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both rely on a knowledge of cause and effect - algorithmic knowledge about how to do things and
how things work. I will describe a new theory of representation for commonsense algorithmic
world knowledge, then show how this knowledge can be organized into larger memory structures,
as it has been in a LISP implementation of the theory. The large-scale organization of the
memory is based on structures called a bypassable causal selection networks. A system of such
networks serves to embed thousands of small commonsense algorithm patterns into a larger fabric
which is directly usable by both a plan synthesizer and a language comprehender. Because these
bypassable networks can adapt to context, so will the plan synthesizer and language
comprehender. I will propose that the model is an approximation to the way humans organize and
use algorithmic knowledge, and as such, that it suggests approaches not only to problem solving
and language comprehension, but also to learning. I'll describe the commonsense algorithm
representation, show how the system synthesizes plans using this knowledge, and trace through
the process of language comprehension, illustrating how it threads its way through these
algorithmic structures.
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INTRODUCTION

I want to talk today about human language comprehension and problem solving.

Investigations into how the human mind comprehends natural language have led model
builders into progressively deeper cognitive issues. Until only very recently, most research had
been directed toward the unit of the sentence, insofar as it represented an isolated thought. The
primary areas of research were the sentence's syntactic analysis, its meaning representation,
context-free inferences which could be drawn from it, its significance as a command or query
within a microworld, and so forth. It is only recently that much attention has come to be
directed toward the problem which, I feel, lies at the heart of language comprehension: the
problem of understanding the interrelationships among the thoughts which underlie the sentences
of a piece of text, of a story, or, more generally, of any sequence of perceptions.

Each step in the evolution of natural language model building over the past twenty years
has required inclusion in the model of larger and larger memory structures for the model to
consult in order to perform its job: from the lexical entries of the early translators, to the
syntactic rules of parsers, to the semantic and conceptual case frameworks of meaning-based
parsers, to the context-sensitive data bases of micro-worlds. I certainly do not intend to
reverse this evolutionary tendency today; instead, I want to show you still larger structures

( which seem to be required by a model which is capable of relating one thought to the next.

Let us take as an informal definition of natural language comprehension "the art of
making explicit the meaning relationships among sequences of thoughts which are presumed to be
meaningfully relatable." My interest in language comprehension, as this defines it, has led me to
the doorstep of another discipline which, historically at least, has developed quite independently
from language comprehension. This is problem solving, or the art of influencing the world and
self via planful actions. The independence of these two disciplines - language comprehension and
human problem solving - sometimes was so acute that I can recall days when the language
comprehenders and problem solvers would hiss at one-another when passing in the hallway!
Perhaps those days will soon be over.

The thesis I wish to propose today is that these two core elements of human
intelligence - language comprehension and problem solving - ought to be regarded as two sides of
the same coin. that they are simply two ways of using one repertoire of memory processes and
one memory organization. My belief, in other words, is that there ought to be a way of
organizing world knowledge so that the very same memory structures can be used to solve
problems and understand thought interrelationships. Watch any child as his level of problem
solving expertise increases hand-in-hand with his ability to understand and connect his

perceotions of the world as he must do. say. when listeninr to a story.rM . - - -W , Iw- - - 0 y



1 come from the frenetic "build-a-model-then-rip-it-apart" persuasion within Artificial
Intelligence, because it has been my experience that, no matter how clever one is, he never
uncovers the real problems by gedankensexperiments. Rather, he thinks a while, builds a model,
runs it, watches it fail, thinks some more, revises it, runs it again, an so on. So I will be
describing some theoretical ideas today in the context of a computer model with which I have
been preoccupied this past year. The resulting system is dual purpose in that it serves as the
core of a problem solver and language comprehender.

Specifically, I want to talk about the three central questions which have served as
motivation for my recent research: (FIC. 1)

(1) First, how can we represent the kinds of knowledge about the world which
underlie human problem solving and language comprehension abilities? That is, what
kinds of primitive concepts do we need to express this kind of world knowledge? In
particular, I want to focus on dynamic knowledge. that which relates to actions,
states and the notions of causality and enablement in the activities we all do day to
diay. Let's call this type of knowledge commonsense algorithmic knowledge. How are
patterns of this knowledge built up from the set of primitive concepts?

(2) Second, how is this knowledge organized in a large system to provide a flexible
and context-sensitive problem solver? This includes the question of how specific
plans are actually synthesized by the problem solver which has access to this base of
abstract commonsense algorithmic knowledge.

(3) Third, how can this commonsense memory organization be used as the basis of a
language comprehension system?

My research shares many common goals with the research of others in the field. Bob
Abelson, for instance, has long been interested in the nature of plans and themes from the point
of view of a social psychologist interested in how humans incorporate notions of cause and effect
in their representation of the world. In his Conceptual Dependency theory, Roger Schank has
been interested for a number of years in developing a way to represent a conceptual knowledge
of actions via a small set of primitives. More recently Schank and Abelson have been
investigating techniques for representing the types of larger stereotyped patterns of "how-to-do-
it" knowledge called "scripts" to be used for understanding multi-sentence short stories. In the
realm of understanding children's stories, Gene Charniak has also been developing a taxonomy of
knowledge about actions in the context of applying that knowledge to understanding connected
text. In fact, each of us is attacking the problems of representing a knowledge of how things
work in the world, then using that knowledge to understand perceptions. This being the case, we
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are essentially generating language-related and problem solving-related instantiations of the much
broader theory of intelligence proposed by Marvin Minsky: the "frames" theory. However, our
methodologies for representing and using action-based world knowledge, and our focusses differ
considerably. Today, I want to show you mine.

