
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

Working Paper 311 August 1988

Analyzing the State Behavior of Programs

Alan Bawden

Abstract

It is generally agreed that the unrestricted use of state can make
a program hard to understand, hard to compile, and hard to execute,
and that these difficulties increase in the presence of parallel hardware.
This problem has led some to suggest that constructs that allow state
should be banished from programming languages. But state is also a
very useful phenomenon: some tasks are extremely difficult to accom-
plish without it, and sometimes the most perspicuous expression of an
algorithm is one that makes use of state. Instead of outlawing state,
we should be trying to understand it, so that we can make better use
of it.

I propose a way of modeling systems in which the phenomenon of
state occurs. I propose that systems that exhibit state-like behavior are
those systems that must rely on their own nonlocal structure in order to
function correctly, and I make this notion of nonlocal structure precise.
This characterization offers some new insights into why state seems to
cause the problems that it does. I propose to construct a compiler
that takes advantage of these insights to achieve some of the benefits
normally associated with purely functional programming systems.

A.I. Laboratory Working Papers are produced for internal circulation, and may
contain information that is, for example, too preliminary or too detailed for formal
publication. It is not intended that they should be considered papers to which
reference can be made in the literature.

1 Introduction

As functional programming languages and parallel computing hardware be-
come more widespread, understanding the phenomenon of state has becom-
ing increasingly important for computer science. It is generally agreed that
the unrestricted use of state can make a program hard to understand, com-
pile, and execute, and that these problems increase in the presence of parallel
hardware.

The usual approach to controlling these problems is to impose program-
ming language restrictions on the use of state, perhaps even by ruling it out
altogether. Others have proposed schemes that accept state as a necessity,
and try to minimize its bad effects. [16, 2, 1, 6, 10]

I would like to propose that before either outlawing state, or learning to
tolerate it, we should first try to better understand it in the hope of even-
tually being able to reform it. This paper takes some steps towards such an
understanding by proposing a way of modeling systems in which the phe-
nomenon of state occurs. Using this model we will be able to characterize
those systems in which some components of a system perceive other com-
ponents as having state. We will gain some insight into why state is such a
problem. Finally I will suggest how this insight might lead us towards better
ways of thinking about state, and make our programming languages more
expressive when we program with state. I will also propose the construction
of a compiler that uses these insights into the nature of state to achieve some
of the benefits normally associated with purely functional programming sys-
tems.

1.1 What is State?

It's not immediately clear what, if anything, the word "state" refers to. We
ordinarily treat State as being a property of some object. We pretend that
state can be localized in certain portions of the systems we construct. We
act as if the question "where is the state?" has an answer. Ordinarily this
doesn't get us into any trouble, but if we try to analyze systems from a
global perspective, this view becomes untenable.

It cannot be the case that state is an attribute possessed by an object
independent of its observer. In a system consisting of an observer and some
other components, in which the observer describes one component as having
state, it is often possible to provide an alternate description in which some
other component contains the state. Often the system can be redescribed

from a viewpoint in which another component is treated as the observer and
the original observer appears to be the component with state. Sometimes
the system can even be described in such a way as to eliminate all mention
of state. (In [15] Steele and Sussman explore this mystifying aspect of state
in some depth.)

In cases where state cannot be eliminated, it behaves much like a bump
in a rug that won't go away. Flatten the bump out in one place, and some
other part of the rug bulges up. Any part of the rug can be made locally flat,
but some global property (perhaps the rug is too large for the room) makes
it impossible for the entire rug to be flat simultaneously. Analogously, we
may be able to describe all the components of a system in stateless terms,
but when the components are assembled together, some components will
perceive other components as possessing state.

As an example, consider the simple system consisting of a programmer
interacting, via a keyboard and display, with a computer. Imagine that
the software running on the computer is written entirely in a functional
programming language, the stream of output sent to the display is expressed
as a function of the stream of keyboard input. (See [9] for a demonstration
of how this can be done.) Thus the description of the subsystem consisting
of the keyboard, computer and display is entirely free of any mention of
state, yet from the programmer's viewpoint, as he edits a file, the computer
certainly appears to have state.

Imagine further that the programmer is actually a robot programmed in
a functional language, his stream of keystrokes is expressed as a function of
the stream of images he sees. Now the situation appears symmetrical with
respect to programmer and computer, and the computer can claim that that
it is the programmer that is the component of the system that has state.

All components in this system agree that from their perspective there
is state somewhere else in the system, but since each component is itself
described in state-free terms, there is no component that can be identified
as the location of that state. This does not mean that the phenomenon of
state is any less real than it would be if we could assign it a location. It
does mean that we have to be careful about treating state as anything other
than a perceptual phenomenon experienced by some components in their
interaction with other components. In particular, we must not expect to
single out components as the repositories of state.

Therefore an important aspect of my approach to studying state will be
a reliance on observers embedded in the system itself to report on state as
they experience it. A more conventional approach would be to treat state

as something experienced by observers external to the system under study.
Mine is a much more minimalist approach, demanding less of state as a
phenomenon. State is certainly experienced by entities within the systems
that we construct, but this does not imply that state can be studied as if it
were a property of those entities.

This is similar to the stand taken by those physicists who advocate the
Many Worlds interpretation of quantum mechanics [5], and I adopt it for
similar reasons. By dispensing with external acts of observation, and instead
treating observation solely as a special case of interaction between the com-
ponents of a system, the Many Worlds formulation gives insight into why
observers perceive effects such as the Einstein-Podolsky-Rosen "paradox".

The programs we write are really instructions to be followed by little
physicists who inhabit computational universes that we create for them.
These embedded observers must react to their environment on the basis of
their perceptions of it. They are not privy to the god's-eye view that we, as
the creators and debuggers of their universe, are given.

Since programming languages are designed to facilitate the instruction
of these little physicists, it is natural that programming languages describe
phenomena as they are perceived by such embedded observers, but that
does not mean that we should adopt the same terminology when we study
the universe as a whole. The notion of state is a valid one, in as much
as it describes the way one component of a system can appear to behave
to another, but it would be a mistake to conclude from this that state is a
intrinsic property that we, as external investigators, can meaningfully assign
to certain components.

By carefully restricting the notion of state to apply only relative to em-
bedded observers, we avoid confusion and achieve additional insight into the
conditions that cause state to appear. My hope is that this additional in-
sight will lead to an improvement in the terminology used to describe state
to embedded observers, and so lead to improved programming language
constructs for building systems in which state appears.

1.2 Modeling State

In order to study computational systems in which the phenomenon of state
appears, we will need a way to model them. I will present the Connection
Graph model and show how it can serve this purpose. Connection graphs
were originally developed as an abstract machine model for a programming
language for parallel computers.[4, 3]

Connection graphs have a number of advantages as a model of compu-
tation, particularly when it comes to studying state:

Connection graphs are simple. Simplicity is an advantage since it reduces
the complexity of any analysis made using the model. We will be able to
easily prove some theorems that would be very difficult otherwise.

Connection graphs are sufficient. A good model must be able the exhibit
the phenomenon we want to study. It is actually somewhat surprising that
connection graphs can be used to model the phenomenon of state. At first
glance, connection graphs have a distinctly functional appearance. However,
I will show how systems can be constructed in which state occurs.

Connection graphs are natural. Real systems must correspond closely
to their representation using connection graphs. In particular, since we
are studying state as a perceptual phenomenon experienced by the compo-
nents of a system, each component of a system must have a corresponding
component in its connection graph model. (This rules out many univer-
sal computing models, such as Turing Machines and the Lambda Calculus.
Such models are capable of simulating any computational system, but they
don't preserve the system's structure as connection graphs do.)

1.3 Outline

In section 2 I shall begin by presenting the connection graph model and
demonstrating how programs can be translated into connection graphs. This
is done in some detail so that the reader may acquire a solid understanding
of how ordinary programming language concepts are expressed in the simple
connection graph language. I will pay particular attention to the problem
of generating state-like behavior in the connection graph model.

