
Working Paper 172a

Revised May 1979

Specifying and Proving Properties of Guardians
for Distributed Systems

Carl Hewitt, Giuseppe Attardi, and Henry Lieberman

Artificial Intelligence Laboratory

Massachusetts Institute of Technology

This report describes research, conducted at the Artificial.
Intelligence Laboratory of. the Massachusetts Institute of Tech-
nology.. Support for this reseaich was provided in part by the
Office of Naval Research of the bepartment of Defense under
Contract N0014-75-C-0522.-

Working Papers are informal papers intended for internal use.

SMASSOIUSETTS INSTITUTE OF TECHNOLOGY 1979

DRAFT May 1979

Specifying and Proving Properties of Guardians
for Distributed Systems

Carl Hewitt, Giuseppe Attardi, and Henry Lieberman
M.I.T.

545 Technology Square
Cambridge, Mass 02139

ABSTRACT

In a distributed system where many processors are connected by a network and
communicate using message passing, many users can be allowed to access the same facilities.
A public utility is usually an expensive or limited resource whose use has to be regulated.
A guardian is an abstraction that can be used to regulate the use of resources by
scheduling their access, providing protection, and implementing recovery from hardware
failures. We present a language construct called a primitive serializer which can be used
to express efficient implementations of guardians in a modular fashion. We have developed
a proof methodology for proving strong properties of network utilities e.g. the utility is
guaranteed to respond to each request which it is sent This proof methodology is
illustrated by proving properties of a guardian which manages two hardcopy printing
devices.

Guardians

DRAFT May 1979 I Guardians

I -- INTRODUCTION

1. ---- Semantics

Programs written for distributed systems with many processors can be plagued by
subtle errors arising in unpredictable situations. To limit these problems, it is necessary
that the primitives for dealing with concurrency provided by our programming languages
have simple intuitive interpretations and completely unambiguous definitions They should
also be powerful enough to express simple solutions to simple or common problems and to
admit rigorous proof methods. For both of these reasons we have been looking for
primitives whose semantics are mathematically well defined. We want each primitive
construct to denote a mathematical object which defines the behavior of the primitive.
Our methods of proof are ultimately based on theorems about these mathematical objects.

In a similar vein mathematical semantics must be provided for any well defined
specification language. Ideally a specification language should be powerful enough so that
it is convenient to express both the partial specifications of the abstractions of the user
(such as airline reservation systems and disk head schedulers) as well as the abstractions of
the programming language (such as monitors and serializers).

This paper makes use of a description system in which the properties of actors
can -be described. A distinctive feature of our description system is that it specifies the
required behavior of objects rather than their physical representation. Instead of using
predicates to state the interface requirements between modules, descriptions are attached to
the data manipulated by each module. The idea is to allow properties of actors to be
specified in the form of descriptions that appear directly in the code.

1.2 --- Guardians

Guardians are abstractions that can regulate the use of a resource by scheduling
its access, providing protection, and implementing recovery from hardware failures which
manifest themselves as time-outs. In this paper we develop partial specifications and proofs
for an hardcopy server for two printing devices. In a subsequent paper we will present
partial specifications and proofs for other guardians such as a readers-writers guardians
using different scheduling algorithms, a guardian for a disk spindle that optimizes head
motion, etc.

DRAFT May 1979

I.3 ---- Primitive Serializers

The guardians in this paper are implemented using primitive serializers which are a
further development of serializers [Hewitt and Atkinson: 1977, 19791 Primitive serializers
are more flexible than previous serializers in that they have less built--in machinery. Their
more primitive character gives them the ability to efficiently implement the facilities (such
as queues) that were provided by previous serializers as well as to implement new facilities
that were not provided before.

Unlike previous serializers, primitive serializers do not have any implicit
nondeterminism in the evaluation of synchronization conditions. Additional flexibility
comes form the fact that. primitive serializers can explicitly deal with actors which act as
customers to whom replies should he sent. Our notion of a customer is a generalization of
the notion of a continuation to deal with the issues of concurrency, protection, and
interrupts. Customers can be dealt with as any other actors. For instance they can be
put into queues for implementing scheduling policies.

At the same time primitive serializers maintain, the advantages of serializers over
other published pro*oals for synchronization primitives such as monitors [Hoare: 1974;
Brinch-Hansen: 1973] and Communicating Sequential Processes [Hoare. 1978~. The examples
considered in this paper .are used to illustrate the advantages of using the actor model for
partially specifying and proving properties of guardia'Ins

Guardians

DRAFT May 1979

II -- A DESCRIPTION SYSTEM

II. I Goals

The main goal of our. description system is to conveniently use the following kinds
of descriptions:

PARTIAL descriptions are used to express whatever properties of an object
happen to be known at particular point in time if they are incomplete. Partial descriptions
are important in partial specifications because it is impossible to arrive at complete
specifications for a large software system all at once. They are important in proofs because
in a proof some properties are given whereas others must be derived.

INCREMENTAL descriptions which enable us to further describe objects when
more information becomes available and are a necessary feature for the use of partial
descriptions. Incremental descriptions are important in proofs and incremental
specifications because all of the properties. are not available at one time but must be
derived and evolved with time.

MULTIPLE descriptions which enable us to ascribe multiple overlapping
descriptions to an object which is used for multiple purposes. Multiple descriptions are
important in multiple specifications and proofs because different properties of an object
might be useful in different contexts.

We would like to point out the usefulness of description systems to describe partial
specifications for programs. In fact the ;assumptions and the constraints on the objects
manipulated by a program are an integral part of the program and can be used both as
checks when the programming is running and as useful information which can be exploited
by other systems which examine the program such as translators, optimizers, indexers, etc.
We believe that bugs occurring in programs are frequently caused by the violation of
implicit assumptions about the environment in which the program is intended to operate.
Therefore many advantages can be drawn by a system that encourages the programmer to
state such assumptions explicitly, and by a system which is able to detect when they are
violated.

The fundamental axiom of our description system can be stated as follows:

Guardians

DRAFT May 1979

if (<description) is (description 2>) and ((de~cription2> is (description3>)

then ((description1 > iS (description 3))

and is called the Axiom of Transitivity of Predication. It implies that inheritance holds
in our description system and that all descriptions are organized in a large tangled
hierarchy in some ways similar to the ones in Roget's Thesaurus and the Micropaedia of
the Encyclopedia Britannica.

Our description system is designed to allow us to provide multiple partial
descriptions of objects. For example (a Carlesian.complex [imaginary.part: 0)) is a description of
an Instance of a Cartesian complex number whose imaginary..prt is O. Note that we have
used the indefinite article "a" to mark descriptions of instances of a concept. Descriptions
can in turn be multiply described. For example thd following command describes
(a Cartesian.complex) as being (a Number) and as having two attributes, namely a real-part and
an imwaginary.part each of which must be a Real.

The description below says that a Cartesian.complex is a Number:

((a Cartesiancomplex) is (a Number))

A Cartesiancomplex can be furlthcr described as follows:

((a Cartesian.complex) is (a Carterian.complex [real.part: (a Real)] [imaginary..psrt: (a Real)]))

Note that by using the concept Cartesian.complex twice in the above description that we have
specified that every Cartesian.complex has two attributes real.part and imaginary.part which each
have as value a Real.

Note that the is statement is asymmetric so that it would be incorrect to say

(a Cartesian.complex) is (a Real)

since a Cartesian complex number is not always a real number. Furthermore it would also
be incorrect to say

(8 Cartesian-complex) is -(a Real)

since some Cartesian complex numbers are Real.

