
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

WORKING PAPER 212 December 1980

GUARDIANS FOR CONCURRENT SYSTEMS

Carl Hewitt and Giuseppe Attardi

ABSTRACT

In this paper we survey the current state of the art on fundamental aspects
of concurrent systems. We discuss the notion of concurrency and discuss a
model of computation which unifies the lambda calculus model and the sequen-
tial stored program model. We develop the notion of a guardian as a module
that regulates the use of shared resources by scheduling their access, pro-
viding protection, and implementing recovery from hardware failures. A
shared checking account is an example of the kind of resource that needs a
guardian. We introduce the notions of a customer and a transaction manager
for a request and illustrate how to use them to implement arbitrary schedul-
ing policies for a guardian. A proof methodology is presented for proving
properties of guardians, such as guarantee of service for all requests
received.

A.I. Laboratory Working Papers are produced for internal circulation, and may
contain information that is, for example, too preliminary or too detailed for
formal publication. It is not intended that they should be considered papers
to which reference can be made in the literature.

* MSSAmSETTS INSTITUTE OF TECHOLOGY 1980

Concurrent Systcms

Table of Contents

Introduction

II Background

The Actor Model of Computation

Related Work

IV.I Nature of Communication

IV.2 Functionality of Mail System

IV.3 Sending Mail Addresses in Messages

IV.4 Dynamic Creation of Actors

IV.5 Mathematical Models

IV.6 Generality

V The

V.1

V.2

V.3

V.4

V.5

V.6

Actor Language Actl

Notation

Omega Descriptions

Communications and Customers

Communication Primitives

Behaviors

Serializers

12

12

12

13

14

16

17

Guardians

Guardians 2 Concurrent Systems

VI Guardians 18

VII A Simple Checking Account Guardian 19

VIII Data Structures 21

IX Implementation of a Hard Copy Guardian 23

IX.1 Interface of a Hard Copy Guardian 23

IX.2 Modularity of Guardians 24

IX.3 Diagrams of a Simple Transaction 25

IX.4 An Implementation 26

IX.5 Scheduling Structure 27

IX.6 Server Behavior 28

IX.7 Transitions 30

IX.8 Transaction Managers 32

X Serializer Induction 33

X.I Checking Constraints of the Behavior 33

X.2 Proof of Guarantee of Service 34

XI Methodology 36

XI.1 Absolute Containment 36

XI.2 Evolution 37

XI.3 Guarantee of Service 38

Guardians

XII

Concurrent Systems

40Concurrency

XIII Summary

XIV Acknowledgements

XV Bibliography

XVI Conditional Constructs of Actl

XVI.1 A Concurrent Case Expression

Concurrent Systems

I -- Introduction

Two computational activities Al and A2 will be said to be concurrent if they do not have
a necessary temporal ordering with respect .to one another ie. At. might precede A2, A2
might precede At, or they might even overlap in time. Concurrency can arise froln a
variety of sources including multiplexing individual processors as well as from the
interaction of multiple processors. Thus concurrent systems include time sharing systems,
multiprocessor systems, and distributed systems. In this -paper we discuss fundamlental
issues in the design, implementation, and analysis of concurrent systems. We do not
assume that the reader has any prior knowledge of actors, message-passing or recent
proposals of languages based on communicating sequential processes.

II -- Background

For thirty years the lambda calculus and the sequential stored program have coexisted as
important bases for software engineering. Systems (such as Pure Lisp and ISWIM.) based
on the lambda calculus provide a sound basis for constructing independent immnutable
objects (functions and functional data structures). Systems based on the lambda calculus
have inherent concurrency which is constrained only by the speed of .commtulications
between processing elements. Lambda calculus systems provide important ways to realize
the massive parallelism that will be made possible by the development of very large scale
integrated circuits.

Unfortunately the lambda calculus is not capable of realizing the need in concurrent
systems for shaired objects such as checking accounts which must change their behavior
during the course of their lifetime. The stored program computer provides a way to make
the required changes through its ability to :update its global memory. However the
concurrency of the stored program computer is limited because only one access to the
memory can -occur at a time. The variable assignment command (e.g. SETQ in IISP or
the := command of the Algol-like languages) incorporates this ability in higher level
languages. The attendant cost is that the higher level language becomes inherently
sequential

In the early seventies an important step was made toward the unification of the two
approaches, by developing the concept :of object. An object consists of a local state and
procedures to operate on the object. SIMULA [Birtwistle et aL 1973] was the first
language in the ALGOL family which introduced objects in the form of class instances. A

Guardians

Concurrent Systems

class declaration specifies the structure of eachi object (in term of the variables which
constitute its local state) and a set of procedures which can be invoked from outside to
operate on the object.

SIMULA designers realized that objects were a useful idea to simulate systems with
inherent concurrency as those modeled in simulation. SIMULA objects are ini fact allowed
to run in pseudo-parallelism by two different mechanisms:

1. Objects can execute in coroutine fashion by resuming each other.

2. The simulation package allows a simple form of interaction with the
system scheduler on the basis of delays with respect to a simulated time.

In the LISP languages, objects are embodied by closures. A closure is a function plus an
environment. The environment, which keeps the values associated to variables used within
the function, represents the local state of the closure. When the closure is invoked, its -
function is applied in that environment, therefore it can modify the state by meatns of
assignment.

In the case of truly concurrent systems, however, the assignment command is not suitable
by itself as the basis for change of behavior because it does not deal with the problem of
scheduling access to a shared object, so that timing errors can be avoided. To deal with
this problem C.A.R. Hoare [Hoare 1974] proposed an adaptation of the Simula class
construct called monitor as an operating systems construct for higher level languages. By
imposing the constraint that only one invocation can be active at one time, monitors
provide a mean for achieving synchronization and mutual exclusion. Monitors retained
most of the aspects of sequential programming languages including:

Use of the assignment command to update variables of the monitor

Requiring sequential execution within the procedures of a monitor

However, one of the most criticized aspect of monitors is the use of low level wait and
signal primitives to manipulate the queues of the scheduler of the operating system of the
computer. The effect of the execution of such instructions is the release of the monitor by
the process presently executing inside the monitor and transfer of control to somle other
processes. Thus control "jumps around" inside a monitor in a way which is not obvious
from the structure of the code.

Guardians

Concurrent Systems

Monitors do a good job of incorporating important abilities of the operating system of a
sequential computer in a high level language. As an "operating systems structuring
concept", monitors are intended as a mean of interaction among parts of an operating
systems. These components are all at the same level and each of them bears some
responsibility for the correct behavior of the system as a whole. In fact moniitors basically
support the ability for processes to synchronize and notify each other when some action is
performed on shared data. However, the correct use of the resource, or the consitency of
its state when a process leaves the monitor or the guarantee that each. process will
eventually release the monitor, usually cannot be established from the code of the monitor
alone.

In the setting of a distributed system, it seems more appropriate that ýthe responsibility in
the use of a shared resource be delegated to a specific guardian for the resource. All users
will act as inferiors to the guardian. In fact it is unreasonable to expect that each user is
aware of the protocols to be followed in accessing the resource and that each user will
provide a guarantee on its ."correct" usage.

The abstraction that has been developed for this purpose has been termed guardian
[Hewitt, Attardi and Lieberman 1979; Svobodova, Liskov and Clark 1979, Dennis; 19801
The purpose of a guardian is to provide an interface ýto users for performing operations on
a protected resource. The guardian is responsible to synchronize possibly concurrent
requests, to schedule the access to the resource, provide protection and ability to recover
from failures. The job "of a guardian is to accept requests for operations and act on behalf
of the requesters to carry out such operations. Those requesting service are not allowed to
act directly on the resource; a property which we call absolute containment.

We will further discuss the concept of guardians and what is required from a prograrimming
language to support a guardian abstraction. Some of the recently proposed progr.aimniing
languages, such as ADA [Ichbiah 1980] and 'CSP [Hoare 1978], are not adequate to support
such an abstraction. The discussion will focus on a specific language, called Actl, which is
based on the Actor Model of Computation.