In section 3 I will identify two phenomena that occur whenever connec-
tion graphs are used to model systems with state. I will argue that, given our
intuitive understanding of state, these phenomena are expected symptoms of
state-like behavior. Then, in section 4, I will prove some theorems about the
conditions under which those phenomena can occur, and argue that those
conditions are the correct characterization for systems that exhibit state-like
behavior. Such systems are those that depend on their nonlocal topological
structure in order to behave correctly.

In section 5 I will argue that much of our trouble with state stems from
the mistaken notion that state can always be localized within some object.
This object metaphor is the only tool supported by current programming
languages for using state, and while it works in simple situations, it becomes

very difficult to apply as systems become more complex. I will suggest that
we should be searching for better metaphors, not involving the notion of
objects, for controlling the nonlocal properties of our computational systems.

Finally, in section 6, I will propose that the next step towards exploiting
these ideas should be the construction of a compiler that uses its under-
standing of state to achieve some of the benefits normally associated with
purely functional programming systems.

2 The Connection Graph Model

In this section I present the basics of the connection graph model. I will
show how to translate a program into a connection graph grammar, with
particular attention to how state-like behavior can be implemented. A good
feel for this translation, especially with respect to state, is needed in order
to understand the discussion that follows.

2.1 Connection Graphs

Intuitively, a connection graph is similar to the topological structure of an
electronic circuit. An electronic circuit consists of a collection of gadgets
joined together by wires. Gadgets come in various types-transistors, ca-
pacitors, resistors, etc. Each type of gadget always has the same number
and kinds of terminals. A transistor, for example, always has three termi-
nals called the collector, the base, and the emitter. Each terminal of each
gadget can be joined, using wires, to some number of other terminals of
other gadgets.

A connection graph differs from a circuit chiefly in that we restrict the
way terminals can be connected. In a connection graph each terminal must
be connected to exactly one other terminal. (In particular, there can be no
unconnected terminals.)

Symmetrical gadgets are also ruled out. Some gadgets found in circuits,
such as resistors, have two indistinguishable terminals. In a connection
graph all the terminals of any particular type of gadget must be different.

Some convenient terminology: The gadgets in a connection graph are
called vertices. The type of a vertex is called simply a type, and the terminals
of a vertex are called terminals. The wires that join pairs of terminals are
called connections. The number of terminals a vertex has is its valence.

The type of a terminal is called a label. Thus, associated with each vertex
type is a set of terminal labels that determine how many terminals a vertex

of that type will possess, and what they are called. For example, if we were
trying to use a connection graph to represent a circuit, the type TRANSISTOR
might be associated with the three labels COLLECTOR, BASE, and EMITTER.

Given a set of types, each with an associated set of labels, we can consider
the set of connection graphs over that set of types, just as given a set
of letters called an alphabet, we can consider the set of strings over that
alphabet. Figure 1 shows a connection graph over the two types TRANSISTOR
and CONS, where type CONS has the three associated labels CAR, CDR, and Up.
This example is a single connection graph-a connection graph may consist
of several disconnected components.

COLLECTOR
BASE TRANS

EMITTER
COLLECTOR

BASE TRANS

PEMITTER
CONS CONS

CAR CDR CAR CDR

COLLECTOR UP

TRANS CONS

EMITTER CDR

Figure 1: Example Connection Graph

Figure 2 is not an example of a connection graph; the UP terminal of the
CONS vertex is not connected to exactly one other terminal. The restriction
that terminals be joined in pairs is crucial to the definition.

UP
COLLECTOR CAR CDR

BASE TRANS CONS CONS

EMITTER CAR CDR
UP

Figure 2: Illegal Connection Graph

2.2 Connection Graph Grammars

A connection graph grammar is a collection of production rules called meth-
ods. Each method describes how to replace a certain kind of subgraph with a
different subgraph. If the connection graphs over some set of types are anal-
ogous to the strings over some alphabet, then a connection graph grammar
is analogous to the familiar string grammar.

In a string grammar the individual rules are fairly simple, consisting of
just an ordered pair of strings. When an instance of the first string, (the left
hand side) is found, it may be replaced by an instance of the second string
(the right hand side). It is clear what is meant by replacing one string with
another.

In a connection graph grammar the notion of replacement must be
treated more carefully. Figure 3 shows an example of a method. Both
the left hand and right hand sides of a method are subgraphs with a certain
number of loose ends. A method must specify how the terminals that used
to be connected to terminals in the old subgraph should be reconnected to
terminals in the new subgraph. In the figure, the loose ends in each subgraph
are numbered to indicate how this reconnection is to be done.

2 1

CONS

CDR

BASE

MITTER COLLECTOR 2

4
/

\3

Figure 3: Example Method

For example, when applying the method in figure 3, a coNS vertex and
a TRANSISTOR vertex, connected from CDR to BASE, are to be replaced with
two new coNs vertices connected together as indicated. The terminal in the
old connection graph that was connected to the UP terminal of the old coNS
vertex is reconnected to the CAR terminal of the first new CONS vertex, as
shown by the loose ends numbered 1. The terminal that was connected to
the EMITTER terminal of the old TRANSISTOR vertex is reconnected to the UP
terminal of the same new coNS vertex, as shown by the loose ends numbered

4. The terminal that was connected to the CAR terminal of the old CONS
vertex, and the one that was connected to the COLLECTOR terminal of the old
TRANSISTOR vertex, are reconnected to each other-this is indicated by the
loose ends numbered 2 and 3.

It should be emphasized that the old subgraph-consisting of those ver-
tices matching the left hand side of the method just applied-is discarded.
In this aspect connection graph grammars really are exactly analogous to
the way grammars are defined for strings.

It might be interesting to continue the analogy with string grammars
by introducing a distinction between terminal and nonterminal types and
identifying a initial nonterminal type. Then we could define the language
generated by a given connection graph grammar as the set of connection
graphs that can be generated by starting with a graph consisting of a single
vertex of the initial type and applying methods until a graph with only
terminal type vertices results. There might be interesting results to be
proved, for example, about what kind of connection graphs can be generated
using only context sensitive connection graph grammars, where that notion
is suitably defined.

In using connection graph grammars as a model of computation we have
no need of terminal and nonterminal types, nor of an initial type. We
translate a program into a connection graph grammar, and then apply it to
some input graph. After methods from the connection graph grammar have
been applied until no more are applicable, some output graph will result.
Thus the connection graph grammar may be viewed as computing some
function from connection graphs to connection graphs.

Actually it is a multivalued function-more properly a relation-since

the output connection graph can depend on the order in which methods from
the connection graph grammar are chosen. Connection graph grammars are

nondeterministic in general, but in section 4 we will be able to prove a

Church-Rosser theorem for certain classes of grammars.

Only one form of method will appear in the connection graph grammars

generated by the translation process described below: methods whose left

hand side consists of exactly two vertices joined by a single connection.

Figure 3 is an example of such a binary method.

2.3 Translating Lisp into a Grammar

A program written in a familiar, Lisp-like notation can be translated straight-

forwardly into a connection graph grammar. There are two key ideas in-

volved: first, a natural graph-structure is already associated with simple ex-
pressions that don't involve LAMBDA-abstractions or conditionals, and second,
a binary method can be used to implement a procedure calling mechanism.

The translation scheme given here assigns an "eager" applicative order
semantics to the source language. It is applicative because the bodies of
LAMBDA-expressions and the arms of conditional expressions are not processed
in any way until the procedure is called or the test results are known. It
is eager because procedures are called while their arguments continue to
compute. (This is similar to the semantics that would result if Multilisp
[8] were modified to implicitly wrap a FUTURE around all operands of all
procedure calls.)