Guardians

DRAFT May 1979

Our description system successfully deals with an important distinction that has
plagued most previous systems which rely on inheritance. Given that 3+4i is a
Certesian.complex and that Cartesian-_omplex is an Algebraicfield, one is not allowed to conclude
that 3+4i is an Algebraicfield. Note that this mistake will not occur in our system because
the rule of transitivity of predication does not apply to the following two descriptions:

3+4i is (a Cartesian-complex)

Cartesian_complex is (an Algebraic_field)

While Cartesiancomplex is described a;s being an Algebraic field, an instance of Cartesian.complex
such as (a Cartesian complex) cannot be considered as an Algebraic field. Logicians as long ago
as Aristotle have known that Cartesian.complox must not be confused with (aCartesian.complex).
However, a good notation was lacking in which to axiomatize the difference.

The user can describe a Real x ;is being a Cartesian.complex with real-part x and
imaginary part 0:

((a Real) which_is =x) is (a Cartesiantcomplex [realpart: =x] [imaginary.part: 0])

The character = is used to mark local identifiers. Local identifiers play a role in the
description system similar to the role played by free identifiers in formulas in the
quantificational calculus: they can he bound to any object. For example since

(3 is (a Real))

it follows that

(3 is (a Cartesiancomplex [realpar: 3] [imaginary..part: 0]))

The user can partially describe a Csrtesiancomplex with realpart x and imaginary.part 0
as being x which is a Real:

((a Cartesiancomplex [real.part: =x] [imaginary.part: 0]) whichiS=x)is (a Real)

Notice that we have just established a mutual dependency among our descriptions because
we have described Real in terms of Cartesian-complex and vice versa. This will enable us to
view either one as the other in the appropriate circumstances.

Guardians

DRAFT May 1979

The above descriptions express ..somine of the relations between Real and
Cartesian.complex numbers. We believe that it is important that a descripti6n system allows
information to be presented in an incremental, fashion. For example it should be possible
for the user to later further describe Cartesian.complex numbers relative to other kind of
numbers.

(a Cartesian.complex [real.part: rxj (imaginary.art: =y]) is
(a Number) and
(a Polar.complex [magnitude: =r (a Real)])

such_ that
(r is (x2 y2)(1 / 2))

It is important to realize that in giving the above descriptions the user is not
making any commitments as to the physical representation of complex numbers. The
possibility is still open that complex nuimbers will be physically represented in Cartesian,
Polar form, some mixture, or still some other alternative physical representation. It is even
possible that both physical representations will cohabit the same system. This last
possibility is especially iinportant in distri6tifed systems where the autonomy of nodes on
the network must be respected.

11.2 - Descriptions of Communications

Messages are sent to guardians in comimunications. A request is a communication
which always contains a imessage and a cus.toer:

(a Request) is
(n

(a Communication)
(a Request [message: (a Message)] [customer: (a Customer)]))

The concept of a customer generalizes the notion of a continuation in the. lambda calculus
programming languages [A. Church, C. Strachey, L Morris, C. Wadsworth, J. Reynolds, C.
Hewitt, Sussman and Steele, etc.) When rin actor receives a message M and customer c, it
has the right to negotiate with c for the funds necessary to process the message M. This
negotiation process implements the notion of bankers proposed in (Hewitt, Bishop, and
Steiger: 19731 Eventually the customer c should be sent a Response which is either a Rply
or Complaint for the message M.

Guardilans

DRAFT May 1979

Another kind of communication is a Response which is either a reply or a
complaint:.

(a Response) is
(a Communication) and

(a Reply (message: (8 Message)])
(a Complaint [message: (a Message)]))

Il -- PRIMITIVE SERIALIZERS

The design goals for monitors is that they were intended to be a structuring
construct for implementing operating systems. There have been some attempts to develop
useful proof rules for monitors [Howard: 1976; Gjessing: 1977; Hoare: 1974; Owicki: 1978]
Serializers [Atkinson and Hewitt: 1977, 1979J are a further step toward these goals.
However the language construct developed hy Hewitt and Atkinson may be too complicated
to be useful both as a formal founda;tion and as a basis for the proof methodology. In the
study we present here the approach has been reversed. Instead of designing a desirable set
of primitives and then trying to describe their semantics in a formal way, we started with a
basic primitive with a simple semantics.

The syntax of a simple primitive serializer in Actl is:

(create_ serialized_Ictor 8)

A primitive serializer can be used to create an actor S whose behavior can change
as a result of the communication which it receives. At any given time S is either locked
or unlocked. It has a current behavior (which is another actor). When S is created it is
unlocked. When the first communication arrives, the serializer becomes locked and the
communication received is sent to B.

Executing a command of the form

(transmit_to I c)

will result in the transmission of the communication actor c to the target actor t.

Guardians

DRAFT May 1979

In addition to possibly transmittin.g some communications, q computes a new
behavior Na using a command of the form

(become NB)

The actor Ne is installed as the next behavior of S. The actor S then becomes unlocked
and thus able to accept the next mes;age. An important consideration in the design of
efficient serializers is that they should remain locked for as brief a time as possible.

A behavior will typically be implemented using createunserializedactor expression
which has the following syntax:

(create unserializedactor
(pattern.or.communication 1 received body 1)

(patternjforcommunication- received db_))

If an actor created by a create-unserializedactor expression receives a communication C
which matches any of the pattrn..for-communicationi, then the corresponding bodyi is executed
to produce the next behavior. If C matches more than one of the patterneforommunicationi,
then an arbitrary one of the corresponding body i is selected to be executed.

Note that there are three separate events which -must occur before a
communication C can be accepted by a serialized actor T. First it must be transmitted in
a transmission event of the form

(a Transmission [target: [T [communication: Cj)

Next it must arrive in an arrival event of the form

(an Arrival (target: T] [communication: CJ)

Hardware modules called arbiters are used to establish an arrival ordering for all
communications sent, to T. Finally it must be accepted in an acceptance event of the
form

(an Acceptance [recipient: Tj [communications C))

Communications are accepted in the order in which they arrive. The acceptance marks a

Guardians

DRAFT May 1979 Guardians

transition in which the target changes from unlocked to locked. Thus if a serialized actor
becomes locked then no more messages can be accepted until it unlocks.

IV -- A SIMPLE EXAMPLE

IV. 1 --- Descriptions of Messages for Checking Account

As a simple example of how primitive serializers can be used, we give the
implementation of a very simple checking account guardian.

There are two kinds of messages which must be dealt with by the guardian:
Withdrawal and Deposit which can be described as follows:

(a Withdrawal) is
(a Message) and
(a Withdrawal [amount: (a Non.negativeJ.US.currency)])

(a Deposit) is
(a Massage) and
(a Deposit [amount: (a Non.negative.US-currncy)])

which says that both kinds of messages have an attribute named amount which must be a
non-negative US currency.

(a Transaction.completedreport) is (a Reply)
(a Transaction._ot.completed [reason: overdraft)) is (a Complaint)

IV.2 --- A Concurrent Case Expression

Clearly some kind of conditional test is needed in implementations. Use will be
made of select_case_for expressions of the following form:

(selectcasefor expression
(pattern1 produces •ad11)

(pattern produces boky,)
[none.ofthe..above: alternative_body])

DRAFT May 1979

which when evaluated first evaluates expression to produce a value V If the value V matches
any of the pattern1 then the corresponding kody, is executed and its value is the value of the
select_casefor expression. If the value V matches more than one of the pattern1 then an
arbitrary one of the corresponding bodyZ is selected to be executed. However, if the value
of expression can match two different patterns the user will be warned demonstrate that the
results of executing the bodies are indistinguishable. This rule has the advantage that it
makes body1 more modular since it depends only on patter, making it easy to add more
selections later. Thus the rule of concurrent consideration of cases encourages the
construction of programs which are more modifiable. The programs are also more robust
since the addition of new cases is less likely to introduce bugs in already existing cases.

We shall say that two activities are concurrent if it is possible for them to occur at
the same. The concurrent case statement facilitates efficient implementation by allowing
concurrent matching of expression against the patterns. This ability is important in
applications where a large amount of time is required to determine whether or not
conditions hold. Thus the rule of concurrent consideration of cases enables some programs
to be implemented more efficiently.

