
Active Knowledge

VISION FLASH 53

by

Eugene C. I-euder

Massachusetts Institute of Technology

Artificial Intelligence Laboratory

Robotics Section

October 1973

Abstract

A progress report on the work described in Vision

Flashes 33 and 43 on recognition of real objects.

Emphasis is on the "active" use of knowledge in

directing the flow of visual processing.

Work reported herein was conducted at the
Artificial Intelligence Laboratory, a
Massachusetts Institute of Technology research
program supported in part by the Advanced Research
Projects Agency of the Department of Defense and
monitored by the Office of Naval Research under
Contract Number NOOO00014-70-A-0362-0005.

Vision flashes are informal papers intended for
internal use.

This memo is located in TJ6-able form on file
VIS;VF53 >.

PAGE 2

A Note to the Reader

Well, I thought it was about time to write something down

again.

This paper should provide some material for those who

wanted more details, or more examples, than they found in Vision

Flash 43 (VF 43). See particularly, sections 3 and 6. However,

I do not expect to really satisfy anyone in this regard.

Moreover, this paper adds whole new parcels of hand waving.

Any way you look at it, it is difficult to write up work in

progress. You do not want to go into details on uncertain

explorations, but you do not want to completely ignore important

issues either. As a result this paper will probably vacillate

between cryptic and incoherent.

Nevertheless, it is healthy to write things down

periodically. Good luck.

PAGE 3

1. Introduction

This is a further progress report on a system whose

motivations are found in VI 33 and origins in VF 43.

This paper will focus on the organization and use of

knowledge in the system. We discuss the analysis of concepts

and their procedural implementation. Briefly, we propose a

"hierarchical relevance" analysis which is implemented in a data

base of' conjectures. Associated programming modules serve to

establish the conjectures and guide the processing.

Examples are drawn from current code for recognizing a

"tubel" (fig. 1). The examples, and the system description are

oversimplified and incomplete. One of the most encouraging

features of the system is that concrete mechanisms readily

suggest themselves for dealing with added complexities. However

both the complexities and the mechanisms to handle them are

largely theoretical at the moment. It is far too easy to get

lost in theory and never complete a program, or paper. I shall

try to confine myself here to a description of basic mechanisms,

as exemplified by current code. I will not succeed; but I shall

try.

You will recall from VF 43 that my basic interest is visual

recognition in a realistic environment. Also that my approach

derives from the heterarchy concepts of Minsky and Papert, and

is summarized in the following pseudo-equation:

Pn+1 = f(GK, PK(n)) .

4iC~

±qAULh 4

The n+1st processing step is determined by the interaction of

our general knowledge (GK), and the particular knowledge (PK)

that we have already gathered from the specific scene through

the first n processing steps.

In VF 43 1 began to analyze this "function" in terms of

"suggestion" and "advice".

I also indicated that the representation of both GK and PK

in our data base was important, insofar as it could facilitate

the interaction refered to above. More generally, we need to

represent knowledge in a form which allows and encourages its

"active" use in the direction of the recognition process.

This "active knowledge" is to be distinguished, for

example, from the passive use of knowledge in a pattern

recognition or model matching scheme. These require us to

gather all the particular knowledge about a scene we can, then

attempt to elicit recognition by comparison with general

knowledge imbedded in paradigms or models. However neither the

general knowledge, nor the particular knowledge as it is

received, is actively used to assist the knowledge gathering

process--the most difficult task.

We will use the two-pass "build a description, match

against models", approach as a straw man throughout this paper.

In my system the knowledge gathering process coincides with

the recognition process.

I will call the system SEER, so I will not have to keep

saying "the system". Possibly the name has some punnish

PAGE 5

appropriateness.

The form in which knowledge is represented may serve to

permit or prevent, encourage or deter its active role.

For example, a mathematically oriented model encourages us

to view a relationship like "A next-to B" as a predicate to be

tested on A and B.

I want to view "A next-to B" as providing advice on how to

find B if I have found A-or A if I have found B. "A next-to E"

also should suggest that "X" might be B, if I discover A next-to

X.

Once we have an analysis of our knowledge which discovers

and encourages its active roles, we can transfer it to a

programming system which institutionalizes concrete mechanisms

for implementing these roles. Here again, the form in which

knowledge is imbedded in a system can encourage or deter its

active function.

PAGE 6

2. Knowledge Structure

The first thing we need to do is analyze our knowledge in a

form which facilitates suggestion and advice. The analysis we

make is basically a very simple one.

When people ask me how I describe objects, they generally

seem to be thinking about methods for describing curvature, or

elegant schema for specifying physical structure and semantic

features.

These are important issues, but not, I feel, the central

one. It is not really that difficult to make the distinction

between a hammer and a screwdriver. Elegance or fine detail is

not essential.

Barrow and Popplestone's "cup recognizer", for example, a

pioneering effort, did not fail to recognize a hammer because

their description of a hammer was not rich enough, or did not

specify a hammer completely enough. Rather the system could not

make use of its description of a hammer when it was needed-when

the scene was being perceived.

We concentrate, therefore, for the moment, on the aspect of

our "descriptive" knowledge most directly relevant to its active

use. A truly "procedural" description.

Figure 2 presents a possible, simplified, organization of

the concept "convex".

One process for determining convexity involves finding the

area of the region, R, and the area of its "convex hull" (a

x HLote Les$

i
A 60WL* x cowton #muif

Xg 6'V

LAA~e.v~~ i~e. ~ \r~

v 60tt

V Cmet VEX

.00

Lu A eme

ind~-iactes tapt fq iS-rcj~c~cJ~nP-Qo

concept of my own which is probably equivalent to the standard

one, i.e. the smallest convex region containing R). If' these

areas are close enough, it is fairly likely the region is

convex. I also require convex regions to be without holes.

This "definition" or process for establishing convexity is

reflected in figure 2. There are two basic aspects of this

structure to notice.

First, the analysis is based upon "relevance" or "possible

relevance". "Relevance" is a suitably vague concept whose

dimensions we shall come to know by example. I could define it

by indicating that "x is relevant to y", if the presence of x in

the data base for a scene, might suggest that we look for y in

the scene. However, this definition would prove to be rather

circular.

