
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2009-003 January 28, 2009

Self-Stabilizing Message Routing in
Mobile ad hoc Networks
Tina Nolte, Shlomi Dolev, Limor Lahiani, and
Nancy Lynch

Warning to the reader:
This Technical Report was prepared by Nancy Lynch based closely on Chapters 12-14 of Tina

Nolte’s 2009 PhD thesis. In the course of preparing this paper, Nancy encountered a few technical
problems in the thesis that she could not fix, including some possible errors and gaps in detailed
proofs.

We plan to correct these problems shortly, and then will submit a new version of this TR. In the
meantime, if you need more information about the specific problems, please contact Nancy.

1

Self-Stabilizing Message Routing in Mobile ad hoc Networks, using

Virtual Automata

Tina Nolte
MIT

Cambridge, MA,

Shlomi Dolev
Ben-Gurion University

Beer-Sheva, Israel

Limor Lahiani
Ben-Gurion University

Beer-Sheva, Israel

Nancy Lynch
MIT

Cambridge, MA

January 28, 2009

Abstract

We present a self-stabilizing algorithm for routing messages between arbitrary pairs of nodes
in a mobile ad hoc network. Our algorithm assumes the availability of a reliable GPS service,
which supplies mobile nodes with accurate information about real time and about their own
geographical locations. The GPS service provides an external, shared source of consistency for
mobile nodes, allowing them to label and timestamp messages, and thereby aiding in recovery
from failures.

Our algorithm utilizes a Virtual Infrastructure programming abstraction layer, consisting
of mobile client nodes, virtual stationary timed machines called Virtual Stationary Automata
(VSAs), and a local broadcast service connecting VSAs and mobile clients. VSAs are associated
with predetermined regions in the plane, and are emulated in a self-stabilizing manner by the
mobile nodes. VSAs are relatively stable in the face of node mobility and failure, and can be
used to simplify algorithm development for mobile networks.

Our routing algorithm consists of three subalgorithms: (1) a VSA-to-VSA geographical rout-
ing algorithm, (2) a mobile client location management algorithm, and (3) the main algorithm,
which utilizes both location management and geographical routing. All three subalgorithms are
self-stabilizing, and consequently, the entire algorithm is also self-stabilizing.

1 Introduction

A system of mobile nodes with no fixed infrastructure is called a mobile ad hoc network, or MANET.
Nodes in a MANET may move, fail, and recover, and communication is subject to transmission
collisions, noise, and other characteristics of wireless broadcast. These problems make the task of
designing algorithms for MANETs very difficult. In this paper, we illustrate some new techniques
for simplifying the design of algorithms for MANETs, by applying them to a fundamental MANET
communication problem.

In particular, we consider the fundamental problem of end-to-end message routing, that is, the
problem of conveying messages between arbitrary pairs of nodes in a MANET. This problem is

1This work was supported in part by NSF grants CNS-0121277, CCF-0726514, and CNS-0715397, AFOSR awards
FA9550-08-1-0159 and FA9550-04-1-0121, the Lynne and William Frankel Center for Computer Sciences, and the
Rita Altura Trust Chair in Computer Sciences.

2

difficult to solve, both because of the nature of MANET platforms, and because of the nature of
the routing problem itself. Routing algorithms must perform many complicated and interrelated
tasks: They must determine the locations of destination nodes, either by searching the network
or by maintaining location information proactively. They may set up and try to maintain explicit
routes to destinations. They must forward messages to the destinations, using either calculated
routes or strategies such as geographical routing. They must perform all their work in the face of
mobility and failures.

Many algorithms have been proposed to solve the MANET routing problem. Of these, the best
known are probably the Dynamic Source Routing (DSR) [34] and Ad Hoc On-Demand Distance
Vector (AODV) [46] protocols. These algorithms establish explicit routes by searching the network,
and attempt to use these routes to send streams of data messages. Routes can break when nodes
move; in the case of AODV, repair procedures are used to replace portions of routes as needed.
DSR and AODV are rather complex algorithms, and are fairly fragile in the face of nework changes.

In this paper, we present a simple end-to-end routing algorithm for MANETs, which is robust
in the face of many kinds of network changes. Our algorithm is constructed using a Virtual In-
frastructure (VI) programming abstraction layer, which hides some of the dynamic aspects of the
underlying network platform’s behavior, greatly simplifying the programming task. Our routing
algorithm over the VI layer is further decomposed into three subalgorithms: (1) a geographical
routing algorithm, which routes messages to designated geographical locations, (2) a mobile node
location management algorithm, which keeps track of the locations of the mobile nodes, and (3) the
main routing algorithm, which utilizes both location management and geographical routing.

An important feature that distinguishes our new algorithm from previous MANET routing al-
gorithms is that it is self-stabilizing, that is, it recovers on its own from corrupted states. This is
important in MANET settings because of anomalies that arise in wireless communication, such as
transmission collisions and noise. Because these anomalies are unpredictable and hard to charac-
terize, it is hard to design algorithms that tolerate them; however, self-stabilizing algorithms can
recover when they occur.

Self-stabilization for MANET algorithms differs from traditional notions of self-stabilization, as
presented, for instance, in [12], because not every piece of the system is subject to corruption.
Namely, mobile network algorithms operate in the context of a real world environment, which
includes information about real time and space, and about the motion of the mobile nodes. Such
time, space, and motion information is not subject to corruption in the same way that the software
state is. Therefore, we use a relative notion of self-stabilization, in which only the software parts
of the system are assumed to start in arbitrary states. The real world portion of the system can
help the mobile nodes to recover, by providing them with information about real time and about
their own geographical locations. Essentially, we assume the availability of reliable GPS input.

Virtual Infrastructure: Virtual Infrastructure has been proposed recently as a tool for build-
ing reliable and robust applications in unreliable and unpredictable mobile ad hoc networks (see,
e.g., [17, 20, 19, 16, 4, 43, 11]). The basic principle motivating Virtual Infrastructure is that many of
the challenges of dynamic networks could be obviated if some reliable network infrastructure were
available. Unfortunately, in many situations, it is not. The VI abstraction provides the appearance
of reliable network infrastructure, which is emulated by the mobile nodes in the underlying ad
hoc network. It has already been observed that Virtual Infrastructure simplifies several problems
in wireless ad hoc networks, including distributed shared memory implementation [17], tracking
mobile devices [44], robot motion coordination [40], and air-traffic control [5].

In this paper, we use a particular form of VI known as the Virtual Stationary Automata Layer

3

(VSA Layer) [16, 43]. The VSA Layer consists of mobile nodes called clients, virtual stationary
timed machines called Virtual Stationary Automata (VSAs), and a (virtual) local broadcast service
connecting VSAs and clients. VSAs are associated with predetermined regions in the plane. They
are generally more reliable than individual mobile nodes.

We emphasize that VSAs are not intended to correspond to actual machines in the underlying
ad hoc network. Rather, we assume that they are emulated by mobile nodes, using a replicated
state machine strategy. See [45], Chapters 9-11, for details of such an emulation algorithm.

Our algorithm: Our routing algorithm over the VSA Layer consists of three subalgorithms: (1) a
VSA-to-VSA geographical routing algorithm, (2) a mobile client location management algorithm,
which implements a location service, and (3) the main end-to-end routing algorithm, which utilizes
both location management and geographical routing. All three subalgorithms are self-stabilizing,
and it follows that the entire algorithm is also self-stabilizing.