Actors are a genreralization for concurrent systems of both the functional objects of the
lambda calculus and the Simnula objects which can change state. They solve the problem
of providing both inherent concurrency and the ability for shared objects to change
state. Message passing is the uniform means of. communication between actors. Other
known mechanisms for interaction, such as procedure invocation or coroutining, can be
interpreted in term of message passing, as specific patterns of communications [FHewitt

G~uardians

Concurrent Systems

19751 Serialized actors are a novel construct which combines both the synchronization
facilities of primitives like monitors or Hoare's guards, and the ability to perform state
changes of assignment commands. Serialized actors might change their behavior in the
course of a computation. When a serialized actor receives a message, it can in fact
designate a replacement for itself to receive the next message delivered to it.

III -- The Actor Model of Computation

The actor model is based on fundamental principles that must be obeyed by all physically
realizable communication systems. Computation in the Actor Model is performred by a
number of independent computing elements called actors Hardware modules, subprograms,
and entire computers are examples of things that may be thought of as actors.

A computation is carried out by actors that communicate with each other by message
passing. Examples of such communications are electrical signals, parameter passing between
subroutines of a program and messages transferred between computers in a geographically
distributed network. A hardware module might receive operands and function codes on a
bus, while the, subprograms might receive values or locations of parameters, and the
computer might receive communications in packets.

Conceptually one actor communicates with another using a mail address. The operation
which can be performed on a mail address is to send communications. Thus a mail address
is quite a different concept froim a machine address which has read and write a% the
defined operations. There are a variety of ways to physically implement mail addresses
including copper wires, machine addresses, and network addresses.

An actor performs computation as a result of receiving a communication. The actor model
refers to the arrival of a communication at an actor as an event. As a result of receiving a
communication, an actor may produce other communications to be sent to other actors.
Speaking in term of events, this means that an event may activate some other events.
Events are hence related by an activation ordering [Hewitt and Baker 19771

Also as an effect of an event, an actor can create some new actors and can also designate
another actor to take its place, to receive the next delivered communication.

An actor can take the following actions in processing a message received:

Guardians

Concurrent Systems

1. It can create new actors;

2. It can send more messages;

3. It can specify a replacement actor which it will become and which will
handle the next communication received.

All such actions are specified by the behavior of the actor. A behavior is a function which
maps a communication received to a three tuple consisting the actors created as a result of
receiving the message, the communications sent as a result of receiving the messages, and a
next behavior.

Communications received by each actor are related by the arrival ordering, which expresses
the order in which communication are received by the actor. The arrival ordering of a
serialized actor is a total ordering, i.e. for any two communications received by an actor,
it always specifies which one arrived first Some form of arbitration is usually necessary to
implement the arrival ordering for shared actors.

A computation in the actor model is a partial order of events obtained by combining the
activation ordering and all of the arrival orderings The actor model incorporates
properties that any physically realizable communication system must obey. In fact, not all
partially ordered sets of events Can be physically realized. For instance, no physic·ally
realizable computation can contain two events which have a chain of infinitely many events
in between them, each one activating the next one

Guardians

Concurrent Systems

IV -- Related Work

A number of models have been recently developed for concurrent systems. These miuodels
differ in their conception of communication, in what can be communicated, and in the
ability to dynamically create new computational agents.

IV. 1 --- Nature of Communication

For some of these models [Hoare 1978, Milner 1979], the mechanism of communication
resembles a telephone system, where communication can occur only if the called party is
available at the time when the caller requests the connection, ie. when both parties are
simultaneously available for communicating. For the actor model, however, message passing
resembles mail service, so that messages may always be sent but are subject to variable
delays en route to their destinations. Communication via a mail system has important
properties that cause it to differ with "hard-wired" connection:

Asynchronony: The mail system decouples the sending of a message
from its arrival. It is not necessary for the recipient to rendezvous with
the sender of a messages.

Buffering: The mail system buffers messages between the time they are
sent and the time they are accepted by the recipient

We have found the properties of. asynchrony and buffering to be fundamental to the
widespread applicability of actor systems. They enable us to disentangle the senders and
receivers of messages raising the level of the description.

IV.2 --- Functionality of Mall System

The implementation of an actor system entails the use of a mail system to perform
communications. Such mail system will transport and deliver the communication by
ihvoking hardware modules, activating actors defined by software, or sending messages
through the network as appropriate. The following functionality is provided by the umail
system.

Guardians

Concurrent Systems

Routing. The mail system routes a message to the recipient over
whatever route seems most appropriate. For example it may be necessary
to route the message around certain components which are malfunctioning.
The use of a mail. system contrasts with systems which require a direct
connection in order for communication to take place.

Forwarding. The mail system must also forward messages to actors
which have migrated. Migration can be used to perform computational
load balancing, to relieve storage overpopulation, and to implement
automatic real-time storage reclamation.

IV.3 --- Sending Mail Addresses in Messages

An important innovation is that mail addresses of actors can be sent in messages. This
ability provides the following important functionalities:

Public Access. The receiver of a message does not have to anticipate
arrival of message in contrast to systems (such as CSP) which require that
a recipient know the name of the sender before any message can be
received, or more in general to systems where element interconnections are
fixed and specified in advance.

Reconfiguration. Actors can be put in direct contact with one another
after they are created since actors can be sent in messages.

In some models the mobility of objects is limited. For instance CSP and CCS only allow
communications composed of elementary data types such as integers, reals and chairacter
strings. Processes or other nonprimitive objects cannot be transmitted. Such limitation is
related to the corresponding restriction on the reconfiguration of the system.
Reconfiguration is not possible in systems such as CSP which require that a process be
created knowing exactly the processes with which it will be able to communicate
throughout its entire existence.

Guardians

Concurrent Systems

- IV.4 --- Dynamic Creation of Actors

New actors can be dynamically created as a result of an actor receiving a message. The
creator of an actor is provided with a mail address that can be used to communicate with
the new actor. Reconfiguration (see above) enables previously created actors to
communicate with the new ones.

IV.5 --- Mathematical Models

Mathematical models. for actor systems rigorously characterize the underlying
physical realities of communication systems. In. this respect they share a commlon
motivation with other mathematical models which have been developed to characterize
physical phenomena. The actor model differs in motivation from theories developed for
reasons of pure mathematical elegance or to illustrate the application of pre-existing
mathematical theories (modal logic, algebra etc.) The actor model of computation has been
mathematically characterized pragmatically [Greif 19751 axiomatically [Hewitt and Baker
1977] operationally [Baker 1978] and in terms of power domains [Clinger 19811

An important. innovation of the actor model is to take the arrival ordering of
communications as being fundamental to the notion of concurrency. In this respect it
differs from systems such as Petri Nets and CSP which model concurrency in terms of
nonideterministic choice (such as might be obtained by repeatedly flipping a coin). As will
be seen later in this paper, the use of arrival ordering has a decisive impact on the ability
to deal with fundamental issues of software engineering such as being able to prove that a
concurrent system will be able to guarantee a response for a request received.

IV.6 --- Generality

As a consequence of flexibility provided by the mail system and the ability to dynamically
create actors, the actor model can be used to analyze a wide spectrum of computer
systems. We have found it suitable for describing hardware and software aspects of
multiprocessor systems including distributed systems. It also seems to be quite appropriate
to describe the kind of self-timed systems that arise in VLSI technologies [Seitz 1979]. The
generality of the actor model distinguishes it from other models of concurrent systems
developed for more narrow contexts.

Guardians

Concurrent Systems

V -- The Actor Language Actl

When you speak a new language you must see if you can translate all
of the poetry of your old language into the new one.

Dana Scott

Actl is an experimental language based on the actor model of computation. Actl is
universal in the sense that any physically realizable actor system can be implemented in it

Henry Lieberman has implemented a preliminary version of Actl on the PDP-10 and
conducted some interesting experiments in its use.

V. 1 --- Notation

Actl borrows from LISP the syntactic notation for expressions, i.e. each expression is
enclosed in parentheses with the elements of the expression separated by white space. This
notation, which is essentially a parenthesized version of Polish prefix notation, has the
advantage that all expressions have a uniform syntax at the level of expression boundaries.
This is however only a superficial resemblance between Actl and LISP. Most of the new
semantic notions in Act1 (such as serializers, customers, transaction managers, etc. which
are not present in Lisp) stein from the fact that Actl was designed to implement
concurrent systenms whereas Lisp was designed and has evolved to implement sequential
procedures on a sequential computer.

V.2 --- Omega Descriptions

Actl embeds a subset of the Description System Omega [Hewitt, Attardi, and Simi 19,801
Omega combines ideas from the predicate calculus and the theory of types. From the
former it derives the ability to express arbitrary properties; from the latter the idea of
inheritance of properties. Descriptions are used to express properties, attributes, and
relations between 7objects.