If the value V does not match any of the pattern1 then alternative.body is executed.
This rule provides the ability to have the patterns represent special cases leaving the
alternative.body to deal with the general case if none of the special cases apply.

IV.3 --- A Simple Guardian

In this section we present an implementation of a checking account guardian which
guards a checking account to ensure that timing errors do when concurrent attempts are
made to deposit or withdraw money. An implementation of the checking account guardian
is given below:

(describe (create..account (initial.balance: =1 (a Nonnegative.US.currency)])
[is: (a Serialized.actor [respondsjo: (•l (8 Deposit) (a Withdrawal))])]

;responses. to deposit eand withdrawnl mesrsares ore guarantee
[implementation:

(createserialized_actor
(an Account [balance: i))])

The behavior of an Account is defined below-,

Guardians

DRAFT May 1979

(describe (an Account [balance: (a Non.negative.UScurrency)])
[implementation:

(createunserialized actor
((a Request [message: (a Withdrawal [amount: =a])) [customer: -c]) received

(selectLcaseJfor balance
((a a) produces

(transmitto c (a Transaction.completedjreport))
(become (an Account [balance: (balance - a)])))

((< a) produces
(transmit to c (a Trans action.noLtcompleted [reason: overdraft])))))

((a Request [message: (a Deposit [amount: =d])] [customer: =c]) received
(transmitto c (a Transactioncompleted.report))
(become (an Account [balance: (balance + d)))))])

V -- IMPLEMENTING A HARDCOPY SERVER

Implementing a hardcopy server on a distributed system provides a concrete
example to illustrate the advantages of primitive serializers. The following definition shows
a program to create a guardian for two hardcopy devices. The example illustrates how a
primitive serializer can be used to implement a guardian that protects more than one
resource. Finally, the program below illustrates the use of nondeterminism in primitive
serializers since if both devices are idle, then a nondeterministic choice is made which
should serve the next Hardcopy.request since it doesn't matter which one is chosen.

V.1 --- A Concurrent Conditional Expression

The implementation of the hardcopy server given below makes use of a conditional
construct of the following form:

(select_oneof
(if condition, then bodZi)

(if condition, then bodyn)
[none.ofthe.above: alternative..body])

If any condition i holds then the corresponding body_ is executed. If more than one of
the conditioni hold then an arbitrary one of the corresponding .•ly is selected to be
executed. The user will be warned if more than one of the conditioni can hold

Guardians

DRAFT May 1979

simultaneously and the execution of the corresponding b!d1 do not have equivalent effects.
The rule of concurrent consideration of conditions encourages programs which are more
robust, modular, easily modifiable, and efficient than is possible with the conditional
expression in LISP for the reasons which are enumerated in the discussion of the
select_case..for expression. If none of the condition, hold then alternative.body is executed.

The reader will probably have noticed that the selecLtoneof construct is very
similar to the selecLcase_for construct which we introduced earlier in this paper. The
reason for introducing both constructs is that whereas the selectcasefor construct is
often quite succinct and readable there are cases such as the implementation below in
which it is desirable to concurrently test properties of more than one actor in a single
conditional expression making the use of selectone_of preferable.

The selectone_of expression is different from the conditionals of McCarthy,
Dijkstra, etc.. in several important respects. The conditions of selectoneof have been
generalized to allow pattern matching as in the pattern directed programming languages
PLANNER, QA-4, POPLER, CONNIVER, etc. Notice that our concurrent conditional
expression is different from the usual nondeterministic conditional in that if any of the
conditions hold then the body of one of them must be selected for execution even if the
evaluation of some other condition does not terminate (cf. [Manna and McCarthy: 1970,
Paterson and Hewitt: 1971, Friedman and Wise: 1978).

V.2 --- Implementation of a Hardcopy Server

Below we give the implementation of the hard copy server.

Guardians

DRAFT May 1979 Guardians

(describe (create-hardcopy-server =device 1 =device2)

[is: (a Serialized.actor
[respondseto: (a Print.request)]

[accepts:

(D
(a Completion [device: (0 device1 device 2)])
(a Breakdown-report [device: (0C device, device 2 M)]))])

[implementation:

(label thehardcopy_server ;the.hardcopyserver is the name of the actor created by serialize

(createserializedaclor
(a Hard.copyjserver [queue: (an Empty.queue)] [device.statel: idle] (device.state2 :idle]))

where ;t•e followinr is I.eierally nested in the abohn

(describe (a Hardcopy..erver [queue: (a Queue [each.element: (a Printjequest)])]

[device..tatel: (0i idle printing broken)]

[device_.tate 2 : (11 idle printing broken)])

[preconditions: (implies
(queue is -(a Queue [sequence: []]))
(and (device..state is -,idle) (device*state 2 is -idle)))]

[implementation:

(createunserialized.actor
((a Print-request) =the.request received

(ponder (a Hardcopyserver (queue: (a Queue [all-but-rear: queue] (rear: therequest])])))
;invtoke the ponder transition with therequest at the rear of the queue

((a Completion [device: device.i) [response: =r] [customer: =c]) received
;this commrunirfeion notifies the .srializer that device=i has completed printing
;tlhe •hse returned by bno operation is r and wase expected by C

(transmit_to c r)
(ponder (a Hardcopy.server [devicestalei: idle])))

((a Breakdownjeport [request: =r) [device: device=i]) received
(ponder (a Hardcopyserver

[queue: (a Queue [front: r] [allbut,front: queue])]
[device-statei: broken]))))]))])

DRAFT May 1979

We have adopted in this code and in our language a useful convention for giving
default values to missing attributions in a description. For instance in the above code the
expression

(a Hardcopy.server (queue: (a Queue (allbut-rear: queue] (rear: the.yequest])])

is considered to be equivalent to

(a Hardcopyserver
[queue: (a Queue [all.bul-rear: queue] [rear: thejequest])]
[devicestatel: device statel]

[device-state 2 : device-state 2)

This convention allows us to shorten our notation by avoiding the repetition of all the
attributions that are left unchanged.

Below we define the function ponder which maps behaviors onto behaviors:

(describe (ponder (a Hardcopy.server
[queue: (a Queue [each-element: (a Printlrequest)])]
[device.statlo: (C1 idle printing broken)]

[devicestwte 2 : (11 idle printing broken)]))
[is: (a Hard.copy.server)]
[implementation:

(select..oneof
(if (queue is (a Queue [front: (a Request [message: =r] [customer: =c)))

[allbutfront: =allbut.rontq]))
and (device.state(=i which is (0 1 2)) is idle)

then
(fransmittjo device i

(a Request [message: r]
[customer: (creale.transactionmanager

[request: r]
[device: devicei)
[customer: c])]))

(become (a Hard.copyserver [queue: all.butjront.q] [devicestatei: printing])))

(if (device.state1 is broken) and (device.slate2 is broken) then
(transmiLto operator "Both printers are broken!")
(bebome (a Hardcopyserver)))

(none.of the.above:
(become (a Hard.copy.server))])))

Guardians

DRAFT May 1979

Note that a new transaction manager is created to manage each printing request
for the hardcopy device.

The actor createiransectionmanager (defined below) creates a serialized actor s
wrapped inside a timeroutif_noresponse.after expression:

(time_out_ifno_response_after (1t minutes)
s)

which forwards to s any message it receives and also sends s a Time.out message after to
minutes if it has not received a response in the meantime. Requests for more. funding are
not considered to be responses and are passed through to s. Of course if the time-out
expires after a response has been forward to s, then s is not bothered with a Time-out
message.

Note that if a manager receives a .Time.out message then it sends the hardcopy
device an abort.printinting message waiting 1 pIinute for the device to respond using the
following expression:

(sendfto d abort.printing [timeoutjfn.rjesponse.after: (1 minute)])

If the device responds with a Readyjfor.-ext-request.report within 1 minute then
the.hardcopy.server is told that the transaction has completed with a response which is a
complaint that the allotted time has been exceeded. If the device does not respond to an
abortprinting message within 1 minute, then thejhardcopy server is sent a breakdown report
for the device and the operator is informed that the device is broken.