REPRESENTING ALGORITHMIC KNOWLEDGE

I suppose a good place to begin is to clarify what I mean by dynamic, or algorithmic
world knowledge. Consider your knowledge of a bicycle (FIG. 2). You know for instance that it
is roughly so tall, you know the shape of its handlebars, the relative positions of its seat, fenders
and reflectors; you know that its pedals are free to pivot, that its chain is greasy, and you know
its approximate price. These are not the kinds of things I mean by the term "commonsense
algorithmic knowledge", but rather pieces of static knowledge about bicycles; they relate to the
physical characteristics of a bicycle. Consider on the other hand your knowledge of the function
of the bicycle and its various components. things like: the function of a bicycle is to translate
an up-down pumping motion of the legs into a statechange in X-Y-Z location of the bicycle and
rider; the kickstand is to provide support when the bicycle is not in use, thus interfering with
gravity's desire to cause the bicycle to accelerate toward the earth; the horn, when air rushes
through it as the result of squeezing the bulb, produces a sound which can cause others to
become aware of the rider's presence, and so forth. These are examples of what I mean by the
term "commonsense algorithmic knowledge", at least as it relates to mechanical objects and
devices; it explains the "why's" and "how to's" of the various components, how the parts
interface functionally with each other, and how and why a potential rider might want to interact
with them. As you will soon see, I intend the term "commonsense algorithmic knowledge" to
cover many other more diverse forms of cause and effect patterns outside the limited realm of
mechanical devices.

Just for fun, let's see how we might represent part of our knowledge about the
bicycle's horn (FIG. 3). What I am about to describe is a pattern built up from primitive event
connectors which illustrate some of the commonsense algorithm representation I have been
developing. I will describe this representation in more detail in a moment. Here is the
description of how the bicycle horn works:

Actor P's performance of the action "grasp" will, provided the horn's bulb is not
already flat, and provided P has situated his fingers around the bulb, cause a negative
change in the volume of the bulb. This negative change will eventually threshold at
the state in which the bulb is flat, contradicting a gate condition on the causality and
shutting off the flow of causality. Meanwhile, provided there is air in the bulb and
there are no leaks in the bulb itself, synonymous with the bulb's negative change in
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volume is a statechange of the location of the air from inside the bulb through the
neck of the horn. This rush of air provides the requisite continuous enablement for
the tendency "oscillation" to produce a "beep". The rush of air out of the bulb is
synonymous with a negative change in amount of air in the bulb, this negative change
eventually thresholding at the point at which there is no air left, contradicting a gate
condition, and hence indirectly severing the continuous enablement needed by
"oscillation". Meanwhile, provided there is a person nearby, the existence of the
"beep" will amount to that person becoming aware of the horn honker!

And that, my friends, is the theory of a bicycle horn. Lest it be said that we model
builders never verify our theories by psychological experimentation, I will now attempt to verify
the correctness of this representation. (honk horn).

Now that I have everyone's renewed attention, and we have a sound experimental basis
upon which to proceed, let me briefly describe the commonsense algorithm approach to
representing algorithmic world knowledge.

The essence of the representation (FIG. 4) is a set of 26 connecting links. The events
which the links connect are assumed to be classifiable into five categories: actions, states,
statechanges, tendencies and wants. Each of the 26 links has its own syntax of allowable event
types. An action is something a potential actor can actually do: "grasp" is such a thing, while
"honk a horn" is not, but is instead a reference to an entire commonsense algorithm pattern such
as that I have just experimentally verified. States and statechanges are descriptions of actorless
conditions in the world, such as STATE: (LOCATION IVAN HOME(IVAN)) and STATECHANGE:
(LOCATION IVAN HOME(IVAN) OFFICE(IVAN)). States and statechanges can be caused by
actions and their existence can enable other actions in turn. A tendency is an actorless action
which, by definition, must occur whenever its set of enabling conditions is satisfied. For example,
"earth gravity" is a tendency which causes an object to accelerate toward the earth, provided
that the object is close to earth and unsupported; "metabolism" is another tendency which causes
an organism to grow hungry, provided that the enabling condition "there is no food in its
stomach" is satisfied. A want is a state or statechange which is desired by a potential actor.

The 26 connecting links are designed to express such concepts as causality, enablement,
concurrency, iteration, gating, and intent among events of the five types I have described. There
are eight links relating to forms of causality (FIG. 5): the four nominal causal forms (FIG. 5, top,
one-shot/ continuous, gated/ non-gated), and the four counterpart byproduct forms (bottom).
Suppose, for example, we wish to capture the essence of face-to-face verbal communication by a
commonsense algorithm pattern. Then we write: (FIG. 6, top). If, on the other hand, we wish
to express one way of causing an object to be attached to one's hand, we write: (FIG. 6,
bottom).
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The four causal byproduct forms allow the explicit representation of other states and
statechanges which are likely to result from an action, even though they are not related to the
attainment of the intended goal of the action. For example, when we saw a board in half, we
impart force to the board, causing it to move if unsupported; we cause small particles of wood
fiber to begin existing in an unsupported state, and so on (FIG. 7a), or when a professor screams
at his graduate students, he sometimes gives himself a sore throat (FIG. 7b), and so forth. These
byproduct links will be extremely useful when synthesizing plans, and can play a role in the
language comprehension ability of the system.

There is another causal-like link, the state coupling link (FIG. 8, top), which gives us
the ability to assert an implicit relationship of causality without having to explain the actual
intervening actions. This link also gives us the ability to denote the equivalence of two different
ways of viewing some state or statechange. For example, to express a very common method of
causing a statechange in location of a small object, we might write: (FIG. 8, bottom left), or to
express the synonymy of fluid entering a container with an increase in volume of fluid in the
container, we would write: (FIG. 8, bottom right).

There is a link to capture the notion of good continuation of a statechange toward some
desired level; this is the threshold link. For example, one way to cause oneself to be located at
a place is to walk toward it, hoping eventually to reach it: (FIG. 9).

There are links for representing the requisite preconditions of an action, or of an entire
algorithm expressed as a commonsense pattern when we choose to regard the entire pattern as
primitive for, say, problem solving purposes. For example, if for planning purposes, we choose to
regard the "drive a car" commonsense algorithm as a primitive with a known solution, then all we
need to know is the algorithm's cumulative set of preconditions: (FIG. 18).