A geographical routing algorithm routes messages based on the locations of the source and destina-
tion, using geography to deliver messages efficiently. Examples of geographical routing algorithms
for wireless ad hoc networks include GeoCast [42, 6], GOAFR [37], algorithms for routing on a
curve [41], GPSR [35], AFR [38], GOAFR+ [37], polygonal broadcast [22], and the asymptotically
optimal algorithm in [38].

Our geographical routing algorithm is based on stationary VSAs rather than mobile nodes. It
allows any pair of VSAs to communicate, using a simple shortest-path strategy based on paths in
the adjacency graph for VSA regions. Namely, when a VSA in region u receives a message from
VSA v to VSA w that it has not previously seen, and u is on a shortest path from v to w, VSA u
resends the message using local broadcast, thereby forwarding it closer to region w.

A location service allows any mobile node in an ad hoc network to discover the location of
any other mobile node in the network using only the destination node’s identifier. Our location
management algorithm uses the home locations paradigm [1, 31, 39], wherein special hosts called
home location servers are responsible for storing and maintaining the locations of mobile nodes.
Several ways to determine the sets of home location servers have been suggested; for example, the
Locality-aware Location Service (LLS) [1] uses a hierarchy of lattice points for each destination
node. The algorithms in [39, 32, 47] use a hash function to associate each piece of location data
with certain regions of the network and store the data at designated nodes in those regions. Other
location services use quorums [31].

Our location management algorithm is built over a VSA Layer. VSAs serve as home location
servers for mobile client nodes. We use a hashing strategy, in which each client’s identifier hashes
to a VSA region identifier, and the VSA in that region is responsible for maintaining the client’s
location. Whenever a VSA wants to locate a client node, it computes the client’s home location
by applying the hash function to the client’s identifier, and then queries the VSA in the resulting
region, contacting it using geographical routing.

Our main algorithm for end-to-end routing between clients is very simple, given our geographical
routing and home location algorithms. Namely, a client sends a message to another client by sending
the message to its local VSA, which uses the location service to discover the destination client’s
region and then forwards the message to that region using geographical routing.

Self-stabilization: Our routing algorithm is designed to be self-stabilizing, in the relative sense
described above. That is, if the system’s state becomes corrupted in such a way that the mobile
nodes’ states are changed arbitrarily, but the real world portions of the system are unchanged, then
the system soon returns, on its own, to acceptable behavior for a routing protocol.

4

To prove that our complete end-to-end routing algorithm, over the underlying MANET, is self-
stabilizing, we proceed as follows. First, we prove that our end-to-end routing algorithm over the
VSA Layer is self-stabilizing. Then, we assume the VSA Layer emulation algorithm from [45].
We invoke two theorems from [45], which say that (1) the VSA Layer emulation is self-stabilizing,
and (2) the combination of a self-stabilizing emulation algorithm and a self-stabilizing application
algorithm is a self-stabilizing algorithm over the MANET. To prove that our routing algorithm
over the VSA Layer is self-stabilizing, we follow the decomposition of the algorithm into subalgo-
rithms, arguing first that the geographical routing algorithm is self-stabilizing, then the location
management algorithm, and finally the main algorithm.

Contributions: The contributions of this paper are: (1) a new end-to-end routing algorithm
for MANETs, (2) an illustration of how one can use Virtual Infrastructure to simplify the task
of constructing communication protocols for MANETs, especially routing protocols, and (3) an
illustration of how one can make MANET algorithms self-stabilizing, and prove them to be self-
stabilizing.

Other related work: The VI concept has been developed in the past few years in a series of
papers [29, 14, 11, 10, 27, 24, 43, 13, 44, 4, 26, 3, 40, 16, 20, 23, 8, 21, 15, 9, 7, 19, 18, 17] and four
theses [5, 25, 48, 45]. These papers and theses contain definitions of several different forms of VI,
algorithms for applications over VI, algorithms for emulating VI, and general theory for reasoning
about the correctness of algorithms built using VI. A web page containing the latest information
about this project appears at http://groups.csail.mit.edu/tds/vi-project/index.html.

This paper is based on Chapters 12-14 of [45]. A preliminary version of these algorithms ap-
peared in [23]; that version pre-dated the development of theory for self-stabilizing VI layers in [45].
Retrofitting the algorithms and proofs to the new theory required us to change most details, al-
though the high-level ideas remain the same.

An earlier version of the self-stabilizing emulation from [45] appeared in [43]. The self-stabilizing
VI layer of [45] has also been used to develop a self-stabilizing robot motion coordination algo-
rithm [29, 28].

A different algorithm for end-to-end routing in MANETs, also using VI, has recently been de-
veloped by Griffeth and Wu [30]. Their algorithm does not use our decomposition in terms of
geographical routing and location services, but instead establishes and maintains persistent routes
of VSAs, in the spirit of DSR and AODV.

We refer the reader to [45] for the self-stabilizing emulation of the VSA Layer, and for the
general theory underlying self-stabilizing emulation. Those will be the subject matter for other
journal papers. The thesis also contains more details of the algorithms and results presented here.

Paper organization: The remainder of this paper is organized as follows. In Section 2, we
introduce the underlying mathematical model used for specifying the MANET platform, the VSA
Layer, and our algorithms. In Section 3 we describe the VSA Layer model. In Sections 4 and 5,
we present the geographical routing and location management algorithms. Section 6 contains our
main routing algorithm. and Section 7 contains our conclusions.

2 Preliminaries

In this paper we model the Virtual Infrastructure and all components of our algorithms using the
Timed Input/Output Automata (TIOA) framework. TIOA is a mathematical modeling framework

5

for real-time distributed systems that interact with the physical world. Here we present key concepts
of the framework and refer the reader to [36] for details.

2.1 Timed I/O Automata

A Timed I/O Automaton is a nondeterministic state transition system in which the state may
change either (1) instantaneously, by means of a discrete transition, or (2) continuously over an
interval of time, by following a trajectory.

Let V be a set of variables. Each variable v ∈ V is associated with a type, which defines the
set of values v can take on. The set of valuations of V , that is, mappings from V to values, is
denoted by val(V). Each variable may be discrete or continuous. Discrete variables are used to
model protocol data structures, while continuous variables are used to model physical quantities
such as time, position, and velocity.

The semi-infinite real line R≥0 is used to model real time. A trajectory τ for a set V of variables
maps a left-closed interval of R≥0 with left endpoint 0 to val(V). It models evolution of values of
the variables over a time interval. The domain of τ is denoted by τ.dom. We write τ.fstate ∆= τ(0).
A trajectory is closed if τ.dom = [0, t] for some t ∈ R≥0, in which case we define τ.ltime ∆= t and
τ.lstate ∆= τ(t).

Definition 2.1. A TIOA A = (X, Q, Θ, A,D, T) consists of (1) A set X of variables. (2) A
nonempty set Q ⊆ val(V) of states. (3) A nonempty set Θ ⊆ S of start states. (4) A set A of
actions, partitioned into input, output, and internal actions I, O, and H. (5) A set D ⊆ S×A×S
of discrete transitions. If (x, a,x′) ∈ D, we often write x a→ x′. An action a ∈ A is said to be
enabled at x iff x a→ x′ for some x′. (6) A set T of trajectories for V that is closed under prefix,
suffix and concatenation.1

In addition, A must be input-action and time-passage enabled.2 We assume in this paper that
the values of discrete variables do not change during trajectories.