The definitions given below are assumed to be inside the lexical scope of the above
serializer thus making the.jardcopy.server lexically visible.

Guardians

DRAFT May 1979

(describe (createJ.ransaction.manager [request: =r] [device: =d] [customer: =c])
[is: (a Serialized.actor [accepts: (CJ (a Response) (a Time.out))])]
[implementation: (createserializedactor (a Transaction.manager [timed.out: false]))])

(describe (a Transaction.manager [timedout: (a Boolean)])
[implementation:

(create_ unserialized_ actor
((a Response) =thejresponse received

(if (hot timed-out)
then (transmitto the.hardcopy.server

(a Completion
[device: dJ
[response: the.response]
[cus•omer: c])))

(become (a Transaction.manager)))
((a Time.out) received

(select-case-for (sendto d (an Abort.printing.request)
[time_outjf..noresponse.after: (1 minute)])

((a Ready.for.nextrequestreport) produces
(transmitljo the.hardcopyJserver

(a Completion
[device: dJ
[response: (a Complaint [message: allotted.lime.exceeded])]
[customer: c]))

(become (a Transaction.manager [timed.out: true])))
((a Timeout) produces

(transmitijo operator (a Breakdown.report [device: d]))
(transmitjtd the.hardcopy.server (a Breakdown-report [request: r] [device: d]))
(become (a Transactionnmanager [timed.out: true]))))))])

The statement

(become (a Transaction.manager [timed.out: true]))

has the effect of causing the timed.out state component of the transaction manager to
become true. Therefore any response addressed to that actor after its termination will be
discarded since the code specifies

Guardians

DRAFT May 1979

(if (not timed.out)
then (transmit to thejhardcopy-server

(a Completion

[response: the.response]

[device: d]
[customer: c])))

(become (a Transactionj.anager))

In particular a response form a device will not be considered after a timeout has been
generated.

VI -- PARTIAL SPECIFICATIONS OF A HARD-COPY SERVER

Using primitive serializers, we have been able to deal with an important problem in
the specification of guardians which allow time out. The problem is that if a guardian is
allowed the possibility of time out in a partial specification how is it possible to rule out a
trivial implementation which always times out. Our solution to this specification problem is
to require that a guardian which receives a Print.request PR which satisfies the following
description:

(a Printrequest
[message: PR]
[customer: C])

must eventually send one of the hardcopy devices a communication which satisfies the
description

(a Request
[message: PR]
[customer: M])

where M is a transaction manager." Furthermore if M receives a response before it receives
a time out message then the response must be sent to C.

This specification forces the hard copy server to at least try to satisfy the print
request PR. It cannot simply wait 10 minutes and then transmit a time-out complaint to
the customer C.

Guardians

DRAFT. May 1979

VII -- PROOFS FOR THE HARD-COPY SERVER

The proofs here assume that if both printing devices break down then at least one
of them will eventually be revived by the operators.

We first show that the preconditions on the behavior of the hard-copy server are
always met. These preconditions are useful in the rest of the proof.

The second part of the proof shows that the serializer completes each transition
from a state in which it is unlocked to a state in which it is again unlocked. This will be
a preliminary result for proving that the preconditions for the hard-copy server always hold.
Finally we prove that the guardian always replies to the requests which it receives.

VIL! --- :Checking the Preconditions of. the Behavior

First we. verify that the preconditions on the behavior of the hard-copy server
always hold, namely:

(queue is (a Queue [each.element: (a Print request)]))
(device.state, is (C idle printing broken))
(device.state 2 is (0 idle.printing broken))

The proof that these preconditions always hold is by induction.

1. Show that the preconditions are met when the hard-copy server is created.
2. Assuming that the preconditions are true, show that, whatever communication is

received, the next become statement will produce a hard-copy server which meets the
preconditions.

It is clear by inspection that each of the three preconditions is true when the
serializer is created. After a communication is received, the function ponder is called with
arguments satisfying the preconditions in creation of a behavior for ponder. This description
can be used and gives us the fact we needed to complete the proof. Now to show that the
implementation of ponder corresponds to its description, a similar technique can be used. In
this proof we will have to use the descriptions for the operations called by ponder.

This part of the proof is not very different from the kind of static type checking
usually performed by a compiler.

Guarddians

DRAFT May 1979

VII.2 --- Proof of the Preconditions

We want to show that whenever the guardian is unlocked, its state satisfies the
precondition:

(implies
(queue is -(an Empty queue))

(and (devicestateI is -idle) (devicestate 2 is ,idle)))

It is immediate that this precondition holds vacuously at the creation of the
hard-copy server since the queue is empty.

The general result can be established by case analysis for each communication
received. For instance if the guardian receives a Printjrequest r in a state where the receipt
preconditions hold, then the request r will be added to the rear of the queue and ponder
will be called with a non empty queue as an argument. There are two cases to be
considered (we are assuming the absence of breakdowns):

1: One of the devices is idle. Therefore by the
precondition the queue contains only the request r. The request r
is removed from the queue and the appropriate message is sent to
the idle device. This reestablishes the precondition because the
queue is once again empty.

2: None of the conditions in the ponder transition is true,
so that the noneof.the above clause applies. Since the queue was
not empty, this means that none of the devices was idle. Then
the guardian unlocks becoming a hard-copy server with the state
of both devices being not idle. Therefore the precondition will
hold again also in this case.

The proof that the receipt preconditions hold when the guardian is unlocked is
similar for the Completion communications and the Breakdown..report Communications,

Guardians

DRAFT May 1979

VIL 3 --- Proof of Guarantee of Service

We can prove that service is guaranteed to all printing requests. If the guardian
receives a request when one of the devices is idle, the request will be immediately passed
on, since the queue will be empty according to the precondition for the hard-copy server.

If none of the devices is idle, then the request will be queued.

The following assertion is proved by induction on n:

If n requests precede a request R in the queue, then R will be
passed to one of the devices after n completion communications have
been received by the guardian.

A completion is either one of the following communications:

(a Completion [device: devices) [response: ...] [customer: ...])
(a Completion [device: device 2)] response: ...] (customer: ...])

The implementation of -the guardian has the property that the hardcopy server will always
receive a communication back for each of the requests it sent to a device. By the
precondition for the hard-copy server we know if R is in the queue, then there is a request
outstanding for either .4vice or device 2, and a completion or a breakdown report will be
received by the guardian.

The first such *ommunication will be received after a number p of print requests
have been received by ihe guardian. p is finite because of the law of finite chains in the
arrival ordering of actoi systems [Hlewitt and Baker 19771

We can show that each of these p print request will leave unchanged the first n
elements. in the queue and will not alter the state of the devices. Consider then the effect
of the next completion received by the guardian. We show that either the number of
requests preceding R is decreased by one in the next unlocked state or the request R is
sent to one of the printing devices. Clearly one effect of the completion is that one of the
devices will become idle. Therefore the next request will be removed from the queue. and
passed to the free device. Therefore if n is o, the request R is served. On the other hand

Guardians

DRAFT May 1979

if n is bigger then 0, then removing the first element from the queue reduces by one the
number of elements preceding R in the queue.

VIII -- ADVANTAGES OF PRIMITIVE SERIALIZERS

Before proceeding to prove properties of primitive serializers, we would like to
discuss some of their advantages over previous proposals for language constructs for
synchronization.

VIII.1 --- Control Flow follows Text

Each activity of the serializer is initiated by the receipt of a communication which
causes the serializer to become locked. After a new receiver has been computed, it
becomes unlocked and is ready to receive another communication. Unlike monitors,
serializers have no explicit wait or signal command which cause the execution to be
suspended and resumed from different points within the program.