2.3.1 Expressions

It is plain how to interpret simple expressions as the description of a graph-
we can just use the expression tree. Figure 4 shows the connection graph
for the expression (+ 3 (* 4 5)) using the vertex types CALL2, +, *, 3, 4,
and S. (CALL2 vertices are used to represent two-argument procedure calls.
+ and * vertices represent two well-known primitive procedures. 3, 4, and
5 vertices represent the integers three, four, and five. Similar vertex types
will be introduced below without comment.)

Figure 4: Graph of (+ 3 (* 4 5))

This isn't really a proper connection graph because it has a loose end at
the top. Loose ends are an artifact of the way expressions can be nested.
If the example expression appeared as part of some more complicated ex-

pression, then that loose end would be used to join the example graph into
some more complicated graph.'

2.3.2 Variables and LAMBDA

Since the semantics of variables is intimately related to that of LAMBDA-
abstraction, it is convenient to explain the interpretation of LAMBDA-expressions
before taking up the interpretation of variables.

The connection graph for the expression

(F 2
(LAMBDA ()
(+ 3 (* 4 5))))

is shown in figure 5. G0069 is a unique vertex type generated to represent
closures of the LAMBDA-expression. Associated with this vertex type is the
method shown in figure 6. The right hand side of this method is just the
graph represented by the body of the LAMBDA-expression. The left hand side
is the graph fragment that would occur were a vertex of type G0069 to be
invoked as a procedure of no arguments.

CONT

CALL2
FUN ARG2

ARG1

UP UP UP
F 2

G0069

Figure 5: Graph of (F 2 (LAMBDA () (+ 3 (* 4 5))))

The introduction of anonymous vertex types, such as G0069, and new
methods for those types, such as the method in figure 6, is a consequence
of the declarative nature of LAMBDA-expressions. The graph of a LAMBDA-
expression itself is always very simple, consisting of a single vertex of an

1An interesting discussion of the relationship between expressions and the networks or
graphs they notate can be found in [14]. Note, however, that a connection graph is not
the same thing as a constraint network; the notion of a two-ended connection differs from
the more wire-like notion of identification used in a constraint language.

1

CONT

CALLO

UP

G0069

Figure 6: Method for G0069 Vertices

anonymous type. The body of the LAMBDA-expression declares how that type
should behave in conjunction with an appropriate CALL vertex.

The handling of bound variables is an obvious extension. Consider now
the expression

(F 2
(LAMBDA (Y)

(+ 3 (* Y 5))))

whose graph appears in figure 7. G0259 is again a vertex type generated to
represent closures of the LAMBDA-expression. Associated with this vertex type
is the method shown in figure 8. This method arranges that when a vertex
of type G0259 is invoked as a procedure of one argument, that argument is
connected to the place where the variable Y appeared in the graph of the
body of the LAMBDA-expression.

Next, we would like to consider an expression like

(LAMBDA (Y)
(+ x (* Y s)))

that has free variables. Since a free variable is always bound by some sur-
rounding contour, we consider instead the expression

(LAMBDA (X)

(F 2

(LAMBDA (Y)

(+ x (* Y 5)))))

CONT

CALL2
FUN ARG2

ARG1

UP UP UP
F 2

G0259

Figure 7: Graph of (F 2 (LAMBDA (Y) (+ 3 (* Y 5))))

1 2

CONT ARG1

CALL1

FUN

UP

G0259

Figure 8: Method for G0259 Vertices

UP

G1729

Figure 9: Graph of (LAMBDA (X) (F 2 (LAMBDA (Y) (+ X (* Y 5)))))

whose rather uninteresting graph appears in figure 9.
Associated with the vertex type G1729 is the method shown in figure 10,

and associated with the vertex type 01776, which appears in the right hand
side of that method, is the method shown in figure 11.

1

1 2

CONT G1

G1729

Figure 10: Method for G1729 Vertices

1 2

CONT ARG1
CALL1

FUN
UP

G1776

X

3

Figure 11: Method for G1776 Vertices

The vertex type G1776, generated to represent closures of the inner
LAMBDA-expression, is bivalent-previously all such generated vertices have
been univalent. The extra terminal is used to pass the value of the free
variable x from where the closure was generated to where it is invoked.

Now we can see why we need only consider binary methods: they can be
used to capture the basic mechanism of procedure calling. One vertex rep-

resents the procedure to be called. Its terminals (except the one connecting
it to the other vertex) are the environment of the procedure. Its type is the
procedure code. The other vertex is the argument list. Its terminals are
the arguments to be passed to the procedure, and the continuation to be
connected to the returned value. Its type is used to indicate the operation
that should be performed (the procedure should be called), and allows a pro-
cedure call to be distinguished from a procedure that is merely connected
to some static data structure, such as when a procedure is an element of a
a list built from CONS vertices.

This suggests how a binary method can also be viewed as a message pass
[7, 12]. One vertex is the object, the other is the message. The terminals
of the object vertex are its instance variables. The terminals of the message
vertex are the arguments to the message. The type of the object vertex is
the type of the object. The type of the message vertex is the operation. Fig-
ure 12 shows the method for an object of type 4 receiving an ADDi message.
The method dispatch normally associated with message passing occurs when
we look up which method to run for the pair of vertex types in question.
(This, of course, explains why I called them "methods" in the first place.)

1
CONT

ADD1

ARG

UP

4

Figure 12: Method for Incrementing a 4

When a binary method is viewed as a message pass, the difference be-
tween the message and the object is entirely in the eye of the beholder. The
method could just as well be interpreted in the other way, so that object
and message exchange roles. This symmetry is possible because connections
themselves are symmetrical. In ordinary programming languages, where all
objects are referenced through asymmetrical pointers, this symmetry doesn't
exist.

Figure 12 raises a minor issue about the relationship between message
passing and procedure calling that seems to confuse many people. The
expression (ADD1 4) describes a procedure call rather than the message pass

that appears on the left hand side of figure 12. If the ADDi procedure is
defined appropriately, however, the graph of (ADDi 4) will trivially transform
into the left hand side of figure 12.

2.3.3 Conditionals

The translation of the conditional expression

(IF (EVEN? 3)
4
5)

is shown in figure 13. G1957 is a unique vertex type generated to test the
value returned by the expression (EVEN? 3). Figure 14 shows the two meth-
ods associated with type G1957. The first method covers the case where
three is even by returning four. The second method returns five in the case
where three is odd.

CONT

61957

VAL

CONT

CALL1
FUN ARG1

UP
UP

EVEN? 3

Figure 13: Graph of (IF (EVEN? 3) 4 5)

Another example demonstrates the interaction of conditionals with vari-
ables. Figure 15 shows the method associated with the vertex type G1984,
generated to represent closures of the LAMBDA-expression

(LAMBDA (X Y)
(IF (EVEN? 1)

Y
(* 2 Y)))

The vertex type G2020 is used to test the value returned by the expression
(EVEN? X). Since the variable Y appears in both arms of the conditional,

1

CONT

G1957

VAL

UP

#T

CONT

G1957

VAL

UP

#F

1

ýUp
1

=Up

Figure 14: Methods for G1957

a G2020 vertex must have an additional terminal to attach to the second

argument to the procedure so that the methods for G2020 vertices (shown in

figure 16) can use it.

1

Figure 15: Method for (LAMBDA (X Y) (IF (EVEN? X) Y (* 2 Y)))

Notice that this is not equivalent to treating IF as a macro that would

expand into

(IF-PROCEDURE
(EVEN? X)
(LAMBDA () Y)
(LAMBDA () (* 2 Y)))

(where IF-PROCEDURE is defined to invoke its second or third argument de-

pending on the value of its first). This would create two vertices of generated

type to represent closures of the two LAMBDA-expressions. Since the variable

2
1 2 1 2

y CONT CONT CONT
G2020 1 G2020 CALL2

FUN ARG2
VA VAL ARG1

UP UP
IT 2 #F * 2 1

Figure 16: Methods for G2020

Y appears free in both expressions, both vertices would be bivalent: their
extra terminal would be used to pass in the value of Y. Thus we would have
to somehow make a copy of the value of Y so that it could be connected to
both vertices.