It is important here to note that relevance is not limited

to the necessary and sufficient sub-parts, sub-properties or

"defining conditions" of a concept or object. We do not seek

any "minimal" set of defining conditions. In fact, we hope to

be able to use redundancy and alternatives. Relevant sub-

elements may include factors of advice or context. We shall

examine these possiblilities'a bit further in later sections.

Second, the analysis is hierarchical. Convexity involves

three major items; these, in turn use...

How exactly this analysis is organized hierarchically, and

wht elements are singled out as nodes, are decisions that can

only be understood in terms of our overall aims, and programming

PAGEI 8

mechanisms.

Most importantly, this structure must facilitate our

suggestion mechanisms. Therefore commonly used sub-processes

are isolated as "nodes", so that we may suggest all their

relevant "superior" processes. Processes are also isolated in

order to permit suggestions to be made in precisely the proper

place in the structure. For example, if we discover a boundary

we need not immediately suggest convexity, we can test if the

region is without holes first.

But the organization will also serve other purposes when

transferred to our programming structure.

It will facilitate sharing and interaction of information.

The hierarchical organization directs the flow of

processing, in serial and parallel streams.

Most concepts will be complex enough to organize

alternatives into parallel "methods" for establishing the

concept.

These various complexities are best understood in the

context of the remaining sections.

3. Programming Structure

In this section we discuss the manner in which a

hierarchical relevance analysis is implemented, in code and in

the course of processing a scene.

This is a straightforward section; at least the first half

is. We describe the basic mechanisms and how they operate.

That this operation is of a rather different nature from normal

programming structure should be obvious. However we will save

most discussion of the character of what is operating here for

later sections.

3.1. Modules on Datums

3.1.1. Introduction

Every concept or predicate that can appear as a "node" in a

hierarchical relevance analysis, has an associated set of

program modules. There are five primary types: conjecture

(CONJ), establish? (EST?), establish (EST), FAIL? and FAIL

modules.

When an instantiation of a predicate is hypothesized, e.g.

R69 CONVEX, region 69 convex, it is placed in the data base as a

Conniver "datum", and marked as a "conjecture". All conjectures

go on the suggestion list with an appropriate priority. If the

conjecture is later verified it is marked "established". It is

removed from the suggestion list, but remains in the data base.

The program modules operate on these datums. More

precisely the set of program modules associated with a datum's

PAGE 10

predicate act upon the datum. Thus the CONJ module "CONJ-

COiJVEX" acts upon the datum R69 CONVEX.

The essential operation of the system consists of applying

modules to datums. We will now discuss how and when these

modules get applied and what functions they serve.

3.1.2. CONJ

When the monitor chooses to execute a conjecture for the

first time, the appropriate CONJ module is called to act upon

the conjecture. E.g. CONJ-CONVEX acts upon R69 CONVEX.

There are two standard simplest forms of behavior that a

COiqJ module may exhibit.

The module may suggest "pursuing" all further conjectures

that might help establish the current one. E.g. COii·-CONVE

acting on the conjecture R69 CONVEX, makes the following further

conjectures: R69 HOLELESS, R69 AREA, R69 CONVEX-HULL-AREA.

These conjectures are placed in the data base and on the

suggestion list.

If the module is at the "lowest" level, it will simply

execute some "black box" calculation, and call an EST module

upon success (or a FAIL module upon failure).

3.1.3. EST

An EST module gets executed whenever a conjecture is

established. (We will see how higher level conjectures get

established in a moment.) For example, when R69 CONVEX is

established, EST-CONVEX is applied to the datum.

The standard simplest behavior for the EST module to

PAGE 11

exhibit involves "proposing" further suggestions. The EST

module knows what the established datum is possibly relevant

for, and places further conjectures in the data base

accordingly. For example, EST-HOLELESS acting on R69 HOLELESS

would propose R69 CONVEX.

The reader will recognize the EST modules as a mechanism

for implementing the basic form of "suggestions" introduced in

VF 43.

The CONJ mechanism places normal "downward" processing in

the hands of the same Suggestion List/Priority System/Monitor

apparatus. (This consistency of approach may have been

encouraged by an early conversation with Jeff Hill.)

All very well you say, but when does anything actually get

computed around here (aside from low level CONJ's)? There is

room in CONJ's and EST's for additional hair, but the 2:reatest

burden falls on the EST? modules.

3.1.4. Links

I must first explain that when CONJ And EST modules place

new conjectures in the data base, these conjectures are "linked"

to the datums which inspired them. That is, R69 CONVEX is

linked to R69 HOLELESS, regardless of whether the former pursued

the latter, or the latter proposed the former. R69 HOLELESS is

thus noted as "relevant to" R69 CONVEX. These "links" are

simply the "possibly relevant" links discussed in section 2 and

iigure 2.

The CONJ and EST mechanisms, then, place instantiations of

PAG(E 12

our hierarchical relevancy analysis into the data base, and

before our control structure. (There need not be a simple 1-1

correspondence between our analysis of the knowledge structure

and our implementation of the programming structure.)

Of course when a suggestion is pursued or proposed it may

be found to be already in the data base. It may be already

linked or even established. This provides a mechanism for

"sharing" facts and conjectures, for interacting with

established data and parallel investigations.

5.1.5. EST?

Whenever an EST module changes the status of a datum, j L,

from "conjecture" to "established", it activates the EST?

modules for all the conjectures immediately "above" D in the

relevance structure. These "superior" conjectures may be ones

which were already present and linked to D, or which were only

just now linked or created by the "proposing" efforts of the ZST

module.

An EST? module generally checks to see if certain relevant

conjectures have been established yet and if so may perforr some

computation on the now available results.

EST?-CONViX acting on the conjecture IR69 CONVEX will check

if 769 HOLELESS is established. It will also check on R69 AKLA

and RGE CONVEX-HUiijAREA. If these have been established, it

will compute their absolute difference and compare this with

some threshhold.

