is evidently

well suited to this type of procedure. Consequently, explicit

PLANNER theorems are given in section 3.2 that conduct the

carving up process in the desired manner.

In some situations a more intelligent choice can be made

regarding what projectable plane to choose. One such situation

is illustrated in Fig. 9A, where plane A has equal length rays

in the same direction. The object formed by projection of A

(hereafter referred to as the projected object) does not cause

a visible plane of the compound object to be cut or dissected

when it is removed. The projected object is thus more in the

line of a protrusion, and is naturally removed first to decrease

the complexity of the compound object. Without looking for

this situation, the compound object construction could proceed

as in Fig. 9C, which is decidedly less aesthetic than that of

Fig. 9Bý.

A slightly different situation from the previous one is

indicated in Fig. 10, where the object formed by projection of

plane A does cause a visible plane to be cut. One would not

exactly call the projected object a protrusion, but there is

some aura of sticking-outness about it. In Propa-pH, this

situation is checked for after the previous one. How this all

fits together is made clearer by the PLANNER theorems in section

3.2. It should be noted that the construction in Fig. 10 is the

only successful way of describing the object under the limitation
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of the reconsturction rules. Thus the choice of plane A was

particularly a good one.

2.2.2. Reconstruction

There are two basic approaches to the reconstruction of

an object once a part has been cut out of it. The first approach

is to add the hidden lines of the projected object and to concoct

some method of erasing the unnecessary lines or line parts.

The second one is to erase the projected object entirely and

to add lines as dictated by the remainder of the object and the

projected object. The first approach fails to take into account

restrictions imposed by the remains of the compound object;

in particular, no new lines can be created. For the two

nearly identical objects in Fig. 11, the reconstruction of the

remains is almost entirely dictated by the shape of the remains

and not by the shape of the object cut out. Both objects are

included in the figure to accentuate the hopelessness of the

line erasure method.

To utilize the line addition method, the dangling line

segments must somehow be handled. It has been chosen to consider

the ends of these lines as vertices, and to label these

vertices with regard to type by how they were formed. There

are six types of these vertices.

(1) A CUTEDGE is formed from a visible edge that has been

cut or dissected by removal of the object: e.g. vi in

Fig. 7.
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(21 An XRAY is formed from a ray of the projected plane

that points in a direction opposite to the projection;

e.g., v2 in Fig. 6.

(3) A CUTL.is formed from a dissembled L vertex; e.g.,

v3 in Fig. 7.

(4) A CUTT is formed from a dissembled T vertex; e.g.,

v4 in Fig. 7.

(5) A CUTARFO is formed from a dissembled arrow or

fork vertex; e.g., v5 in Fig. 7.

(6) A CUTARFOT is formed by removing only one edge

from an arrow or fork vertex; e.g., vi in Fig. 20.

This vertex differs from the previous five in that

it initially has two edges.

The reason for this particular choice of categories

has to do with developing criteria for determining when a

reconstruction is complete. Explicit statements can be made

about vertices in a particular category with regard to how

many visible edges each vertex has in the reconstructed object

and how long and in what direction the edges of each vertex

are. Each category will now be investigated with regard

to this characterization.

A CUTEDGE vertex has the following characteristics in

the reconstruction process.

(1) All three edges are visible.

(2) Two of the edges are determined by the projected

object.



(31 The direction, but not the length, of the third

edge is determined by the projected object.

One edge that is obviously determined is the edge that was

cut. A second edge falls on the edge of the projected object

that produced the CUTEDGE by dissecting a plane (the latter

is henceforth called the cutting edge). Its length is deter-

mined either by the shortest extension to a one-edged vertex

(e.g., e2 in Fig. 11A), or by the length of the corresponding

edge of the projected plane, whichever is shorter. The latter

possibility is indicated by edges el and e2 in Fig. 12. Note

that the object in Fig. 12 cannot be constructed using as

one piece the projected object formed by plane A, because of

limitations of the reconstruction rules. If plane B is chosen

instead, the construction succeeds. Nevertheless, edge el

is properly constructed.

The direction of the third edge is dictated by the

projected plane because the CUTEDGE is a trihedral angle.

The length, however, is not determined by the projected object;

e.g., compare e3 and e5 in Figs. 11A and 11B.

The following statements can be made about XRAYs.

(1) The rays corresponding to the XRAYs must be extended

at least the distance of projection. This forms

new vertices.

(2) If there is a neighboring (with regard to the pro-

jected plane) XRAY that has formed an L, and if the
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connection of the extended XRAYs produces an arrow

vertex from this L, of which the edge of the neigh-

boring XRAY is the shaft; then the connection is

a valid edge.

(3) If an extended XRAY has formed an L vertex, and

if the corresponding ray is the edge of only one

face of the original object; then there are only

two visible edges of this vertex.

Properties (1) and (2) are illustrated in Fig. 13, where

rays el, e2 and e3 have first been extended in step II.

The extended ray e2 is then connected to the two extended

XRAYs in step III. Property (3) is illustrated in Fig. 14,

where ray el is eventually extended to form an L vertex.