I have described the most important aspects of the commonsense algorithm
representation of dynamic world knowledge. Within this framework of event types and
connective links, the act of problem solving (FIG. 11) will be one of reacting to wants by
constructing patterns which map out planful activities such as executing primitive actions, setting
up preconditions and gate conditions which allow those actions to achieve the desired effects, and
unleashing desirable tendencies while performing compensatory actions to suppress other
undesirable ones.



Sawing a board in half to decrease its length.

FIGURE 7a

SAJCY



ScAEACr I6
&RADUArt

AT
slucDENT

FIGURE 7b

A



COuPLIN6. LINK

E QU0 A .s NuCC
o0 rp A rlF oIL
ST1tE CA AIb6Es

(uCsSALcf)CA0 sA L4rY

o•JS wtYA To MovEM
Ai obE cT"

ATT4c.Wt6

se eoa~ eL

1KY"

£ Qr)hVAq,~uEJ
FLOW,

LOCAT,*AJC

F~Ib ~ Chc~AJlr
SCI (Co

FIGURE 8

- II II I - - --- L- · L -M
- ---- ~ I I-

~083

ST4TC

w I rA XASCV44



T4REASoLDI LINK
(.ooo C.ouIeA IT toN)

FIGURE 9

)g~8orub I
--- _j



(PaR.coU~0 1n os FOK ACT iONs )

F.AnAs ro

MIcp~'mw- I uv'V%

bssca% TI-

of (Ak)

EC AStU Me iT S
Fo, A~J E NT1 tE

AL6*oaltr, V IlesAO

AS A it4CK 60L.

FIGURE 10

toF K C



TH E
TO£
VI I1,

ACT OF PCAos U SoLVu . IN
COarvMOOJS6AS A4•bo•aoslW ait•RoJmPO

c6NSiST oF THWIA(-S SucR As:

- E Ecut" A 'mw•a•ct ACTuro
W- wSEr C* EABLN6 C*O, LOAS

OA. GfCtt CouD onbr S
-LUemAS4 TVOEMOJIfCi

-- CONV far &AAPR CoMIwIeoo Strsit
ALoO.THA i ro L gC4r
sreP SuEa u ece

FIGURE 11



PROBLEM SOLVING

I will stop the description of the representation formalism even though there is a lot
more to say, because I want to move to the second main topic: (FIG. 11a) how to organize these
small, isolated patterns of knowledge such as I have been showing you into larger complexes
which will provide the basis for both problem solving and language comprehension. That is,
imagine that we have the capability for representing, individually, the thousands upon thousands of
small commonsense algorithmmic patterns we all surely must possess. I want now to consider the
structure of the larger fabric of the memory in which these patterns might be embedded.

Let me introduce the apporoach to the organization I have been developing by describing
the theoretical considerations which led up to it (FIG. 12).

(1) First, if we assume, with regard to problem solving, that we have this ability to
represent small, isolated patterns of algorithmic world knowledge, then the primary role of the
larger structures must be to provide a matrix into which we can fit and interrelate the patterns.
And this matrix should serve as a basis for making intelligent selections of alternative patterns
when synthesizing a solution for a given problem. I mean by the phrase "intelligent selections"
that the organization ought to lend itself to interaction with both a static knowledge of the
unchanging aspects of the world, and with the context in which the problem is being solved, that
is, in which the commonsense algorithm pattern selection process is occurring. Where there are
numerous alternative causal patterns for achieving some desired goal, the system ought to have
good reasons for preferring one alternative over the rest in any given environment.

(2) Second, during the problem solving process, the solutions to subproblems ought
somehow to be sensitive to the context and purposes of the larger problem. For example,
suppose my goal is to insult Ivan. I decide the best way to proceed, based on what I know about
him, is to make a dirty joke about his wife; but I don't know any dirty jokes, and hence have the
subproblem of first learning an appropriate dirty joke. Of the many algorithm patterns organized
under the "how to learn about something" part of my algorithmic knowledge, one is: "politely ask
someone else." Certainly, in solving this subgoal, I would not want to go to Ivan and politely ask
him for a dirty joke about wives! The structure of knowledge ought, therefore, to be such that
certain aspects of higher level goals automatically diffuse throughout the system, guiding the
problem solver away from some alternative solutions to subproblems, toward others. In seeking a
dirty joke, I will either avoid Ivan altogether, or interact with him in ways which are compatible
with my higher level goals as they concern him.

(3) Third, the organization ought to adapt dynamically as it discovers more and more
about the environment - the context - in which it is solving problems. In particular, it would be
desirable for knowledge discovered by one part of the system, during the solution of some
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particular problem, automatically to enhance the efficiency with which other parts of the system
solve their problems. That is, as the system discovers things about its environment during the
course of solving particular problems, its general level of problem solving expertise in that
environment ought somehow to be heightened.

(4) Fourth, as regards use in language comprehension, the organization ought to be
explicit, rather than embedded in procedures where the various causal and enablement
relationships are only implicit in the structure of the procedure, and where the relations would
normally be one-way subroutine calls or one-way pattern directed interfaces. The explicitness of
the structures will be essential when the system needs to search through memory when seeking
relationships among thoughts during language comprehension.

There is one other theoretical consideration which was perhaps an even more
fundamental design criterion than these four. This is that the essence of both problem solving
and language comprehension lies in knowing what are the relevant questions to ask during a
selection or searching activity., that is, in knowing which aspects of the environment could
possibly be relevant to the attainment of some goal. If a process which, say, selects one
commonsense algorithm pattern over the rest does not know, in a context-free way, what is
ultimately relevant to the functioning of the patterns among which it is selecting, how can that
process ever be made to do different things in different environments? Perhaps this is a matter

( for the philosophers, but it has suggested to me that the heart of the problem of organizing world
knowledge lies in encoding a knowledge of what other knowledge bears relevance to the solution
of any given task, be it synthesizing a solution to a problem, or searching through algorithmic
structures during language comprehension. The system ought to behave in a way such that a
knowledge of what is relevant can be used to seek out context, but one in which context, once
discovered, can feed back, restricting that which is relevant.