If the two areas are close enough, the EST? then succeeds

and invokes EST-CONVEX on R69 CONVEX. If some of the necessary

conjectures bearing on the decision had simply not been

established yet, the EST? would have returned to try aEain

another day. If some tests fail, and there are no further

alternatives available to the EST? (for example, an EST? is even

capable of pursuing new conjectures), the EST? will call a FAIL

module.

3.1.6. FI-AIL?--FAIL

There are also FAIL? modules, and FAIL and FAIL? modules

are rather analogous to ES[and EST? modules. A FAIL module

will change the status of a datum to "failed" and call FAIL?

modules for the conjectures immediately above it in the

relevance structures. FAIL? modules check failure conditions

for a datum D and call a FAIL module for D if failure is

demonstrated.

FAIL modules can also propose new suggestions as do EST

modules. And "failed" datums remain in the data base, so marked

for future use. (All data is subject to some sort of eventual

"garbage collection", of course.)

3.2. Example

Figure 3 presents a printout of the program's reaction to

the conjecture R1 BDRY. (Incidentally, the boundary is placed

on the property list of the conjecture when found.)

SEER is operating here solely within the context of the

.nowledge illustrated in figure 2. Because of the almost

degenerate nature of this limited structure, everything

wORKING ON IHE CONJECTURE Ri BDRY
RI BORY ESTABLISHED
. BDORY PROPOSING RI HOLELESS

PLACING RI HOLELESS ON SUGGESTION LaST
91 HOLELESS ESTABLISHED?
RI HOLELESS ESTABLISHED
KR HOLELESS PROPOSING R1 CONVEX
PLACING RI CONVEX ON SUGGESTION LISI
RI CONVtX ESTABLISHED?
NOT YET
R1 BURY PROPOSING RI CONVEX-HULL
PLACING' R CONVEX-HULL ON SUGGESTION LIST
RI CONVeX-HULL ESTABLISHED?
RN CONVtX-HULL ESTABLISHEJ
Nl CONVtX-HULL PROPOSING RI CONVEX-HULL-AREA
PLACING Ri CONVEX-HULL-AREA ON SUGGeSTION LIST
RI CONVtX-HULL-AREA ESTABLISHED?
1I CONVtX-HULL-AREA ESTABLISHED
1I CONVLX-HULL-AREA PROPOSING Ri CONVEX

RI CONVtX ALREADY PRESENT
RI CONVEX ESTABLISHED?
NOT YET
RI BDRY PROPOSING RI AREA
PLACING Ri AREA ON SUGGESTION LIST
Ni AREA ESTABLISHED?
NI AREA ESTABLISHED
RI AREA PROPOSING RI CONVEX
N1 CONVtX ALREADY PRESENT
RI CONVEX ESTABLISHED?
RI CONVtX ESTABLISHED
THAT IS IT

NIL

PAGE 14

described in figure 3, actually occurs without further reference

to monitor or priority system. But for this same reason, it is

perhaps a good example of the actions of the programming

modules.

3.3. Hair

I have presented a data base that treats facts, failures

and program elements in a uniform network structure.

I have described a programming structure that functions by

applying modules to conjectures in this data base.

SEER never demands that much be done, it just makes a lot

of helpful suggestion. A good boss.

This basic structure is not too hairy, I hope.

If you like hair, however, there are enough hooks here to

open up a wig salon.

I really do not want to get into a discussion of

unmotivated and unfinalized hair. However, perhaps I should

just indicate a few of the problems and possible solutions. I

do maintain that there is enough structure here so that specific

programmable solutions arise easily to confront theoretical or

practical problems.

The most motivated of these problematical issues arise in

attempting to program actual knowledge into the system. We have

to develop specific mechanisms or techniques for dealing with

part-whole relationships, for example, to allow parts or whole

L, be analyzed in any order and results to interact. These are

often, in some sense, technical issues.

PAGE 15

More basic demands for hair generally are related to a felt

need for more "serial" control of the processing.

These needs can often be met by suitable organization of

our hierarchical relevance structure. However, this may get

awkward at times.

In particular the process of generation, of arguments for

predicates, or candidates for objects, sometimes seems to call

for more serial control. As Sussman and McDermott point out, it

is sometimes painful to generate an entire set of possibilities

at once. We would prefer to generate one, test it and if it

does not meet our needs return for another. Sometimes also we

have a sequence of operations, where it is difficult to

instantiate the later steps, until the earlier ones provide

arguments to apply them to.

I should give some examples, but I really do not want to

get into this.here. As I say, more specific control of the sort

offered by the Conniver "tag" mechanism may sometimes prove

useful.

Which leads up, of course, to the observation that Conniver

tags can be rather naturally added to the operation we have

described.

Normally when we want to apply an EST? module, for example,

to a datum, we call on a program called EST? to cons together

the call to the appropriate EST? module. Now once this EST?

module has been applied to the specific datum, we have a

crocess, that can be tagged and saved, after the Conniver

PAGE 16

fashion. The tag can be saved as an EST? nroperty on the

datum's property list. Now the next time we apply EST? to the

datum, it will check the property list, find an FST? property,

and go to the tag to resume the interrupted process. Thus we

can have several instantiations of the same EST? module hanginAg

alive in the data base.

A quasi-example of how this feature might be used. We may

not desire, or be able, to pursue, i.e. add to the data base,

all the sub-conjectures of a conjecture, C, at the oriLinal

application of the CONJ module to the datum. Perhaps one sub-

conjecture provides an argument for the others, or we just do

not want to get involved with the others unless some

"triggering" datum is found first. (Similarly this trigger

could be the only datum capable of proposing C from below.) One

way of dealing with this is to use tags. There are ways of

putting this hair in the CONJ, EST? or EST modules.

Some sub-conjectures could get "pushed" the first time;

upon their success others could get pushed.

In fact, we could obviously do this sort of thing in the

EST? modules even without tags. And there all sorts of other

possibilities, ranging from methods of organizing the

hierarchical relevance analysis to utilizing the priority and

monitor system, or even implementing "EXEC" modules.