Property (2) is really all that can be said about a

connection between neighboring XRAYs. In other circumstances

this connection may not exist. For example, in Fig. 15 the

extended XRAYs formed from rays el and e2 may or may not

connect-, as is indicated by two distinct reconstructions in

steps IIIa and IIIb. There is no a priori reason to select

one of these over the other, and indeed the equivalent of

the object in step IIIb is eventually constructed by the

present rules. What is meant by the latter statement is

that the reconstruction does not succeed when begun by pro-

jecting plane A, but by projecting plane B. The eventual

reconstruction is compatible with the object in step IIIb
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rather than the one in IIIa (see Fig. 16). Nevertheless,

the point remains that property (2) is the only determinate

condition for connection.

This discussion brings out an important point; namely,

there is not always a unique reconstruction. An impact of

this observation is discussed in section 4.

Finally, property (3) depends strongly on property (2)

limiting connections between extended XRAYs. Without this

limitation, it is easy to construct a counterexample.

A CUTL has the following characteristics.

(1) If a CUTL does not disappear by coincidence of its

edge with the cutting edge, i.e., it is a true

vertex of the reconstruction, then two of the edges

are determined by the projected object.

(2) If originally an edge of the L had a concave labeling,

the CUTL will have exactly two visible edges.

(3) Otherwise, the CUTL has three visible edges, but

neither the direction nor the length of the third

edge need by specified by the projected object.

A situation where a CUTL vertex disappears by coincidence

with the cutting edge is illustrated by vertex v3 in Fig. 7.

If the CUTL is a true vertex of the reconstructed object,

two of the edges are determined in the same way as the two

of a CUTEDGE vertex. Property (2) is illustrated by vertex

v1 in Fig. 17. Property (3) obtains because one edge is
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merely constrained to lie somewhere on the appropriate plane

of the projected object. That the length and direction are

indeterminate is illustrated in Fig. 18A, which shows a valid

alternative to the reconstruction of step III in Fig. 8.

Indeed, there is a whole spectrum of possible objects between

those in Fig. 18A and the corresponding objects in Fig. 18B,

dependent only on the direction and length of the third edges

of CUTLs v1 and v2 in Fig. 8.

Nothing much can be said about CUTTs. Under the assumptions

of section 3.1, it is not possible for CUTTs to be permanent

vertices in the reconstruction. Other rules of reconstruction

must be relied on to handle CUTTs properly.

CUTARFOs have the following properties.

(1) If a CUTARFO does not disappear by simple extension,

then it has three visible edges.

(2) The edges of a CUTARFO are completely specified by

the projected object.

An example of a CUTARFO that disappears is v5 in Fig. 7, whereas

an example of a three-edged CUTARFO is vertex vi in Fig. 19.

Finally, the following can be stated about CUTARFOTs.

(1) A CUTARFOT has three visible edges.

,-(2) The third edge is completely specified by the projected

object.

An example of the reconstruction of a CUTARFOT is given by

vertex vl in Fig. 20.
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How the various properties of the different vertex types

fit into a reconstruction scheme is discussed in detail in

section 3.2. It can be mentioned beforehand that whatever

edge reconstructions are completely determined by the vertex

properties are initially carried out. On the basis of the number

of visible edges each vertex.must have, the reconstruction is

or is not judged complete. If the afore-mentioned preliminary

edge reconstructions do not complete the object remains, then

two different heuristics are applied. One of these involves

Propagation Rules when only two vertices remain to be completely

specified, and the other heuristic involves a restricted

application of Propa-pH to the object remains. In the previous

Figures, when two steps were required for object reconstruction,

unless otherwise indicated the first step was application of

the preliminary edge reconstructions, whereas the second was

application of one of these heuristics.

It quite often happens that the object remains can be des-

cribed as the projection of one of its planes. These remaits.

do not necessarily have to be complete to apply Propa-pH to

them. All that is required is that there be a projectable

plane that can be projected in such a way as to completely

specify the remains. There must exist some ray of this plane,

the opposite end of which is a permanent vertex, to give the

distance and direction of projection. To avoid a great deal



of trouble with too many unspecified vertices, a compound object

reconstruction is not attempted if a projected plane can specify

only part of the remains. Thus either the projected plane can

completely specify the remains, or the heuristic fails.

This heuristic is quite powerful, and has been used

throughout the examples. A list of its application is given

below.

Fig. Step

6A III

8 III

10 III

11A III

11B III

16 VI

A generalization of this heuristic applies to situations

in which the remains are a disconnected collection of connected

parts. If the simple heuristic does not work for the remains

as an ensemble, then it is applied to each of the parts. To

succeed, the heuristic must succeed on each part. An example

of the generalized heuristic in use may be seen in step III,

Fig. 8.

The other heuristic, called the Propagation Rule, applies

only when two vertices are left to be completed. Under certain

conditions, a connected portion of the border of some plane

( of the projected object is a valid border for the reconstructed

object. The extent of this border portion is determined by



the two uncompleted vertices. In a sense, it can be said that

the edges of the border are propagated between these vertices.

To make this concrete, notice that in step III of Fig. 20 a

border portion of the projected object is propagated between

vertices v2 and v3.