These four criteria - (1) the ability for intelligent algorithm selection, (2) the ability for
higher level goals to influence the way in which subproblems are dealt with, (3) the ability for
discoveries about the environment, the context, made during the solutions of particular problems
to enhance the general ability to solve problems in that environment, and (4) explicitness -
suggested an organization which I will call a bypassable causal selection network as the larger
matrix into which to fit the thousands of small commonsense algorithm patterns (FIG. 13).

The purpose of such a network is, given a goal state or goal statechange, to select a
most relevant algorithm pattern for achieving that goal state or statechange. Such a network
consists of a set of nodes organized into a tree structure. Each node has associated with it a
test and a set of one or more alternative branches, one of which will be followed on the basis of
the test result. Tests are either memory queries about unchanging world knowledge, or queries
about the environment in which the selection is being made, that' is, in which the network is being
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traversed. There is one of these bypassable causal networks for each state concept and
statechange concept in the system. For example, there is a causal selection network for deciding
how to cause a statechange in the location of an object from one place to another: (FIG. 13,
left), there is a causal selection network for deciding on an appropriate approach to causing a
piece of knowledge to begin existing in one's mind, or in the mind of another actor: (FIG. 13,
right), and so forth. This implies that there will be a relatively large number of networks, each
being a specialist at solving problems relating to one particular state or statechange concept.

At the terminal nodes of these networks are what I will call approaches; these are the
patterns, expressed in the commonsense algorithm representation I have shown you, which map
out general, top-level plans for solving problems of the class for which the network is an expert.
For example, among the hundreds of patterns at the terminal nodes of the AGENT W CAUSES
STATECHANGE (LOCATION X Y Z) selection network will be linkers to commonsense algorithm
patterns for driving cars, walking, taking elevators, grasping and carrying objects, hoisting things,
throwing things, swallowing things, and so on. The. kinds of tests asked at the nodes of this
network in order to select among the hundreds of alternatives a pattern for solving a particular
instance of a STATECHANGE LOCATION goal will be things like class memberships of W, X, Y,
Z, the distance between Y and Z, the nature of Y and Z (in a building, in the woods, under water,
in the body), the weight and size of X, and so on. In other words, the causal selection network is
the mother who asks all the right questions before choosing which son - which commonsense
algorithm pattern - will be best for the job.

Each of the approaches at. the bottom of a causal selection network is a commonsense
algorithm pattern of one of three types (FIC. 14): (1) an abstract algorithm, (2) a mechanism
description -or (3) a sequential abstract algorithm. An abstract algorithm is a pattern having one
of the three forms: (FIG. 14, left, center, right). For example, at the bottom of the AGENT W
CAUSES STATECHANGE (LOCATION X Y Z) causal selection network, two of the hundreds of
patterns we would find are: (FIG. 1S). One of these (FIG. 15, bottom left) would be in a part
of the network which deals with changing the location of hand-graspable objects, the other (FIG.
1S, bottom right) would be in a part of the network which deals with causing objects to come to
be located inside the body. If we look at the "swallow" algorithm pattern, this says that,
providing the object X is in the mouth, and it is small enough, the primitive action "gulp" will
ordinarily cause X to change location to the stomach. In general, you can see that the gate
conditions on the causal or state coupling link in an abstract algorithm will prescribe subgoals to
be solved by other causal selection networks in the system.

Notice in the swallow algorithm the existence of two recommendations attached to one
of the gate conditions. Recommendations are direct pointers to other abstract algorithms which
exist at the bottoms of other networks. A recommendation represents a stereotyped way of
solving the gate condition in the context peculiar to the abstract algorithm approach in which it
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occurs. Having the ability to store these recommendations allows the abstract algorithm patterns
in effect to grow into larger and larger, more rigid forms. Without recommendations, the gate
subgoals will be solved by applying other appropriate causal selection networks. But with
recommendations, since a recommendation obviates the causal selection process for a subgoal by
pointing directly to another abstract algorithm pattern at the base of another causal network, as
the system records, through experience, more and more recommendations for specific gate
conditions in specific abstract algorithms, the synthesis of larger and more complex plans becomes
possible for the same investment of effort. that is, effort spent in applying causal selection
networks. as was once needed for smaller, less stereotyped solutions.

I will not get into the other two types of approach - mechanism descriptions and
sequential abstract algorithms - except to show you an'example of each. A sequential algorithm is
essentially a commonsense algorithm pattern with explicit sequencing information. a linearized
chunk of a plan which the system has successfully employed at one time and stored away with the
simplifying sequencing information for future use. As such, it keys on action sequences rather
than on unsequenced goal states. FIG. 16 illustrates a sequential algorithm for setting an
automobile into motion.

A mechanism description captures the internal cause and effect relationships of the
events which occur when the mechanism operates. From such a description, the system can
figure out both how to use the mechanism and what using it can accomplish. FIG. 17 is the
mechanism description of a reverse trap flush toilet. I have been carrying this particular
mechanism description around with me for seyeral months; you never know when you might need
one!

Let's return now to the causal selection network as a whole. The downward traversal
of a network for any given state or statechange goal during problem solving results in the asking
of many questions, and, finally, in the selection of an approach based on the answers to these
questions. The network tests access a context-layered data base, or, when simple lookups fail, a
deduction mechanism which is itself organized as a system of discrimination networks. I will not
describe these mechanisms today.