The problem of copying is dealt with in the next section, but we will have
reason to see that it is not a desirable phenomenon. Using an IF-PROCEDURE
to translate conditionals breaks the conditional into two parts: a dispatch-
ing part, and an invocation part. By keeping these aspects of conditional
expressions bound together, the copying problem can be avoided in this case.

2.3.4 Copying

Consider the expression

(LAMBDA (X)

(+ x X)).

Because x occurs twice in the body, the method associated with the vertex
type generated to represent this procedure must arrange to distribute a
single argument to two places.

We could simply outlaw such procedures, obtaining a language in which
the programmer is forced to specify exactly how each reference will be dupli-
cated. This would be a great inconvenience, and would violate many people's
intuitions about the meaning of expressions, especially in such straightfor-
ward operations as arithmetic, where it is perfectly clear what it means to
duplicate a integer.

Figures 17 and 18 suggest a solution. The method in figure 17 uses a
COPY vertex to increase the fan-out of the procedure's argument. In the gen-
eral case, a tree of trivalent COPY vertices will be constructed. The method in

figure 18 implements the usual semantics for duplicating an integer. An infi-
nite collection of such methods, one for each integer, are needed.2 Methods
for the duplication of other objects can be constructed by the programmer
on a type-by-type basis.

1 2

CONT ARG1
CALL1

FUN
UP

G6765

1

CONT

CALL2
FUN ARG2

ARG1

UP

+ A COPY

2

Figure 17: Method for (LAMBDA (X) (+ X X))

1 2

A
COPY

VAL

UP
5

Figure 18: Method for Duplicating 5

2.4 State-like Behavior

Given the presentation of connection graphs up to this point, it is perhaps
surprising that they can be used to construct systems that behave as if they
had state. The key idea is that instead of using COPY vertices to duplicate
structure, as was done in the last section, we use COPY vertices to construct
communications networks. A object that appears to have state can be im-
plemented by allowing the COPY vertices to accumulate into a fan-in tree
with the state stored at the apex (figure 19).

2In a practical implementation of the connection graph model, these methods would
all share the same code. But such tricks needn't concern us here.

Figure 19: Fan-in Tree

Instead of writing methods that duplicate the structure at the apex,
methods can be written that propagate messages up the tree where they can
then interact with that structure. Messages arrive serially at the apex of the
tree. As each message arrives, the structure can transform into a different
structure before handling the next message. The structure connected to the
apex of such a tree can be thought of as its current state.

Figures 20, 21 and 22 show six methods that use this technique to im-
plement an object called a CELL that responds to PUT and GET operations to
modify the contents of a state variable.

The four methods in figure 20 are variations of the same basic idea.
They allow PUT and GET operations to propagate from multiple references at
the leaves, up the fan-in tree, to the apex, where the state variable can be
accessed. Each operation requires two separate propagation methods: one
for when the operation is connected to the A terminal of a COPY vertex, and
another for the B terminal. PUT and GET vertices have a USERS terminal to
hold the part of the tree they have propagated past.

The method in figure 21 causes the GET operation to return a copy of
the value stored in the CELL vertex when it encounters it at the apex of the
fan-in tree.

Figure 22 causes the PUT operation to replace the value stored in the
cell and drop the old value. DROP vertices are used to dispose of unwanted
connections just as COPY vertices are used to multiply access to popular ones.

Figures 23 through 26 demonstrate how a CELL functions. Initially (in the

1 1

VAL CELL

COPY B 2 GET

O CONT USERS

A4
CELL

VAL

GET
COPY

CONT USERS B
A B

4 3 3 2

1 1

VAL CELL

A
COPY A 2 GET

CONT USERS

CELL 4

VAL

GET

CONT USERS A

4 3
2 3

1 1

VAL CELL

COPY B 2 PUT

NEW N USERS

CELL
VAL

PUT
COPY

NEW USERS

4 3 3 2

1 1

VAL CELL

COPY A 2 PUT

NEW USERS
B

CELL 4
VAL

PUT
COPY

NEW USERS
A B

2 3

Figure 20: Methods for Propagation

1

VALUE

CELL

USERS

CELL

GET

CONT USERS

2 3

Figure 21: GET Method for a CELL

VALUE

CELL
ALUE

USERS

CELL

PUT
NEW USERS 3

2 3

Figure 22: PUT Method for a CELL

left half of figure 23) there are two messages, one PUT and one GET, waiting
at the fringe of a small (single vertex) fan-in tree of COPY vertices with a
CELL at its apex. This connection graph might result from the expression

(LET ((X (CELL 3)))

(IN-PARALLEL (PUT X 4)
(GET X)))

assuming that the procedures PUT, GET, and CELL are given the appropriate
trivial definitions to construct PUT, GET, and CELL vertices.

There are two methods from figure 20 that can be applied to the left
connection graph in figure 23. I arbitrarily chose to apply the method for
propagating the PUT message through the fan-in tree first. Had I chosen
to propagate the GET, a different final graph would have been the result.
Presumably the programmer who wrote this program didn't care which of
the two possible answers, 3 or 4, he obtained.

In figure 24, where there are also two applicable methods, the method for
delivering a PUT message to a CELL (figure 22) is chosen instead of propagating
the GET. In this case the choice does not change the final answer.

In figure 25 only the method for propagating the GET can be applied, and
then in figure 26 the sole possibility is to deliver the GET message to the CELL.
(The resulting debris of COPY and DROP vertices can be cleaned up by some
methods for combining DROP and COPY vertices, dropping and duplicating
integers, and dropping CELL vertices. These methods are easy to construct,
but are not given here.)

Figure 23: Propagate PUT

22

)
UP

UP

OP

Figure 24: Perform PUT

UP

UP

UP

UP

.OP

Figure 25: Propagate GET

UP

DROP

UP
UP

Figure 26: Perform GET

3 The Symptoms of State

Experience with converting programs into connection graph grammars has

convinced me that all grammars that exhibit the phenomenon of state share
two important characteristics: First, they are always nondeterministic gram-

mars. Second, they always construct graphs that contain cycles. In this sec-

tion I shall present some intuitive arguments for why this should be so. In

the next section I will show why these two characteristics constitute strong

circumstantial evidence that state is a phenomenon caused by the nonlocal

topological structure of connection graphs.

It would be nice to be able to prove that the phenomenon of state has this
topological origin. Unfortunately this cannot be done because state is not

something that has been adequately defined. All programmers understand

what state is because they have experienced it in the systems they construct.

They know it when they see it, but they don't have a formal definition for it.

Thus, the best that we can hope to do is to demonstrate that this topological
property exhibits the same symptoms that we normally associate with state.

We cannot show that some new definition of state is equivalent to some

known definition, but we can give state a definition for the first time.

3.1 Symptom: Nondeterminism

Why should it be the case that nondeterministic connection graph grammars
are needed in order to construct systems with state?

Recall that in figure 23 an arbitrary choice was made to propagate the
PUT message up the fan-in tree of COPY vertices towards the CELL at the top.
Had the GET message been propagated instead, a different final connection
graph would have resulted. This nondeterminism is possible because COPY
vertices are willing to interact with vertices connected to either their A or B
terminals. Intuitively, a fan-in tree is willing to "listen" to messages arriving
from anywhere along its fringe.

If COPY vertices were only willing to interact through their A terminals,
there would only be a single location on the fringe of a fan-in tree that would
ever be listening for the next message. This single attentive location would
be determined at the time the tree was constructed. For each variable that
occurred twice in the body of a LAMBDA-expression, programmers would have
to declare which occurrence was the A occurrence. In effect, programmers
would have to specify the order in which each reference to an object would
be used. This is the price we would have to pay for keeping our grammars
deterministic.