There are a number of restrictions on the application of

the Propagation Rule. Not all types of vertex pairs have been

found to yield valid results upon application of this Rule.

Those pairs that are amenable to it are listed below, together

with an example of its application to each.

Vertex Pair Example

CUTARFO-CUTARFO Fig. 21, Step II

CUTARFO-CUTEDGE Fig. 20, Step III

CUTARFO-CUTT Fig. 22, Step III

CUTEDGE-CUTEDGE Fig. 17, Step III

CUTEDGE-CUTT Fig. 7, Step III

CUTT-XRAY Fig. 23, Step III

The absence of CUTL vertices from the list is noteworthy.

The elusive third edge is the spoiler, in that too much variability

is present for determinate propagation of edges between a CUTL

and some other vertbx. Similarly, not enough information is

normally present to allow the Propagation Rule to complete a

CUTT-CUTT pair.

A great deal is known beforehand about CUTARFOs and

CUTEDGE•, and accounts for the predominance of these two vertex
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types in the list. Any single CUTARFO or CUTEDGE suffices to

determine which border portion on which plane of the projected

object the Propagation Rule applies to. For the CUTEDGE, the

plane in question is determined by the two edges that were not

present originally. Remember that one edge is completely

specified and the second lies along an edge of the projected

object, though its length is not generally known. By following

the second edge to the other uncompleted vertex, the proper

border portion is obtained. For the CUTARFO, consider the

corresponding vertex of the projected object. The edge to

follow is the edge of this vertex that was not originally

part of the object.

The propagation is deemed valid if each vertex along the

border portion has the property that none of its edges or edge

portions were present in the original object. This property

is extremely important, and invalidates constructions that

might otherwise yield nonsensical objects. For example, the

presence of a portion of edge el in the original object invalidates

the construction in step III of Fig. 24. Perhaps a more serious

error occurs in step III of Fig. 25, which would otherwise be

constrained by the visibility of edge el In that figure.

The handling of the CUTARFO-CUTT and CUTEDGE-CUTT vertex

pairs is slightly modified from what the above discussion

implies. A border portion cannot be propagated all the way

from a CUTARFO or CUTEDGE to a CUTT. The propagation is
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carried out to such a point that an edge of the border portion

is collinear with the edge of the CUTT, and the two edges can

be combined into one edge by simple extension. When this

cannot be done, the Propagation Rule fails.

The CUTT-XRAY vertex pair is treated somewhat differently

from the others, and is included under the Propagation Rule

because the exactly-two-uncompleted-vertices condition holds

for it. The rule here is to join the respective edges of the

XRAY and CUTT if they are collinear.

The reason for the restriction to exactly two uncompleted

vertices is that invalid results can otherwise be conjured up.

There are four uncompleted vertices after step II in Fig. 26,

and application of the Propagation Rule to the CUTT-XRAY vertex

pair produces the clearly invalid connection in step III.

Examples of invalid constructions for the other vertex pairs

under relaxation of this restriction will not be given here.

The inclusion of the reconstruction rules into Propa-pH

is presented in section 3.2.

2.3 Three Dimensional Coordinate Generation

The main result of this section is that under certain

circumstances knowing the 3-D coordinates of exactly four

vertices of an object suffices to determine the 3-D coordinates

of the remaining vertices. The circumstances under which the

result is valid is knowledge of the 2-D coordinates of all
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vertices of a trihedral planar solid under a trimetric projection.

Since Propa-pH generates the 2-D coordinates of hidden vertices,

this result can be applied to an object constructed by it. It

is later shown how the 3-D coordinates of four points can often

be conveniently obtained in practice.

The result is developed in a succession of three theorems.

Theorem 1: Given 3-D coordinates of three noncollinear vertices

of a plane plus the 2-D coordinates of all the vertices of the

plane under a trimetric projection, the 3-D coordinates of the

remaining vertices can be calculated.

Proof: It is assumed the plane is not projected into a line.

Let T be the trimetric projection. There is a 1-1 correspondence

between points on the plane in 3-space and points in the

projection of the plane in 2-space.

Let {(x i Y, zi)1, i=1,2,3,,be the coordinates of the three

noncollinear vertices of the plane, and let

T (xi Yi Zi) = (ai bi) 1=1,2,3

be the associated points in 2-space. Define vectors

ocJ= (a 2 -a 1  b2 -bl)

or2= (a 3 -al b 3 -bl)

@1= (x 2 -xl Y2 -Y 1 z 2 -zl)

02= (x 3 -x 1  Y3 -y 1 z 3 -zl)

Let V be the subspace spanned by 1 27 . It is clear V is

nothing other than the plane in 3-space with boundaries extended



to infinity. Since the vertices are noncollinear, e1 and 2

are linearly independent. Let us restrict T to this plane,

and call this new transformation T p. Since T is a trimetric

projection, Tp is a linear transformation from the extended

plane to all of 2-space. Moreover,e 1 and Y2 are linearly

independent. Thus Tp is an isomorphism, and there consequently

exists an inverse linear transformation T p 1 such that

Tp -1 = 1 = 1,2.