Data types in programming languages types have come to serve more and more purpos;es in
the course of time. Type checking has become a very important feature of compilers to
provide type coercion, to help in optimization, and to aid in checking consistent use of
data. The lack of power and flexibility in the type systems of current programmning

Guardians

Concurrent Systems

languages limits the ability of the languages to serve these purposes. Omega helps to
overcome these limitations.

We use Omega to express assumptions and the constraints on objects manipulated by
programs in Actl. These descriptions are an integral part of the programs and canl be
used both as checks when the programs are executing and as useful information which can
be exploited by other systems which examine the program such as translators, optimizers,
indexers, etc. We believe that bugs occurring in programs are frequently caused hy the
violation of implicit assumptions about the environment in which the program is intended to
operate. Therefore many advantages can be drawn by a system that encourages the
programmer to express such assumptions explicitly, and by a system which is able to detect
when they are violated.

In this paper we use Omega mainly to describe the data, procedures, and messages used in
our programs. Examples of Omega descriptions are presented in the next section for
describing communications.

V.3 --- Communications and Customers

Communications are the units of information that are transmitted from an actor to
another. There are different kinds of communications each one with possibly different
attributes. Actl provides mechanisms to enable an actor to distinguish between kinds of
communications which it receives and to select their attributes, by means of simple pattern
matching.

A request is a kind of communication which always contains a message and a customer:

(a Request) is (a Request (with message (a Message)) (with customer (a Customer)))

The notion of customer generalizes the concept of continuation introduced in the context
of denotational semantics [Strachey and Wadsworth 1974, Reynolds 1974] to expres the
semantics of sequential control mechanisms in the lambda calculus. In that context a
continuation is a function which represents "the rest of the computation" to which the
value of the current computation will be given as an argument. A customer is analogous
to a continuation, in that a reply is sent to the customer when the transaction activatted by
the request is completed.

Guardians

Concurrent Systems

A Response is another kind of communication and can be either a Reply or Complaint:

(a Response) is (a Reply (with message (a Message)))
or

(a Complaint (with reason (a Message)))

The first reply received by a customer is usually treated differently than any subsequent
reply. In general subsequent replies will be treated as errors and generate comtplaints.

We would like to remark that the notion of customers subsumes and unifies manv less well
defined concepts such as a "suspended job" or "waiting process" in conventional operating
systems. In fact the ability to deal explicitly with customers unifies all levels of scheduling
by eliminating the dichotomy between programming language scheduling and operating
system scheduling found in most current systems.

V.4 --- Communication Primitives

Actl provides primitives to perform unsynchronized communication. This means that an
actor sending the communication simply gives it to the electronic mail system. It will
arrive at the recipient at some time in the future. Lf: an actor can transmit and receive

.communications while messages that it has sent are in transit tor their destinations.

Executing a command. of the form.

(SendToot. cS

results in the transmission to. the target actor t of a communication c.

Transmitting communications using this primitive is a very convenient method for causing
more parallelism. The usual: method in other languages for creating more: parall:elism entrails
creating processes, (cf. ALGOL-68, PL-1, Communicating Sequential Processes etc.). The
ability to engender parallelism by transmitting communications is one of the differences
between actors and the usual processes in other languages.

A few higher level communication commands are also provided, which. can be however
expressed in term of the previous ones.

Guardians

Concurrent Systems

A very frequent pattern of use of communications is to send a request to an actor and
receive the reply back from it for use in further computations. A special notation is used
for this common case of two way communication:

(ask t r)

results in the transmission to the target actor t of a request communication containing r as
message. The appropriate customer is automatically created so that the expression (ask t r)
can be used as denoting the value of the reply.

-To send a reply, a command of the form

(ReplyTo t v_

can be executed, which is an abbreviation for

(SendTo t (a Reply (with message v)))

Replies indicate the successful completion of a request The ReplyTo command packagcs up
the reply value v as a Reply so that an arbitrary actor can be sent as a reply and still have
the recipient understand that it is receiving a reply indicating successful completion of the
request To indicate that a request has not been successfully completed, a command of the
form

(Complain To t m)

can be used to send a complaint with message m to the target actor t Le. it is an
abbreviation for

(SendTo t (a Complaint (with message m)))

Guardians

V.5 .-- Behaviors

A behavior is what characterizes an actor. The behavior of an actor determnines which
communications the actor can accept, which action it will take as an effect of receiving a
communication, and what will be its subsequent behavior.

V.5.a -- Description of Behaviors

A behavior can be described using an expression of the following form:

(a Behavior
(<PatternForCommunication>l communication <body>l)

((PatternForCommunication>o communicagion <body>,))

V.5.b --- Creation of Behaviors

To create an new actor with a specified behavior, the following notation is used:

(the B•havior
(<PatternForCommunication>) communication <body>.,)

(<PatternFoeCommunication>n communication <body>n))

When an actor with a behavior of this kind receives a communication which matches any
of the patterns, then the corresponding body is executed. If the communication mnc-thes
more than one of the patterns, then an arbitrary :one of the corresponding bodies is
selected to be executed. If this is the case, it is a good programming practice to cnsure
that the results are the same in both cases or that it is immaterial which one *is selected.

Guardians Concurrent Systems

Concurrent Systems

V.6 --- Serializers

A serialized actor can only process one message at a time. A suitable implementation
might rely on a first-in-first-out queue where communications received when the serializer
is processing a previous message are queued, until they can be accepted and a scheduling
decision made.

The Actl syntax for the creation of an actor is:

(the Behavior <MessageHandler>1 ... <MessageHandler>n)

As we mentioned before, an actor after processing a message can specify the actor which it
will become in order to process the next message received. The replacement actor is
designated using an expression of the following form

(become <ExpressionForReplacement>)

The replacement is the actor which will handle the next communication received.

An important special case occurs where none of the message handlers have become
commands. Actors whose behavior has no become commands are called unserialized and
are treated specially by the implementation. Actors such as the text of the Iincoln's
Gettysburg Address and the square root function are unserialized.

An important efficiency consideration is that a serialized actor should specify the actor
which is its replacement as quickly as possible. In fact the only limitation on pairallelism in
systems constructed using Actl derives from the speed with which replacement actors can
be computed.

Accepting communications in the order in which they arrive does not involve any loss of
generality because the communication need not be acted on when it is accepted. For
example a request to print a document need not be acted on by a guardian when it accepts
the request. The guardian can remember the request for future action and in the
meantime accepts messages concerning other activities. Processing of a request ca'n resume
at any tinie by simply retrieving it from where it is stored. The ability to handle
customers like any other actors allows guardians to organize the storage of requests in
progress in a variety of ways. Uhlike monitors guardians are not limited to the use of a
couple of predefined specialized storage structures such as queues and priority queues.

Guardians

Concurrent Systems

In other languages which do not support the concept of a customer (such as
Communicating Sequential Processes and ADA), the acceptance of a request must be
delayed until the proper conditions are met for processing it. This usually requires
complicated programming constructs to guard the acceptance of messages.

VI -- Guardians

A guardian is an actor that can be used to regulate the use of shared resources by
scheduling access, providing protection, and implementing recovery from hardware failures.
A shared checking account is an example of the kind of resource that needs a guardianm. A
guardian must be able to implement any appropriate scheduling policy to process a request
We introduce the notions of a customer and transaction manager for a request and
illustrate how to use them to implement arbitrary scheduling policies for a guardian.

In this paper we show a programming methodology for the construction of guardians that is
based on these principles. We start by defining the data structures which describe the state
of the resource. We then specify the constraints on these data structures which have to be
maintained by the guardian. Then we specify the operations that are allowed on the
resource. A scheduling policy is then devised for the operations on the resources. Finally
code for the guardian can be produced that embodies the scheduling policy and provides
service for all requests while fulfilling the requirement of consistency expressed by the
constraints.