We denote the components X, Q,D, . . . of a TIOA A by XA, QA,DA, For TIOA A1, we
denote the components by X1, Q1,D1

Executions: An execution of A records the valuations of all variables and the occurrences of all
actions over a particular run. An execution fragment of A is a finite or infinite sequence τ0a1τ1a2 . . .

such that for every i, τi.lstate
ai+1→ τi+1.fstate. An execution fragment is an execution if τ0.fstate ∈ Θ.

The first state of α, α.fstate, is τ0.fstate, and for a closed α (i.e., one that is finite and whose last
trajectory is closed), its last state, α.lstate, is the last state of its last trajectory. The limit time
of α, α.ltime, is defined to be

∑
i τi.ltime. A state x of A is said to be reachable if there exists a

closed execution α of A such that α.lstate = x. The sets of executions and reachable states of A
are denoted by ExecsA, and ReachA. The set of execution fragments of A starting in states in a
nonempty set L is denoted by FragsLA.

A nonempty set of states L ⊆ QA is said to be a legal set for A if it is closed under transitions
and closed trajectories of A. That is, (1) if (x, a,x′) ∈ DA and x ∈ L, then x′ ∈ L, and (2) if
τ ∈ TA, τ is closed, and τ.fstate ∈ L, then τ.lstate ∈ L.

1See Chapters 3 and 4 of [36] for formal definitions of these closure properties.
2See Chapter 6 of [36].

6

Traces: Often we are interested in studying the externally visible behavior of a TIOA A. We
define the trace corresponding to a given execution α by removing all internal actions, and replacing
each trajectory τ with a representation of the amount of time that elapses in τ . Thus, the trace of
an execution α, denoted by trace(α), has information about input/output actions and the duration
of time that elapses between the occurrence of successive input/output actions. The set of traces
of A is defined as TracesA

∆= {β | ∃α ∈ ExecsA, trace(α) = β}.

Implementation: Our proof techniques often rely on showing that every behavior of a given
TIOA A is externally indistinguishable from some behavior of another TIOA B. This is formalized
by the notion of implementation: Two TIOAs are said to be comparable if their external interfaces
are identical, that is, they have the same input and output actions. Given two comparable TIOAs
A and B, A is said to implement B if TracesA ⊆ TracesB. The standard technique for proving
that A implements B is to define a simulation relation R ⊆ QA ×QB which satisfies the following:
If xRy, then every one-step move of A from a state x simulates some execution fragment of B
starting from y, in such a way that (1) the corresponding final states are also related by R, and
(2) the traces of the moves are identical (see [36], Section 4.5, for the formal definition).

Composition: It is convenient to model a complex system, such as our VSA layer, as a collection
of TIOAs running in parallel and interacting through input and output actions. A pair of TIOAs
are said to be compatible if they do not share variables or output actions, and if no internal action
of either is an action of the other. The composition of two compatible TIOAs A and B is another
TIOA which is denoted by A‖B. Binary composition is easily extended to any finite number of
automata.

2.2 Failure Transform for TIOAs

In this paper, we will describe algorithms that are self-stabilizing even in the face of ongoing mobile
node failures and recoveries. In order to model failures and recoveries, we introduce a general failure
transformation of TIOAs.

A TIOA A is said to be fail-transformable if it does not have the variable failed , and it does not
have actions fail or restart. If A is fail-transformable, then the transformed automaton Fail(A) is
constructed from A by adding the discrete state variable failed , a Boolean that indicates whether
or not the automaton is failed, and two input actions, fail and restart. The states of Fail(A) are
states of A, together with a valuation of failed . The start states of Fail(A) are the states in which
failed is arbitrary, but if it is false then the rest of the variables are set to values consistent with
a start state of A. The discrete transitions of Fail(A) are derived from those of A as follows:
(1) an ordinary input transition at a failed state leaves the state unchanged, (2) an ordinary input
transition at a non-failed state is the same as in A, (3) a fail action sets failed to true, (4) if a
restart action occurs at a failed state then failed is set to false and the other state variables are set
to a start state of A; otherwise it does not change the state.

The set of trajectories of Fail(A) is the union of two disjoint subsets, one for each value of the
failed variable. The subset for failed = false consists of trajectories of A with the addition of the
constant value false for failed . That is, while Fail(A) is not failed, its trajectories basically look
like those of A with the value of the failed variable remaining false throughout the trajectories.
The subset for failed = true consists of trajectories of all possible lengths in which all variables
are constant. That is, while Fail(A) is failed, its state remains frozen. Note that this does not
constrain time from passing, since any constant trajectory, of any length, is allowed.

7

Performing a failure transformation on the composition A‖B of two TIOAs results in a new TIOA
whose executions projected to actions and variables of Fail(A) or Fail(B) are in fact executions of
Fail(A) or Fail(B) respectively.

2.3 Self-Stabilization for TIOAs

A self-stabilizing system is one that regains normal functionality and behavior some time after dis-
turbances cease. Here we define self-stabilization for arbitrary TIOAs. In this section, A,A1, A2, . . .
are sets of actions and V is a set of variables.

An (A, V)-sequence is a (possibly infinite) alternating sequence of actions in A and trajectories
of V . (A, V)-sequences generalize both executions and traces. An (A, V)-sequence is closed if it is
finite and its final trajectory is closed.

Definition 2.2. Given (A, V)-sequences α, α′ and t ≥ 0, α′ is a t-suffix of α if there exists a closed
(A, V)-sequence α′′ of duration t such that α = α′′α′. α′ is a state-matched t-suffix of α if it is a
t-suffix of α and α′.fstate = α′′.lstate.

Informally, α′ is a state-matched t suffix of α if there is a closed fragment of duration t, ending
with the first state of α′, which when prefixed to α′ yields α.

One set of (A, V)-sequences (say, the set of executions or traces of some system) stabilizes to
another set (say, desirable behavior) in time t if each state-matched t-suffix of each behavior in the
former set is in the latter set:

Definition 2.3. Given a set S1 of (A1, V)-sequences, a set S2 of (A2, V)-sequences, and t ≥ 0, S1

is said to stabilize in time t to S2 if each state-matched t-suffix of each sequence in S1 is in S2.

The “stabilizes to” relation is transitive:

Lemma 2.4. Let Si be a set of (Ai, V)-sequences, for i ∈ {1, 2, 3}. If S1 stabilizes to S2 in time t1
and S2 stabilizes to S3 in time t2, then S1 stabilizes to S3 in time t1 + t2.

The following definitions allow us to talk about starting TIOAs in arbitrary states: For any
nonempty set L, L ⊆ QA, Start(A, L) is defined to be the TIOA that is identical to A except
that ΘStart(A,L) = L, that is, its set of start states is L. We define U(A) ∆= Start(A, QA) and
R(A) ∆= Start(A,ReachA). These are the TIOAs that are the same as A except that their start
states are, respectively, the set of all states, and the set of reachable states. It is straightforward
to check that for any TIOA A, the Fail and U operators commute.

Finally we define a relative form of self-stabilization for TIOAs. This definition considers the
composition of two TIOAs A and B, allowing A to start in an arbitrary state while B starts in a
start state. The combination is required to stabilize to a state in a legal set by a certain time.

