
A. I. WORKING PAPER 132

REASONING BY ANALOGY

A Progress Report

by

Richard Brown

IJRSTRIICT--Rather.

SThis report describes research done at the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology. Support for the laboratory's artificial intelligence
research is provided in part by the Advanced Research Projects Agency of the IDpartment of
Defense under Office of Naval Rescarch contract number N00014-75-C-0643. The views expressed
are necessarily (and perhaps only) those of the author.

Working Papers are informal papers intended for internal use.

October 1976



ANALOGY PROGRESS REPORT

Brown? Isn't he working on resolution theorem proving? The blasphemer should be shot. Not
only that -- he mumbles about geometry. Celernter and Goldstein were bad enough, but this
loser works with axiomatic geometry -- non-Euclidian axiomatic geometry. Ugh! Nest thing
you know, he'll be in lilbert Spaces. As a matter of fact, he did mention Hlilbert yesterday.
God save us!

-- overheard in a paranoid delusion

PREFACE

This report concerns some research I have been doing in the past year on the problem

of reasoning by analogy. Specifically, I have been working on a process that will learn how to

solve (very) simple problems in solid incidence geometry, given a predicate calculus description of

solid geometry and an expert problem solver in plane incidence geometry. The research has

entailed work on computational logic (which is to mathematical logic as computational linguistics

is to linguistics) development of an "expert problem solver" formalism which is simple enough to

be understood and manipulated by the analogy process, and finally the analogy process itself. This

progress report will deal almost exclusively with the last topic.

There. I admit it. I make use of the predicate calculus I have found that predicate

calculus does not make your hair fall out, nor does it result in blindness.

Plane and solid incidence geometry are not Euclidian. As to what they are, I can give

two very different answers to that question. I can either tell you what lines and planes are, but

leave you in the dark as to how they are manipulated, or I can tell you how to manipulate them

efficiently without ever saying what they are.

This report is mathematically challenging. There are unsolved problems in the

mathematical and meta-mathematical background of our investigations. The domains of geometry

we are interested in are non-trivial. This should not put the reader off -- we mortals will never

delve too deeply in matters est left to the gods.

This report contains five sections, including the preface. In the introduction we will

Preface



ANALOGY PROGRESS REPORT

take a quick look at the ground rules and framework of the research.

In the section on axioms we develop descriptions of two problem domains: plane

geometry and solid geometry. This section is fairly heavy; you have been warned.

The next section shows the analogy process in action. Three solid geomery problems

and their solutions are presented in detail. This section is the core of the report.

The final brief section is a summery. We will review the new ideas which have

resulted from the research to date.

Preface



ANALOGY PROGRESS REPORT

SETTING

Suppose one is given an expert problem solving system in some domain, say plane

geometry. Suppose further that one has a desire for another expert problem solver in a different

domain, say solid geometry. One would like to have this second expert constructed automatically

by some process. Analogy is such a process.

An analogy is a map from one problem domain to another. It can usually be extended

to become a map from an expert problem solver in the first domain to an expert problem solver in

the image domain. It is this extended analogy in which we are exclusively interested.

For our purposes, an expert problem solver contains three ingredients: (1) A single data

base into which only true assertions are entered. (2) A set of objects which are manipulated by

the expert An object has further structure: a type and a representation. (3) A set of pattern-

invoked procedures for forward and backward chained deductions, and for representation

manipulation.

For example; in solid geometry we have objects of type "point", "line", and "plane". The

representation of an object of type "line" is an ordered list of objects of type "point". The

representation of a "plane" is an unordered list of objects of type "point" and of type line'.

Integers might be represented by their prime decomposition. In algebra one might have an object

of type "finite abelian group" with a representation that is an unordered list of prime--power

pairs. Another type of object might be a "finite field" with representation a prime group with a

set of adjoined elements (or element--polynomial pairs) following. In solving cryptoarithmetic

problems a fairly good representation for a symbol might be the set of digits that the symbol

cannot be.

One of our major concerns in this research was to use analogy to "teach' an expert

problem solver to use noew special-purpose representations. One of the problems solved was to

Introduction



ANALOGY PROGRESS REPORT

Alevelop the representation of a plane "by analogy" to the representation of a line.

For our expert problem solvers, a problem is a predicate calculus statement (containing

only one IMPLIES) which is to be proven. A solution is a complete, rigorous proof of the

statement. One may ask the expert problem solver to "expand" some step in a proof, so that a

correct solution can be expanded to a proof wheore each step is justified by "given" or "by axiom

such-and-such".

Expert Limitations

Even with this level of description we can say something about the problem solving

capabilities of our experts. First, they cannot produce proofs "by contradiction". A simple

problem that requires such a proof is

GIVEN:
(IMPLIES A (AND B C))
(IMPLIES B (OR E F))
(IMPLIES C (OR E G))
(IFF F (NOT G))

PROVE:
(IMPLIES A E)

A second result we can give concerns constructions: If we insist that all line

representations be canonical (as do Goldstein, Nevins, and Ullman) then no constructions can be

made. Furthermore, if constructions are disallowed, all problems become trivial in the sense that

only a (small) finite number of true assertions can ever be made about a given configuration.