Guardians

Concurrent Systems

VII -- A Simple Checking Account Guardian

As a first example of how Actl can be used to implement guardians, we give the
implementation of a very simple checking account guardian which ensures that timing errors
do not occur when concurrent attempts are made to deposit or withdraw money in an
account

In our simple case a single value is sufficient which represents the balance of the account
will be sufficient to characterize the state of the account The appropriate constraint that
the guardian has to maintain is the fact that the balance is not allowed to become
negative. The operations allowed on the account are withdrawal and deposit operations.
They are to be performed as soon as they are accepted; therefore no particular scheduling
policy has to be implemented. We first present an abstracted partial description (interface
specification)

((an Account (constraint balance (a NonNegativeUSCurrency)))
is (a Behavior

((a Request (with message (or (a Deposit) (a Withdrawal))) (with customer c))
communication

(ReplyTo c (a CompletionReport)))))
-- ; Responses to deposit and withdrawal messages are guaranteed

which is separate from the implementation.

From this analysis of the problem, we produce the implementation of the checking account
guardian given below. In order to aid more complete understanding of the foundations of
message passing, the implementation is written out n full without using any of the
syntactic short cuts that are available in Acil to make the procedure more concise.

The notation for the implementation of an actor is close to the Omega notation. An
important difference from Omega is that Actl uses the definite article the to create a new
serialized actor. For instance (the Account) written below is a specific implementation of the
generic (an Account) described above. Whenever an expression .like (the Behavior ...) is
evaluated, a new actor is created with the corresponding behavior. An appendix of this
paper contains an explanation of the. Acti CaseFor primitive.

Guardians

Concurrent Systems

((the Account (constraint balance (a NonNegativeUSCurrency)))
is
(the Behavior

((a Request (with message (a Withdrawal (With amount w))) (With customer t))
communication
(CaseFor w

(is (S balance) then
(ReplyTo c (a CompletionReport))
(become (the Account (with balance (balance - w)))))

(is. (> balance) then

(ComplainTo c (an OverdraftComplaint))
(become (the Account (with balance balance))))))

((# Request (with message (a Deposit (with amount d))) (with customer c)) communication
(ReplyTo c (a CompletionReport))

(become (the Account (with balance (balance + d)))))

Below we present the very same implementation written using abbreviations which elide the
explicit mention of the customers involved. This is accomplished by using coninmuic;ation
handlers of the form

(<PatternForMessage> request

(reply <ExpressionForReply>))

(complain <ExpressionForComplaint>)

which is an abbreviation for

((a Request (with message (PatternForMessage>) (with customer p)) comnmnication

(Reply To <ExpressionForReply>)

(Complain To c <ExpressionForComplaint))

We can also elide mentioning the new behavior, in the case it is not changed.

Guardians

Concurrent Systems

((the Account (constraint balance (a NonNegativeUSCurrency)))
is

(the Behavior
((a Withdrawal (with amount w)) request

(CaseFor w
(is (S balance) then

(reply (a CompletionReport))
(become (the Account (with balance (balance - w)))))

(is (> balance) then
(complain (an OverdraftComplaint)))))

((a Deposit (with amount d)) request
(reply (a CompletionReport))
(become (the Account (with balance (balance + d)))))))

VIII -- Data Structures

Data structures in Actl derive from the description system Omega. In this section we
show how to characterize simple First-In First-Out queues in Omega. Various kind of
queues are quite useful in the implementation of concurrent systems. Later in the paper
we show how to extend these ideas to more realistic situations.

Omega facilitates providing multiple partial descriptions of objects. For cxamnple
(a Queue (with front 0)) is a description of an instance of a queue whose front is o. Note that
we have used the indefinite article "a" to mark descriptions of instances of a concept.
Descriptions can in turn be multiply described. For example the following says that an
empty queue is a queue:

((an EmptyQueue) is (a Queue))

Note that the is statement is asymmetric so we cannot incorrectly deduce that

((a Queue) is (an EmptyQueue))

which is fortunate since not every queue is empty.
bidirectional inheritances so that in general

We can write equations using

((dl same d2) -: ((dl is d2) A (d2 is dl)))

Guardians

We can also use prepositional phrases to specialize, instance descriptions as in the following
statements:

((a Queue (with front: 3): is (a Queue))
-,((a Queue (with front Something)) is (an EmptyQueue))

A NonEmptyQudue can be described as follows:

((a NonEmptyQueue) Same
(a Queue (with front Something) (with AllButFront (a Queue))))

Note that by using: the concept NonEmptyQueue on the left hand side of the above equation
we have specified that every NonEmptyQueue has two attributes front: which cant be anything
and AIIButFront which must be a Queue. Furthermore every queue with a front andl an
AIIButFront is in: turn a NonEmptyQueue.

We can describe a queue with front x and all, but front an empty queue as being the same
as a queue. with .rear x and all but rear an empty queue:

((a Queue (with front x) (with AIIButFront (an EmptyQueue))) samet
(a Queue (with rerar 4) (with AlIButRear (an EmptyQueueJ))

Local identifiers like x play a role in Omega similir to the role played by free idenitifiers in
formulas in the qumtnificational calculus: they can be bound to, any object For example

((a Queue (with front 311 (with AlIButFront (ant EmptyQueuFe)- s#0
(a Queue. (With. rear 3) (With:AIIButRear (an Emptyqueue}))}

The above descriptions express some of the relations that hold for queues. We believe that
it is important to allow information' to: be presented in an incremental fashion. For
example it should be possible for the user, to later further describe properties of queues
such as the following which states an. important relationship between the front, rear, and
middle of a queue.

((a Queue
(with front f).
(with AIIButFront i (aO Qeuo (twith rear r) (wit All~futRear m))))'

same
(a Queue

(with rear r4
(with AIIlButRear (a Queue (with front f) (wif: Alu1btFront ri)))))

~c~lir~ent ~vs9ems
GuardiansGurdan C

Concurrent Systems

The above description together with the ones given early completely describes queucs in the
same sense that axiomatizations of queues in the quantificational calculus or data algebras
can completely describe queues. It is important to realize that in giving the above
descriptions the user is not making any commitments as to the physical representation of
queues. The possibility is still open that queues will be physically represented as doubly
linked lists, arrays, some mixture, or still some other alternative physical representation. It
is even possible that more than one physical representations will cohabit the same system.

Queues of the kind described are highly suited for use concurrent systems. Their use
enables us to increase the concurrency in the server defined below since the activity of
constructing a new queue with an additional element can be concurrent with the server
processing other requests. The construction of a queue with a new element x in addition
to the elements already in a queue q is specified to place the new element at the rear of q
as follows:

((an Enqueuing (with NewEntry x) (with OldQueue q)) is
(a Queue (with rear x) (with AIIButRear q)))

IX -- Implementation of a Hard Copy Guardian

Implementing a module to service printing requests on a continuously available system
provides a concrete example to illustrate the flexibility of guardians. The example
illustrates how to implement a guardian that protects more than one resource (in this case
two printers).

IX.1 --- Interface of a Hard Copy Guardian

Below we give a behavior specification for the hardcopy guardian. We would like to
contrast this kind of specification with alternatives such as state specifications or
specification in terms of mathematical functions. Mathematical functions are appropriate
for specifying properties of modules where the major interest lies in specifying the output as
a function of the input. Specification of the hard copy guardian as a nmatheumatical
function is not satisfactory because the output is always always the same: a reply that the
printing request has been complete. State change is an appropriate way to specify
properties of a command where the, major interest lies in specifying what changes ais a
result of executing the command. For example the assignment command x:=3 can be

Guardians 23

Concurrent Systems

precisely described ..by saying that it .chaqges the value of x to !be 3. Specification of the
hard copy .guardian 'in terms of a state change is unsatisfactory because its functioality is
only distantly related to its change :in state from the time before ;executing a communu d to
print a document and the time when a reply is received that the document has :been
printed.

The specification of a guardian can be expressed as a behavioral specification.

((a HardCopyGuardian (constraint device I (a Printer)) (Constraint device2 (aPrinter)))

is
(a Behavior

((m Whichis Ia PrintRequisition)) request (reply (Ask (a Printer) m)))

This specification expresses the fact that all print requests will be handed to one of the
printers and the reply ,from ,the printer sent back to the requestor.