Definition 2.5. Let A and B be compatible TIOAs, and let L be a legal set for the composed
TIOA A‖B. A self-stabilizes in time t to L relative to B if the set of executions of U(A)‖B, that
is, ExecsU(A)‖B, stabilizes in time t to executions of Start(A‖B, L), that is, to ExecsStart(A‖B,L) =
FragsLA‖B

3 The Virtual Stationary Automata Layer

The Virtual Stationary Automata (VSA) Layer is an abstract system model, which is intended
to be emulated by the mobile nodes in a MANET, and which provides a convenient platform for

8

V Bcast

VNu

VN v

CN p

CN q

V WRW

V BDelayu

V BDelayv

V BDelayp

V BDelayq

GPSupdatep GPSupdateq

vcastp vcast′p

vrcvp

vcastq vcast′q

vrcvq

failp, restartp

failq , restartq

failv , restartv , timev

failu, restartu, timeu

vcastvvcast′v

vrcvv

vcastuvcast′u

vrcvu

Figure 1: Virtual Stationary Automata Layer.

application developers. The VSA Layer was originally defined in [16]. Here, we use a new version
from [45].

The components of the VSA Layer are Real World (RW) and Virtual World (VW) automata,
Client Nodes, Virtual Stationary Automata (VSAs), VBDelay delay buffers, and a VBcast virtual
broadcast service. These components and their interactions are depicted in Figure 1. Each of these
components is formally modeled as a TIOA, and the complete system is the composition of the
component TIOAs (or, in some cases, their fail-transformed versions). In this section, we describe
the architecture of the VSA Layer and briefly sketch how it can be emulated.

3.1 VSA Architecture

For the rest of the paper, we fix R to be a closed, bounded and connected subset of R2, U to be a
totally ordered index set and P to be another index set. R models the physical space in which the
mobile nodes reside; we call it the deployment space. U and P serve as index sets for regions in R
and for the mobile nodes, respectively.

Network tiling: A network tiling divides the deployment space R into a set of regions {Ru‖u ∈
U}, such that: (1) for each u ∈ U , Ru is a closed, connected subset of R, and (2) for any u, v ∈ U ,
Ru and Rv may intersect only at their boundaries. Any two region ids u, v ∈ U are said to be
neighbors if Ru ∩ Rv 6= ∅. This neighborhood relation, nbrs, induces an undirected graph on the
set of region ids. We assume that the network tiling divides R in such a way that the resulting
graph is connected. For any u ∈ U , we denote the ids of its neighboring regions by nbrs(u), and
define nbrs+(u) ∆= nbrs(u) ∪ {u}. We define the distance between two regions u and v, denoted
by regDist(u, v), as the number of hops on the shortest path between u and v in the graph. The
diameter of the graph, i.e., the distance between the farthest regions in the tiling, is denoted by
D, and r is an upper bound on the Euclidean distance between any two points in the same or
neighboring regions.

An example of a network tiling is the grid tiling, where R is divided into square b× b regions, for
some constant b > 0. Non-border regions in this tiling have have eight neighbors. For a grid tiling
with a given b, r could be any value greater than or equal to 2

√
2 b.

9

Real World (RW) Automaton: RW is an external source of occasional but reliable time and
location information for client nodes. This information is also used by the VBcast service in order
to guarantee delivery of messages sent between nodes that are geographically close. The RW
automaton is parameterized by vmax > 0, a maximum speed, and εsample > 0, a maximum time
gap between successive updates for each client. RW maintains three variables: (1) A continuous
variable now representing true system time; now increases monotonically at rate 1 with respect to
real time, starting from 0. (2) An array loc[P → R]; for p ∈ P , loc(p) represents the current location
of mobile node p. Over any interval of time, mobile node p may move arbitrarily in R provided its
path is continuous and its maximum speed is bounded by a constant bound vmax . (3) An array
updates[P → 2R×R≥0]; for p ∈ P , updates(p) contains all the previous (location, time) pairs RW
has supplied to p. Automaton RW performs the GPSupdate(l, t)p action, l ∈ R, t ∈ R≥0, p ∈ P , to
inform node p about its current location and time. For every p, some GPSupdate(,)p action must
occur at time 0, and at least every εsample time thereafter. Code for the RW automaton, in the
precondition-effect style used in [36], appears in Figure 2.

1 Signature:
Output GPSupdate(l, t)p, l ∈ R, p ∈ P, t ∈ R≥0

3

State:
5 analog now: R≥0, initially 0

updates(p): 2R×R≥0 , for each p ∈ P , initially ∅
7 loc(p): R, for each p ∈ P , initially arbitrary

9 Trajectories:
evolve

11 d(now) = 1
|d(loc(p))| ≤ vmax , for each p ∈ P

13 stop when
∃p ∈ P: ∀〈l, t〉 ∈ updates(p): now ≥ t + εsample

16Transitions:
Output GPSupdate(l, t)p

18Precondition:
l = loc(p) ∧ t = now ∧∀〈l′, t′〉 ∈ updates(p): t 6= t′

20Effect:
updates(p) ← updates(p) ∪ {〈l, t〉}

Figure 2: RW [vmax , εsample].

Virtual World (VW) Automaton: VW is an external source of occasional but reliable time
information for VSAs. Similar to RW ’s GPSupdate action for clients, VW performs time(t)u output
actions notifying VSA u of the current time. For every u, some such action must occur at time 0,
and at least every εsample time thereafter. Also, VW nondeterministically issues failu and restartu
outputs for each u ∈ U , modelling the fact that VSAs may fail and restart. Code for the VW
automaton appears in Figure 3.

Mobile client nodes: For each p ∈ P , CN p is a TIOA modeling the program executed by the
mobile client node with identifier p. CN p has a local clock variable, clock , that progresses at the
rate of real time, and is initially undefined (⊥). CN p may have arbitrary local non-failed variables.
Its external interface includes at least GPSupdate inputs, vcast(m)p outputs, and vrcv(m)p inputs.
CN p may have additional arbitrary non-fail and non-restart actions.

Virtual Stationary Automata (VSAs): A VSA is a clock-equipped abstract virtual machine.
For each u ∈ U , VN u is the VSA automaton which is associated with the region Ru. VN u has a
local clock variable, clock , which progresses at the rate of real time, and is initially ⊥. VN u has
exactly the following external interface: (1) Input time(t)u, t ∈ R≥0. This models a time update at
time t; it sets VN u’s clock to t. (2) Output vcast(m)u, m ∈ Msg . This models VN u broadcasting
message m. (3) Input vrcv(m)u, m ∈ Msg . This models VN u receiving message m. VN u may have

10

Signature:
2 Output time(t)u, t ∈ R≥0, u ∈ U

Output failu, u ∈ U
4 Output restartu, u ∈ U

6 State:
analog now: R≥0, initially 0

8 last(u): R≥0 ∪ {⊥}, for each u ∈ U initially ⊥

10 Trajectories:
evolve

12 d(now) = 1
stop when

14 ∃u ∈ U: last(u) ∈ {⊥, now -εsample}

16Transitions:
Output time(t)u

18Precondition:
t = now

20Effect:
last(u) ← t

22

Output failu
24Precondition:

None
26Effect:

None
28

Output restartu
30Precondition:

None
32Effect:

None

Figure 3: VW [εsample].

additional arbitrary non-failed variables and non-fail and non-restart internal actions. All discrete
transitions must be deterministic.