VIIL2 --- Absolute Containment

Primitive serializers make it easy to implement guardians which do not give out the
resources being protected. Instead a guardians passes messages from the users to the
resources implementing a property which we call absolute containment which was proposed
by [Hewitt: 1975] and further developed in [Hewitt and Atkinson: 1977] and [Atkinson and
Hewitt: 1979] (cf. [Hoare: 1976] for a similar idea using the inner construct of SIMULA).
The idea is to pass a message with directions to the resource so that it can carry out the
directions instead of giving out the resource to the user. An important problem with the
usual strategy of giving the resource out is that retrieval of the resource from a process
that has gone amuck is often messy.

We have found that absolute containment produces more modular implementations
than schemes which actually gives out resources protected by guardians. Note that the
proof that all requests will receive a response from a network utility that implements
absolute containment depends only on the behavior of the resource and the code for the
serializer which implements the guardian, but not on the programs which call the guardian.
In the tisual scheme of giving out the resource, it is necessary to prove that each process
which can Use the resource will give it back.

21 Guardians

DRAFT May 1979

Our hardcopy server implements absolute containment by never passing out either
of its hardcopy devices to the external environment. Thus there is no way for others to
depend on the number of physical devices available. Furthermore there is no problem
retrieving the devices from users who have seized them since they are never given out.

VIII.3 --- Modularity in State Change

Primitive serializers directly support a scheduling strategy of receiving each
communication and then deciding what actions the communication requires. The possible
actions include changing state and sending messages to other actors.

The only way to cause a state change in the programming language used in this
paper is to use a primitive serializer. State change can be encapsulated within a serializer
in a much more modular fashion than is accomplished by individual ASSIGNMENT and
GOTO commands. In serializers state change and transfer of control are encapsulated in a
single primitive that accomplishes them concurrently. We have found that this
encapsulation increases the readability and modularity of implementations that require state
change.

VIII.4 --- Generality

In our applications we want to be able to implement guardians which guarantee
that a response will be sent for each request received. This requirement for a strong
guarantee of service is the concurrent analogue to the usual requirement in sequential
programming that subroutines must return values for all legitimate arguments. In our
applications it would be incorrect to have implementations which did not guarantee to
respond to messages received.

The SIMULA subclass mechanism was designed for sequential and quasi-parallel
programming. It needs substantial revision for concurrent programming. The monitors of
Hoare and Brinch-Hansen represented a substantial step towards generalizing classes for use
in concurrent systems. However the use of explicit wait and signal commands on fifo queues
or priority queues makes the scheduling structure of monitors somewhat inflexible.
Furthermore it is difficult to prevent deadlock if monitors are nested within monitors. One
strategy for implementing guardians with monitors is to use an ordinary SIMULA class
whose procedures invoke a monitor which is local to the class. For example a hardcopy

Guardians

DRAFT May 1979

server could be implemented as an ordinary class with a PRINT procedure which invokes
REQUESTPRINT, START.PRINT, and STOP-PRINT procedures in the monitor. Primitive serializers
avoid the two level structure of monitor within class by explicitly dealing with the actors
which act as customers to whom replies should be sent. No special commands like wait and
signal are needed because the customers are ordinary actors which can be remembered and
manipulated using the same techniques that work for all actors.'

The utility of the extra generality in primitive serializers" is illustrated by our
implementation of the hardcopy.server in which we place a request which is not serviced
because of the breakdown of a printer at the front of the queue of requests to be serviced.
Many synchronization primitives with more built-in structure (such as monitors) permit
additions to queues only at the rear.

VIIL5. --- Conveniently Engendering Parallelism

Primitive serializers provide a very convenient method for causing more parallelism:
simply transmitting more communications. The usual method in other languages for
creating more parallelism entails creating processes (cf. ALGOL-68, PL-1, Communicating
Sequential Processes etc.). The ability to engender parallelism by transmitting
communications is one of the principle differences between actors and the usual processes in
other languages. For example in the implementation of the transaction manager in this
paper, both the operator and theJsrdcopy_server can be notified that a printer has broken
down by simply transmitting the appropriate communications.

VIIL6 --- Unsynchronized Communcation

In actor systems it is not necessary to know whether the intended recipient is ready
to receive the communication; a guardian implemented using primitive serializers can
transmit communications and then receive more messages before the communications which
it has transmitted have been received. In our application involving the implementation of a
distributed electronic office system, it is highly desirable that the sending of communication
be unsynchronized from the receipt of the communication.

Guardians

DRAFT May 1979

VIIL7 --- Behavior Matbematically Defined

The behavior of primitive serializers can be read directly from the code. These
mathematical denotations are intended provide a solid mathematical foundation on which to
develop proof techniques and to provide a direct link with the underlying actor model of
computation. Mathematical denotations have not yet been developed for the serializers in
[Hewitt and Atkinson: 1977] or monitors because of the complexity of these constructs,

VIIL S --- Encouraging the use of Concurrency

Primitive serializers permit implementations to use near maximum concurrency. In
particular in contrast to the usual process model which only allows sequential execution
within a monitor or critical region, primitive serializers encourage the use of concurrency in
handling messages received. The only limitation on parallelism in systems constructed using
ACTI derives from communications received by serialized actors when they are locked.

VIIL9 --- Absence of Deadlock

Primitive serializers have the important advantage that it is possible to guarantee
absence of deadlock in actor systems by simply assuring that each individual actor will
unlock after it receives a message. Absence of starvation (e.g. that every request received
will generate a response) is more difficult to prove.

VIII. 10 --- Ease of Proof

We have found the above advantages of primitive serializers quite helpful in proving
properties of implementations. Furthermore the structure of our proofs follows naturally
from the syntactic structure of a primitive serializer. The proof given in this paper that
the hardcopy server will always respond to requests which it receives illustrates how
primitive serializers facilitate proofs,

Guardians

DRAFT May 1979

IX -- FUTURE, WORK

We are encouraged with the experience of using our description system to describe
each of the programming problems considered in this paper. However it clearly needs
much further developtient, in pragmatic and behavioral descriptive power.

One important area in which work remains to be done is to demonstrate that
primitive serializers can be implemented as efficiently as other synchronization primitives as
semaphores, monitors, etc. We have designed primitive serializers with this goal in mind.
On the basis of some preliminary investigation we believe that they can be implemented at
least as efficiently -as monitors and commu nicating sequential processes. The third author
has constructed some preliminary implementations in a dialect of the ACTI language
described in this paper which runs on the PDP-10. In the course of the next year, we will
continue to work to improve this implementation and to transfer it to the MIT CADR
machine where ultimately it can be supported by micro-code.

Another area in which work remains to be done is automating proofs such as the
one in this paper. We feel that we are getting close to the point where a Programming
Apprentice can do most of such proofs under the guidance of expert programmers. Russ
Atkinson is working on automating the proofs for the version of serializers in [Atkinson
and Hewitt: 1977] and [Hewitt and Atkinson: 19791 We hope to be able to use some of
the techniques which he has developed in our symbolic evaluator.

Guardians

DRAFT May 1979

X -- CONCLUSIONS

We are encouraged with our initial experience in working with primitive serializers
and plan to develop them further. They appear have a number of important advantages
over previous proposals for modular synchronization primitives. These advantages include
ability to delegate communications [Hewitt, Attardi and Lieberman: 1978] and compatibility
with the implementation of unserialized actors [Hewitt 1978] Event oriented specification
and proof techniques are readily adapted to proving properties of guardians implemented
using primitive serializers. These properties include the guarantee that a response is sent
for each request received and a guarantee of parallelism [Atkinson and Hewitt: 19781
Note that the property of guaranteed response for each message sent cannot be proved in
many models of computation because it implies the possibility of unbounded
nondeterminism [Hewitt: 19781 In this paper we have shown how previous work on event
oriented specifications and proofs can be extended to deal with time outs.