To illustrate how the causal selection networks function, and the kinds of tests they
must make, let's confront the problem solver with a goal and observe what happens in response.
Suppose I am at work and become thirsty. In other words, I have the goal: (LOCATION FLUID
STOMACH(SELF)). This goal will cause the problem solver to apply the STATECHANGE
LOCATION causal network for AGENT SELF CAUSES STATECHANCE (LOCATION FLUID ?
STOMACH(SELF)), this network being an expert at synthesizing plans for all sorts of
statechanges in location of objects (FIG. 18). In this case, by asking questions about W, X, Y and
Z, the network will lead the problem solver to a mechanism description at the bottom of the
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network as being the most appropriate way of attaining this goal: "use the water fountain out in
the hall." In another environment, the network might have selected another quite different
approach, such as drinking from a cup in the kitchen, drinking from a stream in the wilderness,
going into a store and ordering a glass of water, and so forth. And of course, we have not even
considered the rest of this extremely large causal selection network which would also be applied
to the solution of vastly different varieties of STATECHANGE LOCATION goals involving
people and various kinds of physical objects instead of fluids and bodyparts.

I imagine these causal selection networks as being extremely large, with perhaps
thousands of nodes each. But their largeness, I believe, will be mostly a matter of extreme
breadth rather than depth. I do not believe, for example, that they need ever exceed a depth of,
say, 10 or 15. This characteristic will be important for the language comprehension search
processes.

Note that, having selected the "drink from a water fountain" approach, specific subgoals
are spelled out, the most significant one in this case being to achieve the statechange
(LOCATION SELF OFFICE(SELF) WATER-FOUNTAIN). (Since my mouth is attached, it will
come along with me... the system knows about this through a statecoupling pattern!) Each
subgoal will result in a planning process similar to this one. The end product of plan synthesis
will be a large structure called a synthesized algorithm and will provide input to the linearization
processes which will transform the synthesized algorithm, in graph form, into a linear, executable
sequence of steps.

Before leaving this aspect of the system, let me reemphasize this notion of relevance.
In the water fountain selection example, something in the system had to know that the current
location of self bore extreme relevance to the process of deciding how to go about quenching
self's thirst. It is the purpose of the networks to carry out an orderly probe of the environment
along relevant lines.

Now let me explain why I have called these causal selection networks "bypassable".
Consider the system's character as a complete system: if we look across all the networks in the
system, we see that any particular test of the environment is apt to occur at numerous points
throughout the system of networks. To take a very simple example, the test (CLASS X ?), which
inquires about the class membership of an object, except for different variable names, will occur
at possibly hundreds of points throughout the system of networks. The presence of this test at
different points within one network, or at points in different networks, will be for reasons
peculiar to each network's requirements; the way one network uses this information may be
quite a bit different from the way another network uses it. Nevertheless, if we disregard the
reasons for the test's existence in the various networks, there will be quite a bit of overlap in
the knowledge about the environment needed by the various networks.



This overlap can serve as the basis of a very interesting mechanism as follows (FIG.
19). First, we allow all network tests to be shared. What I mean by this is that suppose a given
test occurs at SO points throughout the system of networks. Then, instead of planting 58
instances of that test, we store one central copy and reference the central copy from each point
that test is needed in the various networks. Suppose also that the central copy knows of all
these occurrences. Then, when any network asks this question and obtains an answer in the
current environment, the effects of that piece of knowledge can be distributed to all other points
of that test's occurrence throughout the system. This distribution process is achieved by planting
what I will call a conditional bypass around each occurrence of that test throughout the system of
networks (FIG. 20). For example, if during the course of solving some problem, any network
asks and discovers that self's location is (LOCATION SELF BUILDING), then every other
network which might ask the question (LOCATION X ?), and which has BUILDING as an
alternative, will receive a conditional bypass around the node in the network at which this
question would be asked. In this case, the bypasses thus planted would be conditional upon X *
SELF; the bypass will not be seen for other values of X.

In the implemented model, this is precisely what occurs. As each node in a network
makes its test, the result is recorded as an active datum in the current environment, and then
conditional bypasses are distributed to all parts of the system which could conceivably use the
newly-acquired information.

The significance of a bypass in a network is a key point of the model: a bypass will
provide the problem solver with a shortcut in environments where the bypass remains valid. As
more and more bypasses accumulate at scattered points throughout the system of networks via
this distribution process, contiguous sequences of bypasses will begin to form (FIG. 21). If this
bypass implantation process is overseen by a transitive closure seeker, then the system will
automatically replace contiguous sequences of compatible bypasses by progressively longer, single-
step bypasses. If the causal selection process is sensitive to these bypasses, preferring to follow
them whenever it can, then as more and more is discovered about the environment as the results
of solving specific problems in that environment, the percentage of the total system which is
bypassed increases. What this means is that the system automatically will tend increasingly to
prefer the selection of approaches which are most appropriate in that environment, being guided,
without any choice, through longer and longer stretches of bypassed causal selection networks.
Some bypasses might grow to be quite long, even up to the point where some entire networks
become effectively invisible because of the existence of one long bypass from the top node
directly to some approach, A, at the bottom (FIG. 22). Of course, this bypass might never
actually be needed; but, should that network ever be applied in an environment in which this
total bypass exists, approach A would be selected "without thought" so to speak. As an overall
organism, this bypassable network memory organization behaves in a way such that, as more and
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more of the environment becomes known, the solutions to problems tend to grow increasingly
predetermined, or stereotyped.

If we take this bypass system back to the solution of the goal I posed a while ago,
(LOCATION FLUID STOMACH(SELF)), you can see that by the time the "use a water fountain"
approach has been selected at the top level, enough will have been determined about the
environment - namely, that self is a human who is currently in an office building where there are
predetermined ways of getting around - that when it comes time to solve the subproblem
STATECHANCE (LOCATION SELF OFFICE(SELF) WATER-FOUNTAIN) in another part of the
network system, there will already be bypasses pointing the problem solver toward approaches
like "climb the stairs", or "take the elevator", and away from approaches such as "take an
airplane", "swim", and so on.