VBDelay automata: Each client and each VSA node has an associated VBDelay buffer for
outbound messages. This buffer takes as input a vcast(m) from the node, and passes the message
on to the VBcast service in a vcast′ output. In the case of a client node, VBDelay tags the message
m with a Boolean indicating whether the message was submitted by the client after the most recent
GPSupdate at p. It then passes the tagged message to the VBcast service before any time passes,
that is, with delay 0. Code for the client’s VBDelay automaton appears in Figure 4.

1 Signature:
Input GPSupdate(l, t)p, l ∈ R, t ∈ R≥0

3 Input vcast(m)p, m ∈ Msg
Output vcast′(m, f)p, m ∈ Msg, f ∈ Bool

5

State:

7 to send+, to send−: Msg∗, initially λ
updated: Bool, initially false

9

Trajectories:
11 stop when

to send+ 6= λ ∨ to send− 6= λ

14Transitions:
Input GPSupdate(l, t)p

16Effect:

to send− ← to send+

18to send+ ← λ
updated ← true

20

Input vcast(m)p

22Effect:
if updated then

24to send+ ← append(to send+, m)

26Output vcast′(m, f)p

Precondition:

28m = head(to send− to send+) ∧ (f ⇔ to send− = λ)
Effect:

30if f then

to send+ ← tail(to send+)

32else to send− ← tail(to send−)

Figure 4: VBDelayp, message delay service for client p.

In the case of a VSA, VBDelay may impose a delay of at most e. More precisely, it saves the
message in a local buffer for some nondeterministically-chosen time in [0, e], and then resends it
using vcast′. Here e is a nonnegative real parameter of the VBDelayu automaton specification.
Code for the VSA’s VBDelay automaton appears in Figure 5. (Note that a Boolean tag analogous
to the one for the client’s VBDelay is included, but in this case it is always true.)

11

Signature:
2 Input vcast(m)u, m ∈ Msg

Output vcast′(m, true)u, m ∈ Msg
4

State:
6 analog rtimer: R≥0, initially 0

to send: (Msg ×R≥0)∗, initially λ
8

Trajectories:
10 evolve

d(rtimer) = 1
12 stop when

∃〈m, t〉 ∈ to send: rtimer /∈ [t, t+e)

Transitions:
16Input vcast(m)u

Effect:
18to send ← append(to send, 〈m, rtimer〉)

20Output vcast′(m, true)u

Precondition:
22∃t ∈ R≥0: 〈m, t〉 = head(to send)

Effect:
24to send ← tail(to send)

Figure 5: VBDelay [e]u, message delay service for VSA VN u.

VBcast automaton: Each client and virtual node has access to the virtual local broadcast
communication service VBcast . This service is parameterized by a constant d > 0, which models
an upper bound on message delay. VBcast takes each vcast′(m, f)i input from a client or node
VBDelay buffer and delivers the message m via vrcv(m) outputs at client and virtual nodes. It
delivers the message to every client and VSA that is in the same region as the sender when the
message is sent, or a neighboring region, and that remains there for time d thereafter. The sender’s
region, u, is determined as follows. If the vcast′ was from a VSA at region i, then the region u
is equal to i. Otherwise, if the vcast′ was from a client, we use the Boolean tag f to determine
the region u: if f is true, then region u is the region of i when the vcast′ occurs, and if f is false,
then region u is the region of i just before the last GPSupdate at i occurred. Code for the VBcast
automaton appears in Figure 6. In this code, the drop action allows removal of destination clients
that are not in the sender’s neighborhood.

The VBcast service guarantees that in each execution α of VBcast , there is a function map-
ping each vrcv(m) event to a previous vcast′(m, f)i event (the one that “caused” it), such that:
(1) Bounded-time delivery: If a vrcv event π is mapped to a vcast′ event π′, and π′ occurs at time
t, then π occurs at a time in the interval (t, t + d]. (2) Non-duplicative delivery: At most one
vrcv event at any particular receiver is mapped to each vcast′ event. (3) Reliable local delivery: A
message from a sender in region u is received by all client nodes that remain in Ru or a neighboring
region throughout the transmission period.

A VSA layer algorithm or simply a V -algorithm is an assignment of a fail-transformable TIOA
program to each client identifier and VSA identifier. We denote the set of all V-algorithms as
VAlgs. Our VSA Layer includes clients and VSAs that can fail and restart:

Definition 3.1. Let alg be any element of VAlgs. Then VLNodes[alg] is the composition of
Fail(alg(i)‖VBDelay i) for all i ∈ P ∪ U . VLayer [alg], the VSA layer parameterized by alg, is
the composition of VLNodes[alg] with RW ‖VW ‖VBcast.

3.2 Properties of Environment Components

In this paper, we will show that our VSA Layer algorithms are self-stabilizing relative to an “envi-
ronment”, which is the composed TIOA RW ‖VW ‖VBcast . Here we give some basic properties of
the reachable states of that composition.

Theorem 3.2. Every reachable state x of RW ‖VW ‖VBcast satifies the following conditions:

1. xdXV Bcast ∈ ReachV Bcast ∧ xdXRW ∈ ReachRW ∧ xdXVW ∈ ReachVW .
This says that a state of the composition restricted to each individual component is a reachable

12

1 Signature:
Input GPSupdate(l, t)p, l ∈ R, p ∈ P, t ∈ R≥0

3 Input vcast′(m, f)i, m ∈ Msg, f ∈ Bool, i ∈ P ∪ U
Output vrcv(m)j , m ∈ Msg, j ∈ P ∪ U

5 Internal drop(n, j), n ∈ Nat, j ∈ P ∪ U

7 State:
analog now: R≥0, initially 0

9 reg(p), oldreg(p):U ∪ {⊥}, for each p ∈ P , initially ⊥
vbcastq: (Msg ×U ×R≥0 ×2P∪U)∗, initially λ

11

Trajectories:
13 evolve

d(now) = 1
15 stop when

∃〈m, u, t, P′〉 ∈ vbcastq: [now = t + d ∧P′ 6= ∅]

18Transitions:
Input GPSupdate(l, t)p

20Effect:
oldreg(p) ← reg(p)

22reg(p) ← region(l)

24Input vcast′(m, f)i

Effect:
26if i ∈ U then

vbcastq ← append(vbcastq, 〈m, i, now, P ∪ U〉)
28else if (f ∧ reg(p) 6= ⊥) then

vbcastq ← append(vbcastq, 〈m, reg(p), now, P ∪ U〉)
30else if (¬ f ∧ oldreg(p) 6= ⊥) then

vbcastq ← append(vbcastq, 〈m, oldreg(p), now, P ∪ U〉)
32

Output vrcv(m)j

34Local:

n ∈ [1, . . ., |vbcastq|], u: U, t: R≥0, P′: 2P∪U

36Precondition:
vbcastq[n]= 〈m, u, t, P′〉 ∧ j ∈ P′ ∧ t 6= now

38Effect:
vbcastq[n] ← 〈m, u, t, P′ -{j}〉

40

Internal drop(n, j)
42Local:

m: Msg, u: U, t: R≥0, P′: 2P∪U

44Precondition:
vbcastq[n] = 〈m, u, t, P′〉 ∧ j ∈ P′ ∧ t 6= now

46(j ∈ P ∧ reg(j) /∈ nbrs+(u)) ∨ (j ∈ U ∧ j /∈ nbrs+(u))
Effect:

48vbcastq[n] ← 〈m, u, t, P′ -{j}〉

Figure 6: VBcast [d] communication service.

state of that component.