Partial descriptions like the ones given in this paper are illegal in almost all type
systems. The desire to be able make incremental multiple descriptions such as these has
been one of the driving forces in the evolution of our description system. The SIMULA
subclass mechanism is probably the most flexible and powerful type mechanism in any
widely available programming language. However, as a description system, it has some
important limitations. It does not support interdependent descriptions or multiple
descriptions. Also it does not permit instance descriptions to be qualified with attributions.
Furthermore it does not permit descriptions to be further described thus disallowing any
possibility of incremental description.

Guardians

DRAFT May 1979

XI -- ACKNOWLEDGEMENTS

During the spring of 1978, the first author participated in a series of meetings with
the Laboratory of Computer Science Distributed Systems Group. These meetings were
quite productive and strongly influenced both this paper and the Progress Report of the
Distributed Systems Group [Clark, Greif, Liskov, and Svobodova: 19781

This paper has benefited from ideas that sprang up in conversations in the summer
and fall of 1978 with Jean-Raymond Abrial, Ole-Johan Dahl, Edsger Dijkstra, David
Fisher, Stein Gjessing, Tony Hoare, Jean Ichbiah, Gilles Kahn, Dave MacQueen, Robin
Milner, Birger Moller-Pedersen, Kristen Nygaard, Jerry Schwarz, Steve Schuman, and Bob
Tennent. The first author would like to thank Luigia Aiello and Gianfranco Prini and the
participants in the summer school on Foundations of Artificial Intelligence and Computer
Science in Pisa for helpful comments and constructive criticism.

Valdis Berzins, Alan Borning, Richard Fikes, Gary Nutt, Susan Owicki, Dan
Shapiro, Richard Stallman, Larry Tesler, Deepak Kapur, Vera Ketelboeter, and the
members of the Message Passing Systems Seminar have given us valuable feedback and
suggestions on this paper. Russ Atkinson is implementing a symbolic evaluator for the
version of serializers in [Hewitt and Atkinson: 19771 Vera Ketelboeter has independently
developed a notion of "responsible agents" that is very close to the transaction managers
described in this paper. Jerry Barber and Maria Simi have developed methodS for proving
that actor systems implemented with internal concurrency will respond properly to the
messages which they receive.

Although we have criticized certain aspects of monitors and communicating
sequential processes in this paper, both proposals represent extremely important advances in
the state of the art of developing more modular concurrent systems and both have deeply
influenced our work.

PLASMA [Hewitt and Smith: 1975, Hewitt: 1977, Hewitt and Atkinson: 1977 and
1979, Yonezawa: 1977] adopted the ideas of pattern matching, message passing, and
concurrency as the core of the language. It was developed in an attempt to synthesize a
unified system that combined the message passing, pattern matching, and pattern directed
invocation and retrieval in PLANNER [Hewitt: 1969; Sussman, Charniak, and Winograd:
1971; Hewitt: 19711 the modularity of SIMULA [Birtwistle et. aL: 1973, Palme: 1973]1 the
message passing ideas of an early design for SMALLTALK [Kay: 1972], the functional data
structures in the lambda calculus based programming languages, the concept of concurrent

Guardians

DRAFT May 1979

events from Petri Nets (although the actor notion of an event is rather different than
Petri's), and the protection inherent in the protected entry points of capability based
operating systems. The subclass concept originated in [Dahl and Nygaard: 1968] and
adapted in [Ingalls. 1978] has provided useful ideas.

The pattern matching implemented in PLASMA was developed partly to provide a
convenient efficient method for an actor implemented in the language to bind the
components of a message which it receives. This decision was based on experience using
message passing for pattern directed invocation which originated in PLANNER [Hewitt:
IJCAI-69] (implemented as MICRO PLANNER by [Charniak, Sussman, and Winograd:
1971D. A related kind of simple pattern matching has also be used to select the
components of messages by [Ingallsl 1978] in one of the later versions of SMALLTALK
and by [Hoare: 1.978] in a design for Communicating Sequential Processes. However CSP
uses assignment to pattern variables instead of binding which was used in PLANNER,
SIMULA, and PLASMA.

XII -- BIBLIOGRAPHY

Atkinson, R. and Hewitt, C. "Specification and Proof Techniques for Serializers"
IEEE Transactions on Software Engineering SE-5. No, 1. January 1979. pp
10-23.

Birtwistle, G. M.; Dahi, O.; Myhrhaug, R; and Nygaard, KI "SIMULA Begin"
Auerbach. 1973.

Borning, A. .I "THINGLAB -- A Constraint-Oriented Simulation Laboratory",
Stanford PhD ~thesis, March 197.9 Revised version' to appear as Xerox PARC
SSL-79-3.

Brinch Hansen, P. "The Programming Language Concurrent Pascal" IEEE Transactions
oin Software Engineering. June, 1975. pp 199-207.

Clark, D. G.; Greif, L; Liskov, B.; and Svobodova, L "Progress Report of the
Distributed Systesis Group 1977-1978" MIT Computation Structures Group
Memo. October 1978.

Dijkstra, E. W. "Guarded Commands, Nondeterminancy, and Formal Derivation of
Programs" CACM. VoL 18. No, 8. August 1975. pp 453-457.

G~uardians

DRAFT May 1979

Friedman and Wise.
November 1978.

"A Note on Conditional Expressions" CACM. Vol 21. No. 11.
pp 931-933.

Gjessing, S "Compile Time Preparations for Run Time Scheduling in Monitors"
Research Report No. 17, Institute of Informatics, University of Oslo, June 1977.

Hewitt, C.; Bishop, P.; and Steiger, R. "A Universal Actor Formalism for Artificial
Intelligence" IJCAI 73. Stanford University. August, 1973. pp 255-262.

Hewitt, C. and Baker, H. "Laws for Communicating Parallel Processes" MIT Artificial
Intelligence Working Paper 134. December 1976. Invited paper at IFIP-77.

Hewitt, C. "Evolving Parallel Programs" MIT AI Lab Working Paper 164.
December 1978. Revised January 1979.

Hewitt, C. "Concurrent Systems Need Both Sequences and Serializers" MIT AI Lab
Working Paper 179. December 1978. Revised February 1979.

Hewitt, C.; Attardi, G.; and Lieberman, H. "Security and Modularity in Message
Passing" MIT AI Lab Working Paper 180. December 197& Revised February
1979.

Hoare, C. A. R. "Monitors
October 1974.

Hoare, C. A. R.
Science No.

An Operating System Structuring Concept" CACM.

"Language. Hierarchies and Interfaces" Lecture Notes in Computer
46. Springer, 1976. pp 242-265.

Hoare, C.A.R. "Communicating Sequential Processes" CACM, Vol 21, No. 8.
1978. pp. 666-677.

Kay, A. Private communication. November 1972.

Kristensen, B.
Definition
University.

B.; Madsen, O. L; Moller-Pedersen, B.; and Nygaard,
of the BETA Language" TECHNICAL REPORT TR-8.

February 1979.

Manna, Z and McCarthy, J. "Properties of Programs and Partial Function Logic"

August

K. "A
Aarhus

Guardians

DRAFT May 1979 30 Guardians

Machine Intelligence 5 B. Melizer and D. Michie, editors. Edinburgh Univ.
Press. 197Q(pp 27-37.

Owicki, S. "Verifying concurrent Programs With Shared Data Classes" Formal
Description of Programming Concepts edited by E. J. Neuhold. North Holland.
1978.

DRAFT May 1979

APPENDIX I --- Implementation of Cells using Serlalizers

In this appendix we present an implementation of cells [Greif and Hewitt:
POPL-75, Hewitt and Baker: IFIP-77] using primitive serializers

(describe (createcell =initial.contents)
[is: (a Serialized.actor [responds.to: (•I (a Contents.query) (an Update))])]
[implementation:

(create_ serialized-actor
(a Cell (currenteontes: initialcontents]))))

(describe (a Cell [current.contents: (an Actor)])
[implementation:

(create_unserializedactor
((a Request (message: contents?] [customer: .=c]) received

(transmiLtto c (a Reply [message: current..contents])))
;reply sending to the icustomer the current contents
,unlork th' serializr for the next mnssage without changing the behevior

((an Update [nextcontents: =n]) received
(transmitjto c (a Reply [message: (an Update.performed.report)]))
(become (a cell [current.contents: n]))))])

;unlock the seridlizer with the cure.nt contents being n

The above definition shows how serializers subsume the ability of cells to efficiently
implement synchronization and state change in concurrent systems.