To illustrate the effect this would have, consider the following simple
Scheme[13] procedure for computing factorials:

(DEFINE (FACT1 N)
(DEFINE (LOOP N X)

(COND ((< N 2) (GET X))
(ELSE
(PUT X (* (GET X) N))
(LOOP (- I 1) X))))

(LOOP N (CELL 1)))

This program uses a simple CELL object to accumulate a product as it loops
over the integers from N down to 2. (Assuming that CELL's are constructed
by applying the CELL procedure to an initial value, and that that value can
then be read and written using the procedures GET and PUT.)

No Lisp programmer would ever actually write FACTI since it is easy to
see that it is equivalent to the following, clearly state-free, procedure:

(DEFINE (FACT2 N)

(DEFINE (LOOP N A)

(COND ((< N 2) A)

(ELSE
(LOOP (- N 1) (* A N)))))

(LOOP N i))

To prove that FACT2 behaves the same as FACTi one must reason about the
history of the operations performed by FACTI on its CELL: Only a single CELL
is created, and it initially contains 1. Each time around the loop the CELL's
contents are first read, and then written. At the end of the loop, the CELL's
contents are read one final time. Given this history it is simple to replace
the CELL in FACTi with the variable A in FACT2. As FACT2 loops, the value of

A mimics the contents of the CELL in FACTi.
Now imagine translating FACTi into a connection graph grammar. The

variable x occurs three times in the ELSE clause of the COND statement. (This
is the only multiple occurrence of any variable in FACTI.) It would seem
therefore that any translation of FACTi into a connection graph grammar
would require the use of nondeterministic COPY vertices.

However, the semantics of the Scheme language require that when the
ELSE clause is evaluated, the next operation performed on the CELL, the GET
operation, will use the reference obtained from the second occurrence of x.
The PUT operation will then use the reference obtained from the first oc-
currence of x, and all following operations will use copies of the reference
obtained from the third occurrence of X. Thus we can order the occurrences
of X in FACTI so as to specify the order in which references obtained from
them will be used. This enables us to translate FACTI into a determinis-
tic connection graph grammar using COPY vertices with a single attentive
terminal.

The knowledge needed to prove that FACT2 is equivalent to a stateless
procedure turns out to be similar to the knowledge needed to translate FACT2
into a deterministic grammar. The former required knowledge of the history
of operations performed on the CELL. The latter required knowledge of the
order in which the occurrences of x would be used. Since each occurrence of
x is clearly tied to a particular operation (the first is an argument to PUT and
the second is an argument to GET) these are really just two manifestations
of the same knowledge. Augmenting FACTi with the declarations necessary
to allow it to be translated into a deterministic connection graph grammar
would be augmenting it with the first half of the argument that it can be
rendered stateless.

If FACTi truly needed to use state-that is, if it wasn't equivalent to some
procedure like FACT2-it would be very surprising to find that we could add
the ordering declarations that would allow it to be translated into a deter-
ministic grammar. Given such declarations, it takes only a little work to find
an equivalent stateless procedure. So if a procedure has no stateless equiv-
alent, it shouldn't be possible to add such declarations. And without such
occurrence ordering declarations, we can only produce a nondeterministic
grammar.

The foregoing argument falls short of being a rigorous proof that state
implies nondeterminism. We do not have a definition for state, nor do we
have a rigorous notion of equivalence for procedures. Nevertheless it is clear
that there is a close relationship between what needs to be done to a con-
nection graph grammar to make it deterministic, and what needs to be done
to a procedure to make it stateless.

Others have also observed that the need for nondeterminism seems to
be a symptom of the desire for state. In [9], for example, Henderson must
add a nondeterministic stream merging operator before he can construct
an otherwise functional description of an operating system that appears to
maintain state.

3.2 Symptom: Cycles

Why should it be the case that cyclic connection graphs are needed in order
to construct systems with state?

Consider how an observer embedded in such a system can perceive state.
There must be some experiment that the embedded observer can perform
that will reveal that the part of the connection graph external to him behaves
as if it had state.

Such an experiment, expressed in Scheme, might look like:

(DEFINE (EXPERIMENT X)
(ACTION! X)
(IF (TEST? X)

'STATE
'NO-STATE)) .

The general idea is to detect that the external system, accessed through the
variable X, somehow remembers the action performed by ACTION!, and this
can be detected by the procedure TEST?. The programmer who wrote this
procedure probably thought in terms of some object, named by the variable
X, whose state could be modified and tested by ACTION! and TEST?.

The important thing to notice about the procedure EXPERIMENT is that
the variable x occurs in its body twice. This is because two references to
the subsystem being tested are needed in order to complete the experiment.
While one reference is passed to ACTION!, a second reference must be retained
so that ACTION!'s effects can be observed.

If EXPERIMENT were translated into a connection graph grammar, then,
due to the two occurrences of x, the first method would resemble figure 17 in
that its right hand side would contain a cycle. This cycle is not a spurious
effect of the way the procedure was written, it it a consequence of the nature
of the experiment. Any system that looks for correlations between past
actions and future effects will have this structure at some point in its history.

To see this more clearly, it may help to think about the phenomenon
of aliasing. Aliasing occurs in traditional programming languages when a
given storage location comes to have multiple names. Aliasing is often asso-
ciated with puzzles that involve the way assignment interacts with different
parameter passing mechanisms. When a location has multiple names, it
becomes possible to change the value accessed through one name by using a
another name. Thus, the behavior of an aliased name can be altered without
ever using that name. It requires at least two names for this phenomenon
to occur: a first name whose behavior changes mysteriously, even though it
wasn't used, and a second name that causes the change because it was used.

If a name is viewed as a path for accessing a location, then the analogy
with cyclic connection graphs is revealed. If there are two paths from point
A, where the observer stands, to point B, the observed location, then there
is a cycle starting from A, running down the first path to B, and then back
up the second path to A again. Traversing the second path in reverse to get
from B back to A may seem unnatural because we don't usually travel from
objects backwards to the entities that know their names, but when modeling
such a system using connection graphs it is easier to think in terms of cycles,
a natural topological property of any kind of graph with undirected edges.

The need for cycles in systems with state has been noticed before. Usu-
ally it is expressed as a need for some kind of equality predicate in order to
have a sensible notion of side effect. In [15] Steele and Sussman conclude
that "the meanings of 'equality' and 'side effect' simultaneously constrain
each other"; in particular they note that it is impossible to discuss side
effects without introducing some notion of sameness.

The programmer who wrote the EXPERIMENT procedure intended that
the variable x should refer to the same object each time it occurred; he
was unable to discuss side effects using a notion of sameness. To support

this notion we have to introduce cycles into the system. Cycles are thus
inevitable when side effects are to be detected.

4 Locality

I will now demonstrate that the symptoms ascribed to state in the previous
section occur in systems whose nonlocal topological structure affects their
behavior. This suggests that the various phenomena we have loosely been
calling "state-like behavior" can all be explained in these topological terms.
This insight into the nature of state helps explain why programming in the
presence of state is sometimes difficult, and why this difficulty increases as
systems become larger. It also suggests where to look for further insights,
and how we might design better tools for using state.

In this section the simplicity of the connection graph model will pay off
in a big way. So far the restricted nature of connections has manifested
itself chiefly by forcing us to construct the somewhat clumsy CDPY vertices
in certain situations. Here we will find that the simplicity of connections
makes it very easy to define an appropriate notion of locality.

We need to capture the notion of locality because we can only study
state as a phenomenon experienced by observers embedded in computational
systems, and the only tool that an observer embedded in a connection graph
has for making an observation is the binary method, whose left hand side
is matched against a local subgraph. If there were methods whose left hand
sides were more complex, perhaps allowing the method to run only if the
entire graph passed some test, then locality would not be as important, but
the left hand side of a binary method only tests a small, local portion of the
graph. Thus, there is no way for a running program to learn anything about
the nonlocal structure of the connection graph that it is a part of. With the
characterization of locality developed below, this observation will be made
precise.