Thus, in particular, we can show Nevins' discussion of forward chaining vs. backward chaining to

be vacuous.

We informally define a class of constructions, the "trivial constructions", to consist of

those whose form could constitute the name of the object constructed. (This definition can be

Introduction



ANALOGY PROGRESS REPORT

made precise in terms of representations and types.) For example, if A and B are points, then the

line containing them can be named (LINE A B), so the LINE function performs a trivial

construction. If two lines AI and L happen to have a point in common (or can be proven non-

parallel) then (INTERSECT K L) is also a trivial construction. We insist that our geometry

expert be able to do trivial constructions.

Examples of non-trivial constuctions are locus constructions (the locus of all points

equidistant from a given pair of points is a line or a plane) and the construction of the point X in

the problem "Given two sides of a triangle and the median to the third, construct a triangle"

2•"EDJ AN '" SIDE 2
I

SIDE 1 '

INTRODUCTION TO ANALOGY PROCESS

The analogy pr6cess has six steps:

1. Construct an analogy map from the "problem" domain to the image domain (i.e., from
solid geometry to plane geometry)

2 Translate the original problem to a "similar" problem in the image domain. We don't
want the solution of this "image" problem as much as we want the way the expert problem
solver in the image domain solved the problem.

3. Solve the image problem. We will carefully observe how the problem was solved.

4. Apply the inverse map to the image solution. By solution we mean rirst the "answer" (a
particular line or point, or perhaps a truth value), and then a proof that this solution is
correct

5. Apply the inverse map to the image procedures responsible for the image solution. This
gives us additional expertise in the "problem" domain, i.e., we have learned something from
solving the problem.

6. Solve the original problem. In most cases, this is just to show off the new code in the
"problem" domain expert.

Introduction



ANALOGY PROGRESS REPORT

In general, step 1 does not fully specify the analogy map. Step 4 is a debugging step

which may further specify the analogy map. The inverse map is usually not one-to-one. Step 5 is'

the step we are really interested in. Analogy does not produce a solution -- it writes a program

which in turn produces a solution (in step 6). One should keep in mind that, in response to one

problem, several different analogies may be used in sequence on various sub-problems.

Domain Description

The analogy process makes use of expert problem solvers in two domains. It also

requires descriptions of these two domains. The expert problem solver in the "domain of

expertise" constitutes a highly biased partial description of its domain. Indeed, the purpose of

"reasoning by analogy" is to learn those biases. However, the analogy process requires a complete

description of the domain, and we would prefer a more neutral description.

There are two radically different forms a domain description can take: declarative and

imperative. A declarative description is (by definition) complete. It is almost impossible to use

such a description for problem solving.

Green demonstrated that it is not completely impossible in his QA3 system. We
exploit the problem solving/theorem proving duality he developed in the correct direction:
using problem solving expertise to do theorem proving.

On the other hand, an imperative description of a domain can easily be used to solve problems in

that domain. Unfortunately this type of description is generally incomplete, sometimes inaccurate,

and (the main flaw) difficult to produce.

Introduction



ANALOGY PROGRESS REPORT

The Point of Analogy

The purpose of analogy is to translate a declarative description (useless but easy to

give) to an imperative description (useful, but a pain to develop. It uses both declarative and

imperative description of (presumably) analogous domains for inspiration.

RESULTS

1. We claim that an analogy is a map. Where does this map come from? We have a
technique for generating the analogy maps directly from the axioms describing the domain.

2. The analogy process must be a good copier. If the imperatives associated with one
domain are completely applicable to another domain, then they should be copied. In the
first example we will show that our theory copies only what is both needed and applicable.
Irrevelant junk is ignored.

3. The analogy process must be a good debugger. If imperatives in one domain are needed
to describe a second, but those imperatives are not quite applicable, they must be adapted.
The second example illustrates the way we associate "bugs" in proofs with "bugs" in
programs. This aspect of our theory of analogy depends on having a strong notion of what
constitutes a "proof".

4. Occasionally an expert problem solver will grind to a halt on a problem. This may be
due to the problem being insoluble, or due to incompleteness of the imperative description.
The latter signals a job for analogy. In order to get anywhere, we need to be able to
summarize a log jam. The second example shows how this summary process works, and
illustrates that the key idea is the use of representations.

5. The analogy proess must be an innovator. Suppose that some aspect of a domain has
no analogous aspect in our "domain of expertise: A specific example is encountered in
problem 3. Our theory of analogy also solves this problem. The amazing thing about this
particular dancing bear is not that it dances at all, but that it does so gracefully!

Many of our manipulations may appear to be overly syntactic. Do not be deceived! A major

result (illustrated in the first example) is the lack of dependence on surface similarity (or

dissimilarity) in domain descriptions.

Introduction



ANALOGY PROGRESS REPORT

In place of "point", "line", and "plane" we must at all times be able to say "beer
mug", "table", and "chair".

--- David Hilbert

We are going to describe the two domain we deal with. In plane geometry we also know

how to manipulate (solve problems involving) the entities described below. In solid geometry, we

have only the declarations (axioms) given below.

The description is declarative. We know what IN-LN allows us to conclude, and we

know some facts which allow us to conclude IN-PL is true of two objects What does IN-PL

check? The description doesn't really say: implementation is left to the reader. In this case the

"reader" is our analogy process.