Let (a b) be any point in 2-space, and define a vector

= (a-al b-bl)*.

Since i0(1,Ci 2ý is a basis for 2-space, there exist scalars

c and d such that

e =c1 + d1 2

Thus

Tp-1 = T- 1 + dTp- 1 2
S= c + 2

If T= Tp'l- , we can express 9 as

= (x-xi Y-Yi z-z 1 )

With a little effort, it can now be shown that

(x y z) a (a-al) a 2 -a l b2 -b1  x2-xl Y2-Y1 z2-zl

a3 -al b 3 -bl x3-x 1 Y3 -Yl z3 zl

+ (xl Y1 z1)

Thus the 3-D coordinates of any vertex can be calculated if

the 2-D coordinates of that vertex are known.



Theorem 2: Let the 2-D coordinates of vertices of a planar

trihedral solid subjected to a trimetric projection be known.

Suppose no plane is projected into a line. If the 3-D coor-

dinates of three vertices of any plane A, plus the 3-D coor-

dinates of a non-A vertex that forms an edge with a vertex

of A, are known, then the 3-D coordinates of all vertices

in all planes adjacent to A can be calculated.

Proof: By adjacent planes is meant planes that have at least

one common point on their respective perimeters. Since the

solid is trihedral, each adjacent plane Bi to A has as an

edge an edge of A. Moreover, if.two edges li and lj of A

form a vertex, then the corresponding adjacent planes Bi and

B themselves share an edge. Suppose plane B1 is adjacent

to A and has as an edge the edge formed from a vertex of A

to the fourth vertex mentioned above. Let the corresponding

edge of A to B1 be 11, and moving in a particular direction

around the perimeter of A from 11, let the edges be consecu-

tively labeled as 12,...,lk, where k is the number of edges

and lk+1 = 11. By Theorem 1i, the 3-D coordinates of all

vertices of A can be calculated. Thus three vertices of B1

are known in 3-space, and the remaining vertices of B1.-can

be determined. Plane B2 shares two vertices with A, and

since B1 and B2 share an edge, B2 shares a distinct third

vertex with B1. Thus B2 has three vertices known in 3-space,

and once again Theorem 1 can be applied to determine the



remaining vertices. This argument can be carried out induc-

tively to calculate the 3-D coordinates of all vertices of

all planes adjacent to A.

Theorem 3: Given the assumptions of Theorem 2, the 3-D

coordinates of all vertices of a trihedral solid can be

calculated.

Proof: Theorem 2 can be applied to each plane Bi adjacent

to A, so that all adjacent planes to Bi have their vertices

determined in 3-space. It is clear that recursive application

of Theorem 2 terminates with the calculation of the 3-D

coordinates of all vertices of the solid.

If the solid is not trihedral, more than four vertices

are sometimes required to completely specify the vertices

in 3-space. For example, six vertices are required for the

object in Fig. 27. The minimum number of vertices required

can be determined as follows. For a given object, let us

label certain of the vertices as being known in 3-space.

If repeated application of Theorem 1 results in the determina-

tion of all vertices, then the number of vertices initially

labeled form an upper bound for the minimum number of vertices

required. It is clear that this minimum number is the least

upper bound. The reader may wish to apply this argument to

the object in Fig. 27, and verify that the magic number is six.
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The knowledge of the 2-D coordinates of all vertices

of the solid under a projection is vital to the proof. If

only visible vertices are known, then of course 3-D coordinates

can only be calculated for these visible vertices. Moreover,

the 3-D coordinates of more than four vertices are often re-

quired for this calculation. The number of vertices required

has been determined by Falk(1), who has developed a formalism

to treat this problem under assumptions close to those given

in section 3.1. The basic idea underlying the formalism is

essentially analogous to the procedure developed in the pre-

vious paragraph. For a more complete discussion, the reader

is referred to Falk(1).

In real world situations, an object is resting on a

table and is being "looked at" by a vidisector camera hooked

up to a computer. The 3-D coordinates of the corners of the

table in some coordinate system are usually known. Since

the 2-D coordinates of any point on the table as it appears

in the image are also known, it is possible to determine the

3-D coordinates of any vertex on the bottom plane of the

object, i.e., that plane which rests squarely on the table.

Thus three of the four points required by Theomem 3 for

complete determination are usually easily obtainable. The

fourth vertex can often be obtained by some supplementary

assumption, such as assuming vertical edges on the picture

correspond to real vertical edges. Thus application of
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Theorem 3 to a one object scene often requires no auxilliary

determination of the 3-D coordinates of some of the vertices.



3. Development

3.1. Basic Assumptions

As this is the first attempt at deriving a three dimen-

sional description of an object by projecting the most complex

plane, -several restrictions were imposed in order to make the

approach manageable. These are listed below.

(1) Only trihedral planar solids are considered.

A trihedral planar solid is one whose vertices are formed

by the intersection of exactly three planes. Relaxation

of this assumption renders many of the reconstruction rules

invalid, and thereby considerably complicates the reconstruc-

tion process. No attempt has been made to derive general

reconstruction rules for a less restricted class of objects.

(2) All projections are trimetric.

