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Underestimating the Difficulties

To us, vision is an immediate experience, not subject to careful introspection. We

cannot write down protocols of processing steps that lie between the raw image

intensities and our vivid impression of the surrounding scenery. Furthermore, we find

ourselves in possession of this faculty long before we learn to master the more

sequential processing tasks involved in the use of language, for example. Consequently,

the difficulties of the vision process are often not appreciated. This is as true today,
when many inroads have been made on the problem of understanding this process, as it
was earlier when it was thought that vision could be understood simply in terms of

some general ideas of artificial intelligence.

Divergence of Objectives

This difficulty is further compounded by the fragmentation of efforts resulting
from widely varying motivations which bring researchers to this problem. These range

from an intense desire to understand naturally ocurring vision systems to an interest in

industrial application of machine vision. Somewhere in between we find those
pursuing the information inherent in an image without regard to the implementation
details of particular vision systems. It is not too surprising then that one finds widely
diverging criteria for judging the importance of a particular piece of work.
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Machine Vision is not the "I/O of A.I."

Still others use the vision domain only as a test bed to illustrate some general
mechanisms currently favoured in.other artificial intelligence work, or think of machine
vision and manipulation merely as the "1/O of A.I.", the interfaces which allow the
smart machine to interact intelligently with its environment. I contend that this is
unreasonable since vision appears to have interesting features which do not have
counterparts elsewhere, certainly not in the serial, linguistic kind of reasoning pursued
in other areas of artifical intelligence. It is these features which make vision worthy of
study in its own right. One such aspect which has not been approached seriously
elsewhere is that of spatial reasoning which cannot be conveniently handled using the
kinds of data structures explored so far and found so useful in other domains.

Task of a Vision System

What is the task to be tackled' by a vision system? Despite widespread

disagreement on many other aspects of vision, most would agree that a vision system is

expected to produce a description of what is being viewed. The input may be one or
more images, each a two-dimensional distribution of scene radiance values obtained

from some sensing device. There is less agreement on the form of the output. What

kind of description is acceptable? Clearly two criteria must be satisfied: The

description must

(1) reflect some aspects of the three-dimensional reality, and

(2) be useful in carrying out a specified task.

Usually it is expected that the description take a symbolic form. Quite different kinds

of descriptions are likely to be considered adequate when the system is part of a device

which lines up integrated circuit chips for automated lead bonding [Horn, 1975b], as
opposed to a stage of a system meant to express an opinion about the merits of a work

of art. As is so common, the representation of the given information must be matched

to the task at hand.

Task Independence

It would be much nicer if one common mode of description could be employed,
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since the system dealing with visual. inputs then could be designed in isolation, without
considering the overall task. Perhaps this will turn out to be possible, at least for early
stages of an image analysis system. Certain kinds of operations on images appear to be
dictated by the image rather than the task and ought to be done without consideration
for the task. At this point, however, it seems that task-dependent representations will be
with us for a while.

Complexity of Machine Vision

An important lesson to be learned from the work on vision so far is that the
problems are profound and not likely to succumb to the application of a bag of tricks
from some other field, such as communications theory, statistics or linear systems theory.
Machine vision merits its own methodology. Attention must be paid to both the physics
of image formation as well as the information processing techniques which can produce
the desired internal descriptions of what is being viewed. It now seems that this latter
endeavour can be helped along by careful consideration of the human visual system
and its strength and weaknesses.

Unfortunately biological vision systems are extremely complex and one can easily
be led astray while studying them in isolation, without adequate tests of hypothesis one
develops. Similarly, knowledge of certain physiological or chemical detail, for example,
may not turn out to be very illuminating. What happens to the conformation of the
rhodopsin molecule in the first few pico-seconds after a photon hits it is very exiting,
but not helpful in the, understanding of vision in a broader sense. One thing one
learns quickly from even casual study of natural vision systems is that prodigous
amounts of computation are involved in the processing of the image information.

A Peculiar Dichotomy

For a mobile biological entity above a certain size, vision is vital. It is hard to
survive in a world where others have this faculty and use it in competition for food
and in predator avoidance. Similarly, machine vision holds great promise for artificial
systems. Many tasks cannot be done, or can be done only slowly or clumsily without it.
So, vision, while difficult, is also very useful. As a result people will push the
technology hard to get working systems This has resulted in a peculiar dichotomy.
There are two kinds of systems:
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(1) systems which work at reasonable speeds, and
(2) systems which work reasonably well.