Basically, I tend to favor placing distinct stages of

processing in distinct datum nodes and modules as far as

possible. I think this approach is clearer to think about and

PAGE 17

program. It protects against insularity, i.e. prevents us from

getting tied up in a parochial process for long without

interacting with the "real world". In summary it may be more

conducive to the kind of active knowledge interaction we are

hoping for.

However, I intend to let real problems in visual processing

motivate theoretical problems and advise the nature of

appropriate solutions, as much as possible.

Another whole field of hair would involve "second order"

hacking on the network of conjectures. Cutting out contradicted

conjectures. Restructuring investigations dynamically. Making

non-local changes in the network, i.e. not just on nodes

immediately above or below a current node.

Well, I hope that is enough programming detail and hand-

waving hair, for now. The remaining sections will discuss some

of the features of the system, and present a few examples.

PAGE 18

4. A System

The first point I want to make is that SEER is a system.

The Vision Group has produced several good examples of

heterarchy in action. These date back to Minsky and Papert's

original suggestions for proposing missing lines that reflected

work by Blum and later Wolfe and others, and were implemented by

Freuder for the Copy Demo.

Shirai and Wizard use heterarchy to guide tracking. Finin

and Lozano have several extensive examples of higher level

guidance or presumption.

All these, however, are basically isolated examples.

Consider the parallelogram heuristic in Wizard.

The assumptions, of a rectangular parallelipiped

environment are implicit. There is no provision for making them

explicit. If the parallelogram attempt succeeds the assumptions

are not reinforced. If it fails they cannot be questioned or

alternatives taken. Assumptions cannot be added or removed

based upon experience with the scene.

Perhaps we have a wedge? Can we propose a line to complete

a triangular face?

Well yes, of course, a certain amount of additional

heterarchy "hacks" could be added to Wizard. However without a

systematic structure to receive and organize these additions the

program would soon fall under its own weight. Like the "limited

logic" programs for natural language that Winograd criticizes,

PAGE 19

they would become impossible to program, or else remain

hopelessly crude.

The problems are such, that we do need to be able to make

additions incrementally; but to a system that can receive them:

new objects, new views, new difficulties. We cannot hope to

write a "complete" program from the start. Not only is there an

effectively infinite variety of objects; not only does each have

a number of different "views". Each object can also appear in a

wide variety of contexts or instantiations, different lighting,

surface texture, etc. And then there are the endless

combinations of objects into scenes.

There are far too many possible interactions for the

programmer to individually consider every time he adds a new

facility, or considers a new scene. The system must provide

some automatic mechanisms for facilitating these interactions

and tailoring the processing to the scene.

It should be fairly obvious (hah) how the mechanisms of

SEER meet these challenges to provide a system, in which a

parallelogram hack can coexist happily with a resistor hack, and

both can be invoked at appropriate times with appropriate

priority.

The examples used in section 6 may serve to illustrate this

claim further for the skeptical.

A few other features of a good system. (Did someone

mention SEER?)

It provides standard formats that make some tasks routine,

PAGE 20

and lifts other routine burdens entirely from the user.

It provides concrete mechanisms for heterarchical

interactions and "institutionalizes" and encourages forms of

heterarchy like advice.

It offers hope of being able to assimilate advances in

areas like shape description on the one end, and "frames" on the

other. In the meantime it makes best use of crude

understanding.

Let us take, for example, the question of multiple views.

This is a longstanding visual description problem: do we need a

separate description of each distinct view of an object, or is

there a single model that can be perturbed properly to handle

any view?

How does SEER handle multiple views?--asks someone in the

back of the hall.

Well, first perhaps I should distinguish the "system" from

its present state of knowledge.

The system provides ways of dealing with knowledge,

enabling knowledge to interact with a scene to produce

suggestions and advice that guide processing.

If someone discovers a satisfactory "unified" description

of objects, presumably this representation could be used by the

system. In the meantime, the system is particularly adept at

handling information in modular form, and so makes good use of

,whe distinct descriptions we must provide of distinct views.

(If really pressed, I would be forced to admit, to my future

chagrin no doubt, that I should not be surprised if no

satisfactory "unified" model exists; and SEER is thus all that

further ahead of the game with its modular capabilities.)

What means "modular"? Well, we can treat each view of an

object as a separate "method" of recognizing or establishin{ the

object. These approaches can be pursued serially or in

parallel. They can be proposed individually or in groups, by

previous results in the processing of the scene. They can be

programmed separately, added incrementally, at different times,

to the system. And yet SEER mechanisms facilitate the sharing

of information and aid between the methods, and benefit from

partial successes or failures, to direct attention to the

winning approach.

In short SEER facilitates programming and makes the best

interactive use of the disparate knowledge it has.

I have not discussed the Priority and Monitor aspects of

the system. This is because I do not intend to discuss them.

These are beyond the scope of this paper. I only wish to point

out that they provide additional hooks, for means to deal with

additional complexities.

PAGE 22

5. Parallelism

One of the obvious features of SEER is its parallel aspect.

(I will not debate the meaning of rarallel here.)

The "data base" consists of a network of current

conjectures, established conjectures and failed conjectures.

These interact, and SEER may move about among them accordirn to

priority and interest.

The dissection of concepts into a relevance network of

communicating sub-elements, permits SEER to go away and return,

or "multiprocess". (The primary role of this network is in the

suggestion structure, of course.) If desirable, the Conniver

tag mechanism can be employed to further facilitate this type of

processing. However the representation of our programming

elements by existing structures in the data base, can make

"frame-saving" unnecessary.

Now I am not going to attempt here to proclaim the

superiority of a parallel facility. But perhaps I should

provide some motivation, some indication that parallel

processing structures are worth studying in a visual

environment. It may be that SEER will say a little about the

desirablility of parallelism, or the nature of parallel and

serial processes, which are really needed where. At least in

vision. Some negative results if nothing else. For now let us

at least present some suggestions that parallel structures might

have a role to play in visual processing.

PAGE 23

At the "lowest" levels, there are, of course,

neurophysiological motivations for studying parallel structures

in vision. Bert Horn's latest results in perceiving

"lightness", suggest a parallel implementation. He is working

closely with Dave Marr, who has neurophysiological theories with

some parallel features.