A trimetric projection is a parallel projection in which any

initial transformation is a pure rotation, and in which

orthogonality bf the transformed axes is preserved. Considerable

complexity to the present approach results when one point

perspective pictures of objects are used. There is difficulty

in recognizing when lines are parallel, since some 3-D infor-

mation is usually needed beforehand for this recognition.

(3) Small changes in position of an object leave the

topology of the projection unchanged.

Assumption (3) rules out degenerate projections and certain

unfortunate "coincidences." These coiicidences usually



manifest themselves as vertices in the projection that have

more than three edges. It is not expected that relaxation

of this assumption will cause a great deal of difficulty,

and is perhaps the next logical extension of Propa-pH.

(4) Scenes consist of single bodies only.

Anticipated problems upon relaxation of this assumption are

further discussed in section 4. Reconstruction of a multiple

body scene when a body is deleted from it can be quite different

in character from that seen in section 3.2.

3.2. PLANNER Implementation

A PLANNER program that purports to implement Propa-pH

will now be presented, not without some hesitation due to

my limited experience with the language. Nevertheless, it

is felt that the organization of Propa-pH will be made much

clearer as a result. Only limited use is made of PLANNER

capabilities, of which the backup feature is the most useful.

The proper choice of a plane, in order to decompose an object

into a projected object and another object for which a descrip-

tion can eventually be obtained, is thereby facilitated.

Otherwise, the operation of Propa-pH is rather straightfor-

ward, since most of the necessary computations are mechanical

in nature. This accounts for the preponderance of LISP

functions in the PLANNER theorems.

When the LISP functions were conceived, it was necessary

to have in mind what the structure of the data base was that

was being operated upon. Without going into any detail,



let it merely be stated that the data base structure contem-

plated is very similar to that employed by Guzman(3). The

reader should assume that proper bookkeeping.exists to handle

descriptions of objects as they are generated. The only

explicit reference to the data base in the PLANNER theorems

is to obtain the names of subbodies formed in the carving

process by TC-HACKSAW.

As implied in the previous section, there are three

distinct stages in Propa-pH: the first stage attempts to

describe the object by projection of the most complex plane,

the second attempts to separate the body into two simpler

pieces when this cannot be done, and the third stage does

some reconstruction on the object remains formed in the separa-

tion process. These stages are implemented by four PLANNER

theorems, each of which is discussed at length below. For

reference, the interplay of the theorems is shown in Fig. 28.

The PLANNER theorems are presented on succeeding pages to

this Figure.

The first theorem, TC-PROPAPH, attempts to describe

the object by projection of the most complex plane. If the

attempt fails, the theorem TC-HACKSAW is called to cut up the

object. Upon entering TC-PROPAPH, the planes are sorted by

complexity according to the LISP function SORTPLANES. The

most complex plane in this list is used as an argument for

a call to TC-PROJECTABLE, which checks most of the conditions
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(DEFPROP TC-PROPAPH

(THCONSE (BODY PLIST PTLIST)

(#SPECIFY $?BODY)

(THSETQ iP?PLIST (SORTPLANES $?BODY))

(THSETQ $?PTLIST (LIST (CAR $?PLIST)))

(THOR (THAND (THGOAL (#PROJECTABLE $?BODY $?PTLIST

NOCUT)

(THNODB)

(THUSE TC-PROJECTABLE))

(EQUAL (LENGTH (GETP $?BODY 'SUBBODIES))

1.))

(THGOAL (#DISSECT $?BODY $?PLIST)

(THNODB)

(THUSE TC-HACKSAW))))

THEOREM)

(DEFPROP TC-PROJECTABLE

(THCONSE (BODY PLIST CUT PLANE)

(#PROJECTABLE 4?BODY $?PLIST $?CUT)

(THAMONG $?PLANE $?PLIST)

(PARALINE $?PLANE)

(UNIDIREC $?PLANE)

(EQUILONG $?PLANE)

(PROJECT '?BODY $?PLANE $?CUT))

THEOREM)



(DEFPROP TC-HACKSAW

(THCONSE (BODY PLIST)

(#DISSECT $?BODY $?PLIST)

(THOR (THAND (THGOAL (#PROJECTABLE $?BODY $?PLIST

NOCUT)

(THNODB)

(THUSE TC-PROJECTABLE))

(THGOAL (#RECONSTRUCT $?BODY)

(THNODB)

(THUSE TC-RECONSTRUCT)))

(THAND (THGOAL (#PROJECTABLE $?BODY $?PLIST

CUT)

(THNODB)

(THUSE TC-PROJECTABLE))

(THGOAL (#RECONSTRUCT $?BODY)

(THNODB)

(THUSE TC-RECONSTRUCT)))

(THPROG (PLANE)

(THAMONG $?PLANE $?PLIST)

(PARALINE $?PLANE)

(THCOND ((UNIDIREC $?PLANE))

(T (HUFFMAN $?BODY $?PLANE)))

(THDO (EQUILONG $?PLANE))

(PROJECT $?BODY $?PLANE 'CUT)



(THGOAL (#RECONSTRUCT $?BODY)

(THNODB)