It is worth recalling, at this point, that message passing and procedure
calling are easily modeled using binary methods. Just as binary methods
are unable to gain nonlocal knowledge, so message passing and procedure
calling are similarly limited. This limitation is a consequence of the way
the processing elements in all computing hardware work. All processing
elements have some limit to the amount of state that can be contained
in their private, immediately accessible memory. They are forced to take
computational action based solely on this local knowledge of the state of the

entire system. They must trust that other parts of the system-memories,
other processing elements, I/O devices-are functioning as expected.

4.1 Homomorphisms and Local Indistinguishability

To capture the notion of locality, we can define a homomorphism from one
connection graph to another as a map that preserves the local structure of
the graph. More precisely, a homomorphism is a map d : G --+ H from
the terminals of the connection graph G to the terminals of the connection
graph H such that:

* If a and b are terminals in G, and a is connected to b, then d(a) is
connected to '0(b).

* If a and b are terminals in G that belong to the same vertex, then 19(a)
and d(b) belong to the same vertex in H.

* The label of a terminal a in G is the same as the label of t9(a) in H,
and the type of a's vertex is the same as the type of 23(a)'s vertex.

2V is an epimorphism if it is onto, a monomorphism if it is one-to-one, and
an isomorphism if it is both. If V is an isomorphism, it has an inverse '-1
that is also an isomorphism.

Since all the terminals of a vertex in G are mapped together to the
same vertex in H, a homomorphism also defines as a map from vertices to
vertices. Thus if v is a vertex in G, we can extend our notation and let 1(v)
be the corresponding vertex in H. In fact, a homomorphism is completely
determined by its action on vertices.

Figure 27 shows an example of a homomorphism. The arrows indicate
how the vertices of the left hand graph are mapped to the vertices of the right
hand graph. This is the only homomorphism between these two connection
graphs, although in general there may be many.3

Imagine what it would be like to explore a maze that was built on the
plan of a connection graph: Each vertex becomes a room, each connection
becomes a hallway, a sign over each doorway gives the label of the corre-
sponding terminal, and sign in the center of each room gives the type of the
corresponding vertex. Unless he turns around and retraces his steps, an ex-
plorer can never know that he has arrived in a room that he passed through

3The category of connection graphs and connection graph homomorphisms has many

interesting properties. An entertaining exercise is to determine how to compute products
of connection graphs.

Figure 27: A Connection Graph Homomorphism

before. For all the explorer can tell, the connection graph he is explor-
ing might well be a (possibly infinite) tree containing no cycles whatsoever.
There would be no way for him to distinguish between the two connection
graphs in figure 27. Such graphs are locally indistinguishable.

Formally, two connection graphs H1 and H 2 are locally indistinguishable,
written H1 - H2 , if there exists a connection graph G and epimorphisms 91 :
G -- H1 and t2 : G -+ H2. It can be shown that local indistinguishability
is an equivalence relation on connection graphs. As a special case of this
definition note that if V : G -+ H is any epimorphism, then G N H.

4.2 Methods

Things become more complicated once we introduce methods into the pic-
ture. In this section we will prove some theorems about the relationship
between connection graph grammars and homomorphisms and local indis-
tinguishability. The proofs are sketched rather than being presented in te-
dious detail, since the results are all easy to see once the definitions are
understood.

We write G =* G' if the connection graph G' is the result of applying

any number of methods to any number of disjoint subgraphs of G. We write
Go #* G, when there is a series Go # G1 # - - - = G,.

Theorem 1 Given a homomorphism 6 : G -- H, and if H = H', then
there ezists a connection graph G' and a homomorphism 9' : G' -+ H' such
that G # G'. This can be summarized in the following diagram:

G Oi H

G-LH'

If 9 is an epimorphism, then 6' can be found so that it is also an epimor-
phism.

Proof. Each occurrence of the left hand side of a method in H that is
replaced in forming H' can be lifted back through 6 to a set of occurrences
of the same left hand side in G. The set of all such occurrences can then be
replaced by the corresponding right hand sides to obtain G'. 6' can then be
constructed from 6 in the obvious way. 0

Theorem 2 Given 9 : G -+ H, and if H =* H', then there exists G' and
9' : G' -- H' such that G =* G'. If 0 is an epimorphism, then 6' can be
found so that it is also an epimorphism.

Proof. This follows easily from the previous theorem by induction. O

The previous theorem is true given any connection graph grammar. It is
the strongest such result I have found that does not constrain the grammar.
For certain classes of grammars, and in particular for the class that contains
most deterministic grammars, stronger theorems can be proven:

A connection graph grammar is preclusive if two occurrences of the left
hand sides of methods can never overlap. This means that if the left hand
side of a method ever appears in a connection graph G, and if G * G', and
if that subgraph was not replaced by the right hand side of the method in
G', then that subgraph still appears in G'. The appearance of the left hand
side of a method in a graph thus precludes the possibility that anything else
will happen to those vertices before the method can be applied.

For example, any grammar that contains the methods in figure 20 cannot
be preclusive. This is because it is possible to construct graphs such as the

left hand graph in figure 23, where the coPY vertex belongs to two different
subgraphs that match the left hand sides of different methods. We have
already identified this property of COPY vertices in this grammar as a source
of nondeterminism. The following theorem demonstrates that preclusive
grammars are in fact deterministic.

Theorem 3 If a connection graph grammar is preclusive, then given con-
nection graphs G, G1, and G2 such that G += G1 and G * G2, there exists
a connection graph G' such that G1 #. G' and G2 = G'.

Proof. Since the grammar is preclusive the occurrences of method left hand
sides in G are all disjoint. We can divide them up into four classes, (1)
those that were replaced when forming both Gi and G2 , (2) those that were
replaced only in G1, (3) those that were replaced only in G2, and (4) those
that were replaced in neither. Subgraphs in the second class must still occur
in G2, and subgraphs in the third class must still occur in G1, so by applying
the corresponding methods we can form G' from either G1 or G2. (In fact,
G # G' because we can apply the methods that correspond to the first three
classes of left hand side occurrences in G.) 0

Theorem 4 If instead we have G #* G1 and G =* G2 , then there exists
G' such that G1 ** G' and G2 =* G'.

Proof. This follows easily from the previous theorem by induction. O

Theorem 4 shows most clearly what it is about preclusive grammars that
makes them behave deterministically. It gives us a condition under which
we have a Church-Rosser theorem for connection graphs. It shows that no
matter what order we choose to apply methods, we always achieve the same
result. If it is possible to apply methods until a connection graph is produced
to which no further methods can be applied, then that graph is unique.

For preclusive grammars, in addition to theorem 1, we have the following
more powerful result:

Theorem 5 If a connection graph grammar is preclusive, then given con-
nection graphs G, H, and H' such that G 0 H and H = H', there exists
connection graphs G" and H" such that G = G", H' #= H" and G" , H".

Proof. The most straightforward way to construct G" and H" is to let them
be the results of applying all possible methods whose left hand sides occur

in G and H. This is possible because these are all disjoint subgraphs (since
the grammar is preclusive). Further, it must be the case that H' is the
result of performing some subset of these replacements, so by performing
the remainder we see that H' = H". It is clear from the construction that
G" , H". 0

Theorem 6 If a connection graph grammar is preclusive, then given con-
nection graphs G, H, G', and H' such that G - H, G #* G' and H =* H',
there exists connection graphs G" and II" such that G' ='* G", H' =* H"
and G" - H". This can be summarized in the following diagram:

G 11~

G' H'

G" ~ H"

Proof. This follows from the previous theorem by induction and by using
theorem 4. 0

Theorem 6 is very similar in form to theorem 4; it would be identical
if we replaced the "-" with "=". Theorem 6 shows that not only doesn't
it matter what order we choose to apply methods, it doesn't even matter
which locally indistinguishable connection graphs we choose to apply them
to. A preclusive connection graph grammar is completely insensitive to the
nonlocal structure of the system.

4.3 Implications for Programs

The theorems we have just seen have implications for what an embedded
observer can learn about the system it is embedded in.