My work in region finding, and other work before me, has a.

parallel flavor.

On an even higher level, we have Dave Waltz's efforts. I

feel that his program can be viewed as carrying forward all

possible conjectures, about his class of scene predicates, in

parallel.

Most notably, this did not result in an exponential

explosion. Rather as more of the scene was viewed, and more

types of scene predicates, more classes of knowledge were

understood and pursued, the process converged to the correct

analysis.

For those who still protest that it must be wasteful to

pursue so many conjectures, let me point out that the only

systematic alternative, our straw man, model-matching approach,

must be worse.

Let me.present a semi-serious "proof" of this, a "proof"

that heterarchy works.

We have to consider first of all the alternative. It may

seem very wasteful to make a lot of suggestions in parallel.

However, our straw man processing, build a description and model

PAGEW 24.

match, would really in some sense have to compute everything.

All possible properties and relationships have to be computed

since we do not know which might be needed to match some model.

At least in SEER, we have some hope of not computing

everything.

Consider a worst case simple model of the system in

operation.

A region R has property pl. This proposes that the region

satisfies predicates in the set S. So we now have to pursue all

the properties P of all the members of S. But these are not

necessarily all the properties that could be tried for R; and

would be tried in our straw man system. They at least have some

likelihood of success. There may be properties Q that nowhere

coexist with property pl; why check for them?

Further, remember these properties P are not really pursued

all at once in parallel. They are pursued according to a

priority and monitor system. And our hierarchical structure is

organized so that we proceed upward in appropriate small chunks,

and discriminate quickly anong large sets of possibilities.

As we determine more properties of R, more suggestions are

made; but we really cut down our possibilites, in a Waltz-like

way, as we learn more and proceed upward.

We proceed upward in stages: pl and p2 establish ql; q1

proposes rl, which pursues q2; q1 and q2 establish rl;... A

jared procession, two steps forward., one step back.

But in many cases we intersect, contradict and halt.

PAUE 25

"Round" suggests a lot of things, "red" suggests a lot of

things, but only items in their intersection, e.g. apples not

fire-engines, remain. Fruit bowls, not fires, will be proposed

next. Furthermore the conjecture that a round, red region is an

apple will have a higher priority than a conjecture that it is a

fire engine, simply because we have two pieces of evidence for

it.

For a simple example of how hierarchical organization can

affect efficiency and order of processing, apart from

priorities, consider again the analysis of convex expressed in

figure 2.

Now, as the analysis stands, the discovery of the boundary

starts three upward proposals which eventually lead to

convexity.

We could instead organize convexity as shown in figure 4.

Now suppose we find the area of a region R somehow, without

involving the boundary, or a proposal that R is holeless.

(Regions in the initial data base, for example, have their area

calculated as they are grown.) If we program the arrangement

shown in figure 2, area will propose convexity, which will

pursue holeless, area (have), and area of convex hull. Now this

means that holeless will probably get tested on the region.

(There are, of course, other variables, like order placed on the

suggestion list, operation of monitor, etc.) When area of

convex hull is found and compared with area, we may find that

thF~ -r~-i nv i not - a~ter ,~.i 1 coynvF~ Our ho] ~l1 cs test wns~therpio i nt fte al onex Or hlees tstwa

X csue a

AQ~QB 6~~a~ ~iB~g~·~~6

/
Mon

S)6OleVr

V.~~Q

K 6O09%

.00

g \ rScbts

PAGE 26

"wasted". (Actually in SEER, it would hopefully have suggested

other possibilities.)

If we had programmed the organization in figure 4, area

would have suujested area-convex-hull-area-difference. The

area, convex hull area comparison would have been made first,

and the holeless test not made unless the comparison succeeded.

Ah, but, you say, that is nonsense. What we want to do, is

not make the costly areas comparison until the trivial holeless

test has been made.

The point is that our method of processing, wlhile it may

seem at first to propose endless possiblities, in fact has means

of ordering and cutting down alternatives.

A straightforward "build up a description" system, has no

advantage "a priori". In its simplest form, in fact, it

computes everything,, where our approach at least cuts down a

bit. One, of course, could organize a "build a description"

methkod in various ways to cut down processing. But one can do

that in SEER, and perhaps more naturally and automatically.

The fact that some of these methods for guiding flow of

control more intelligently may involve serial nehanisms, does

not bother me. The hierarchical aspect of the analysis SEER

uses, is a serial mechanism. The suggestion list is a serial

list. The system is not really parallel.

It does have some definite parallel and multiprocessing

flavor. In some respects this is almost a side effect of

t'nri ~ i i.,7t.jn/.r t.)-l~ ~ljn~-F?·;t.inr: and a~vinR intp.mr.t.inn of Rr.tiVF!f'nnilit. tivify f+ VHN=- arti advice interaction of activeIL

ri-iu.L £ #I

knowledge.

However, if arnalysis points to definite needs to

reintroduce "serial" control, e.g. through the use of tag

mechanisms, I shall feel instructed, not disappointed.

Ultimately I hope the parallel mechanisms will show some

advantages. If not., I would expect to be open to the criticism

that the parallel aspect of the system "gets in the way".

However I would hope to rebut this by demonstrating how natural

this organization is for "active knowledge".

Basically, we observe that, for the problem of recognizing

a visual scene, the data is presented in a more parallel fashion

than it is presented for most "higher level" problems of

"intelligent" processing.

It is reasonable then to attempt to employ and study

parallel mechanisms in this area. If they are to prove useful

at all, one would hope they would show up to advantage here.

PAUG 28

6. Suggestion and Advice

6.1. The Heterarchy Gap

A.I. research has explored the extremes of heterarchy. The

broad idea of heterarchical interaction on the one hand,

specific "heterarchy hacks" on the other.

What we need are a sequence of ideas that bridge that gap,

and some specific mechanisms for implementing and

"institutionalizing" these ideas within a coherent system.

These concepts are necessary to fully understand and utilize

heterarchy. They would ameliorate the difficulty we face when

looking for examples of heterarchy. (For a long time it was

essentially: "line proposing-ok, name two".)