"Automated" Stereo

Illustrations of this curious phenomena abound. There are, for example, a

variety of machines which extract topographic information at reasonable speeds from
stereo pairs of aerial photographs. These devices use special purpose hardware to

implement rather simple correlation techniques, and, as a result, require significant

human assistance. First, the operator is obliged to help the system out of "trouble spots"
where the correlation technique fails because either there is no detail, as on smooth sand

or a lake, or because the two views are too different, perhaps because the slope is large.

Many times the machine does not even note that it is in trouble and so records bad

information. These "glitches" then have to be tediously removed in an interactive

editing process if the data is to be at all useful.

On the other side of the coin, one finds many good ideas in the machine vision

community which require sophisticated hardware and software for their implementation

and which are slow on computers of todays ilk. Methods recently developed at Stanford

[QOuam 1971, Gennery 1977, Arnold 1978] and at M.I.T. [Marr 1974, Marr & Pogglo 1976,
Marr & Poggio 19771 are considerably more robust, but require staggering computing

power on machines of standard architecture.

"Automatic" Terrain Classification

Systems have been developed for classification of terrain based on the application

of pattern recognition techniques on a point by point basis. Special hardware has even

been built to implement this simple process, perhaps prematurely, since the performance

of this method leaves much to be desired. The classifier has to be trained anew for

each image, it cannot deal with hilly terrain and changes in the lighting angles.

Typically, the classifier is only used as a step in an iterative refinement process with the

human operator making the real decisions. Even then many points are incorrectly

classified if the separation between classes is not very distinct.

Yet at the same time work at Purdue [Landgrebe 1973, Landgrebe 1975, Gupta et

at 1973, Swain 1973] and the University of British Columbia [Starr & Mackworth 19781,
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has demonstrated the advantages . of several methods for including contextual
information. Growing small regions of similar spectral signature and classifying the
regions, rather than individual points helps, as does the use of even rather primitive

textural measures [Bajcqyy 19731]. Amongst several other promising Ideas are those

recently expounded at the University of Maryland [Rosenfeld 1977b, Rosenfeld 1978]

regarding the use of relaxation methods, also known as cooperative computation

methods. While all of these methods produce results far superior to those generated by
the point by point methods, it must be admitted that they require considerably more

computing power.

Line-finding

As a last example we may look at edge-detection and line-finding. Many fast
systems, some even running at full video speeds [Nudd 1978], use simple operations such
as Robert's gradient, discrete approximations to the Laplacian operator or Sobel
gradients. These produce visually pleasing result, but the edge fragments produced
tend to be too noisy and ill-defined to succumb to concerted efforts to glue them into
reasonably continuous lines and well-defined vertices.

Systems which do produce useable symbolic edge information such as those
developed at M.I.T. [Griffith 1970, Horn 1971, Shirai 1975, Marr 1976, Marr 1978] require
vast amounts of computing power both in terms of storage and machine cycles. Very
similar sorts of things can be said about approaches which depend on scene
segmentation using region growing techniques instead of edge-finding [Brice &
Fennema 1970, Ohlander 1975, Tenenbaum & Barrow 1977].

Vision hardware

Part of the explanation for this dichotomy then lies in the impatience of the
implementers and the real world need for solutions to pressing problems involving
processing of visual information. It is natural to think in terms of special purpose
hardware suited to particular algorithms. For specialized tasks it is possible to realize
one to three orders of mag-nitude speed-up in processing with affordable special
purpose devices. In the past the development of such hardware was perhaps
inappropriate since no one had enough confidence in any particular scheme to commit
resources to an implementation effort. Also, the existence of fast systems that ute very
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simple methods, has discouraged further work, since "the problem has been solved". A
look at the results quickly convinces one that this is not so.

Roots

Several fields may be identified as having contributed major ideas to machine
vision. I will single out just three here for discussion.