(THUSE TC-RECONSTRUCT)))))

THEOREM)

(DEFPROP TC-RECONSTRUCT

(THCONSE (BODY REMAINS)

(CUTEDGES $?BODY)

(CUTARFOTS $?BODY)

(CUTARFOS $?BODY)

(XRAYS '$?BODY)

(CUTLS $?BODY)

(THSETQ $?REMAINS (CADR (GETP $?BODY 'SUBBODIES))

(THOR (THAND (PROPAGATION $?BODY)

(THOR (THGOAL (#SPECIFY $?REMAINS)

(THNODB)

(THUSE TC-PROPAPH))

(THFAIL THEOREM)))

(THPROG (PLIST BLIST PART)

(THCOND ((THSETQ $?BLIST

(LIST $?REMAINS)))

((THSETQ $?BLIST

(SORTBODIES $?REMAINS)))

TAG (THCOND ((NULL $?BLIST)

(THSUCCEED THPROG))

((THSETQ $?PART (CAR $?BLIST))))

(THSETQ $?PLIST (SORTPLANES $?PART))
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(THCOND ((EQUAL (LENGTH (GETP $?PART

'SUBBODIES))

1)

(THGO THTAG))

((THFAIL THTAG TAG)1)))}

THEOREM)



that must be fulfilled to describe the object by projection

of this plane. Since NOCUT was specified in the call to

TC-PROJECTABLE, the projection fails if a plane of the object

would be cut as a result. If these conditions are satisfied,

TC-PROJECTABLE returns successfully after having carried out

the projection and having set up descriptions for the projected

object and the object remains. If there are object remains,

the attempt has failed and TC-HACKSAW is called. If the

latter fails, then TC-PROPAPH cannot be used to describe

this object.

TC-PROJECTABLE seeks to project a plane along equal-

length rays that are parallel and unidirectional. When the

rays are as described above, the object is separated into a

projected object and object remains. An arbitrary list of

planes can be provided to TC-PROJECTABLE, which will go

through the list until a plane is found that has the required

properties. The LISP functions that accomplish this are

briefly described below.

PARALINE--checks if rays eminating from a plane are all

parallel. In the case of loose ends from a reconstructed

body, at least one of the rays must end in a permanent

vertex. T or NIL is returned accordingly.

UNIDIREC--checks if rays emin&ting from a plane are unidirec-

tional, and returns T or NIL accordingly.



EQUILONG--finds the maximum allowable distance of projection

along one of the rays of the plane. This distance is

limited by the shortest ray that is not the shaft of

a T, or by a concavity of the plane. The appropriate

distance is noted in the data base. T is returned if

all rays that are not shafts of T's are equally long,

if the projection is not limited by a concavity, and

if any ray that is the shaft of a T is not longer than

the other rays.. Otherwise, NIL is returned.

PROJECT--separates an object into two on the basis of projec-

tion of a plane, and sets up proper descriptions for

each. A list of names of the two pieces is entered in

the property list of the object under SUBBODIES. If

NOCUT is specified, i.e., no plane is to be cut in the

projection, then PROJECT does not carry out the separa-

tion and returns NIL if indeed a plane would be cut.

Otherwise, T is returned.

There are three different ways in which TC-HACKSAW seeks

to dissect an object. The first involves removal of a

"protrusion," as defined in the previous section. To find

such a protrusion involves almost exactly the same tests

as used in TC-PROPAPH, as may be seen by the identical call

to TC-PROJECTABLE. If there are object remains, however,

a protrusion has been found. TC-RECONSTRUCT is called to



complete the remains and to initiate a description attempt

on them. When TC-RECONSTRUCT succeeds, so does TC-HACKSAW.

If no protrusions exist or if TC-RECONSTRUCT fails, a

"protrusion-like" part is sought. A "protrusion-like" part

is similar to a protrusion, except that PROJECT is allowed

to cut a plane during the call to TC-PROJECTABLE (e.g.,

step I in Fig. 10). If such a part has been found, TC-RECONSTRUCT

is applied to the remains as before.

Lastly, if no protrusion-like parts exist or TC-RECONSTRUCT

fails, TC-HACKSAW runs through the list of planes and chooses

any plane that is projectable, i.e., a plane for which the

LISP function PARALINE returns T. If the rays are not

unidirectional, selective Huffman labeling is used to determine

the proper direction of projection. Briefly, the LISP function

HUFFMAN seeks a ray whose vertex on the projectable plane

has two other non-concave edges. The proper distance of

projection is determined by EQUILONG, and PROJECT carries

out the separation. Once again, TC-RECONSTRUCT is applied

to the remains. TC-HACKSAW succeeds if eventually a plane

is chosen that results in successful description of the

pieces of a separation.

The reconstruction rules in TC-RECONSTRUCT can be divided

(like Gaul)I into three parts: preliminary edge reconstructions,

an attempted application of the Propagation Rules, and a



simple projective plane hack. Initially, edge reconstructions

are carried out on the various vertex types as allowed by

their respective properties. These are conducted by appro-

priate LISP functions which are summarized below.