VF 43 focused on "suggestion" and "advice" as two useful

sub-concepts in the analysis of heterarchy. I will here analyze

these, in turn, a bit further; and provide some more concrete

examples. Not enough to be sure, but an indication.

One can say: apply heterarchy to the problem. It should

prove easier to do this when we can say: heterarchy involves

suggestions; one class of suggestions is "part suggests whole";

for this problem that means...; and here is a mechanism for

programming it into a system.

6.2. Advice as Suggestion

The reader may have recognized some confusion in the

distinction between "suggestion" and "advice" in VF 43. I have

now come to recognize that the intended distinction. betweenI

PAGE 29

"what to do" and "how to do it", while useful in some ways, is

essentially misleading.

Advice on "how" to do something is really advice on "what"

method to use.

This observation has more than quibbling implications for

SEER. My original approach to advice involved advice "modules"

(like the modules in section 3) for giving and/or taking advice.

This approach still has some attractions. However, once we

recognize that advice can be viewed as a suggestion on what

"method" to use for some piece of processing, P, we can treat

advice in the same way we do suggestions. We can separate out P

and its distinct methods, as nodes in our relevancy structure.

The "adviser" is made into a node. The EST module for the

adviser suggests the appropriate method for accomplishing P,

i.e. advises how to establish P.

It is at the same time natural that the existence of some

advice for a method of establishing P, is one of the relevant

items which "suggest" the method, in the usual sense of "what to

do next"-placing it on the suggestion list or increasing its

priority.

Thus suggestion and advice are treated uniformly, through

the relevance analysis and suggestion mechanisms.

Notice also that the advantages of the system in terms of

interaction and sharing of general and particular knowledge are

available to elements of advice.

The remarks I made earlier about the modularity of the

PAG~E' -ý3O

system, with regard to distinct "views" are relevant here. (In

fact one piece of "advice" might be which view was suggested.)

Different "methods" may be programmed and executed distinctly,

serially or in parallel, yet still share and interact. The

possibility of advice, improves our ability to choose among

these methods. Interactions are still important though; in

fact, failure of one method may advise another.

Winston's suggestions in his thesis about moving from model

to model in a similarity network should be explored in this

context.

6.". Example

I suspect we are overdue for a "brief word from our

sponsor", i.e. a simple example.

Suppose we are trying to recognize the side of a tube,

having already identified a region, R, as having the overall

properties of a tube "as a whole".

Now the side of a tube has a number of necessary

properties. If we were simply given some region and asked to

decide if it was a tube-side, "in vacuo", these properties would

all have to be checked out. However, some of these properties

are implied by the properties of R that we have found already.

For example, in finding that the boundary of R is tubelike, we

have already established relevant information about three sides

of the tube-side boundary.

This knowledge may not be in easily "shared" form. Data

base "assertions" that involve R, as a tube, may not simply

"match" needed facts about a tube-side. Some "higher level"

sharing is required. We could have a conjecture access a method

capable of "deducing" an assertion from such related facts, when

a simple data base match failed.

In SEER the presence of the established facts about R

advise (suggest) a method for establishing a tube-side for R.

This method assumes what is already available, and merely seeks

to verify a few more details.

We already have a "profile" of R, segmenting it into two

(three-dimensionally) straight surfaces lengthwise (fig. 5). We

take additional profiles on either side. Some may be affected

by noise, or fall along a line where intensities on side and

face are equal. However, say two out of three, should coincide,

to enable us to verify a distinct side of uniform length and

curvature.

This example, meager as it is, has already raised several

issues, which we explore in the next four sections.

6.4. Parts and Wholes

It is useful to distinguish the whole as, if not more than,

at least different from, the sum of its parts.

Observations we make about the whole can assist our

investigation of the parts or vice versa. Also, of course, one

part can give advice to another.

We may find any part, or the whole, in any order, depending

on what stands out in the given scene.

In the case of a tube, the end may blend into the

•'i-luLr ý I

s 9),!J

PAGE ý2

background, causing us to pick out the side first. The end may

stand out as much brighter. The two parts may blend together as

the whole stands out against the background.

We should be prepared to attack the recognition task in any

order, and our tactics at any stage should be advised by what we

already know.

It is not simply a matter of one part "standing out". Or

even of special features, like highlights, attracting attention.

Other parts may be difficult to find, or "missing". Advice and

support is needed from the features most easily available.

In particular, "model matching" approaches have difficulty

with occlusion, partly because they are oriented toward "whole"

models. Our system quite naturally expects to deal with parts

that "suggest" wholes before all the evidence is in. Partial or

occluded objects can be suggested directly; or the programming

modules for the whole can explore occluded alternatives, or

attempt to "explain", justify or ignore discrepancies due to

occlusion, and other problems. The following sub-section is

also relevant here.

6.5. Effects

What we already know about a conjectured object can affect

how we continue to analyze it in many ways:

1. What we look for.

2. How much we look for.

3. How we look.

4. How hard we look.

PAGE. 33

5. How easily we are convinced.

All these effects can be induced by advising appropriate

methods for establishing remaining conjectures.

I will not expand upon this outline here.

6.6. Generation

We did not simply have to demonstrate that some region was

the side of a tube. We had to find or "generate" the side, and

prove it was the side. In some cases this might mean

conjecturing that some "syntactically generated" region, e.g.

from the initial data base, was the side, and applying tube-side

predicates to it. In other cases we generate some "new" region.

In any case, we use some of the semantic properties of the

desired region, what we are looking for, to guide the search for

an existing region or the generation of a new one.

In fact in the course of generationg a region for some

object we may use all the properties of the object. GeneratinL

the region and establishing its identity merge.

Or, as in the case of the tube-side above, we may not even

generate a region in the normal sense. We have no set of

boundary points, or any other "complete" description of the

tube-side.

In these cases we see most most clearly process of

perception and recognition merging as I had hoped they would in

VF 33. What we perceive, and the description of the tube side,

are no longer unique abstract models. In this scene we first

saw the tube as a whole. The tube side was perceived as a few

PAGE 34

further region profiles. The "tracks" of these processes form

the description of the side.