No doubt the word "frame" is throbbing through your networks (FIG. 23), since we
generally imagine a frame to be some sort of entity which imposes constraints on the way things
are perceived, interpreted, or dealt with. This bypass arrangement is indeed frame-like. But its
frames aren't discernable as distinct packets of knowledge. Instead, they are distributed bundles
of bypasses which can blend in essentially infinite variety. Notice that because of this, we get a
continuity of context where, instead of "switching from one frame to another", the system can
flow smoothly from context to context as individual aspects of the environment change. This is
because "context" in the bypass system amounts to the set of questions posed and answered
while solving problems so far in the environment, and of course, the cumulative set of bypasses
introduced by this set of questions and answers. This serving as the definition of problem solving
context, if we assume the existence of an overseer in the system who is responsible for
monitoring the continued truth of items in this context, then as aspects of the context become no
longer true, the bypasses associated with those aspects can be removed from the system of
networks. This will cause the overall problem solving behavior of the system to grow slightly
less automatic in the slightly altered environment. In other words, as the context changes,
bypasses fade in and out. At any given moment, the set of bypasses in the system will guide the
problem solver toward solutions which are most appropriate in that environment.

This model suggests a wealth of related mechanisms. I will mention two. The first is:
suppose some item, such as (CLASS SELF HUMAN), to take the same very obvious example again,
is found to remain in the problem solving context more or less continuously over time. Then
perhaps it would be reasonable to discard it from the context, allowing only its bypasses to
remain permanently. That is, after a while I simply know I am human, and, knowing this, am
always one bypassed step closer to selecting an approach to problems whose networks care about
my class membership. And this phenomenon of relatively permanent bypass implantation seems to
occur in far subtler ways. One day I was repairing the plumbing under our kitchen sink. I had
removed a section of the drain pipe, and as I did so, a considerable quantity of water rushed from
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the sink into the catch pail I had fortunately positioned underneath the operation. I worked
several minutes more, but being annoyed by the bucket full of water, decided to dispose of it.
Now, I won't swear to it, but I think I called up my causal selection network for how to dispose
of objects, and it immediately told me that, since I was standing right next to a sink, and since the
object to be disposed of was a fluid, that I should simply pour the water down the sink. I did so
without a moment's hesitation, even as I held the section of disconnected drain pipe in my other
hand! I spent the next few minutes mopping up under the cabinet and cursing my causal selection
networks.

The second mechanism one might envision in the bypass system is one which, as a
particular overall bypass configuration - that is, set of awarenesses of the environment and their
related bypass sets - was seen to recur frequently, could freeze that configuration, in effect
naming it and forming a more packet-like snapshot of the environment (FIG. 24). Such frozen
bypass configurations could be stored away. Later, when evidence presented itself that the
context represented by some frozen configuration was again likely to be present, the entire
frozen chunk could be called in, its bypasses being implanted en-mass throughout the system of
networks. This would cause a more sudden, discontinuous leap in the system's awareness of
context, with a concomitant, system-wide increase in the degree of stereotypy in problem solving
behavior. Perhaps that elusive packet of knowledge I envisioned when I first heard the term
"frame" might simply be one of these distinguished configurations of bypasses which has occurred
often enough, and with small enough variation, to have been frozen, and thus in effect named. To
jumble metaphors a bit, perhaps this more continuous bypass system is the broth from which
those more discrete animalcules, which I once imagined frames as being, emerge.

There is much, much more to be said about the organization of the causal selection
networks and techniques of plan synthesis using them. There are also many interesting questions
about learning in such an environment: how do the selection networks grow and evolve, how are
abstract algorithm patterns initially composed from sequences of perceptions of the world, and so
forth. These are current topics of research. But rather than continue along one of these lines, I
will stop talking about the use of these commonsense algorithm memory structures in problem
solving, and turn now to their use in language comprehension (FIG. 2S).

LANGUAGE COMPREHENSION

I view language comprehension as that process which elucidates the interrelationships
among a collection or sequence of thoughts by consulting the kinds of world knowledge stored in
an algorithmic memory of the sort I have been describing. And this process of elucidating the
interrelationships should feed back, causing still other interrelationships to be perceived and
awareness of context to expand. I feel the basic character of the language comprehension process
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is one of prediction/fulfillment, wherein every perception gives rise to general - and I want to
emphasize the word "general" - expectations about what might follow, or it fits into some
existing expectation, or both. While I will be talking in terms of language comprehension, where
the source of incoming thoughts is linguistic, the approach I will be describing ought to apply to
any collection of thoughts, regardless of their origin.

Let me first define language comprehension in a slightly more concise way (FIG. 26):

Given a context C(TI,..,Ti) which has been established by thoughts T1,.,Ti, make
explicit the relationship between the next thought Ti.1 and C(T1 .•Ti). Call this
explicit relationship the interpretation of Ti+1 in this context: I(Ti+1,C(T1,r,Ti)).

Now, the job will be to define C(T1,..,Ti), which will represent the predictive
component of the theory, and I(Ti+IC(TlTi)), which will represent the fulfillment component.
For the sake of simplicity, let's restrict the problem to the case C(T1), where we want to
discover I(T2,C(T1 )). Examples of this task are shown in FIG. 27.

How should we proceed? Suppose we can use T1 to generate some expectancies about
the kinds of commonsense activities we might expect the various potential actors in the situation
we are perceiving to engage in. If these expectancies can be kept "defocussed"

enough to provide a good target for the processes which will search for subsequent relations
between T1 and T2, yet well enough organized to make searching through them practical, we will
have the basis for computing I(T2,C(T1)).

The commonsense algorithm memory organization I have been describing provides both
the essential breadth, or defocussedness, of expectancies, and enough internal organization to
make searching practical. Suppose, by an inference process, we can predict each potential actor's
probable reactions in a given situation; in other words, that we can infer a set of likely goals
each potential actor might wish to accomplish in the situation. In the commonsense algorithm
system, goals can be expressed as WANTs of states and statechanges. As such, an expected goal
will be essentially a pointer, with suitable variable instantiations, to the top of what is implicitly
an extremely large structure in the memory... that is, a pointer to the top of some causal
selection network which explicitly ends in abstract algorithm approaches, but which implicitly
extends deep into other causal selection networks via the various subgoals and recommendations
mentioned in the various abstract algorithms at its bottom. If a prediction component can identify
the tops of some networks as being actors' likely goals, then it has effectively identified an
entire realm of things those actors might do to realize those goals, namely, those abstract
algorithms at the bottom of the network, all the abstract algorithms at the bottoms of the
networks involved as subgoals within each of the first level of approaches, and so forth.
"Implicit" is a very important word here; rather than having to make thousands of explicit
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expectancies, we gain implicit access to them by pointing at the top of some network.