Guardians

DRAFT May 1979

APPENDIX II --- Implementation of Semaphores using Serializers

Semaphores are an unstructured synchronization primitive that are used in the
implementation of some systems. The definition below shows how. primitive serializers can
be used to efficiently implement semaphores

(describe (create-semaphore)
[is: (a Serialized-actor

[accepts: (0i (a Request [message: PI) (a Request [message: V]))])]
[implementation:

(createserializedactor
(a Semaphore

[queue: (an Empty.queue)] ;initially there are no waiting P requests
[capacity: 1]))]) ;the eaparily is initially 1

(describe (a Semaphore
[queue: (a Queue [each.element: :(a Customer)])]
[capacity: (a Non.negative.integer)))

[preconditions:
(implies

(quuee is -,(an Empty.queue))
(capacity is 0))]

[implementation:
(createunserialized actor

((a Request [message: P] [customer: =c]) received
(select_case_for capacity

((> 0) produces
(transmitjto c [reply: (a CompletedY.report)])
(become (a Semaphore [capacity: (capacity - 1)])))

(0 produces (become (a Semaphore [queue: (queue enqueue c)])))))
;become a semaphore aniih c enqueerrd at the rear of queue

((a Request [message: V] [customer: =c]) received
(transmitto c [reply: (a CompletedV.report)])
(select_case_for queue

((a Queue [front: =c] [allbut.front: =rest.waiting.customers]) produces
(fransmitjto c [reply: (a CompletedP..report)])
(become (a Semaphore [queue: rest-waiting.customers])))

((an Empty-queue) produces
(become (a Semaphore [capacity: (capacity + 1)]))))))])

In [Hoare: 1975] there is. an elegant construction showing that monitors can be implemented
using semaphores and cells. Hls technique can be adapted to show that primitive serializers
can also be implemented using semaphores and cells.

Guardians

DRAFT May 1979

APPENDIX III --- Thumbnail Sketch of the Description System

This appendix presents a brief sketch of the syntax and semantics of our description
system. A paper which more fully presents the description system and compares it with
other formalisms which have been proposed is in preparation.

The description system is intended to be used as a language of communication with
the proposed Programming Apprentice. Its syntax looks somewhat like a version of
template English [Hewitt: 1975, Bobrow and Winograd: 1977, Wilks: 1976] Thus for
example we write (anInteger) in this paper instead of writing (integer) as was done in
PLANNER-71. However we also allow the use of instance descriptions such as
(the Integer D: 0] [(: 2]) to describe the Integer which is greater than o and less than 2.

We feel that it is quite important that a description expressed in template English
correspond in a natural way with the intuitive English meaning. For this reason we use
the indefinite article in attribute descriptions such as the one below:

(4 is (an element of (2 4 6)))

where the binary relation element can occur multiply in an instance description such as

(((2 4 6) is (a Set [element: 2] (element: 4])))

where (a Set [element: 2] [element: 4]) is a partial description of (2 4 6). Attribute descriptions
only make use of the definite article in cases like the one below

((the imaginary-part of (a Real)) is 0)

where the binary relation imaginary.part projectively selects the imaginary part of a Real. In
this case the relation imaginary..part might be inherited from Complex via the following
description:

((a Real) is (a Complex (imaginary.part: 0]))

For the purpose of describing mappings, I prefer the syntax

[:xI-4 ...x...J

[cf. Bourbaki: Book I, Chapter II, Section 3] to the syntax

Guardians

DRAFT May 1979

(Wx, ...x...)

of the lambda calculus. For example the mapping cubes which takes a number to its cube
can be described as follows:

(describe cubes
[is: [=nI-4 n3]])

XIL1 --- Examples

XIL l.a --- Articulation

Articulation is an important capability of a description systnm. For example

(describe cubes
(is: (a Mapping [=nh-- n3]))

can be articulated as follows:

(cubes is (a Mapping [1-1 11] (2-4 8] [3-4 271 [4• 64] [5- 125] ...))

where ... is ellipsis.

XIL .b --- Sets and Multisets

Sets and multisets can be described in terms of mappings using the usual
mathematical isomorphisms. For example

(describe (a b)
(is: (8 Mapping [aH i] (bt-+ 1] (-,sa fl -b%- 0])])

describes. the set (a b) as a mapping from a and b onto 1 since they are present in the set
and everything else maps to o since there are no occurrences of other elements. Extending
the same idea to multisets gives the following example:

Guardians

DRAFT May 1979

(describe (la b al)
[it: (a Mapping [a-4 2] [bi 1] [-sa n b -V 4 0])])

which says that (Is b all can he viewed as a mapping in which a occurs with multiplicity 2, b
occurs with multiplicity 1, and all other elements occur with multiplicity 0.

XILI.c --- Transitive Relations

If (3 is (an Integer [<: 4])) and (4 iS (an Integer [<: 5])), we can immediately conclude
that

(3 is (an Integer (<: (an Integer [(: 5])]))

by the transitivity of predication. From this last statement, it be possible to conclude that
(3 is (an Integer [<: 5])). This goal can be accomplished by the command

(describe <
[is: (a Transitive.relation [for: Integer))])

which says that < is a transitive relation for Integer and by the command below which says
that if x is an instance of a concept which has a relationship R with something which is the
same concept which has the relationship R with m where R is a transitive relationship for
concept, then x has the relationship R with m.

(describe (a =concept [=R: (a =concept [=R: =m])])
[preconditions: (R is (a Transitiverelation ([for: concept]))]
(is: (a concept [R: m])])

The desired conclusion can be reached by using the above description with concept bound to
Integer, R bound to <, and m bound to s.

Guardians

DRAFT May 1979

XIL 1.d --- Projective Relations

If (z is (a Complex [real.part: 0 0)])) and (z is (a Complex [real.part: (an Integer)])) then by
merging it follows that (z is (a Complex [real.part: () 0)] [real.part: (an Integer)])) However in
order to be able to conclude that (z is (a Complex [realpart: (> 0) (an Integer)])) some additional
information is needed. One very general way to provide this information is by

(describe real.part
(is: (a Projectivejelation (concept: Complex])])

and by the command

(describe (a =C [=R: =descriptionl] [=R: =description2])
[preconditions: (R is (a Projective.relation [concept: C]))]
[is: (a C [R: descriptioni description2])])

The desired conclusion is reached by using the above description with C bound to Complex, R
bound to real.part, descriptioni bound to (0), and description2 bound to (an Integer).

This example cannot be done in most type systems; the above solution makes use
of the w-order capabilities of our description system.

XIL 1.e --- Self Description

Self description provides the ability for the programming Apprentice to reason
about its own procedures. However we must beware of paradoxes. For example the
following sentence clearly holds in o order logict

VP Vx (P x) ifanld.onlyjif (P x)

From the above sentence, we obtain the following by the usual rules for quantifiers

VP 3Q Vx (Q x) ifandonly_if (P x)

Substituting the following mapping

(=G --4 (not (a s)))

for P, we get

Guardians

DRAFT May 1979

3Q Vx (Q x) ifand_onlyif (not (x x))

Using 3-elimnination with o0 for Q we get

Vx (Qo x) if_andLnly.if (not (x x))

Substituting Q0 for x we obtain Russelrs paradoxical formula:

(00 00o) ifandonly_if (not (00 00))

However the above formula is a contradiction in our description system only if
(QO Oo) is a Boolean which are described as follows

(describe (a Boolean)
[is: (U true false)])

(describe true
[is:

-tfalse
(a Boolean)])

(describe false

-itrue
(a Boolean)])

We propose to restrict the rules of logic to statements which are Boolan. For example the
rule of double negation elimination can he expressed as follows:

(describe (not (not =p))
[precondition: (p is (a Boolean))]

[is: p])

In this way we hope to avoid contradictions in our description system. In the course of
the next year we will attempt to adapt one of the standard proofs to demonstrate its
consistency.