When we get to the end of the tube, all we now need to

establish is a flat region running the width of the tube, and

somewhat narrower in the other dimension. A few region profiles

suffice to perceive and recognize the end.

To summarize, if the tube as a whole stands out and is

perceived first, only a few observations, like a flat region at

the end, complete our recognition. In fact, in a line drawing

of a tube, merely the presence of the line between the two

parts, side and end, together perhaps with line drawing

conventions for implying curvature of surfaces, will inply a

tube.

The problem of "generation", of regions, or other arguments

for conjectures, is also one of the key "technical" issues for a

system like SEER.

6.7. Relations

The use of relations, e.g. between parts of an object, as a

source of advice, rather than just something to be proven, was

discussed in VF 43. We can see from the discussion above that

this process is being further explored. The lack of obvious

checks above on the relations between parts and between parts

and whole, in fact reflects the subtle use of relations in

"generation" and advice on "methods". This is their natural

•active" role. When description is tied up with the process of

recognition, relations cannot sit around as labelled links

PAGE 35

between pieces that have not been found yet.

However, I will defer a clearer and extended exposition of

their role.

6.8. Under the Assumption

Advice is often a matter of "context". Lighting, for

example, or previous experience with the scene, ideas about what

objects are present, can advise particular methods. We will say

a little more about context in general terms in section 7.

In particular, our system directs us to operate within the

context of specific conjectures. We may make some observations

about a region, using generalized methods, that suggest it is a

tube. We conjecture that it is a tube. When we execute that

conjecture we are able to determine if other tube-like features

are present by methods which assume a tube context.

If you like, this is a generalization of the verification

idea. E.g. line verification can be easier and more sensitive

than line finding. We are able to ask "is this x" or "verify

that this is x"; rather than the more difficult "what is this".

6.9. Example

Let us explore this notion with an example.

Consider the outer boundary of a tube. Our "straw man"

type of processing would act on this boundary in the following

manner.

First the feature points of the scene would be found and

organized into lines. Then the boundary line would be

segmented, into corners, straight lines, "uniformly" curved

segments perhaps, or some rore complex description of curved

boundaries. Then possible predicates would be tried on the

pieces to determine possible relations. The two straigFht lines

would be found to be parallel and of the same length, the two

curved segments of the same shape and size and oppositely

directed. finally the built up description of the tube boundary

might be matched against models of object boundaries.

All these operations, from line finding on up, are

difficult to excute in a general context. We may have serious

failures along the line.

In SER it is likely that when we go looking for a tube

boundary, we are pursuing the conjecture that some region is a

tube.

We also have, or will look for, symmetry in the region.

The two symmetric axes constitute the length and width axes of

the region.

If the region has a tube boundary, it will have a straight

side parallel to the length axis, and just a little shorter,

running through the endpoint of the width axis.

With this position pointed out, we can proceed to "verify"

the line in several ways. We can employ a standard line

verification or tracking technique. In this case we in fact use

a trick involving the boundary of the region. A general method

might search for local maxima and minima of boundary points

about the center of gravity, with the attendant problems of a

local process. Instead we find all boundary points close to the

PAGE 37

hypothesized line, and use this set to find the endpoints and

verify the existence of the line. (This trick is supported by

another property of a tube-like region, convexity. We may

already have established convexity, and it may have "advised"

this trick, or we can pursue convexity now.)

Now that we have one side, symmetry gives us the other.

Symmetry tells us the sides have equal length; and the existence

of two symmetric axes implies that the sides are parallel. We

already know that they are parallel to the major symmetric axis;

that is how we found them. So the relations are taken care of.

The endpoints of the two lines specify the remaining sides.

We can quickly verify that one of these is a simple "single"

curve, e.g. it has no concavities. The presence, shape and

relative orientation of the other end is implied by the symmetry

again.

Again this example has raised some interesting issues. In

parrticular:

6.10. Levels of Generality

The means we used in the above example have various levels

of generality. The trick we used for finding the straight line

on the boundary, for example. In some respects it is quite

general, depending only on a convex environment. The

hypothesized line, however, really depended on our conjecture

that we were dealing with a tube.

Symmetry provides an important mechanism for conveying

advice. I hope to investigate its possibilities further.

PAGE 38

As we have seen, other properties, like convexity, also

provide an environment conducive to certain methods, imply or

advise certain results.

We can outline now some of the "levels" and classes of

advice:

1. Specific Objects

e.g. if it is a tube, then the boundary line should be over

there. (I will not mention really specific objects, like

2"x4"x4" bricks.)

2. Classes of Objects

e.g. if it is a parallelipiped, then try to complete

narallelograms.

3. Property Classes

e.g. if it is symmetric, than having one side, gives us the

other.

4. Environmental Context

e.g. if there are a lot of shadows, expect the end to blur into

the background.

We have to work to distinguish further levels and classes,

and to extend our knowledge and use of elements of these

classes. (Observe that in one sense these levels can le viewed

as "context" levels.)

6.11 Suggestion

As I have pointed out, advice constitutes a class of

su,:estions. We could wait to give advice on a method for doing

X until X had been otherwise suggested. However, the presence

PAGL 39

of advice is generally considered sufficient to make the

suggestion itself, i.e. to add the method to the data structure

and suggestion list. This more fully obscures the distinction

between "suggesting" what to do and "advising" how to do it.

As a result much of the discussion above, about part-whole

relationships, generation, etc., applies rather directly to

issues of suggestion. Further detailed discussion of the

functioning of suggestions in SEER is really better presented

with an environment of several alternative objects to draw on

for examples. I will therefore only add here a few general

remarks.

The first thing to note is that the Suggestion

List/Priority/Monitor system provides us with a general

mechanism for making suggestions. Any kind of suggestion and at

any time. These suggestions can interact globally in our data

base. We do not have to handle everything when it comes up, or

fail back through a set of possibilities serially.

The modules described in section 3 provide more specific

mechanisms for programming suggestions.

The "relevance" analysis of our knowledge structure

provides a very broad approach to the question of "what should

suggest what". This is reflected in our data structure links.

We do not, for the present at least, require these links to be

classed and labelled. The burden of using the links is borne in

the organization of the hierarchy structure, and in the

programming modules.