In what follows, we will blandly assume EQUAL and DISTINCT are understood. In

fact, analogy can build the machinery to handle equality and non-equality, but the process is not

very exciting.

Axioms within each domain are grouped into classes I and II. Within each group
they are numbered. Plane geometry axioms are proceeded with a P, while solid
geometry axioms are proceeded with S. We will give the predicate calculus versions
of the axioms used in the problems. The rest are given for completeness.

PLANE Geometry Axioms

P-II.Given two points, there is a line that contains them.
(FORALL (A B) (IMPLIES (AND (PT A) (PT B))

(AND (LN (LINE A B))
(IN-LN (LINE A B) A)
(IN-LN (LINE A B) B))))

Note that we don't insist that the two points be distincL This claims that two points determine
at least one line.

Axioms



ANALOGY PROGRESS REPORT

P-Il For every two distinct points, no more than one line contains them.
(FORALL (A B)

(IMPLIES. (AND (DISTINCT A B)
(PT A)
(PT 8))

(NOT (EXISTS (X Y) (AND (DISTINCT X Y)
(LN X)
(LN Y)
(IN-LN X A)
(IN-LN Y A)
(IN-LN X 8)
(IN-LN Y B))))))

P-I3a. Each line contains at least two points.

P-13b. There are at least three non-colinear points.

We also have a set of axioms dealing with the concept of "order". These are included,

even though our examples are in incidence geometry, because of the important role they play in

the representation of a line.

P-IIla.The BTIVN relation implies that the points are co-linear.
(FORALL (A B C)

(IMPLIES (AND- (PT A) (PT B) (PT C) (BTUN A B C))
(EXISTS (L) (AND (LN L)

(IN-LN L A)
(IN-LN L B)
(IN-LN L C)))))

P-IIlb.The order of the BTIVN arguments may be reversed.
(FORALL (A B C)

(IMPLIES (AND (PT A) (PT B) (PT C) (BTUN A B C))
(BTWN C B A)))

P-IIL For two points A and C there always exists at least one point B on the line containinin
A and C such that C lies between A and B.

P-113. Of any three points on a line there exists no more than one that lies between the other
two.

In addition to axioms, we also include definitions. In fact, we allow two kinds of definitions: new

functions and predicates, and new object types, but the latter form of definition does not concern

us here.

Axioms



ANALOGY PROGRESS REPORT

For various reasons, we disallow definitions which introduce any new knowledge --

definitions are strictly and purely notational. Enforcing this edict is harder than one might think.

For example, we have the definition of INTERSECT:

P-DEFI. Define a function INTERSECT. Insist that it take two distinct lines as arguments.
If this condition is met, then the result is in both of the given lines.

(DETERMINES (INTERSECT A B)
((LN A) (LN B) (DISTINCT A B))
((IN-LN A (INTERSECT A 8))
(IN-LN B (INTERSECT A B))))

The form for the function call is followed by a list of restrictions on the arguments (i.e., tlhe

function is only defined if the arguments meet these restrictions), and then a list of claims about

the value returned by the function.

This definition requires some explanation. We have not declared the type of the result

of applying the INTERSECT function to two distinct lines. We have only given the minimal

properties we wish this returned object to have.

'Suppose we were to say that it is a "point" and that under the assumptions given it is

unique. Further suppose (AND (DISTINCT A B) (PT A) (PT B)). Then by P-II we have a line

X - (LINE A B). Suppose there were a distinct line Y such that (IN-L.N Y A) and (IN-LN Y B).

Then (INTERSECT X Y) should "return" points A and B and by it being unique, A - B,

contradiction! Thus such a line Y does not exist. Indeed, we know that it does not, but we have

just proven this fact without using axiom P-12. This should not be surprising because the

contrapositive of P-12 is the proof of uniqueness. In other words, our "definition" really contains

an axiom. We must disallow such definitions.

Instead we insist that for any type Q (Q may be, for example, PT, LN, PL), if the

intersection of two lines is of type Q (i.e., (Q (INTERSECT A B)) is true for lines A and B), then

no other object of type Q can be in both lines. We can then prove that if two distinct lines have

Axioms



ANALOGY PROGRESS REPORT

two points X and Y in common, then X * Y. Hence the intersection of these two lines is the point

X (or the same point under the name Y).

We are forced to define INTERSECT this way by purely logical considerations.

However, this definition also makes reasoning about intersection by analogy easier. If we

uniformly replace IN-LN by IN-PL, we will be able to prove in solid geometry that the

intersection of two planes is not a point, and that it is a line. A very syntactic and natural

transformation is all that in required to "lift the definition.

SOLID Geometry Axioms

S-I1,S-I2,S-13aS-13b,S-IIa,S-IIIbS-12,S-II3 are all identical to P-etc.

S-DEFI. We define a predicate of three arguments to be true if and only if the three
arguments are points and there is no line containing all of them.