Now, suppose we have at each moment some collection of such predicted WANTs (FIG.
28). Then, the essence of the language comprehension reflex will be to identify how each
subsequent thought fits into one of these implicitly large structures as a step toward achieving
some expected goal. If the system can do this, then the relationship between the thought which
gave rise to the expectancies and the thought which has been identified as a step toward
achieving one of these expectancies will be that upward path through layers of abstract algorithm
approaches and causal selection networks which connects the fulfilling thought to the expectancy-
generating thought. This path will be the desired interpretation, I(T,K), of thought T in the
context K, where K, the language comprehension context, is conveniently defined to be the
composite set of various actors' expected WANTs which have been inferred from the sequence of
preceding thoughts.

This being the general outline for language comprehension, let me first describe how the
set of expectancies arises from the incoming thoughts. For this purpose, there are two other
types of networks in the system: inducement networks and prediction networks (FIG. 29).
Structurally, these two varieties of network are similar to the causal selection newtorks, in that
they participate in the same bypass and context mechanisms, and in that they are organized around
state, statechange, and additionally, action concepts in the system. Their differences lie in their
use and in the types of information at their terminal nodes,

An inducement network's purpose is to determine of a given event or state those
internal, psychological states that event or state could induce in a potential actor. In other
words, inducement networks are designed to relate what a potential actor experiences to what he
might feel internally in reaction to those experiences. For example (FIG. 29, left), if we take
KISS as an action concept expressible in the system - not primitive, since it references an
abstract algorithm - then there will be an inducement network whose job it is to infer the
internal states the event AGENT W CAUSES ACTOR X TO KISS OBJECT Y might induce in
INDUCEE Z, who is assumed to be aware of the event. Suppose then, some thought tells us that
agent IVAN caused actor IVAN to perform the action (KISS IVAN NATASHA) while BORIS was
watching. Then, by entering the KISS inducement network with INDUCEE* BORIS, AGENT*
IVAN, Xu IVAN and Y=NATASHA to discover how this kissing event might affect BORIS, the
system might discover, as the result of asking relevant questions as it worked its way down the
KISS inducement network, that BORIS is likely to experience an induced state of extreme
jealousy toward IVAN as a result: (MFEEL BORIS JEALOUSY IVAN). So that what we find at
the bottoms of inducement networks are sets of internal states which an event might induce in
the INDUCEE. Of course, exactly which induced states, if any, are predicted will be a function of
the answers to questions posed by the inducement network. questions which selectively probe
relevant aspects of the situation. If, for example, the network discovers no emotional ties
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between BORIS and NATASHA, no induced states may be predicted at all. On the other hand, if
we run the KISS inducement network with INDUCEE& IVAN, we would perhaps arrive at the
induced state "IVAN is self-satisfied." And who knows what we would get from applying the
network with INDUCEED NATASHA!

So, the inducement networks provide a method for inferring how various conditions in
some situation might affect a potential actor. The system will put these networks to use during
comprehension as follows. As each new thought enters, the comprehender applies the appropriate
inducement network to it, varying the INDUCEE over all known potential actors in order to
discover possible induced states for each. In this case, if IVAN causes (KISS IVAN NATASHA),
we will run the KISS network once for INDUCEE& IVAN, once for NATASHA, and once for
BORIS, if these are the three known potential actors.

If the inducement networks can thereby infer some induced states, these states will
then serve as the input to the prediction networks (FIG. 29, right). It is the role of a prediction
network to relate internal states of actors to goals they may be motivated to attempt as the
result of being in those inferred states. Suppose, for example, the KISS inducement network
decides that (MFEEL BORIS JEALOUSY IVAN) is likely. By applying the (MFEEL X Y Z)
prediction network to this state, relevant questions will once again be posed to discover what, if
any, X's and Z's responses might be, assuming again that each is aware of the MFEEL condition.
For example, the section of the MFEEL prediction network dealing with JEALOUSY will ask
questions about X and Z's ages, social relationship, degree of the MFEEL, and so forth. If, for
example, the prediction network discovers that BORIS and IVAN are school children, who are
rivals and are off on some remote part of the playground away from teacher, then it might predict
that BORIS might employ some sort of physical retaliation against IVAN. that he might set about
accomplishing the state (PINJURED IVAN). On the other hand, if IVAN is BORIS' boss at the
factory, some other reaction to the induced MFEEL would probably be expected.

As in the causal selection networks, we would like to have the mechanism for
accumulating larger and larger stereotyped patterns at the bottoms of both the inducement and
prediction networks. To illustrate, we may wish to obviate the application of the MFEEL
prediction network by including as a recommendation in the KISS inducement set a direct
reference to some sort of physical retaliation (FIG. 30). This would amount to saying that, in the
specific context of an MFEEL JEALOUSY which has been caused by an act of kissing where
emotional relationships are involved, there may be a stereotyped reaction to-the induced MFEEL-
JEALOUSY which is tightly attached to this inferred internal state. In other words, how one
reacts to an induced state is often also dependent upon how that state arose. The
recommendations allow the system to capture this dependency.

We have just been considering the manner in which the comprehender reacts to
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external thoughts as they arrive. In reality, all inducements and predictions generated internally
are fed back into other appropriate networks in order to derive second-order and higher effects
of the various inferences made by these networks. When, for example, the AGENT BORIS
CAUSES (PINJURED IVAN) prediction arises, it can, being fed back into the PINJURED
inducement net, give rise to expectancies about what IVAN might do in anticipation of this
behavior on BORIS' part.