Guardians

DRAFT May 1979

XIL2 --- Axioms

The description system is defined by its. underlying behavioral semantics. The
axiomatization given below is significant in that it represents a first attempt to axiomatize a
description system of the power of the one described here. As far as I know previous to
the development of this one, similar axiomatizations for FRL, KRL, OWL, MDS, etc. did
not exist.

The most fundamental axiom is Transitivity of Predication which says that for any
<description3>

Transitivity of Predication
(implies

(and
(<descriptionl> is <description 2>)
(<description2 > is <description"3))

(<description1 > is <description3)))

The descriptions in our system are completely intentional. Le. the fact that the
extension of two descriptions is the same does not force the conclusion that the descriptions
are coreferentiaL Suppose we define snarks to be set of all animals which are both
herbivores and carnivores. Then in Zermelo-Fraenkel set theory it follows that (snarkl I cows)
because the empty set is a subset of every other set. From the following statements

((a Snark) is (a Carnivore))
((a Snark) is (a Herbivore))
((a Carnivore) is -(a Herbivore))

we can conclude that

((a Snark) is -(a Herbivore))

by transitivity of predication. Thus we can conclude that nothing is a Snark because
anything which is a Snark would necessarily be both a Herbivore and not a Herbivore.
However this does not force the conclusion that

((B Snark) is. (a Cow))

Another important axiom is

Guardians

DRAFT May 1979

Reflexivity
(<description> iS <description>)

which says that every description describes itself.

Other important axioms are Commutativity, Deletion, and Merging:

Commutativity
((a <description1) <attributions>) <attribution 2) attributions3) <attribution4) <attributions 5>) i

(a <description1) <attributions) (attribution4) <attributions 3> (attribution2) attributions 5))

which says that the order in which attributions of a concept are written is irrelevant. Note
that <attributions> is a string of zero or more elements of category (attribution.

Deletion
((a <description1> <attributions) <(ttribution2) <attributions3)) is

(a <description1> (attributionsm) <attributions 3)))

which says that attributions of a concept can be deleted, and

Merging
(implies

(and
(<description 1) is (a <descriplion2) <attributionsl)))

(<description 1) is (a <description 2> <attributions2)))
(<description1) is (a <description2) <attributions1) (attributions 2))))

which says that attributions of the same concept can be merged.

Additional axioms I are given below for other descriptive mechanisms

Coreference
(<description 1 coref <description2)) if-and_only if

(<descriptionl> is <description2>) and (<description2 > is <description>))

1: We are grateful to Dana Scott,Maria Simi, and Jerry Barber for helping us to remove
some bugs from these axioms

Guardirnke$

DRAFT May 1979

Criteriality
(implies

(and
(<description1 > is (theonly <description3g))
(<description 2> is (theOnly <description3))))

(<description>) coref <description 2)))

Constrained Description
(<description,> is ((description2> such that <statement>)) if-andsonlyif

(implies
<statement)
(<description1> is <description 2))

Qualified Description
(<descriptionl> is (<description2) thatis <description3))) ifand_only_if

(and
(<description1 > is <description 2))
(<descriptionl> is <description3>))

View Point
((<description1) viewedas <description 2)) is

(<description 2> such.that (<description1 > is <description2>)))

Shift in Focus
(<descriptionl> is (a <description2> [<description3): <descriptionq4>)) if-and onlyif

(<description4 > is (a <descriptiong) Of (<description1 > viewedas (a <description2)))))

Definite Selection
((the <description1> of (a <description 2) [<description1 >: <description3 >])) is <description 3))

Complementation
(-.-<description) coref <description))

(<descriptionj> Is -<description 2)) ifandonrly-if (<description 2) is <(description>))

((<description1> Is -<description 2>) Implies
(V cd

(implies
(d is <description 1>)
(not (d is <description 2>)))))

Guardians

DRAFT May 1979

Meet
(<descriptionl> is (n <description 2) <description3))) ilfand.onlyif

(and
(<description1) is (description 2>)
(<descriptionl)>is <description3>))

((a <description <description2)) s (€description>))

(i,(l (description1) <description2 > coref (U -deicriptin 1) -<description 2)))

Join
((U (description 2 > <description">) is Odescription1)) ifaridonly, if

(and
(<description2 > is <descriptionli)
((description3 is (description>)))

(<description1> is (U (descrip!ion1) (description2))

(-'(U <description1) <descripti onore (ddescri ption2)))

Disjoint Join
((0 <description1> <description2 >) coref

(U
(11 <description> -,<description2))

S-,(<description1> <description 2))))

Conditional Description
((<description) > is ((description 2) if <statement>)) ifandonlyif

(<statement) implies (<description1> Is <description2)))

XI. 3 ---- Syntax

If <x> is a syntactic category then an expression of the form <x>* will be used to
denote an arbitrary sequence of zcro or more items separated by blanks in the syntactic
category <x>. An expression of the form <x> will be used to denote an arbitrary sequence
of one or more items separated by blanks in the syntactic category <x.

The following is the syntax for descriptions and statements:

Guardians

DRAFT May 1979

(description> ::= <identifier> I
=<identifier) ;the rharamter = is used to mark local identifiers

<statement) notre that tasiements (which are described below) are dewsriptions

<attribute_description) >
<attribution) I

<instance-description) I

<criterial-description) I
<mapping-description) I
<sequencedescription) I
(set-description) I

<mul!tisetdescription) I
<instance.description) I

(<description) viewed_as <description)) I
(<description) if <statement)) I

([<description) that_is <description)) I
(<description) suchthat <satement)

(n <description)) I ;n dcsignates she meet of desciptions

(U <description>) I :U designates the join of descriptions

(1f1 <description>) ;CI designates disjoint join of descriptions

-.<description>) ;-I designaoes the complement of a description

(<relation) <description)*)

<criterial.description> ::= (the_only <description))

;only used for d.•'eriptions that describe exactly one thing

<instance.description) ::= <indefinite.instance I <definitejnstance)

<indefinite-instance) ::= (<indefinite.article) <concept) <attribution>*)

<definiteinstance) ::: (the <concept> <attribution>*)

;definiejinstances are ised only for criterial descriptions

<indefinitearticle) ::= a I 8an

:there is no semontic liganifirance otteahed to the choice of which article is used

<concept) ::= <description) ;noe that this is w order

<attribution) ::= [<binaryrelationdescription: <description>]

<attributions) ::= <attribution)*

<binary.relationdescription) ::= <description) ;note that this is w order

<attribute.description> ::= <projective-attribute.description) I
(<indefinite.article) <binary.relation.description) of<description))

<projective.attribute.description> ::= (the <binary.relation-description) Of <description))

;ex presses that <binaryJelation-description) is pro jectie for <description)
;see example below for an explanation of projective binary relations

Guardians

DRAFT May 1979 Guardians

<mapping.description> ::= [<description>)-,- (description))

<seq c. aedescription> ::= [<elements-description>*) I
<set-descriptiot) ::= (<elementsdescription>*) I ;(and) are used to delimit sets
<multisetdesitiption) ::= <eltements-description)>* I ;

and I) are used to delimit multis'iaJ,
(elements..desciription t:e ... I

•!<deviption> ;! is the .np ek coastret

<statement) ::= (<predicate)> de<cription>)) I
<predication>)

((description> coref <description)) I ;statement of coreferernce

((<description>*): eachis <description>) I

(and•(statement,) I
(or (statement>) I
(xor <statement))
(not. <statement))
(implies (statement> <statement>)

<predication> ::= ((subject) is (complement))

<subject> ::= (description>

<complement> ::= (description)

5.