CUTEDGES--adds the edge(s) of the visible portion of that

cutting plane which produced a CUTEDGE. The length of

each added edge is limited by the first loose-ended

vertex along it.

CUTARFOTS--adds the remaining edge as dictated by the cutting

plane.

CUTAR.FOS--attempts first to connect each CUTARFO by simple

extension to another loose-ended vertex. When this

is not possible, an edge is added that was originally

an edge of the ARFO vertex, but was not solely an edge

of the projected object.

XRAYS--extends the XRAYs the length of the projection. If an

extended XRAY has formed an L, then a neighboring ex-

tended XRAY is connected to it if an arrow is thereby

formed, of which the first XRAY is on the shaft.

CUTLS--adds the edge of the cutting plane that produced it.

Some duplication would result if these LISP functions were

executed independently, and appropriate safeguards must exist

to avoid it.



After these functions act, the vertices will be in

various stages of completion. The expected number of visible

edges for each type, listed again below for sake of reference,

determines when a vertex is complete.

(1) CUTEDGEs and CUTARFOTs have three visible edges.

(2) If a CUTARFO does not disappear by simple extension,

it has three visible edges.

(3) If originally an L had a concave edge, the corres-

ponding CUTL will have two visible edges. Otherwise,

if it does not disappear by simple extension, a CUTL

has three visible edges.

(4) An extended XRAY that does not disappear by coinci-

dence normally will become part of a three-edged vertex.

However, if the original ray is an edge of only one visible

plane, and if the XRAY has formed an L vertex, then

two edges only are visible.

(5) All CUTTs are impermanent vertices.

At this point there is an attempted application of the

Propagation Rules. The LISP function PROPAGATION initially

checks on the number of uncompleted vertices. If there are

none, i.e., the preliminary reconstruction rules were enough,

it returns T. If there are two, and if the Propagation Rules

can be successfully applied as discussed in the previous section.,

PROPAGATION also returns T. TC-PROPAPH is subsequently applied



to the reconstructed remains, and determines whether

TC-RECONSTRUCT now succeeds or fails.

If PROPAGATION returns NIL, there is an attempt to

describe the remains completely by projection of the most

complex plane. This is very similar to application of

TC-PROPAPH, except that TC-HACKSAW is not called in case of

failure. If the remains exist as two or more disconnected

parts and if the initial projection attempt has failed,

then a similar description is attempted for each part.

The LISP function SORTBODIES separates the remains into

disjoint parts, sets up appropriate descriptions for each,

and returns a list of their names. TC-RECONSTRUCT now succeeds

only if each part is successfully described.

Thus ends Propa-pH.



4. Recapitulation

4.1. Description Building

When an object can be described by projection of the

most complex plane, then the object can be identified with

this plane. Thus a block can be considered a projected

rectangle, a wedge a projected triangle, and so on. In the

case of compound object construction, a description can be

built up on the basis of the planes that characterize each

of the parts. For example, the object in Fig. 23 would be

described as a T-shaped object joined to a block.

Unfortunately, compound objects often lend themselves

to more than one description. Given different initial planes

to carve up an object, Propa-pH will separate different com-

ponents for many objects. An alternate construction to the

one in Fig. 17 could be produced by projection of plane A

in Fig. 29.

There is nothing inherently wrong about different

descriptions, but humans have a tendency to find some more

natural than others. A general tendency seems to be to pick

out the most prominent feature. In many cases this feature

is the most complex plane, but as a general rule this obser-

vation is too simple-minded. The best interpretation of a

compound object may be the one that identifies the bulkiest



vri

Fig. 29



component. For this reason I think humans find the inter-

pretation in Fig. 29 more natural than the one in Fig. 17.

What is needed then are better ways of identifying com-

ponents of a compound object. TC-HACKSAW makes a mild attempt

at a more natural description by seeking first to remove

protrusions (Fig. 9) and then to remove protrusion-like

components (Fig. 10). Both of these can be considered to be

prominent features. In any case, TC-HACKSAW will have to

undergo extensive revision to conform with our ideas of

naturalness.

4.2. Multiple Object Scenes

There are practically no problems in multiple object

scene analysis that are not also problems in scenes of single

objects. A single object that exhibits the problem may be

very exotic, however, so that it is much more natural to

consider certain problems as belonging to the multiple object

scene domain. These problems are discussed in general terms

below.

As exists, Propa-pH can handle a very restricted class

of multiple object scenes, which usually are composed of

aligned objects without visible vertex types of more than

three edges. For example, Figs. 20 and 21 could just as well

be considered to represent two object scenes. Nevertheless,

Propa-pH at present is clearly inadequate for most multiple

body scenes.



The very first problem one encounters in such scenes

is deciding which object to analyze first. It would be nice

to choose an unobstructed object, but such an object need

not exist.

After an object has been chosen, specified and deleted

from a scene, one must reconstruct those bodies that were

partially blocked by the deleted object. This reconstruction

is more difficult than before, since objects may not be

touching and very little information need be provided by the

deleted object to guide the reconstruction. It remains to

be seen if adequate rules can be formulated, and it is quite

possible that some auxilliary considerations must come into

play.