ILAUh 4U

However, it behooves us to classify and analyze the types

of relevance that may occur for our own understanding. This

assists our analysis of concepts to effect the best utilization

of our suggestion mechanisms for a particular problem.

Each conceptual node will, of course, have its "defining

concepts", necessary and sufficient conditions, as relevant sub-

nodes. But we need not be limited to these. Redundant or

alternative information can be used. These can be organized

under distinct "methods" for establishing the concept.

We should notice that suggestions are also made "downward"

in the relevancy structures. We "pursue" not just necessary and

sufficient conditions, but "relevant information".

Part-whole and part-part relationships are, of course,

important. Again, advice of all sorts also acts to propose

suggestions. Contextual observations are relevant.

And we can get into all sorts of real hand waving about

causality and other relationships. We could even try to

incorporate an idea of time sequence.

To summarize though.

We start with the idea that we want to allow suggestions.

The results on the specific scene should interact with our

general knowledge to help suggest what to do.

The suggestion list mechanism provides us with a means of

doing this. And without following up every suggestion

iw±aediately. Rather they can be weighed and reinforced or

contradicted.

PAGE 41

Partial successes as well as failures are not lost in black

boxes. They are available in the data base. There are specific

mechanisms for "learning" from them, and generally using them to

propose new conjectures.

At the heart of all this is a heuristic insight into one

basic manner in which "suggestions" may originate. When a

particular fact about the scene is established, general

knowledge of the hierarchical relevance of concepts should

permit this fact to make relevant suggestions.

The knowledge structure is analyzed to present these

relevant relationships, and concrete programming mechanisms are

provided to operate these suggestions.

Classes of relevant suggestions are identified.

Finally specific instances are programmed for a given

problem.

PAGE 42

7. Context

I have alluded to "context" several times above. It is a

concept with so many levels, that it is rather difficult to

avoid. One can talk of almost any heterarchical mechanism in

contextual terms.

In this section, I will merely point to some of the higher

level contextual issues, and indulge in some of my wilder hand-

waving, just to let you know I am here.

The system does appear to offer possibilities for

implementing context mechanisms. Context, as I say, is a broad

term, and I will just suggest a few of the areas that I might

explore.

Of course, the basic idea of suggestions, is essentially

contextual advice, particularly in terms of part suggesting

whole. As I pointed out above, we also work "downward" in

context, as much as possible.

Beyond this we may consider global factors such as

lighting. Have we found a lot of shadows? Well, when we are

faced with the need to find the end of a tube, there may be

several methods available,: one of which is alert for a shadowed

face blurring into the background. A "shadowed context" datum

will have a relevant link to this method, suggesting it or

increasing its priority.

Our past experience with the scene can aid us.

To find the end face of a tube, one method the system may

PAGE 43

use involves finding several points along the edge between end

and side, or end and background. After finding one or two of

these in some general manner we may discover that the former

edge is highlighted, the latter is a step. In finding further

edgepoints, methods may be advised that are tailored to these

types of edges.

On a higher level, if we find several bricks in the scene

we can postulate a brick environment, or at least raise the

priority of conjectures related to bricks.

"Psychological" concepts like "set" or "predisposition" can

be simulated.

The system may expect to see something, or may be told, for

example, to "look for a hammer", as opposed to "analyze the

scene". We would expect these conditions to make the task

easier, and perhaps to result in objects other than hammers

being ignored. In fact, the system could simply be instructed

only to make or follow up suggestions related to hammers.

This points up one mechanism for implementing context:

affecting the set of suggestions; as they are made in EST

modules, for example, or as the monitor deals with them.

The priority system can also have a contextual function.

Consider the casual peruser of a scene who suddenly spots

what might be a diamond in the rough. His attention is

immediately riveted. (I shall avoid other possible male

chauvinist examples.) The rest of the scene is ignored as all

detailed knowledre about diamonds is brought to bear on the

PIGE 44

possibility, with highest priority.

At the highest levels some of Professor Minsky's ideas

about frames could perhaps be implemented in this system. I use

"frame" here for its contextual implications, e.g. a "frame" for

a kitchen, which includes expectations of a refrigerator, a

sink, etc. Frames could affect priorities assigned, su-gestions

made, or monitor functioning. More generally an entire "data

base frame" could be shuffled in and out of the current "working

memory" for the system.

The distinction between modules and data is already hazy

and could be made more so. EST module suggestions, for example,

could be read from the data base, or the EST modules themselves

assembled when needed from the current frame. Even more

vaguely, entire blocks of hierarchical relevance analysis could

be pulled in and out as data; the specific scene would

instantiate pieces of the current frame's structure

interpretively when needed, to form the understanding of the

scene.

Well, obviously I do not wish to get involved in a clear

analysis of context mechanisms at this stage of my work. Merely

to point out possibilities.

PAGE 45

8. References

I will take advantage of the informal nature of this paper,

not to present detailed references at this time.

The debt to the heterarchy concepts proposed by Minsky and

Papert is obvious. The atmosphere provided by Professor Winston

and the Vision Group is naturally important.

Clearly a large body of A.I. work conspired to set my

thoughts in certain directions, though not necessarily in a

conscious way.

Carl Hewitt's basic recognition of the two procedural

facets of the implication statement stands out, of course, in

recent work, along with Winston's network data structures.

I should trace up through the more recent work of Charniak,

Sussman and McDermott, and back to people like Slagle.

I should mention the triggering, slot fitting aspects of

the "frame" metaphor, as proposed by Minsky and pursued by

Winograd, and more recently Sussman and several others.

I was not consciously working from this metaphor; in fact,

I believe many of the basic features of this work were developed

before I was aware of the frame model. However, one can see

obvious analogies. And like most good "high level" ideas, the

frame metaphor will begin to influence many projects, this one

included no doubt.

One could attempt to conjure up any similarities to

neurophysiological models.

Previous vision "systems" should be compared, from Roberts,

through Barrow and Popplestone, Winston et. al., Falk et. al.,

Brice and Fennema, etc.

Another chapter to look forward to in the thesis.