The hard copy guardian relies -on receiving a response from a printer when the printing is
completed. More formally the guardian relies on the following behavior specification of
printers:

((a Printer) is
(a Behavior

((a Request (with message (a PriftRequisition)) (with customer c))
communication

(ReplyTo c (a PritintigCompletedReport)))))

IX.2 --- Maodlarity of G-uardians

We have modularized the implementation of the guardian for a hard. copy server into five
separate modules:

1. The Guardian which provides the external interface to the outside.
world.

2 S.ervers which deal with the issues of managing transactions for a
shared resource.

G~uard ians

Concurrent Systems

3. A Scheduling Structure which keeps a record of pending work
to be done.

4. Transitions which computes what should be done as result of a
server entering a new state.

5. Transaction Managers which handle the information for
particular transactions and their communications.

We have found that the above modularization to be generally applicable to problems in
implementing shared resources. The same modularity will be preserved in a follow on
paper to this one in which we deal with issues of unreliable communication.

IX.3 --- Diagrams of a Simple Transaction

The Hard Copy guardian starts performing a transaction when it receives a communication
which satisfies the following description:

(a Request
(with message (PR Which/s (a PrintRequisition)))
(with customer C))

The transaction will be eventually carried on by sending one of the printing devices a
communication which satisfies the description

(a Request
(with message PR)
(with customer M))

where M is a transaction manager. The transaction will be completed when the reply
produced by the printer will be sent back to the original customer C:

(a Reply (with message V))

The complete sequence of events taking place during the processing of a transaction is
presented in the following diagrams.

Guardians

iustome r

Figure 1.
The first request is accepted by the server G.

Customer
C:

Figure 2.
A manager is created for handling the transaction

and the request is passed to a printer.

Custom e r

C:

Figure 3.
The reply from the printer is received

by the transaction manager

Customer
C:

Figure 4.
The server accepts the reply from irte M-'anager statilng

that the transaction has been ctompleted

Customer: 5 Reply
C: <<<<< message V

Figure 5.

The customer C receives the reply to the original request

Concurrent Systems

In the actor model sending messages is decoupled from their arrival. It is not necess;ary for
any kind of "rendezvous" to take place between the sender and receiver. A comnidcrable
period of time might pass between the timne when an message is sent and the time when it
arrives. This circumstance is modeled in the behavior specification for the hard copy
guardian given below by having separate events for the sending and arrival of a
communication.

IX.4 --- An Implementation

The operation of the hard copy guardian is illustrated for a typical transaction by the
diagrams given in this paper. They give an overview of salient events which occur in the
course of a printing transaction. We recommend that you look over them briefly now and
then refer to them more carefully as you read through the implementation.

The overall state of the resource protected by the hard copy guardian can be described by
such a queue of pending requests, and by the state of the two printers. This inforimation
will be kept in three state variables described as follo''s:

pending is (a Queue (constraint element (a PrintRequisition)))

DeviceStatusy is (or idle printing).

DeviceStatus2 is (or idle printing)

The guardian has to maintain the fundamental constraint among these data, corresponding
to the fact that no device should be idle if there are pending requests:

pending is ((an EmptyQueue) provided (v (DeviceStatus1 is idle) (DeviceStatus2 is idle)))

The description connective provided can be translated into logical implication as follows:

((v (DeviceStatus 1 is idle) (DeviceStatus 2 is idle)) = (pending is (an EmptyQueue)))

The hard copy guardian is provided with the mail addresses of two devices which are
printers when it is created. The function of the guardian is to set up and initialize a hard
copy server. The hard copy server accepts printing requests and communicates with the
printing devices. It maintains records of thestatus of. the printing devices and of pending
requests in order to the schedule the printers.

Guardians

Concurrent Systems

(the HardCopyGuardian (constraint devicel (a Printer)) (constraint device 2 (a Printer)))

(label s ; S is the name of the following serialized actor

(the Server
(with pending (an EmptyQueue))
(with DeviceStatus1 idle)
(with DeviceStatus2 -idle)
(with TheServer S)))

IX.5 --- Scheduling Structure

In our first implementation of the guardian, we will provide that print requests submuitted
to the guardian will be served in the order in which they are received. In general though,
they cannot be served immediately, because no printer might be available at that timne.
This means that a FIFO queue will be used as appropriate scheduling structure for pending
requests. This version will use as a scheduling structure the queue data structure as
described in the section on data structures above.

Guardians

Concurrent Systems

IX6 --- Server Behavior

As in the case of the guardian, we first give an interface specification for a server and then
present its implementation.

IX.6.a --- Interface Specification

((a Server
(constraint device, (8 Printer))
(constraint device2 , (a Printer))
(constraint pending

(a Queue (constraint element (a PrintRequisition)))
((an EmptyQueue) provided (v (DeviceStatus! is idle) (DeviceStatus2 is idle))))

(constraint DeviteStatus1 (or idle printing))
(constraint DeviceStatus2 (or idle printing))
(constraint TheServer (a HardCopyServer)))

is
(a Behavior

((m Whichls (a PrintRequisition)) request
(Ask (a Printer) m))

((a CompletionReport (With customer c)) reply
(ReplyTo c (a PrintingCompletedReport)))))

Guardians

Concurrent Systems

IX.6.b --- Implementation

(the Server
(constraint device, (a Printer))
(constraint device2 (a Printer))
(constraint pending (a Queue (constraint element (a PrintRequisition))))
(constraint DeviceStatus1 (or idle printing))
(constraint DeviceStatus2 (or idle printing))
(constraint TheServer (a HardCopyServer)))

is

(the Behavior
((a Request (with message (m Whichls (a PrintRequisition))) (with customer c)) communication

(become (the NextServer
(with pending (an Enqueuing

(with OldQueue pending)
(with NewEntry

(a Request

(with message m)
(with customer c))))))))

;thie next server is the value of the (the NextServer) expression above

((a CompletionReport (with device devicei) (with response r) (with customer c)) reply
;a completion reply means that devicei has tlopped printing

(ReplyTo c r)
;the reply is Iransmitted to the customer

(become (the NextServer (with DeviceStatusi idle)))))
;the replacement is the NextServer ewith device i idle

We have adopted in the above code and in our language a useful convention for giving
default values to missing attributions in a description or missing argument in a function
calL For instance in the above code the expression

(the NextServer
(with pending (an Enqueuing

(with OldQueue pending)
(with NewEntry

(a Request
(with message m)

(with customer c))))))

is considered to be equivalent -to

Guardians

Concurrent Systems

(the NextServer
(with pending (an Enqueuing

(with OldQueue pending)
(with NewEntry

(a Request
(with message m)
(with customer c)))))

(with DeviceStatus 1 DeviceStatusl)
(With DeviceStatu%2 DeviceStatus2)
(With TheServer TheServor))

This convention allows us to shorten our notation by avoiding the repetition of all the
attributions that are left unchanged.

Below we define the NextServer which computes the next replacement.

IX.7 --- Transitions

The concept of a NextServer serves to modularize the: change of behavior of a Server.

The program below illustrates how no!ldeterminism can manifest itself in actor systems. If
both devices are idle when a print request is received, then a nondetermninistic choice is
made which printer to use since it doesn't matter which one is chosen. The actual choice
is resolved by. the actual physical implementation such as* by the arrival order of
communications in a highly parallel architecture or perhaps: by the choice of compiler.

Guardians

Concurrent Systems

((the NextServer
(constraint devicel (a Printer))
(constraint device2 (a Printer))
(constraint pending (a Queue (constraint element (a PrintRequisition))))
(constraint DeviceStatus1 (or idle printing))
(constraint DeviceStatus2 (or idle printing))
(constraint TheServer (a HardCopyServer)))

is

(if (pending is
(a Queue (with front (a Request (with message r) (with customer c)))))

A (DeviceStatus(i Whichls (or 1 2)) is idle)
then

(SendTo device i
(a Request (with message r)

(with customer
(a TransactionManager

(with device devicei)

(with customer c)))))
(return (the Server (with pending AIIButFront) (with DeviceStatusi printing)))

(Else (the Server))))

The construct

(return <expression>)

is used to designate the expression whose value is to be returned. This notation is
necessary because several expressions can be evaluated concurrently.

Note that a new. transaction manager is created to manage each printing request for the
printing devices.

Also note that each use of SendTo corresponds to the generation of a concurrent activity.
So for instance, the first SendTo above starts the printing on one device, while the server
proceeds in parallel to look for more requests to be accepted.

Guardians

Guardians Concurrent Systems

IX. 8 --- Transaction Managers

The transaction manager expects to receive a reply from the printer (indicating conipletion
of the print request). The transaction manager in turn sends the completion report to the
server with additional: information about the transaction such as the device and customer
involved.