(1) Image Processing

(2) Pattern Recognition

(3) Scene Analysis

Each field has now matured sufficiently to have its basic tools documented in a
number of monographs, collections and text books [Andrews 1970, Biberman 1973,
Gonzalez & Wintz 1977, Huang 1975, Lipkin & Rosenfeld 1970, Rosenfeld 1969b,
Rosenfeld .1976b], [Cheng 1968, Fu 1974, Fu 1976, Grasselli 1969, Tou & Gonzalez 1974,

Watanbe 1969), [Duda & Hart 1973, Hanson & Riseman 1978, Winston 1969, Winston

1977], as well as hundreds of papers. Indeed, I cannot begin to do justice to these here,

but instead refer the reader to A. Rosenfeld's excellent bibliographies issued annually

[Rosenfeld 1969a, Rosenfeld 1972, Rosenfeld 1973, Rosenfeld 1975, Rosenfeld 1976a,

Rosenfeld 1977al In order to see where we are and to discern possible future trends we

should analyze the strength and weaknesses of each of these paradigms in tackling the

basic task we have set out for a machine vision system.

Image Processing

Image processing, as the name suggests, is something one does with images.

Herein lies both its strength and its weakness. Of the three fields mentioned, this is the

only one which deals with images as input. Indeed the basic operations apply to arrays

of raw image intensities. Many useful transfers of ideas to machine vision can be

traced to this emphasis. Unfortunately, image processing also produces images as

output -- not descriptions. Only in so far as these new, possibly enhanced, smoothed or

sharpened images are easier to process are these techniques useful. Since, in the case of

image processing, the final product is intended for human viewing, this is rarely the

case. Further, one finds an unfortunate emphasis on linear, shift-invariant methods

and consequently assorted transform techniques. Such ideas have only played a limited
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( role in machine vision.

Pattern Recognition

At the core of this field is a method, pattern classification, which is concerned

neither with images nor with descriptions thereof. Pattern classification instead deals

with the mapping of vectors into integers - the vectors having components which

represent measurements of some entity, the integers denoting the classes to which this

entity might belong. This paradigm of feature extraction followed by pattern

classification is of interest here, however, because many of its applications have

involved features extracted from visual data. Several techniques used in the calculation

of the numerical feature values for the classification process have found other

applications in machine vision. Much of the sophisticated mathematical paraphenalia

used to analyze the pattern classification stage has not.

Scene Analysis

Scene analysis concerns itself with the processing of descriptions of images into

more sophisticated, or perhaps more useful, descriptions. In this category one finds

much of the blocks-world work on line drawings [Roberts 1965, Clowes 1971, Huffman

1971, Waltz 1975]. As it turns out, obtaining the line drawings in the first place from the

raw image information was the more difficult task; in fact, no system produces the

perfect descriptions needed by early scene analysis systems [Winston, 1972, Grape 1972,

Falk 19721.

More recently, discouraged by the complexity of the distributions of raw image

intensities, researchers have turned to methods which exploit prior knowledge about the

likely contents of the scene being viewed [Reddy et al 1973, Tenenbaum & Barrow 19761
In Max Clowes' words: "Vision is controlled hallucination". The image contributes a

small "controlling" influence on the vision system's "hallucinations" based on

expectations and predictions. Similar ideas have taken hold in other areas such as
speech, where researchers despair of dealing with the complexities of the raw acoustic
waveform without guidance from various "knowledge sources". There is however an
ever-present danger of "controlled hallucination" turning into "hallucination". I think
we may have closed our eyes to the raw. image for too long.
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Things to avoid

The early years of any field tend to be characterized by a wide variety of
approaches, many false starts and techniques based on inappropriate analogies. We can
learn from these mistakes if we wish. Here are some things to avoid:

(1) Using a mechanism-oriented approach, instead of a problem-oriented
one.

(2) Applying a known bag of tricks from another field.

(3) Believing that complexity will automatically give rise to interesting
behaviour.

(4) Hoping that "learning" will provide a boot-strapping mechanism.

(5) Believing what works in a simple situation can be easily extended to

a more complex one.

(6) Suffering from theorem-envy -- introducing unwarranted

mathematical hair.

(7) Working only on the "interesting" sub-problem - often not the

weakest link.

(8) Following the latest fad. Create your own instead!

(9) Taking a random path through a maze of possibilities without

explanation.

(10) Admiring the King's new clothes.

Current Trends

Attempts are being made to apply machine vision methods to so many different

problems using so many different methods that it is impossible to give any kind of

coherent summary. Furthermore, progress is being made in understanding several
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important fundamental issues which cut across the spectrum of applications domains. It
seems appropriate to concentrate attention to some of these issues.