(DEF-PRED (NON-LN A B C)
(AND (PT A)

(PT 8)
(PT C)
(NOT (IN-LN (LINE A B) C))))

S-I4a.For three non-colinear points there is always a plane containing them.
(FORALL (A 8 C)

(IMPLIES (NON-LN A B C)
(AND (PL (PLANE A B C))

(IN-PL (PLANE A B C) A)
(IN-PL (PLANE A B C) 8)
(IN-PL (PLANE A B C) C))))

S-I4b.Every plane contains. at least one point.
(FORALL (P) (IMPLIES (PL P)

(EXISTS (A) (AND (PT A) (IN-PL P A)))))

S-I5. For three non-colinear points, no more than one plane contains them.

S-16. If two points of a line are in a plane, then all points in that line are in the plane.

S-17. If there is one point in two distinct planes, then there is a second distinct point also in
both planes.

Axioms



ANALUGY FOUGRE I•I•YEFURT

Note that INTERSECT is not defined in solid geometry. The above five axioms

completely describe what a plane is. They don't give even a hint about how planes should be

represented or manipulated by a program -- analogy must figure that out for itself.

SEMANTIC TEMPLATES

The analogy program initially examines the solid geometry axioms above, and notes the

presence of three unary predicates PT, LN, and PL It then assumes that these are type-checking

predicates with associated type names PT, LN, and PL Having done this, we can go through the

axioms to discover the argument types expected by the rest of the predicates and the functions:

(IN-LN LN PT)
(IN-PL PL PT)
(PLANE PT PT PT)
(LINE PT PT)

These patterns are called "semantic templates", after a similar but less powerful notion

developed by Kling (Ph.D. Thesis "Reasoning by Analogy with Applications to Heuristic Problem

Solving"). Similar information is collected from the solid geometry axioms. This information is

used to develop the initial analogy map.

We admit that these semantic templates are derived using fairly syntactic operations.

Suppose we change terminology, and in plane geometry call points "beer mugs", and lines "tables".

We would then have (in plane geometry) type checking predicates (say) TBI, and MUG, with

templates

(ON-TABLE TBL, MUG)
(TABLE MUG MUG)

Axioms



ANALOGY PROGRFSS REPORT

PROBLEM 1

(FORALL (K L C) (IMPLIES (AND (LN L K)
(PT C)
(IN-LN K C)
(IN-LN L C))

(EQUAL C (INTERSECT K L))))

Several observations should he made. First, note that the LN predicate has two arguments. Input

to the problem solver is processed by special procedures. Since we know that LN is a type

checking predicate, we know how to deal with this form -- it is expanded to

(LN L), (LN K), (NOT (EQUAL L K))

The second observation is that INTERSECT has never been defined in solid geometry.

The bare-bones solid geometry expert knows how to deal with problems of the above

form: first create objects named K, I, and C. Then assert (LN L) - (IN-LN L C) into the data

base. Finally, it tries to evaluate

(EQUAL C (INTERSECT K L))

by first evaluating the function call

(INTERSECT K L).

Since there is no procedure willing to perform this computation, the solid geometry expert reports

a failure, and analogy takes over.

The most we can expect from analogy is:
1. Learn what INTERSECT means
2. Learn how to implement a function that computes INTERSECT.
3. Learn how to react to assertions of the form

(IN-LN line point).
4. Learn how to represent lines.

Although this is the most we can expect, analogy gives us a little bit more!

We note that the problem concerns (so far) only objects of type LN and of type PT. We

further note that the plane geometry expert has objects with the same type names. We apply the

SAME NAME heuristic and set up the analogy map

Problems and Solutions



ANALOGY PROGRESS REPORT

LN -> LN
PT -> PT

We then start dumping the contents of the data base out to the plane geometry cxpert There are

six assertions in the data base. No trouble arises until we encounter (IN-LN K C).

We examine the type requirements of the IN-LN predicate in both plane and solid

geometry, find them compatible. We add

IN-LN -> IN-LN

to the analogy, completing the data base transfer.

Plane geometry is fully developed. When each assertion is entered in the data base, it

is examined by a procedure (invoked by the pattern of the assertion). This has occured, and the

data base is now empty. The assertions have been used to set up objects and their representations.

We have

K type=LN, representation=(C)
L type=LN, representation=(C)
C type=PT, no representation
OB1 type=DBUCKET, representation=(K L)

where the last object is a "distinctness bucket".

We now evaluate (INTERSECT K L), and get a return value C. We apply the inverse

analogy map to the object C, and get the "upstairs" object C. We evaluate (EQUAL C C), get

"TRUE" as a result. This indicates it would be worth while "lifting" the definition of

INTERSECT and the proof that "C" is the correct value.