((a TransactionManager

(constraint TheServer (a HardCopyServer))

(constraint device d)
(constraint customer c))

is
(a Behavior

((a PrintingCompletedReport) reply (ReplyTo TheServer (a CompletionReport)))))

The transaction manager is implemented as a customer with a behavior which when a
printing completed report R is received, packages up the report R together with the n:irame of
the device d, and the customer c and sends them off in a reply to the server. Note that
the transaction manager is itself implemented as a customer that designates c as the sponsor
who should pay for the resources used in printing the document.

((the TransactionManager

(constraint TheServer (a HardCopyServer))

(constraint device d)
(constraint customer c))

is
(the Customer

(with behavior

(the Behavior
((R Whichis (a PrintingCompletedReport)) reply

(ReplyTo TheServer
(a CompletionReport

(with device d) (with response R) (with customer c))))))

(with sponsor c)))

Concurrent Systems

X -- Serializer Induction

Serializer induction is an inductive method for proving that a serialized actor S always
satisfies a specified property P. The base step of the induction is to show that S saliwfies P
when it is created. The induction step is to show that if S satisfies P then the replacement
of S will satisfy P.

We first show that certain constraints on the behavior of the hard copy server are always
met These invariants will be used in the rest of the proof.

The second part of the proof shows that the server computes a replacement for each
message which it receives. This will be a preliminary result for proving that the rest of the
constraints for the hard copy server always hold. Finally we prove that the server always
replies to the requests which it receives.

X.1 -- Checking Constraints of the Behavior

First we verify that the following constraints on the behavior of the hard copy server
always hold:

((a HardCopyServer) is
(a Server

(with pending
(a Queue (constraint element (a PrintRequisition)))
((an EmptyQueue) provided (v (DeviceStatus1 is idle) (DeviceStatus2 is idle))))

(with DeviceStatus1 (or idle printing))
(with DeviceStatus2 (or idle printing))
(with TheServer (a HardCopyServer))))

((a NextServer) is
((a NextServer

(constraint pending (a Queue (constraint element (a Request))))
(with DeviceStatus 1 (or idle printing))
(with DeviceStatus 2 (or idle printing))
(with TheServer (a HardCopyServer)))))

The proof that these constraints always hold is by serializer induction.

1. Show that the constraints are met when the hard copy server is created.

Guardifans

Concurrent Systems

2. Assuming that the constraints are true, show that, whatever message is received the
resulting replacement server will meet the constraints.

The general result can be established by case analysis for each message received. For
instance if the server receives a PrintRequisition r, then the request r will be added to, the
rear of pending and NextServer will be invoked with a nonempty queue to designate the new
server. There are two cases to be considered:

1: One of the devices is idle. Therefore by the constraint, pending contains only
the request r. The request r is removed from the queue of pending reqIuests
and the appropriate message is sent to the idle device, The replacement
satisfies the constraints because pending is once again empty.

2: Both devices are printing and therefore the conditional in NextServer is false,
so that the Else clause applies. Since pending was not empty, this mncains that
none of the devices was idle. Then the server becomes a server with neither
of the devices idle. Therefore the invariant will hold also in this case.

The proof that the constraints always hold is similar for the Completion communications.

Except for the proof of the condition on the emptiness of pending this part of the proof is
not very different from the kind of static type checking usually performed by ia compiler.

X.2 --- Proof of Guirantee of Service

We can prove that service is guaranteed to all printing requests. If the server receives a
request when one of the devices is idle, the request will be immediately passed. on, since
pending will be empty according to the constraints for the server behavior. If none of the
devices is idle, the request will be queued.

The following assertion is proved by induction on n:

If n requests precede a request R in pending, then R will be passed to
one of the devices after n completion communications have been
received by the server.

Guardians

Concurrent Systems

A completion is either one of the following communications:

(a CompletionReport (with device devicel) (with response ...) (with customer ...))
(a CompletionReport (with device device 2) (With response ...) (with customer ...))

The implementation of the server .has the property it will always receive a communication
back for each of the requests it sends to a device. By the constraints for the server, we
know that if R is pending, then there is ai request outstanding for either device1 or device 2,
and a completion reply will be received by the server.

The first such communication will be received after a number p of print requests have been
received by the server. p is finite because of the law of finite chains in the arrival
ordering of actor systems [Hewitt and Baker 1977)

We can show that each of these p print requests will leave unchanged the first n elements
in pending and will not alter the status of the devices. Consider then the effect of the next
completion received by the server. We show that either the number of requests preceding
R is decreased by one in the next replacement or the request R is sent to one of the
printing devices. Clearly one effect of the completion is that one of the devices will
become idle. Therefore the next request will be removed from pending and passed to the
free device. Therefore if n is o, the request R is served. On the other hand if n is bigger
than o,. then removing the first element from pending reduces by one the number of
elements preceding R in the queue.

Guardians

Concurrent Systems

XI -- Methodology

In the following sections we .present a more thorough treatment of important
methodological issues raised by our treatiment of the hard copy guardian presented above.

XL 1 Absolute Containment

With serializers it is possible to implement guardians which have a property called absolute
containment of the protected resource. This concept was proposed by [Hewitt: 1975] and
further developed in and in [Atkinson and Hewitt: 1979] (cf. [Hoare; 1976] for a similar
idea using the inner construct of SIMULA). The idea is to send a message with directions
to the guardian. This one in turn will pass it to the resource so that it can carry out the
directions without allowing the user to deal directly with the resource. An important
robustness issue arises with the usual strategy of giving the resource out. In fact it is not
easy to recover the use of the resource from a situation in which the user process has
failed for any reason to complete its operations.

We have found that absolute containment produces more modular implementations. than
schemes which actually gives out resources protected by guardians. Note that the correct
behavior of a guardian which implements absolute containment depends .only on the
behavior of the resource and the-code for the serializer which implements the guardi:man, but
not on the programs which call the guardian.

Our hard copy server implements absolute containment by never allowing others to have
direct access to its devices. Thus there is no way for others to depend on the number of
physical devices available. Furthermore there is no problem retrieving the devices from
users who have seized them since they are never given out.

From a broader philosophical view, absolute containment is a reflection of the logical
development of the message passing theory of modularity which was initiated by the lambda
calculus and Simula.

Guardians

Concurrent Systems

XL2 --- Evolution

An important consideration in the design of a guardian is the likely direction in which it
will need to evolve to meet future needs. For example the users may decide that ~.mialler
documents should be given faster service than larger documents. A simple schemie for
accomplish this is to assign floating priorities to the documents based on their length. The
idea is to assign an initial priority equal to the length of the document. When a printer is
free, the docutnent with highest priority (i.e. with the smallest priority niumiber) is served
next. If a print requisition for a document D1 of length n, is received when there is a
document .D2 at the rear of pending with priority n2 which is greater than nl, theli D1 is
placed in front of D2. In addition the priority of 02 is changed to n2 -nt . The above
property of floating priority queues can quite easily be specified as follows:

((an Enqueuing
(with NewEntry (an Entry (with item D1) (with priority nl)))
(With OldQueue

(a FloatingQueue
(with Rear (an Entry (with item D2) (with priority n2)))
(with AIIButRear q))))

is

(if (n2 > n1)

then (a FloatingQueue
(with Rear (an Entry (with item D2) (with priority (n2 .- n1))))
(with AIIButRear

(an Enqueuing
(with NewEntry (an Entry (with item D1) (with priority nl)))
(with OldQueue q))))

else
(a FloatingQueue

(with rear (an Entry (with item D1) (with priority nl)))
(with AIIButRear

(a FloatingQueue
(with Rear (an Entry (with item D2) (with priority n2)))
(with AIIButRear q))))))

Simply replacing the queues in the original implementation of the hard copy guardia;m with
floating priority queues will accomplish the desired change. As illustrated by the above
example, we have found that it is quite easy evolve guardians to meet new requirements.
It is also quite easy to evolve the proof given above to show that the new hard copy s;crver
.still provides a guarantee of service. The ease with guardians can evolve to imeet new
requirements is testimony to the power of the concept

Guardians

Concurrent Systems

XI.3 --- Guarantee of Service

In our applications we want to be able to implement guardians which guarantee that a
response will be sent ýfor each request :received. This requirement for a strong guaran•tee of
service is the concurrent analogue to the usual requirement :in sequential programming that
subroutines must return values for all legitimate arguments In our applications it would be
incorrect to have iinplementations which did not guarantee to respond -to messages received.