Suppose we are given a pair of connection graphs G and H, and we are
asked to produce a connection graph grammar that can somehow distinguish
between the two. First, we need to be precise about what we mean by
"distinguish". We want to be able to run the grammar on G or H and
then apply some test to determine if the system has learned how it was
initialized. The test must be local, otherwise we could supply the empty
grammar and specify that the test is simply graph equality. Thus we will

include two distinguished vertex types, WAS-G and WAS-H, in our grammar,
and specify that if a vertex of type VAS-G ever appears in the graph, then
it will be understood that the grammar has decided that the initial graph
was G, and similarly WAS-H will signal that the grammar has decided that
the initial graph was H.

Now consider the case where there is an epimorphism 0 : G -- H.
Suppose that given some grammar we have H -* H' and that H' contains
a vertex of type WAS-H, then by theorem 2 there is a graph G' where G #.* G'
and an epimorphism ': G' -- H'. Since 0' is an epimorphism, G' must also
contain a vertex of type WAS-H. The grammar is thus capable of deciding that
the initial graph was H even though it was applied to G. The grammar will
therefore be in error (unless it happens that t is an isomorphism). Thus no
grammar can ever correctly learn that it was initially applied to H, although
it is possible that it might learn that it was applied to G.

Putting this observation in somewhat more computational terms: If, in
the course of some computation, a system finds itself in configuration H,
and there is an epimorphism V : G -+ H, then from that point onward there
is nothing that the system can do that will allow it to discover that it had in
fact been in configuration H and not in configuration G. It might discover
that it had been in configuration G, and from this it could conclude that it
had not been in configuration H, but it can never discover that it had been
in configuration H.

If such a system is halted in configuration H, and reconfigured to be
in configuration G, the system can perhaps "malfunction" by arriving at a
configuration G' (where G #* G') where there are no configurations G" and
H" such that G' #* G", H #* H" and G" - H". (Such a malfunction
might be called a "false step".)

There are two conditions under which such malfunctions are impossible:

* If the grammar is preclusive, then since G , H theorem 6 guarantees
us that if G #* G' we can find the requisite G" and H".

* If H contains no cycles, then any epimorphism 9 : G -- H must be an
isomorphism, so we can let G" = H" = G'.

Thus, replacing H with the locally indistinguishable G can cause a malfunc-
tion only if H contains cycles and the grammar is not preclusive. These
are the two symptoms we previously identified as always being present in
systems that exhibit state-like behavior.

This leads me to propose that systems that exhibit state-like behavior
are, in fact, precisely those systems which depend on their nonlocal structure
in order to function correctly.

This says a great deal about why programming in the presence of state
should be difficult. Programming with state means that there are conditions
which the system depends upon, that it is impossible for it to check.

To make this more concrete, recall the parable of the robot interacting
with the computer via a keyboard and display. Remember that this was a
system in which all components perceived state even though they could all
be expressed in functional terms. Suppose we halt this system and replace it
with a locally indistinguishable system. Specifically, replace it with a system
consisting of two robots and two computers, where the first robot types on
one computer's keyboard, but watches the display of the other computer,
while the second robot types on the other keyboard and watches the first
display.

In order to remain locally indistinguishable from the original system,
each robot and each computer must be placed in the same state as if the
system was still singular. Each robot "believes" that he is alone, and that he
is interacting with a single computer. Initially both robots continue typing
away secure in this belief. They are unable to detect that they now operate in
a doubled system because they both type exactly the same thing at the same
time, and the computers respond identically with the appropriate output.

Suddenly a fly lands on one of the displays. The robot watching that
display pauses briefly to shoo it away. The other robot then notices that his
display doesn't reflect his last few keystrokes, while the first robot notices
that his display reflects keystrokes that he was only planning on making right
before the fly disturbed his concentration. Upon further experimentation the
robots eventually discover their true situation.

The original singular robot had no way of testing that he was part of the
singular system, nevertheless he depended on this fact in order to act sensi-
bly. He trusted that there really was a single computer that was responding
to his keystrokes, and that what he saw on the display represented its re-
actions. He trusted that the file he typed in today, really would reappear
when he called it up on the display tomorrow.

If you asked him to explain just how the rest of the system was able
to behave in that way, he would explain that "the computer has state".
That is his explanation of how the situation appears to him as an embedded
observer, but it isn't a very good explanation from our point of view. It even
has built into it the presupposition that there is only a single computer.

We can see that the property of the system that really matters, the prop-
erty that the robot accepts and depends on to function in the system without
error, is the untestable assertion that the system's nonlocal structure is what
the robot believes it to be, and not some locally indistinguishable equivalent.

5 Supporting State without Objects

In the previous sections we saw that systems in which state appears are
systems whose nonlocal topological structure is important to their correct
functioning. In order to write correct programs that describe such systems,
programmers must understand, and reason about, nonlocal properties. Un-
fortunately programming languages do not give programmers very much
help in this task.

Most programming languages support only the metaphor of objects for
using state. The simplest languages give the programmer state variables,
simple objects that can be read and written. More advanced languages
provide abstraction mechanisms that support the construction of abstract
objects [7, 11, 12, 1] which support more complex operations.

The object metaphor is that objects serve as containers for state. Each
container divides the system into two parts, consisting of the users of the
container, and the keepers of the container. If the container is a state
variable, the keepers will consist of memory hardware. If the container
is some more complex object, the keepers will be implemented in software
just like the users.

The users communicate with the keepers by passing notes through the
bottleneck that is the object itself. The keepers are charged with maintain-
ing the object metaphor. It is the keepers, for example, who must worry
about making operations appear to happen atomically, should that be re-
quired. The keepers are slaves to the requirements of the users. They labor
to maintain the illusion that the state is actually contained in the object.

The object metaphor works acceptably in many simple situations. It
captures a commonly occurring pattern in which a component of a system
serves as a clearinghouse of some kind. In order for such a clearinghouse
to function, all of its users must know that they are using the same clear-
inghouse. This is an example of the kind of nonlocal structure discussed in
the previous section. No experiment performed by those embedded in the
system can determine that the system is configured correctly, but careful
application of the protocols of the object metaphor confine the system to

the correct nonlocal structure.
In more complex situations the object metaphor is less useful. If, for

example, the keepers of object A must operate on object B in order to
perform some operation, and the keepers of B then try to use A, incorrect
behavior, such as a deadlock, can arise. The kinds of nonlocal properties
that are needed to rule out such incorrect behavior are not captured well
using the object metaphor alone. Additional reasoning (usually very special
case reasoning) is required.

A better understanding of the nonlocal properties of computational sys-
tems might enable us to discover additional metaphors for thinking about
state. If our programming languages supported these new metaphors, we
could use them when appropriate, rather than being forced to phrase every-
thing in terms of objects. Given a programming language that is sufficiently
expressive about nonlocal properties, we would no longer need fear program-
ming with state.

A possible approach to finding such new metaphors is to use the con-
nection graph model to analyze systems in which the object metaphor has
clearly failed to manage the system's state cleanly. Systems prone to various
kinds of deadlock are not hard to find. An analysis of the nonlocal structure
of deadlock-prone systems could point to new structures that can be used
to avoid the problem.

6 The Next Step

The next step to be taken in order to exploit the ideas presented above
is the construction of a demonstration system that achieves some of the
benefits normally associated with functional programming systems, while
still allowing the use of state.

A simple compiler will be written that translates programs written in
a conventional Lisp-like language into a connection graph grammar. The
grammar will be analyzed to discover which parts of the program are free
from state-like behavior. The program will then be reconstructed as a pro-
gram in nearly pure Lisp; the goal of the reconstruction will be to maximize
the components of the output program that are written in pure Lisp, and
to enclose the state-like behavior within known limits.