We lift the definition of INTERSECT by applying the inverse analogy map to it

(trivial in this case). We then lift the proof, which depends on a random plane geometry theorem

we will call P-THM22, the contrapositive of axiom P-I2

Problems and Solutions



ANALOGY PROGRESS REPORT

1. (IN-LN K (INTERSECT K L)) definition of INTERSECT
2. (IN-LN L (INTERSECT K L)) definition of INTERSECT
3. (EQUAL C (INTERSECT K L)) P-THM22 applied to above

We need to know if this theorem is also true in solid geometry. We apply the inverse map to P-

THM22, getting (in solid geometry)

S-THMIS
(FORALL (A B X Y)

(IMPLIES (AND (LN X) (LN Y) (DISTINCT X Y) (PT A) (PT B)
(IN-LN X A) (IN-LN X B) (IN-LN Y A) (IN-LN Y B))

(EQUAL A B)))

We try to prove this upstairs, and fail We determine that analogy is not likely to be helpful (at

least not this analogy map), so we resort to "brute force'. We could in principle use some

uniform proof procedure (e.g., resolution) but the cost is prohibitive. Instead we try to find a

one-step proof by examining each axiom and previously proven theorem and its contrapositive to

see if the desired result can be shown. We succeed with the contrapositive of S-1L

We claim that "brute force" will never get worse than a iimple one-step
deduction. We will never need to use anything like resolution theorem proving in
the analogy process. We have already explained that the expert problem solver does
not use theorem proving in any of its activity. Nor do we use theorem proving (in
the general sense) in obtaining from these experts the proofs analogy uses.

Since we know S-THM1S to be true, we can complete the lifted proof and add the

following to the analogy map for use in the next step.

S-THMIS -> P-THM22
INTERSECT -> INTERSECT
S-12 -> P-I2

Problems and Solutions



ANALOGY PROGRESS REPORT

Beer mugs on Tables?

SUsing beer mugs and tables for points and lines respectively in the plane geometry

axioms stops us from employing the SAME NAME heuristic. Oh well, we only have two choices

for an initial map: PT->MUG or PT-)TBL. Then LN must (presumably) go to the other. IN-LN

then goes to a function of two arguments: TBL and MUG. Fortunately, there is no problem, since

only ON-TABLE takes these two arguments. (Had there been more, the semantic template for

INTERSECT derived from the problem statement would be brought into play). Thus PT->MUG

and LN->TBL Everything above then follows without alteration.

Messing around with names doesn't affect the analogy process as much as one might

expect. (There is, however, a rather interesting possibility that the analogy process will try

inventing projective geometry).

REPRESENTATION THEOREMS

We now lift all the programs which contributed lines to the lifted proof, and the

correctness proofs associated with those programs (checking the lifted versions for correctness,

naturally). Our loot includes a "representation theorem" which states that if the representation of

a line L matches the pattern

(* X *) t will match any sequence

then we may conclude (IN-LN L X). The proof is by induction on the length of the representation

(the details need not concern us). This theorem is a first step towards learning the representation

for a line.

Another role "representation theorems" play concerns "extended" predicate forms. We

find it convenient to write (IN-LN L A B) instead of saying both (IN-LN L A) (IN-IN I, B). This

Problems and Solutions



ANALOGY PROGRESS REPORT

representation theorem will allow us to directly translate a statement

(IN-LN L A B C D)

to giving the object L of type LN the representation

(A B C 0)

in the current solid geometry expert The notion is that the last "argument" can be replaced by a

list of arguments, provided that (1) a representation theorem exist for the particular predicate,

and (2) the pattern of the representation theorem is being matched against the additional

arguments. Thus, in plane geometry we have a representation theorem (also about the

representation for lines) stating

(* X Y * Z a) -> (BTWN X Y Z)

so that we can interpret

(BTWN A B C 0) -> (BTWN A B C)
(BTWN A B D)
(BTWN A C 0)
(BTWN B C 0).

Similar translations operate in the "dumping" process, so that if we have an object L of

type LN and representation=(E F G H) we write this out as

(IN-LN L E F G H)

in solid geometry, and as

(IN-LN L E F G H) and (BTWN E F G H)

in plane geometry. On read-in, if both assertions are present we can go directly to the

representation without going through the "expansion" and deduction stages.

Problems and Solutions



rroolems ann loiutlons

Lessons from Problem 1

What have we learned as a result of solving this problem? As much as could be

expected. We have both a definition and code for intersections of lines (under some

circumstances), We have the beginnings of code dealing with representations of lines. We also

know what to do with IN-LN assertions of multiple point arguments.

PROBLEM 2

We now turn to our second problem. Let us assume that, by processes similar to that

given above, all the necessary expertise in dealing with points and lines has been learned by the

solid geometry expert. We wish to prove that

(FORALL (A B C P)
(IMPLIES (AND (PT A B C)

(NOT (EQUAL (LINE A 8) (LINE B C)))
(PL P)
(IN-PL P A B C))

(EQUAL (PLANE A B C) P)))

There are several points to note. We used an extended format for PT (which we know

how to deal with) and for IN-PL (which we don't). There are trivial construction of both lines

(understood) and planes (not understood). Finally, the problem mentions points, lines, and planes,

so the analogy map must be non-trivial.

Processing is forced to halt when we try to assert

(IN-PL P A B C)

Recall that IN-PL is expected to have two arguments, the first of type PL and the second of type

PT. This form does not match its semantic template.

nil nuseY Ir novnrAco nnrun I



ANALOGY PROGRESS REPORT

We must use analogy to find what this assertion means. Having no good reason to

abandon the analogy map used in problem 1, we continue with

PT -> PT
LN -> LN
etc.

To find a mapping of IN-PL, we ask "What predicate do we have in plane geometry that takes two

arguments, one of them of type PT and the other one of another type?" One answer is IN-LN.