Serializers have the important advantage that it is possible to guarantee absence of ldeadlock
in actor systems by simply assuring that each individual actor will specify a replacement for
itself for each message. that it processes In many cases (such as the prograims in 1-his
paper) it is quite easy to make this check.

Proving a guarantee of service (i.e. every request received will generate a response) is not
quite so triviaL Note that it is impossible to prove the property of guarantee of service in
some computational models such as Petri nets, :CCS, and CSP in :which processes
communicate via synchronized communication. We consider the ease with which we can
prove guarantee of service to be one of the principle advantages of using the actor model
of computation.

We recognize that our conclusions concerning the issue of guarantee of service are
at variance with the beliefs of some of our colleagues. These disagreements appear to be
fundamental and have their genesis in the inception of the field in the early 1970Ys. The
disagreieinents can be traced to different. hypotheses and assumptions oit conceptual,
physical, and semantic levels.

Conceptual Level. As we mentioned earlier, one of the
innovations of the actor model is to take :the arrival ordering of
communications as being fundamental to the notion of
concurrency. In this respect it differs from systems such as Petri
Nets and CSP -which model concurrency in terms of
nondeterministic choice (such as might be obtained by repeatedly
flipping a coin). Modeling concurrency using nondeterministic
choice implies that all systems must have bounded
nondetermninism. However a system such as our hard copy
guardian which guarantees service for requests received, can :be
used to implement a system with unbounded nondetermninismn.
For this reason, guarantee of service was rejected for inclusion in
CSP producing a fundamental difference with actor systems.

Guardians

Concurrent Systems

Physical level. A careful analysis of the physical and
engineering realities leads to the conclusion that guarantee of
service can be reliably implemented in practice. Worries about
the possibility of implementing guarantee of service have caused
others to shrink from providing the ability to guarantee service.

Semantic level. The axiomatic and power domain
characterizations of actor systems are closely related and represent
a unification of operational and denotational semantics. It is
important to note that the axioms which characterize actor
computations that are physically are of an entirely different kind
from the ones which 'have been developed by von Neumann,
Floyd, Hoare, Dijkstra etc. to characterize classical programming
languages. The power domain semantics for actor computations
developed by Clinger is grounded on the underlying physical
realities of communication based on the use of a mail systeim.
The physical grounding of the ordering using in Clinger's model
causes it to differ with others such as Egli-Milner ordering which
inherently preclude the possibility of modeling guarantee of
service.

Guardians

Guardians 40 Copcurrent Systems

XII -- Concurrency

Concurrency is the default in Actl. Indeed maximizing concurrency, mininmizing r'lponse
time, and the avoidance of bottlenecks are perhaps the most fundamental engineering
principles in. the construction of actor systems. The only limitation on. the concurrency of
a serialized actor is the speed with which the replacement can be computed for a imessage
received.

Concurrency occurs among all the following activities:

Within the. activities of processing a single message for a given serialized
actor. The serialized actor which receives a message can, concurrently
create new actors, send messages, and designate its replacement (cf. [Ward
and Halstead 1980] for the application of this idea in a more limited
context).

.- Between the activities of processing a message for a serialized actor and a
successor message received by the same serialized actor. The ability to
pipeline the processing of successive messages is particularly imnportant for
a serialized actor which does not change state as a result of the message
which it has received and thus can easily designate its successor. Another
important case occurs where the computation for constructing the
replacement can occur concurrently with the replacement processing the
next message using "eager evaluation" [Baker and Hewitt: 19781 For

* example a checking account can overlap the work of constructing a report
of all the checks paid out to the Electric Company during the previous
year with making another deposit for the current year.

Of course there is no. limitation whatsoever on the: concurrency that is possible between the
activities of two different serialized actors. For example two separate checking accounts
can be processing withdrawals at exactly the same time.

Unlike communica:ting sequential processes, the commands in a serializer do not have to be
executed sequentially. They can be executed in any order or in parallel. This difference
stems from the different ways in which parallelism is developed in the actor model and
communicating sequential processes. In: the latter parallelism comes from the combination
of sequential processes which are the fundamental units of execution. In the actor model
concurrent events are the fundamental units and sequential execution is a derived notion.

Concurrent. Systems

XIII -- Summary

Actl has a number of important advantages over previous systems for the iimpleuimrtation
of concurrent systems. In this paper we have demonstrated how it facilitates imiiportant
aspects of the design, implementation, documentation, proof of specified properties, and
evolution of concurrent systems.

XIV -- Acknowledgements

Our colleagues at the MIT Artificial Intelligence Laboratory and Laboratory for Compniter
Science provided intellectual atmosphere, facilities, and constructive criticism which greatly
facilitated our work. Major support for both laboratories is provided by the Advanced
Research Projects Agency of the DoD. Additional support for this research was provided
by the Office of Naval Research. We would like to thank Bill Carlson, Mike Dcrtouzos,
Bob Engelmore, Bob Grafton, Bob Kahn, and Pat Winston for their encouragement and
support.

Henry Lieberman has implemented a preliminary version of Actl on a DEC' PDP--IO on
the M.I.T. ITS system. We are working to develop a successor implementation on the

(MIT CADR Distributed system building on the foundation which Jeff Schiller has
developed software for load balancing and migration of actors making use of the Chaos
packet switched network (which is similar to the Ethernet). Ultimately we will develop an
implementation of Actl on a follow-on system called the APIARY [FHewitt: 1980, Schiller:
1980] which is currently under development. Phyllis Koton [Koton and Hlewitt 1 980] has
participated in the development of the Portal communications chip to facilitate multiway
communication on the Apiary. Gerald Barber and Maria Simi helped to forma-lize the
property of guarantee of service which is fundamental to actor systems.

During the spring of 1978, the first author participated in a series of meetings wvith the
Laboratory of Computer Science Distributed Systems Group. These meetings were quite
productive and strongly influenced both this paper and the Progress Report of the
Distributed Systems Group [Svobodova, Liskov, and Clark: 19791

Conversations with Jean-Raymond Abrial, Ole-Johan Dahl, Jack Dennis, Edsger DIijkstra,
David Fisher, Dan Friedman, Stein Gjessing, Tony Hoare, Jean Ichbiah, Gilles Kahn, Dave
MacQueen, Robin Milner, Birger Moller-Pedersen, Kristen Nygaard, Jerry Schwarz, Steve
Schuman, Bob Tennent, and David Wise. The first author would like to thank Luigia

Guardians

GConcurrent Systems

Aiello and Gialifranco Prini and the :partidipants -in tthe summer school -on .IFoundations of
Artificial Intelligence and Computer Science :in Pisa :for helpful comments.

Robin Stanton has provided constructive .criticism and lgreat -encouragcmnent. Peter D)eutsch
made valuable suggestions on how :to .rganize -the :ea.ily sections :of this ipaper. 'Maria Simi,
Phyllis Koton, Valdis 'Berzins, Alan 'Borning, .Ridhard Fikes, Gary Nutt, Susan Owicki, 4)an
Shapiro, Richard Stallmnan, Larry Tesler, iDeepak Kapur and the members of ithe Message
Passing Systems Seminar have given us valuable feedback and suggestions on this. .paper.
Vera Ketelboeter has independently developed 'a notion of "'responsible :agents" 'that is very
close to the :transaction managers described in ;this paper. Jerry :Barber and "Maria Simi
have developed tmethods for proving that actor ..systems :imnplemented with internal
concurrency will respond properly to the :messages 'which tthey -receive.

Although we have criticized certain aspects of monitors and Communicating Sequenttial
Processes in this paper, both proposals :represent extremely important advances in the .tite
of the art f developing mtnore modular concurrent ;systems and both have deeply ;influenced
our work.

The serializer construct used in this paper is a further development Wcf the construct :in
[Atkinson and Hewitt: 19791 It has been simplified by removing most of the built-in
machinery of the previous version. However the 'more basic capabilities of thl .new
construct allow us :to :fficiently implement -the facilities:such -as queues) that were p-roviiled
by previous serializers as '.well as to ,implement new 'facilities that ýwere not provided before.
Additional :flexibility comes form the fact that :primitive seriilizers can :.explicitly .detil with
the customer: of a communication.