2. RW .now = VW .now = VBcast .now.
The clock values of the various components are the same.

3. ∀p ∈ P : RW .reg(p) = VBcast .reg(p).
The region for a client node matches between VBcast and RW .

4. ∀p ∈ P : if |RW .updates(p)| > 1 then let 〈up, tp〉 be the tuple with second highest tp in
RW .updates(p), else let up be ⊥. Then VBcast .oldreg(p) = up.
The oldreg(p) for any p ∈ P matches the region associated with the next-to-last GPSupdate
at mobile node p.

3.3 VSA Layer Emulation

The thesis [45], Chapters 8-11, describes how a network of mobile nodes can emulate a VSA Layer.
Here we summarize briefly.

Definition of stabilizing emulation: A formal notion of a t-stabilizing VSA Layer emulation
is defined (Definition 8.3 of [45]). Roughly speaking, such an emulation yields a MANET that
can be started with the mobile nodes in arbitrary states, but with the “environment”, which is
the composition of the real world and communication components, in a reachable state. The set
of traces of this system stabilizes within time t to the traces of the VSA Layer, starting with the

13

clients and VSAs in arbitrary states, but with the composition of the real world, virtual world, and
communication components in a reachable state.

Emulation algorithm: A specific stabilizing VSA emulation is presented in [45], Chapters 9-
11, based on earlier algorithms presented in [16, 43]. The emulation of each VSA follows the
replicated-state-machine paradigm, with a distinguished leader that is responsible for performing
VSA communications and for informing newly-arriving mobile nodes about the VSA state. Since
our specification of the VSA Layer includes certain timing guarantees, the emulation algorithm
must ensure that these timing properties are respected.

In a bit more detail, mobile nodes in a region Ru use a replicated-state-machine algorithm to
emulate the VSA for region Ru. Each mobile node runs its piece of a totally ordered broadcast
algorithm, a leader election algorithm, and a virtual node emulation (VNE) algorithm, for u.

The totally ordered broadcast algorithm ensures that the VNE s of all mobile nodes in region
u receive the same set of messages in the same order. In this algorithm, each mobile node orders
messages by their sending times. It uses a holding strategy for received messages, delivering a
message to the local VNE only when enough time has passed to ensure that it has received every
message sent at the same or an earlier time. Each VNE independently maintains the state of VSA
VN u, using the common sequence of received messages.

Periodically, the leader election algorithm selects a leader for the region u. In this algorithm,
each mobile node periodically broadcasts a message indicating its identifier, its region, and whether
or not it is currently participating in the emulation of VN u. The leader is selected from among the
mobile nodes in the region based first on whether it is participating in the VSA emulation (nodes
that indicate that they are participating have priority), and then on the basis of node identifier
(nodes with lower identifiers are preferred).

In the main emulation algorithm, a leader is responsible for broadcasting the messages that
should be sent by the VSA. It batches these messages and sends them every e time, where e is
the VSA’s VBDelay buffer delay parameter. The leader also broadcasts up-to-date versions of the
VSA state. This broadcast is used both to stabilize the state of the emulation algorithm, by giving
all the emulators the same VSA state, and to allow new emulators (those that have just restarted
or moved into the region) to start participating in the emulation. After a VNE acquires the latest
state, it emulates the VSA at an accelerated pace, simulating VSA inputs based on messages
that have arrived via totally ordered broadcast, as well as VSA internal actions and outputs. The
consistency of the outputs of the totally ordered broadcast, and some additional conventions, ensure
that the processing order is the same for all VNE s. The VNE emulates the VSA until the VSA
has caught up with real time and the next leader is chosen. Any broadcasts that this emulation
produces are stored in a local outgoing queue for broadcast in case the emulator becomes a leader.

Combining self-stabilizing emulations and self-stabilizing applications: The thesis [45]
also contains a key corollary, Corollary 8.4, saying one can combine (1) a t1-stabilizing VSA Layer
emulation, with (2) a Virtual Node Layer algorithm, VLNodes[alg], that self-stabilizes in time
t2 to a legal set L relative to R(RW ‖VW ‖VBcast) (that is, relative to the environment, which
is the composition of the real world, virtual world, and communication components, started in
a reachable state). The result of this combination is a MANET algorithm whose set of traces
stabilizes in time t1 + t2 to the traces of execution fragments of the VSA Layer starting in states
in L. Roughly speaking, this says that one can combine a self-stabilizing VSA Layer emulation
with a self-stabilizing application algorithm over the VSA Layer to get a self-stabilizing application
algorithm over the underlying MANET. Here, the legal set L captures correctness for the application

14

algorithm, in that we assume that all traces generated by the application algorithm when started
from a legal state are correct. This corollary can be used to derive a self-stabilizing MANET routing
algorithm from our self-stabiliting routing algorithm over the VSA Layer; we return to this point
at the end of Section 6.

4 Geographical Routing

In this section, we present our self-stabilizing algorithm for VSA-to-VSA geographical routing. The
algorithm using a shortest-path strategy, based on paths in the adjacency graph for VSA regions.
This algorithm is intended to be a simple illustration of how geographical routing could be done
over Virtual Infrastructure; we have not tried to optimize its performance, nor to make it tolerant
to VSA failures. More elaborate strategies could be used instead, such as the fault-tolerant greedy
depth-first-search strategy described in [23].

In Section 4.1, we present our VSA-to-VSA geographical routing algorithm, along with some
properties of its executions. In Section 4.2, we define a set Lgeo of legal states for the algorithm
and list properties of execution fragments starting in legal states. Finally, in Section 4.3, we argue
that our algorithm self-stabilizes to Lgeo .

4.1 The Geographical Routing Algorithm

4.1.1 Overview

Our geographical routing service allows an entity in a region Ru to broadcast a message m to region
Rv, via geocast(m, v)u. The service delivers the message to region Rv, under certain conditions. The
TIOA specification for the VSA for region u appears in Figure 7. The complete algorithm, which
we call GeoCast , is the composition of

∏
u∈U Fail(V Geo

u ‖VBDelayu) with RW ‖VW ‖VBcast . That
is, the algorithm consists of a Fail -transformed composition of a VSA automaton and a VBDelay
buffer for each region, together with the environment RW ‖VW ‖VBcast .

The algorithm is based on a shortest-path strategy. We assume that each VSA can calcuate its
hop count distance to other VSAs in the static region graph. When a VSA in region u receives a
message from VSA v to VSA w that it has not previously seen, and u is on a shortest path from
region v to region w, VSA u resends the message, tagged with a geocast label, using a vcast output.
When the destination VSA receives a message, it performs a georcv of the message.

Notice that V Geo
u is technically not a VSA since its external interface contains non-vcast, vrcv, time

actions. However, we will later (Section 6.1.1) compose this automaton with other automata and
hide these actions to produce new automata that are actual VSAs. In the meantime, we will refer
to these almost-VSAs as VSAs, with the understanding that this technical detail will be resolved
later. None of the results in this chapter require that V Geo

u be an actual VSA.