Representation of Ob ects

If the task of the vision system is to produce useful descriptions of the scene

being viewed, it is naturally important to pick a good representation for

three-dimensional objects. If such a description is then to be used for recognition or in

the determination of an object's position and orientation, it must capture Information

about the shape of the object and its disposition In space. This Is an important

problem, which does not occur in the processing of two-dimensional patterns such as

microscopic image of blo-medical interest or in other areas such as finger-print

identification or character recognition. A number of representations are currently being

explored. One uses generalized cylinders or cones to approximate parts of objects after

segmenting them into suitable pieces [Agin & Binford 1973, Nevatia 1974, Binford 1971a,

Hollerbach 1976, Nevatia & Binfofd 1977, Marr & Nishlhara 19771 The information

needed to construct such representations may be obtained by a variety of techniques

including laser range finding [Nitzan et al 1977] and stereo disparity calculations.

SPINES

Another representation of the shape of an object uses surface normals or "spines".

This was suggested [Horn 1977], as a more appropriate representation than one in terms
of elevations above some reference plane [Horn 1975a], in part because surface normals
undergo a simpler transformation under rotation. Indeed, human performance on

shaded images suggests that we are rather poor at establishing relationships in

elevation, but have a pretty good idea about the local surface orientation. Fortunately,

methods for determining this kind of information exists, ranging from photometric
stereo [Woodham 1977] to the shape from shading algorithm. More recently this
representation has been suggested as a half-way step to representation in terms of
generalized cones [Marr 19781

Early Symbolic Description

From the discussion of the roots of machine vision it must be clear to the reader
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that the crucial thing missing from all three ancestor fields is the lack of a method
which takes one from raw image intensities to symbolic descriptions. Little thought had
been given even to the problem of where the appropriate point for this transformation
would be. Recent work suggests that the first symbolic description be obtained at an
early stage [Marr 19761 of the processing of the visual information. That is, the initial
symbolic description contains very many items, each of a rather simple nature. Further
analysis is then carried out using symbolic information processing techniques on this
initial data base.

This is a considerable departure from vision work in the blocks world, where the
first real symbolic description was a complete line drawing. Even then it was clear that
this was inappropriate, and crude symbolic description and the mechanisms for
manipulating them, existed hidden in huge assembly language programs [Horn 19711

Many of the ideas regarding the use of early symbolic descriptions have come
from a better understanding of human vision. Conversely, computer implementations

provide an outstanding way of testing emerging theories about visual perception [Marr

19781 Without such checks speculation runs rampant

Understanding Image Formation

It is not uncharacteristic of computer science to tackle a new domain with total

disdain for the details of the mechanisms evident in that domain. Of more interest to

the computer scientist are questions of computational structures and efficiency and

whether a proposed algorithm will apply in the new domain. Machine vision is no
exception in this regard. It seems that for a long time there was very little interest in

the origins of the arrays of numbers given as input to a machine vision system.

Recently it has been found that many constraints due to the physics of the real world
situation can be succesfully exploited, once understood [Waltz 1975, Horn 1975al This
enables processing not otherwise possible.

Understanding the process of image formation is helpful in inverting the image

formation. That is, it is useful to know how objects are imaged, if one wishes to build
a symbolic description of what is being viewed from the image. This kind of
consideration has focused attention on smooth variations in intensities in an image

[Horn 1977, Horn 19781 Previously, image Intensities were processed only to extract
regions of more or less uniform properties or to locate points of more or less rapid
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intensity change. At that point the image intensities themselves were discarded. This is
unfortunate since a great deal of information about the objects being imaged is
available there. This is quite different from the situation which applies in the case of
binary images, useful in character recognition and printed circuit inspection for
example.

Basically, what one is after is information about the permanent properties of the
objects, such as reflectance, color and shape. This information is present in the raw
image, but only in a coded fashion [Barrow & Tenenbaum 19781 One may, for
example, have to also deal with illumination conditions and shadowing. It is possible to
extract all of this information from the raw image intensities, once the basic laws of
image formation are understood. It is time to break the code.

Conclusion

Progress has been made - at least we now know more about what we are up
against. Much remains to be done. There is no shortage of good ideas right now, so
we can discard some that no longer serve us well.
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