Often one dimension is left unspecified and must be

estimated somehow. Perhaps some other information in the

scene can be used to establish a credible limit on this

dimension, such as apparently similar unobscured objects.

Another assumption that may be of utility is to extend this

dimension to the maximum allowable limit as dictated by the

scene; for example, the block in Fig. 3.0 is extended in

step II as far as possible. Or one could just as well choose

the miminal distance, which just shows there are no good

assumptions.

Whatever assumptions one makes, it is necessary that

reality not be violated. A given interpretation of an object
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may cause collision with other objects. For example, if all

objects in Fig. 30 are resting on the ground, it is not now

possible to interpret the rightmost object as a wedge, since

it would collide with the extended block. A scene must also

not be rendered unstable because of some interpretation.

Generally speaking, questions of collision and stability

can only be determined with complete three-dimensional infor-

mation, although sometimes good estimates can be made in

two dimensions. Finally, an interpretation must not conjure

up parts that would have been visible in the original scene,

but are not.

4.3. Comparison with Previous Efforts

As mentioned in the introduction, the two most important

works in object identification from a two-dimensional picture

are Roberts(5) and Guzman(2). A brief summary of each work

will be given, along with a comparison with Propa-pH.

4.3.1. Roberts

The assumptions Roberts makes about objects and their

2-D projections are very similar to those enunciated in

section 3.1. Objects in a scene are identified by matching

with known three-dimensional models. Using topological

information from the 2,D projection, a plausible model is

selected. A- transformation matrix is then set up such that

successive rotations, translations and projection map the



model exactly onto the projected object. This procedure

requires some type of error analysis to detect a good fit.

In case of a compound object not describable by trans-

formation of a single model, an attempt is made to describe

it by piecing together several models. As in the present

approach, the construction is destructive in the sense that

the object is carved into pieces by projecting a model onto

an object and deleting it. A reconstruction of the remainder

of the object then takes place to prepare it for the next

model mapping. How wedge and cube models are used to describe

a compound object is given as an example in Fig. 31. A cube

model is always tested before a wedge model to avoid splitting

cubes into wedges.

The use of models can become very cumbersome if there

are a large number of them. The proper selection of a model

and generation of an appropriate transformation matrix then

become very time consuming. What objects can be constructed

are of course limited by the selection of models. There exists

no such inherent limitation in Propa-pH. An object may be

arbitrarily complex, so long as it is describable as a pro-

jection of the most complex plane, or as an object composed

of pieces that are so describable.

His method of reconstruction of an object after a model

has been found which fits part of it is one of line deletion.

After all lines from the piece to be cut out have been added,
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certain rules are applied to determine which lines must be

erased. As noted in section 2.2.2, this approach fails to

take into account contextual information from the remainder

of the object. Construction of new lines not part of the

piece to be cut out is sometimes called for, but Roberts

makes no provision for this.

It is not likely humans see an object as being composed

of wedges and cubes glued together. It seems to me that

an object such as that in Fig. 31 is much more naturally des-

cribed as a projection of its most complex plane. Clearly

many objects are naturally describable in terms of bits and

pieces, but the main point of difference between Roberts'

work and Propa-pH is the size of these pieces. By projecting

the most complex plane, Propa-pH attempts to make these pieces

as large as possible.

4.3.2. Guzman

In a program called DT, Guzman has employed a number

of models for a standard object to identify constituents

of a two-dimensional picture. These models are two-dimen-

sional, and correspond to different ways in which the standard

object can be projected into two-space. Matching is almost

completely topological; that is, region shapes and the posi-

tions of regions with respect to other regions must be

identical in model and 2-D object. For simple objects,



the number of important models is relatively small. Thus a

wedge can be described as an object composed of a triangle

and one or two parallelograms (Fig. 32). As the complexity

of the object increases, so do the number of models (Fig. 33).

If a large number of objects are to be modelled, it is

clear an enormous and unwieldy data base would result. There

is no provision, moreover, for describing a complex object

as composed of a number of smaller, recognizable pieces.

Practically every object in Guzman's thesis is easily handled

by Propa-pH. Whereas his approach is characterized by a

great deal of data base search, Propa-pH is almost completely

procedural in nature due to a complete lack of models.

Roberts' work can be considered to fall somewhere in between

these two approaches.

4.4. Coda

Is Propa-pH anything other than a nice hack? Does it

correspond to how humans might build descriptions? Some

affirmative evidence I believe is provided by hole recog-

nition (Fig. 34). I claim that a hole is recognized not

by the interrelationship of vertices (an altogether too

microscopic a view), but by the ability to project the

opening backwards. Or, what is the same thing, to project

the surrounding plane backwards.
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The procedural nature of Propa-pH provides more insight

into these questions. Rather than analyzing a scene in terms

of fixed models, Propa-pH works completely with the informa-

tion provided by the scene. I do not believe it is much

different with humans. We look at an object in much the

same way as astronomers expected the back side of the moon

to look before a Russian satellite photographed it: not much

different from the front. This is the essence of the present

approach: to make an educated guess at what the parts hidden

from view look like solely on the basis of what's in front.

The words of a current pop song sums it all up. What you see

is what you get.
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