4.1.2 Detailed VSA code description

The following code description refers to the TIOA code for the VSA at region u, V Geo
u , in Figure 7.

We assume a fixed positive real constant ε (for the rest of the paper).
The state variable ledger keeps track of information about each non-expired geocast-tagged mes-

sage (that is, one for which V Geo
u might still receive messages) that the VSA has heard of. The

message is stored in ledger together with its source, destination, and timestamp. For each such
unique tuple of message information, the table stores a Boolean indicating whether the VSA has
yet processed the message, either by forwarding it in a geocast broadcast or by delivering it with a
georcv. If the Boolean is false, it means that the VSA has not yet processed the message.

15

1 Signature:
Input time(t)u, t ∈ R≥0

3 Input geocast(m, v)u, m ∈ Msg, v ∈ U
Input vrcv(〈geocast, m, w, v, t〉)u, m∈ Msg,w,v∈ U,t∈ R≥0

5 Output vcast(〈geocast, m, w, v, t〉)u, m∈ Msg,w,v∈ U,t∈ R≥0

Output georcv(m)u, m ∈ Msg
7 Internal ledgerClean(〈m,w,v,t〉)u, m∈ Msg,w,v∈ U,t∈ R≥0

9 State:
analog clock: R≥0 ∪ {⊥}, initially ⊥

11 ledger: (Msg ×U ×U ×R≥0) → Bool ∪ {null},
initially identically null

13 Trajectories:
evolve

15 d(clock) = 1
stop when

17 ∃m: Msg, ∃w, v: U, ∃t: R≥0: [ledger(〈m, w, v, t〉) 6= null
∧ (ledger(〈m, w, v, t〉)= false ∨ [u 6= w ∧ clock = t]

19 ∨ clock < t ∨ t + (e+d) dist(w,u) + \epsilon ≤
clock

∨ dist(w, v) 6= dist(w, u) + dist(u, v))]
21

Transitions:
23 Input time(t)u

Effect:
25 if clock 6= t then

ledger ← identically null
27 clock ← t

Input geocast(m, v)u

30Effect:
if (ledger(m, u, v, clock) = null ∨ u= v) ∧ clock 6= ⊥then

32ledger(m, u, v, clock) ← false

34Output vcast(〈geocast, m, w, v, t〉)u

Precondition:
36ledger(〈m, w, v, t〉) = false ∧ v 6= u

Effect:
38ledger(〈m, w, v, t〉) ← true

40Input vrcv(〈geocast, m, w, v, t〉)u

Effect:
42if ledger(〈m,w,v,t〉)= null ∧ t + (e+d) dist(w,u) ≥ clock

∧ t < clock ∧ dist(w, v) = dist(w, u) + dist(u, v)
44∧w 6= v ∧w 6= u then

ledger(〈m, w, v, now〉) ← false
46

Output georcv(m)u

48Local: w: U, t: R≥0

Precondition:
50ledger(〈m, w, u, t〉) = false

Effect:
52ledger(〈m, w, u, t〉) ← true

54Internal ledgerClean(〈m, w, v, t〉)u

Precondition:
56t + (e + d) dist(w, u) < clock ∨ (u 6= w ∧ clock = t)

∨ clock < t ∨ dist(w, v) 6= dist(w, u) + dist(u, v)
58Effect:

ledger(〈m, w, v, t〉) ← null

Figure 7: VSA geocast automaton at region u, V Geo
u .

When V Geo
u receives a time(t) input (line 23, supplied by the virtual time service VW), it checks

its local clock to see if it matches t. If not (line 25), V Geo
u resets all its ledger values (line 26) to

null . Either way, V Geo
u sets its clock to t (line 27). Note that in normal operation, once an alive

VSA has received its first time input its clock should always be equal to the real time, since its
clock variable advances at the same rate as real time.

When V Geo
u receives a geocast(m, v)u input at some time t and either it is the first occurrence

of geocast(m, v)u at time t or u = v (lines 29-31), V Geo
u sets ledger(〈m,u, v, clock〉) to false (line

32), indicating that the geocast tuple must be processed so that the message can be forwarded to
region v.

Whenever V Geo
u has a false ledger entry for some tuple 〈m,w, v, t〉 where u = v, the message has

reached its destination, and V Geo
u performs a georcv(m)u output (lines 47-50) and sets the ledger

entry to true (line 52). If, on the other hand, u 6= v (line 36, meaning V Geo
u has heard of a particular

geocast it should forward but has not yet done anything about it), V Geo
u sends a message consisting

of a geocast tag and the tuple via vcast (line 34), and sets the ledger entry to true (line 38).
Whenever V Geo

u receives a 〈geocast,m, w, v, t〉 message (line 40), it checks the following in lines
42-44: (1) it does not yet have a non-null ledger entry for the tuple, (2) u is on some shortest path
between w and v (equivalent to saying that dist(w, v) = dist(w, u)+dist(u, v)), and (3) the current
time clock is not more than t + (e + d)dist(w, u) (meaning that V Geo

u received the message no later
than the maximum amount of time a shortest region path trip from w would have taken to reach
u). In addition, it performs a few simple sanity checks. If these conditions all hold, then V Geo

u sets
ledger(〈m,w, v, t〉) to false (line 45).

The internal action ledgerClean(〈m,w, v, t〉)u (line 54) cleans ledger of tuples that correspond

16

to geocasts that V Geo
u no longer will be involved with (line 59). In particular it clears entries for

which t+(e+ d)dist(w, u) < clock (line 56), corresponding to geocasts that are too old for V Geo
u to

forward. This action is also used for local correction, removing ledger entries for geocast messages
between regions for which region u is not on a shortest path, and entries for geocast messages
that are timestamped in the future (lines 56-57). Self-stabilization of the system as a whole is
then accomplished by the clear-out of older geocast records based on their timestamps, and by the
screening of incoming messages in lines 42-44. Too-old forwarded messages are eliminated from the
system and newer forwarded messages do not impact the treatment of the older ones.

The trajectories allow time to increase at the same rate as real time, stopping when output or
internal actions can be performed. The clauses in the stopping condition are correspond closely to
the transition preconditions, with a small technical exception: One of the disjuncts involves checking
that the clock has advanced enough to permit a ledgerClean to occur. Since the corresponding
requirement in the precondition of ledgerClean is a strict inequality, the stopping condition includes
an extra tolerance of ε.

4.1.3 Properties of executions of the geographical routing algorithm

We say that a geocast from a region u to a region v, sent at time t, is serviceable, if there exists at
least one shortest path from u to v of regions that are nonfailed and have clock values equal to the
real-time for the entire interval [t, t + (e + d)dist(u, v)]. With this definition, we can show:

Lemma 4.1. In each execution α of GeoCast, there exists a function mapping each georcv event
to the geocast event that caused it such that the following hold:

1. Integrity: If a georcv event π is mapped to a geocast event π′, then π and π′ contain the same
message m, and π′ occurs before π.

2. Same-Time Self-Delivery: If a georcv(m)v event π is mapped to a geocast(m, v)v event π′ and
π′ occurs at time t, then π also occurs at time t.

3. Bounded-Time Delivery: If a georcv(m)v event π is mapped to a geocast(m, v)u event π′,
u 6= v, and π′ occurs at time t, then π occurs at a time in the interval (t, t+(e+d)dist(u, v)].