But this has an object of type LN as its other argument, so on the basis of matching semantic

templates we conclude

PL -> LN
IN-PL -> IN-LN

and add this to the map.

Construction of Analogous Problems Involves SUMMARIZING

We are forced to solve a problem in plane geometry to know how to treat the expression

(IN-PL P A B C) in solid geometry. If we simply map everything we know down to plane

geometry, we will end up with a contradiction: (IN-LN P A B C) and the claim

(DISTINCT (LINE A BXLINE B C)) conflict with axiom P-It This means we must summarize

the current situation into a sub-problem. The next question is "What sub-problem?" Upstairs we

have objects:

A type=PT
B type=PT
C type=PT
OB1 type-DBUCKET, rep-(A B C)
082 type-LN, rep-(A B)
0B3 type-LN, rep-(B C)
OB4 type-DBUCKET, rep-(0B2 0B3)

Problems and Solutions



ANAIAJUI riRUtiURI KraYU'I

Since we are using a direct deduction system (as opposed to resolution) we can always

add more assertions if a proof does not develop. We also have access to the current deduction

"tree", so we can see if there are any interesting outstanding questions, should a proof fail to

materialize downstairs. These two considerations tell us that postponing transfer of assertions to

plane geometry won't cost us anything, and may be beneficial. We therefore set up a "distance"

metric, and progressively make more assertions about more objects. We start off with the objects

in the current interesting assertion (i.e., P, A, B, and C), their representations, and. type

declarations resulting from relevant distinctness buckets (i.e, OBI

These assertions constitute the "given" portion of the sub-problem constructed by the

summarization process. The "to prove" portion is supplied by the assertion solid geometry

couldn't deal with. Continuing, we assert in plane geometry

(PT A B C)
(LN P)
(IN-LN P A B C)

The last assertion would give P the representation (A B C) if the assertion (BTWN A B C) were

also present Since it isn't present, we expand the IN-LN assertion to

(IN-LN P A) (IN-LN P B) (IN-LN P C)

The first two are then removed from the data base, while the object P is given the representation

(A B). The third assertion causes an attempt to prove or disprove the three statements

(BTWN A B C) (BTWN A C B) (BTWN C A B).

Naturally no progress is made on any of these, so we continue summarizing.

We need to map the current upstairs goal

(EQUAL (PLANE A B C) P)

to an appropriate goal in plane geometry. Finding no exact match for the mapped semantic

template, we note that the arguments to PLANE are of homogeneous type, and that the semantic

template for LINE downstairs in also of homogeneous argument type, with the appropriate (under

rroblcmR and ,olUtions



ANALOGY PROGRESS REPORT

the map) value type. Thus we add

PLANE -) LINE

with a note to arbitrarily drop the last argument.

Then, noting that (PLANE A B C) -> (LINE A B), it is trivial to evaluate the latter

expression in plane geometry to get the object P, and by golly

(EQUAL P P)

The proof rests on LINELEMMAI (proven by using P-I2):

(FORALL (P1 P2 Li L2)
(IMPLIES (AND (PT P1 P2)

(LN L1)
(LN L2)
(IN-LN Li P1 P2)
(IN-LN L2 P1 P2))

(EQUAL L1 L2)))

The downstairs proof reads

1. (PT A B) given
2. -(LN L) given
.3. (IN-LN L A B) given
4. (LN (LINE A B)) P-ll applied to 1
5. (IN-LN (LINE A B) A B) P-ll applied to 1
6. (EQUAL L (LINE A 8)) LINELEMMA1 applied to above

We have now solved the summarized problem. Unfortunately, if we try to "lift" the solution, we

find it is not correct!

Problems and Solutions



ALNAIUALUy IRRIt;iM tUNT'I

DEBUGGING the Analogy

The first hint of trouble occurs. when we try to justify step 4* (PL (PLANE AB QC)).

To do this, we need to lift P-II as it was used in this step:

11* (FORALL (A B C)
(IMPLIES (AND (PT A) (PT B)) (PL (PLANE A B C))))

This theorem is not true, but no matter, because we try using brute force, and fail to

prove ll:. Good -- we have detected a bug! We do find, however, that we can prove

(PL (PLANE A B C)) in one step using S-144. The lifted" portion of plane geometry allows us to

prove in solid geometry that (NON-LN A I C) (The appropriate portion of plane geometry would

be lifted by this exercise in any case).

We can now classify the "bug" in the analogy to be a MISSING-PREREQUIISIT (after

Sussman). With this in mind, we add

S-14a -) P-II

to the analogy map, and a line providing non-colinearity to the proof in solid geometry.