The reconstruction will also done with an eye towards executing the
resulting code in parallel. While it is not strictly necessary to adopt this
additional goal, its success can serve as a practical (and trendy) test for the

utility of the system.
Although the functional subset of the target language will be traditional

pure Lisp, it is unlikely that the target language will contain traditional im-
pure Lisp procedures such as RPLACA and SETQ. Instead, primitive operations
derived from the underlying connection graph model will probably prove
more appropriate.

The source language will be as close to standard (not necessarily pure)
Lisp as possible. This objective does not rule out language extensions and
features that encourage the programmer to write code that the compiler
will find easy to analyze. Indeed, such exercises in programming language
design may prove to be the most valuable part of the endeavor. Language
design cannot usefully be carried out in a vacuum; the expressiveness of a
programming language must be tested somehow. In this case, the measure
of the language's utility will be how well it functions in explaining state-like
behaviors to a compiler that has a solid understanding of the causes of such
behavior.

The overall approach thus attacks the problem of programming with
state from two directions: first as an optimization problem, where a compiler
works to eliminate hazards caused by the use of state, and second as a
language design problem, where the programming language must allow the
programmer to effectively communicate with the compiler about state.

The proposed system can achieve several different levels of success. In
the trivial case, when the programmer writes purely functional code, the
compiler will have no trouble producing purely functional output. The pre-
vious sections have demonstrated how a static analysis of a connection graph
grammar can determine that no state-like behavior is possible. That a gram-
mar is preclusive can be checked merely by examining the left hand sides
of all the methods to see if any overlap. Since the translation for LAMBDA-
expressions given above always produces preclusive grammars, functional
Lisp programs are easily recognized as such. It is unnecessary to think
about cyclic structure at all in this case.

With a little more work, it should be possible to recover functional code
even in cases where the source appears to make use of state. The reasoning
employed previously in the analysis of the FACTI procedure demonstrates
how this can be done. This reasoning is really no different from the kind
of side-effect analysis undertaken by conventional compilers. The same or-
dering constraints normally manipulated by such compilers are used here to
construct a preclusive connection graph grammar, and then to reduce the
program to functional code. Again, cyclic structure does not enter into the

picture.
The real profits should come when the compiler employs the complete

definition of state during optimization. For example, even given a non-
preclusive connection graph grammar, an examination of the methods that
create cyclic structure sometimes reveals that the non-preclusive rules will
never apply to the part of the graph that contains the cycle, and thus the
program can be reduced to pure Lisp. And even in cases where state cannot
be entirely eliminated, similar reasoning might be employed to limit the
scope of the possible state-like behavior. Whether such a compiler can really
achieve something new in the way of optimization cannot, of course, be
predicted in advance, but it would be surprising if a compiler cannot realize
some additional benefits from a real understanding of the causes of state.

It is traditional, in ventures such as this, to implement the compiler itself
in its own source language; this ensures that at least one large program can
be supported by the resulting system. Since one of the goals is that the
source language should be conventional Lisp as much as possible, it might
be sensible to try that trick here as well. However, this may be difficult
to do initially, since the source language will be a moving target while any
significant programming language design is occurring. A more reasonable
goal would be to aim for the eventual conversion of the compiler into the
source language once it becomes relatively stable.

7 Conclusion

The goal is a better understanding of state so that we can find better pro-
gramming language constructs for using it. To summarize the steps we have
just taken towards that goal and our current position:

State is not something that appears as an independent attribute of an
object. Observers embedded in systems perceive state in other components,
but an external investigator cannot, in general, locate the state in specific
components. The best that can be done is to characterize those systems in
which state-like behavior occurs.

The connection graph model is a simple way to represent programs.
When connection graphs are used to model systems in which state occurs,
two characteristics appear to be necessary: the connection graph grammars
are always nondeterministic, and the connection graphs themselves always
contain cycles.

These are the conditions we should expect if the correct characterization

for systems that exhibit state is that they are those systems that must rely
on their nonlocal topology in order to function correctly. This explains why
external observers are unable to assign location to state: state is intrinsically
a nonlocal phenomenon. It also explains why writing programs that are to
function in systems where state is present should be difficult: such programs
must rely on aspects of the system that are untestable, and thus hard to
express in a programming language.

The usual programming language metaphor for thinking about these
nonlocal properties is the metaphor of objects. I have proposed that we
search for metaphors that better reflect the fact that state is a nonlocal
phenomenon, and not something that can be kept in a container. A good
way to start looking for such metaphors would be to examine phenomena
such as deadlock, that occur in systems when the object metaphor breaks
down.

As the next step towards exploiting these ideas, I propose to construct
a compiler that uses its understanding of state to achieve some of the bene-
fits normally associated with purely functional programming systems. The
source language will be a nearly conventional Lisp dialect, possibly extended
so as to give the programmer additional ways to communicate with the com-
piler about state. The target language will be pure Lisp wherever possible,
with additional primitives derived from the connection graph model used
to support state-like behavior when necessary. The compiler's goal will be
to allow more efficient parallel execution of the program by reducing the
hazards posed by state-like behavior.

Acknowledgments

Discussions with Guy Blelloch, David Chapman, Tom Knight, John Lamp-
ing, Dave Moon, Jonathan Rees, Chuck Rich, Gerald Sussman, and Ramin
Zabih have helped me formulate and clarify these ideas. All the remaining
confusion is entirely my own fault. Erasmus and George Bear provided much
necessary support.

References

[1] Gul Agha. Actors: A Model of Concurrent Computation in Distributed
Systems. MIT Press, 1986.

[2] J. Backus. Can programming be liberated from the von Neumann style?
a functional style and its algebra of programs. Communications of the
ACM, 21(8):613-641, August 1978.

[3] Alan Bawden. Connection graphs. In Proc. Symposium on Lisp and
Functional Programming, pages 258-265, ACM, August 1986.

[4] Alan Bawden. A Programming Language for Massively Parallel Com-
puters. Master's thesis, MIT, September 1984. Dept. of Electrical
Engineering and Computer Science.

[5] B. DeWitt and N. Graham, editors. The Many-Worlds Interpretation
of Quantum Mechanics. Princeton University Press, 1973.

[6] David K. Gifford and John M. Lucassen. Integrating functional and
imperative programming. In Proc. Symposium on Lisp and Functional
Programming, pages 28-38, ACM, August 1986.

[7] Adele Goldberg and David Robson. Smalltalk-80: The Language and
its Implementation. Addison-Wesley, 1983.

[8] Robert H. Halstead, Jr. Implementation of Multilisp: Lisp on a multi-
processor. In Proc. Symposium on Lisp and Functional Programming,
pages 9-17, ACM, August 1984.

[9] Peter Henderson. Is It Reasonable to Implement a Complete Program-
ming System in a Purely Functional Style? Technical Report, The
University of Newcastle upon Tyne Computing Laboratory, December
1980.

[10] Tom Knight. An architecture for mostly functional languages. In
Proc. Symposium on Lisp and Functional Programming, pages 105-112,
ACM, August 1986.

[11] Barbara Liskov, Russell Atkinson, Toby Bloom, Eliot Moss, J. Craig
Schaffert, Robert Scheifler, and Alan Snyder. CLU Reference Manual.
Springer-Verlag, 1981.

[12] David A. Moon. Object-oriented programming with Flavors. In Proc.
First Annual Conference on Object-Oriented Programming Systems,
Languages, and Applications, ACM, 1986.

[13] Jonathan Rees and William Clinger. Revised3 Report on the Algorith-
mic Language Scheme. Memo 848a, MIT AI Lab, September 1986.

[14] Guy L. Steele Jr. and Gerald Jay Sussman. Constraints. Memo 502,
MIT AI Lab, November 1978.

[15] Gerald Jay Sussman and Guy L. Steele Jr. The Art of the Interpreter
or, The Modularity Complex. Memo 453, MIT AI Lab, May 1978.

[16] D. A. Turner. A new implementation technique for applicative lan-
guages. Software-Practice and Experience, 9(1):31-49, January 1979.