Guardians

Concurrent Systems

XV -- Bibliography

Atkinson, R. and Hewitt, C. "Specification and Proof Techniques for Seri:alizers"
IEEE Transactions on Software Engineering SE-5. No. 1. January 1C979. pp
10-23.

Backus, J. "Can Programming Be Liberated from the von Neumann Style? A
Functional Style and its Algebra of Programs" Communications of the ACM,
Volume 21, Number 8, August 1978, pages 613-641.

Baker, H. "Actor Systems for Real-Time Computation" MIT Laboratory for
Computer Science Technical Report 197. March 1978.

Birtwistle, G. M.; Dahl, O.; Myhrhaug, B.; and Nygaard, K. "SIMULA !gin"'
Auerbach. 1973.

Brinch Hansen, P. "The Programming Language Concurrent Pascal" IEEE Transactions
on Software Engineering SE-1 pp 199-207. 1975.

Brinch Hansen, P. "Distributed Processes: A Concurrent Programming Concept"
CACM. Vol 21. No 11. November 1978. pp 934-940.

Borning, A. H. "THINGLAB -- A Constraint-Oriented Simulation Laboratory",
Stanford PhD thesis, March 1979. Revised version to appear as Xerox PARC
SSL-79-3.

Brinch Hansen, P. "The Programming Language Concurrent Pascal" IEEE Transactions
on Software Engineering. June, 1975. pp 199-207.

Clinger, VW. "Foundations of Actor SemantiCs" MIT PhD. Thesis. 1981.
forthcoming.

Dennis, J.B.. "The APPL Language and its Interpreter", MIT DSG Memo, August
1980.

Dijkstra, E. W. "Guarded Commands, Nondeterminancy, and Formal Derivation of
Programs" CACM. Vol. 18. No. 8. August 1975. pp 453-457.

Guardians

Greif, L "Semantics of -Communicating Parallel Processes" Project MAC Technical
Report 154. September 1975.

Gjessing, S. "Compile Time Preparaitions for Run Time Scheduling in- Monitors"
Research Report No. 17, Institute of Informatics, University of Oslo, Jine 1977.

Hewitt, C. E. "Protection and Synchronization in Actor Slyslems" ACM
SIGCOMM-SIGOPS Interface Workshop on Interprocess Communication, 1March
1975.

Hewitt, C E. "Viewing Control Structures as Patterns of Passing MTessages" Joutrial of
Artificial intelligence. 8-3, 323-364, June 1977.

Hewitt, C., Attardi, G. and Li eberinan, H. "Specifying and Proving Propertics of
Guardians for Distributed Systems" in Semantics of Concurrent Comiput•ations
(Ed. G. Kahn), Lecture Notes in Computer Science No. 70, Springer-Ver'lag,
Berlin, 1979.

Hewitt, C.; Attardi, G.; and Lieberman, H. "Security and Modularity in Messiage
Passing" MIT Al Lab Working Paper 180, also in First Thtcr'r;ational
Conference on Distributed Computing Systems, Huntsville, Alabama, October
1979.

Hewitt, C and Baker, H. "Laws for Communicating Parallel Processes" MIT Arttificial
Intelligence Working Paper 134, December 1976. Invited ;paper at IFIP-77.

Hewitt, C. E. "The Apiary Network Architecture for Knowledgeahile Systeins"
Proceedings of Lisp Conference Stanford. August 1980. pp 1,07-118.

Hewitt, C. E., Attardi, G., and Simi, M. ý"Knowledge Embedding in the Description
System Omega" Proceedings of AAAI Codference Stanford. August 19.80. pp
157-164.

Hoare, C.' A. R. "'Monitors: An 'Operatinig System Structuring Concept" CACM.
October 1974.

Hoare, C A. R. "Language Hierarchies and Interfaces" Lecture Notes 'in Computer
Science No. 46, Springer-Verlag, 1976. pp 242-265.

Guardians Conncurrent Systerms

Concurrent Systems

Hoare, C.A.R. "Communicating Sequential Processes" CACM, Vol 21, No. 8. August
1978. pp. 666-677.

Ichbiah, J. et al. "Reference Manual of the ADA Programming Language", SigP'lan
Notices 16, 6, 1980.

Ingalls, D. H. H. "The SmallTalk-76 Programming System Design and
Implementation" Conference Record of the Fifth Annual ACM S;,mposiumn on
Principles of Programming Languages, Tucson, January 1978, pp. 9-16.

Koton, P. and Hewitt, C. "Portal: A Multiway Communicator" MIT AI Lab
Working Paper. December 1980.

Liskov, B. "Primitives for Distributed Computing", Proceedings of the Serenth
Symposium on Operating Systems Principled', Pacific Grove, California, 1979.

Kerns, B. "Towards a Better Definition of Transactions" M.I.T. AI Menmo. 1979.

Kristensen, B. B.; Madsen, O. L; Moller-Pedersen, B.; and Nygaard, K. "A
Definition of the BETA Language" TECHNICAL REPORT TR-8. Aarhus
University. February 1979.

Manna, Z. and McCarthy, J. "Properties of Programs and Partial Function Logic"
Machine Intelligence 5 B.. Meltzer and D. Michie, editors. Edinburgh Univ.
Press. 1970. pp 27-37.

Milner, R. "Flowgraphs and Flow Algebras" JACM. Vol 26, No. 4. 1979.

Owicki, S. "Verifying concurrent Programs With Shared Data Classes" Formal
Description of Programming Concepts edited by E. J. Neuhold. North I oll;and.
1978.

Reynolds, J.C. "On the Relation Between Direct and Continuation Semantiics"
Proceedings of the Second Colloquium on Automata Language and Progranmmning,
Saarbruecken, Springer-Verlag, Berlin 1974.

Schiller, J. "Progress on the Implementation of an Apiary" MIT AI Working Paper.
December 1980.

Guardians

Guardians Concurrent Systems

Seitz, C. "System Timing" in Introduction to VLSI Systems" by Mfead and (o•lwy.
Addison-Wesle.y. 1980. pp 218-262.

Strachey, C. and Wadsworth, CP. "Continuations - a Mathematical .SemaIltivc for
Handling Full Jumps", Technical Monograph PRG-I I, Programming RKecarch
Group, University of Oxford, 1974.

Svobodova, L; Liskov, B.; and Clark, D. "Distributed Computer Systems: Structure
and Semantics" MIT Laboratory for Computer Science TR-215. March 1979.

Ward, S. and Halstead, R. "A Syntactic Theory of Message Passing" JACM. Vol 27,
No. 2, April 1980. pp 365-383.

Concurrent Systems

APPENDIX XVI --- Conditional Constructs of Actl

XVI.1 --- A Concurrent Case Expression

In Actl the conditional case expressions has the following form:

(CaseFor expression

(is pattern.for_value. then body)

(complaint patternforcomplaint i then body)

(NoneOfAbove alternativebody))

iFn order to evaluate this construct, expression is evaluated first If the evaluation produces
a value V which matches any of the patterns then the corresponding body is executed. If
the value V matches more than one of the patterns then an arbitrary one of the
corresponding body1 is selected to be executed. If the evaluation produces I complaint
(exception) instead of a value and the complaint matches one of the patterns, for
complaints, then one of the corresponding bodies is selected for execution.

The rule of concurrent selection of which body to execute in the case where a value
matches more than one pattern has the advantage that it makes each body more modular
since it depends only on its pattern, making it easy to add more selections later. Thus the
rule of concurrent consideration of cases encourages the construction of programns which are
more modifiable. The programs are also more robust since the addition of new cases is less
likely to introduce bugs in already existing cases.

The concurrent case statement facilitates efficient implementation by allowing concurrent
matching of expression against the patterns. This ability is important in applicationis where
a large amount of time is required to determine whether or not conditions hold. In this
case the implem6ntation could execute the body of the clause whose condition is first
determined to hold meanwhile abandoning effort on the other clauses. Thus the rule of
concurrent consideration of cases enables some programs to be implemented more
efficiently.

If the value V is determined to match none of the patterns then alternalive-body is execCuted.
This rule provides the ability to have the patterns represent special cases leaving the
alternativebody to deal with the general case if none of the special cases apply.

Guardians

Guardians Concurrent Systerns

Allowing pattern matching in the case clauses is a useful feature that is derikved froml the
pattern directed programming languages PLANNER, QA-4, POPLER, CONNIVER, etc.