We proceed to lift step 5 as

(IN-PL (PLANE A B C) A B) S-14a applied to NON-LN

after checking that S-14a does indeed prove this. We now need to lift LINEILEMMAI (above) in

preparation for lifting step 6. This lemma in turn depends on axiom P-IL

Downstairs LINELEMMAI is proven by using a refutation proof. The same is

unfortunately true upstairs. We are looking for a one-step proof, so we don't need to use a

resolution theorem prover. We simply translate the lifted version of LINKI.EMMAI to disjunctive

normal form, then compare this to all axioms (also in their disjunctive normal form). We discover

that axiom S-I5 gives us the desired equality provided that the points are not collinear and that

Problems and bolutions



ANALOGY PROGRESS REPORT

all three points are in both planes. We just proved the former, and know the latter is true by S-

14a (appropriate assertions were made when it was applied)

We make note of a second MISSING-PREREQUISITE bug on our bug list, and give the

proof for

PLANELEMMA1:
(FORALL (P1 P2 P3 PL1 PL2)

(IMPLIES (AND (PT P1 P2 P3)
(NON-LN PI P2 P3)
(PL PL1) (PL PL2)
(IN-PL PL1 P1 P2 P3)
(IN-PL PL2 P1 P2 P3))

(EQUAL PL1 PL2)))
and also add

PLANELEMMAI -> LINELEMMAl
S-15 -> P-12

to the analogy map. Note we cleverly got back the proper number of points: LINELEMMAI

quantified two points, while PLANELEMMA! quantified three!

This completes the proof. We are still not ready to lift code. We have one anomaly

remaining: in plane geometry there is an outstanding question concerning the order of points A,

B, and C in the "line" P. We can easily prove in solid geometry that

(NOT (OR (BTWN A B C) (BTWN A C B) (BTWN C A B))

We can conclude that there is not an "obvious" candidate in solid geometry for the BTWN relation

with this analogy. We thus: note an UNNECESSARY-PREREQUISIT bug on the bug list.

Problems and Solutions



AlAIAAi I YrntFAK•rN UL I aUi

Lifting Code for Problem 2

We can now lift the code. Although the bugs were detected by logical means, they are

noted with respect to the code fragments which gave rise to them. When we lift these

questionable code fragments, the bug type tells us what actions need to be taken to repair the

code.

We also lift a representation theorem about the representation of planes:

P's repl(* X :) -> (IN-PL P X)

We learned from this example a little about representing planes, and how to construct a

plane from given points. We also learned that there is no concept corresponding to BTWN which

applies to points in a plane. It is important to remember in all this that by "learn" we always

mean "write code for".

PROBLEM 3

So far, the problems have been interesting, but not spectacular in that the analogies

were fairly obvious. The problem we will now solve has no obvious solution.

The problem involves the notion of a line being in a plane. We recognize that "IN" is a

transitive, non-symetric binary relation in solid geometry: if A is IN R, and B is IN C, then A is

IN C, but if A is in B, then B is not necessarily in A (almost certainly not). The crux of the

problem is that there are no transitive, non-symetric binary relations in plane geometry (as we

have described it) That we call "IN" by different names according to argument types just makes

things worse. In this example we will find an analogy where none can reasonably exist.

roDleImB anil aolutions



ANALOGY PROGRESS REPORT

The above cxample indicates we could replace both IN-I.N and IN-PL in
solid geometry with a single predicate IN without affecting the analogy process
operation.

It is also worth pointing out that we never need some higher level
descriptions like "transitive, anti-symetric binary relation."

Suppose we wish to introduce the notion of "a line being in a plane" to our budding

solid geometry expert. We cannot say merely "if a point is in a line and that line is in a plane,

then the point is in the plane" because that only tells us how to use a line being in a plane, not

how to deduce it.

We might wish to add "a line is in a plane if all points on that line are in the plane",

which is correct, but testing for this condition involves a proof by contradiction. As mentioned

earlier, we dislike proofs by contradiction. Therefore we might try to add "a line is in a plane if

two points of that line are in the plane". This, of course, duplicates axiom S-16 in a definition,

and thus cannot be allowed.

What we will do is similar to the device used with INTERSECT: we will claim that

for line L and plane P, (IN-PL P L) is a predicate such that

(FORALL (A L P)
(IMPLIES (AND (PT A) (LN L) (PL P)

(IN-LN L A) (IN-PL P L))
(IN-PL P A)))

In other words, the above is true "by definition." This is a "second-order" definition, because it

implies

(FORALL (A L P ALPHA)
(IMPLIES (IMPLIES (AND (PT A) (LN L) (PL P)

(IN-LN L A) (ALPHA P L))
(IN-PL P A))

(IMPLIES (ALPHA P L) (IN-PL P L))))

Problems and Solutions



ANALOGY PROGRESS REPORT

We have our definition. To find how the defined predicate is to be implemented, we use a clever

trick: we pose the definition as a problem! We continue using the same analogy developed by

problems 1 and 2, so that

PT -> PT
LN -> LN
PL -> LN
IN-PL -> IN-LN when applied to plane and point

The semantic type of IN-PL applied to plane and line under the current analogy is a predicate

applied to two lines, i.e., the same semantic type as EQUAL (applied to lines). With the axioms

given, it is also the only semantic template match. In fact, there are four reasons why EQUAL is

a good choice for the analogy:

(1) Pragmatic. This choice works.
(2) Tradition. In algebra one investigates the structure of groups and rings by way of maps

that send problematic substructures to identity elements, i.e., one imposes equivalence
relations on the structure.

(3) Conjectural. Suppose we wanted to choose P to maximize the size (cardinality) of the set
"Q such that for all X,Y (P X Y) implies (Q X Y). I suggest that EQUAI. would be one of
the best choiced. In other words, EQUAL "does more" than any other predicate.