Now, let's return to the larger picture of the comprehender. As the sequence of
thoughts arrives, each is processed via this inducement/prediction network sequence, which gives
rise to a collection of likely goals all potential actors might possess. At this point, the prediction
component has implicitly established contact with the tops of various causal selection networks
(FIG. 31). As each new prediction is made, the comprehender will do one of two things: either
stop the forward, predictive activity at that point, or go ahead and attempt to continue by
predicting how the potential actor might actually attempt to realize his goal. That is, the
prediction can be continued by applying the causal selection process to identify a likely approach.
For example, if the system has reason to believe that BORIS will want to cause IVAN to become
PINJURED, it will attempt to continue the prediction by trying to guess how BORIS might go
about the attack. Sometimes the environment will be constrained enough that such predictions
are possible; other times, there will be no good basis for further prediction. In the latter case,
the system will stop, finding that the majority of causal selection network questions being posed
are not yet answerable.

Now let's look at the fulfillment side of the comprehender. In addition to being filtered
through this prediction component, each input thought triggers a process of upward searching
through layers of causal selection networks and abstract algorithm approaches at their bases (FIG.
32). Suppose, for example, we hear next, after this kissing incident, that BORIS grabbed a rock:
BORIS CAUSE (ATTACHED HAND(BORIS) ROCK). First, the system locates all patterns in all
abstract algorithms in the system which match this input pattern, preferring those matches which
are most specific first. Locating all the occurrences of, say, an (ATTACHED X Y) pattern in the
algorithmic base is possible in the system via a cross-indexing of each concept's occurrence
throughout the system. For the sake of illustration, suppose the searcher finds that the input
thought matches (ATTACHED X Y) patterns at 25 points in various abstract algorithms at the
bases of various causal selection networks. Then, each of these occurrences constitutes a place
where the new thought could potentially fit as a step in some higher activity, hopefully one of
the predicted activities from the prediction networks. Having identified these points of
occurrence of the (ATTACHED X Y) pattern, the comprehender's goal becomes to search upward
through the causal selection networks from these 25 points, hoping to encounter, before too long,
some goal in the prediction set. If such an upward path can be found, the comprehension system
will have found a relationship between the new thought and the context, and hence comprehended
according to my definition.
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This upward searching has the appearance of being a very time consuming operation.
Indeed it would be without some means of deciding which of the 25 paths seem to be the most
fruitful. But the structure of the causal selection networks offers a convenient means of doing
just that. Let's consider what happens, starting from one of these 25 points of (ATTACHED X
Y)'s occurrence in an abstract algorithm at the base of some causal selection network (FIG. 33).
Abstract algorithms are backlinked to all points where they occur as the terminals of networks.
Starting from each occurrence at the bottom of some network, the searcher works its way
upward through the causal selection network one node at a time. At each node, the test stored
at that node is posed. If the result of the test is such that, had the test been made by the
problem solver during plan synthesis, it would have routed the system to the offspring node from
which the searcher has just climbed in its upward search, then the search continues, retaining the
path as still fruitful. If, on the other hand, the test would have routed the problem solver to
some other alternative node at that point, then the path is considered less fruitful, and will
eventually be dropped from consideration as an interpretation path after failing several network
tests in this manner. Paths which survive this kind of reverse filtering eventually reach the top
of the causal selection network. If the goal state or statechange represented by the successfully
climbed network is found not to be in the predidtion set, this process is begun anew for the
higher level goal represented by the network just climbed (FIG. 34); that is, occurrences of this
newly-inferred higher level goal are located at the bottoms of. yet other causal selection
networks, and upward paths from each of those points sought. The process continues until a
state or statechange in the set of predictions is reached, or until path length exceeds a cutoff
value, indicating that, even if a path were to be discovered, it would be a rather remote
interpretation. Path length is defined to be the number of causal selection networks passed
through during the upward search.

Paths which survive this process will constitute possible interpretations of the new
thought in the context of the preceding thoughts. In case there are several interpretations, the
interpretation path finally preferred will be the shortest. that is, the one with the fewest
subgoals intervening between the expectancy and the fulfillment. In case there are several
shortest paths, the one which fared best during the application of the causal network tests on the
upward search will be preferred.

Concerning the bypass mechanism's role during language comprehension, bypasses are not
implanted until after the comprehender has obtained an interpretation path of which it is
reasonably confident. Then, it reinforces that path by traversing it downward, distributing
bypasses throughout the system from each test on the path. This amounts to using the
interpretation path to infer pieces of the environmental context which were not known before;
these can enhance the system's performance within that environment in the future. Also, as an
interpretation path is found, the expectancy from which it has been derived is debunked from the
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set of expectancies and replaced by the more specific expectancies, if any, which represent those
uncompleted steps in the abstract algorithm approach in which the fulfilling pattern occurred.
Concerning recommendations throughout the causal selection network system, the upward
searcher will prefer to follow a stereotyped recommendation rather than climb upward through a
causal network.

CONCLUSION

I have described the essential character of the model. Let me now stimulate your
various networks by reading a joke which I have been carrying around with me this last year. I
promise to lay it to rest after this last reading:

"A man was out shopping for groceries, pushing his three year old son around in the
cart. As they passed by the oranges, the kid took a swipe and knocked over the
whole pile. The father said 'Cool it Oscar'. As they walked passed the broom
display, the kid yanked a handful of straws out of one of the brooms, in response to
which the father again said levelheadedly 'Cool it Oscar'. On their way around the
corner to the meat, the kid let loose an epithet he had wittingly absorbed from the
family's conversation at the dinner table the evening before. To this, the father
merely repeated calmly, 'Cool it Oscar'. Finally, as they were checking out, an
elderly lady who had been observing them remarked to the father that she greatly
admired his restraint in dealing with his son. To that the father replied doggedly,
'Lady, I'm Oscar!'"

It is time to stop. Everything I have described today has been implemented in a small
system which can synthesize plans as well as discover I(T2,C(T1)). Being small, the system cannot
handle complex plan synthesis or comprehend full stories yet. But I am happy with the model as a
foundation for these cognitive processes, and with the underlying theory as an explanation of
some aspects of human thought.
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