(4). Philosophical. We really want to write a program. A common joke is that writing
programs is the same as debugging a blank sheet of paper. We are essentially using
EQUAL as a blank stimulus in the hopes of debugging the response.

So we add

IN-PL -> EQUAL when applied to planes and lines.

To make a long story short, the image problem is solved with the proof being "by definition of

equality7. When this justification (a reference to a second-order equality axiom) is lifted, we get

a proof "by definition of IN-PL" which is indeed correct!

We now lift the programs. Ignoring the details, the downstairs program first searched

P's representation for A, and failed. It then searched for any "line" EQUAL to P, found I., and

proceeded to search L for A.

Problems and Solutions



ANALOGY PROGRESS REPORT

Thus the "lifted" program should first search P's representation for the object A, and

failing that, search for any line (because L's inverse is a line) satisfying the relation (IN-PL P z)

where x is a line, and then search there for A.

The downstairs program has already been lifted before by problem 2, and this is known

to the analogy process. We therefore can implement the new procedural knowledge as a patch!

What more could one ask for?

So we learn two things by solving this problem: first that the use of the "definition"

should be in backward chaining rather than forward chaining, and second the point and details of

the patch required to implement the new interpretation of IN-PL Now if

(IN-PL plane line)

is ever asserted, we know what to do.

Problem 3, Continued

Thus armed, suppose we are given the problem

(FORALL (A B C P)
(IMPLIES (AND (PT A B C)

(PL P)
(IN-PL P A B)
(IN-LN (LINE A B) C))

(IN-PL P C)))

Under the current analogy (which we might as well continue using) we will show (in plane

geometry) that (IN-LN P C) because (EQUAL P (LINE A B)). Lifting this reasoning, we find that

(IN-PL P C) because (IN-PL P (LINE A B)). Of course, this "proof" isn't too helpful, and we will

need to use "brute force" to find the one missing step (S-I6). In this case, the analogy process did

not help solve the problem, but it did do something much better! In looking at the fine structure

of the processing downstairs, we discover that the LINE procedure asserted (EQIJUA P (LINE A

B)). Therefore, the LINE procedure upstairs should make the appropriate IN-PL assertion in a

Problems and Solutions



ANAINAJUI I FRIYUml5 mLYUT[I Yroblims and ~olutions

forward chaining deduction. Furthermore, the description of the "bug" in the lifted proof tells us

the rest of what we require for patching and justifying (proving correct) solid geometry's new

LINE procedure.

We now know imperatively what IN-PL means applied to planes and lines. If no natural

analogy is available, the analogy process blithly uses an unnatural one.



ANALOGY PROGRESS REPORT

Major Ideas

The three problems and solutions illustrate the major new ideas which have resulted

from the research to date. These ideas are:

i. The use of semantic templates to initialize and extend the analogy map. To be
truly useful, type information most be derived from the problem domain description.
This represents a necessary correction to the technique developed by Kling.

1 The notion of an evolving analogy map. Winston introduced the idea of a
"context" for learning. Our notion is an extension and refinement of his technique.

3. Our use of representation theoremns, which are required for proofs of program
correctness and for driving proofs through representations (not discussed), to assign
an interpretation to extended predicate forms.

4. The notion that analogy is used to lift problem-solving procedures, not problem
solutions. At best, the inverse (i.k, "lifted") problem solution gives as a "feel" for
what the solution to the original problem should look like. Indeed, some feel that
the role of analogy is only to obtain the form of the solution. Our view is more
ambitious. Indeed, analogy does have this role, but, as we have seen, there is no
reason to settle for frosting when we can have the cake as well.

S. The use of "bugs" in proofs to correct procedures being learned. The use of bug
types and descriptions to patch programs is, of course, due to Sussman.

6. When we started this research, we assumed that at times we would be forced to do
arbitrarily hard theorem proving (in a "dumb" way). It turned out that only one-
step proofs were ever required. This is very fortunate, since it implies that all of
the above applies if one uses "common sense" logic (which must include the
intuitionistic portion of mathematical logic) instead of predicate calculus. Were we
required to use, say, resolution theorem proving, this would not be so.

Role of Theorem Proving

Rarely does one want a theorem prover. One might therefore ask exactly how much of

the theory of analogy presented above is predicated on the particular experts being theorem

provers. In an important sense, this question is mncaningless!

The expert problem solvers being discussed do not have proofs as their primary output

Summery



ANALOGY PROGRESS REPORT

Rather, functions have values as output, and predicates return truth values. The experts are

programs, and find answers as efficiently as possible (without resorting to analytic techniques).

Where, then, do the proofs we have been quoting come from?

Like all good programs, we have proven the correctness of the various routines in our

expert problem solver. We have also developed a set of techniques whereby from these correctness

proofs and the solution process we can generate a proof that the solution process did indeed

produce the correct answer. It is this proof that the analogy process needs.

What this means is that if an expert problem solver can be proven correct (for some

theory of the domain), then we can go from this proof that the program is correct to proofs that

particular answers to particular questions are also correct. Thus any expert problem solver can

be made into a theorem prover.

Finally, it should be noted that these ideas are independent of the formalism used to

write the expert problem solver, and probably independent of the choice of the domains of plane

and solid geometry.

Summery