4. Reliable Self-Delivery: If a geocast(m, v)v event π′ occurs at time t, α.ltime > t, and VSA v
does not fail at time t, then there exists a georcv(m)v event π such that π is mapped to some
geocast(m, v)v event (not necessarily π′) at time t.
This guarantees that a geocast will be received if it is sent to itself and no failures occur.

5. Reliable Serviceable Delivery: If a geocast(m, v)u event π′ occurs at time t, α.ltime > t +
(e + d)dist(u, v), and π′ is serviceable, then there exists a georcv(m)v event π such that π is
mapped to some geocast(m, v)u event (not necessarily π′) at time t.
This guarantees that a geocast will be received if it is serviceable.

Proof sketch: We define the needed mapping from georcv to geocast events as follows: Consider
any georcv(m)u event in α. There must be some region v and time t for which the tuple 〈m, v, u, t〉
is in ledger at u when the georcv occurs, and changes its value from falst to true (lines 50-52). We
map the georcv event to the first geocast(m,u)v event that occurs at time t.

It is easy to see that most of the properties hold. We argue the most interesting properties,
Bounded-time delivery and Reliable serviceable delivery. For Bounded-time delivery, notice that
for a georcv(m)v to happen, there must be some u ∈ U and t ∈ R≥0 such that ledger(〈m,u, v, t〉) =

17

false. This can occur only if a geocast(m, v)v occurred (trivially satisfying the property), or if a
vrcv(〈geocast,m, u, v, t〉)v occurred at some time t′ to set the ledger entry to false. For the second
case, by the conditional on lines 42-43, the ledger entry is changed only if t + (e+ d)dist(w, v) ≤ t′.
By the stopping conditions on line 18, the georcv(m)v must have occurred at time t′ as well, giving
the result.

For Reliable serviceable delivery, assume that a geocast(m, v)u event π′ occurs at time t and π′

is serviceable. Let one of the shortest paths of VSAs that satisfy the serviceability definition be
u1, · · · , udist(u,v)−1, v, where u1 is a neighbor of u and each region in the sequence neighbors the
regions that precede and follow it in the sequence. We argue that there is a georcv(m)v event π
such that π is mapped to the first geocast(m, v)u event at time t. Since the first such geocast(m, v)u

event occurs at an alive VSA that does not fail at time t, it immediately vcasts a geocast-tagged
〈m,u, v, t〉 message. Such a message takes more than 0, but no more than e+d time to be delivered
at neighboring regions, one of which is u1. V Geo

u1
then immediately vcasts a geocast-tagged 〈m,u, v, t〉

message, since the conditional on lines 42-43 must hold. Such a message takes more than 0, but no
more than e + d time to be delivered at neighboring regions, one of which is u2. Then either the
same argument holds as for u1, or else u2 already received the earlier transmission and immediately
transmitted or is about to transmit. This argument is repeated until a geocast-tagged 〈m,u, v, t〉
message is received at region v. The VSA at region v then immediately performs a georcv(m)v

event. This event is mapped to the first geocast(m, v)u event at time t, and we are done.

4.2 Legal Sets for GeoCast

In this section, we define Lgeo , a legal set of states for GeoCast . We do this in two stages, first
defining a larger set L1

geo and then defining Lgeo as a subset of L1
geo . We break up the definition

of Lgeo in this way in order to simplify the proof that it is in fact a legal set, and to simplify the
proof for stabilization in Section 4.3. At the end of this section, we present properties of execution
fragments of GeoCast that start in legal states.

4.2.1 Legal set L1
geo

Legal set L1
geo describes some basic properties for individual regions. These become true at an alive

VSA immediately after the first time input. In stating these properties, we subscript the names of
state variables of VSA and delay buffer automata with the id of the relevant region.

Definition 4.2. L1
geo is the set of states x of GeoCast in which all of the following hold:

1. xdXRW ‖VW ‖VBcast ∈ ReachRW ‖VW ‖VBcast .
The state restricted to the variables of RW , VW , and VBcast is a reachable state of their
composition.

2. For each u ∈ U : ¬failedu, that is, for each non-failed VSA:
∀〈m, t〉 ∈ to sendu : rtimeru ∈ [t, t + e].
Any VBDelay message queued for region u has been waiting in the buffer at least 0 and at
most e time.

3. For each u ∈ U : (¬failedu ∧ clocku = ⊥), that is, for each non-failed VSA that has not yet
received a time input:

(a) to sendu = λ.
The VSA does not have any geocast messages queued up for sending.

18

(b) ∀〈m,w, v, t〉 : ledgeru(〈m,w, v, t〉) 6= false.
The VSA does not have any ledger entries that need to be processed.

4. For each u ∈ U : (¬failedu ∧ clocku 6= ⊥), that is, for each non-failed VSA that has received
a time input:

(a) clocku = now.
The VSA’s clock time is the same as the real time.3

(b) For each 〈m,w, v, t〉 : ledgeru(〈m,w, v, t〉) 6= null , that is, for each non-null ledger entry:

i. (now ≤ t + (e + d)dist(w, u) + ε)
∧[now > t + (e + d)dist(w, u) ⇒ ledgeru(〈m,w, v, t〉) = true].
The entry has not expired too long ago: the current time is at most ε greater than
the time at which ledgerClean is allowed to delete the entry. Also, if the tuple’s
expiration time has passed then ledger maps it to true.

ii. now 6= t ∨ u = w.
If t is equal to the current time, then the geocast message must have originated in
region u. (Recall that vcast messages take nonzero time to be delivered, implying
that the only current-time ledger entries must be from locally-originating geocasts.)

iii. (now > t ∧ u = w) ⇒ ledgeru(〈m,w, v, t〉) = true.
Self-geocasts are processed at the time they occur.

iv. now ≥ t.
Entries in the ledger cannot be for geocast messages sent in the future.

v. dist(w, v) = dist(w, u) + dist(u, v).
Region u is on a shortest path between the sender of the geocast and the destination.

It is trivial to check that L1
geo is a legal set:

Lemma 4.3. L1
geo is a legal set for GeoCast.

4.2.2 Legal set Lgeo

The second and final legal set, Lgeo , is a subset of L1
geo that satisfies additional properties. The prop-

erties involve geocast tuples in VSA ledgers, in delay buffers, and in transit in the communication
service.

Definition 4.4. Lgeo is the set of states x of GeoCast in which all of the following hold:

1. x ∈ L1
geo.

This says that Lgeo is a subset of L1
geo.

2. For each u ∈ U : (¬failedu ∧ clocku 6= ⊥) : for each 〈m,w, v, t〉 : ledgeru(〈m,w, v, t〉) 6= null ,
that is, for each non-failed VSA that has received a time input and each non-null ledger entry:

(a) (u 6= v∧ledgeru(〈m,w, v, t〉) = true) ⇒ (∃t′ ∈ R≥0 : 〈〈geocast,m, w, v, t〉, t′〉 ∈ to sendu∨
∃t′′ ≥ t : ∃P ′ ⊆ P ∪ U : 〈〈geocast,m, w, v, t〉, u, t′′, P ′〉 ∈ vbcastq).
If the ledger maps the tuple to true and u is not the destination, then the tuple tagged
with geocast is either in VBDelayu or in vbcastq. (Recall that vbcastq contains a record
of all previously vcast messages.)

3There is an ambiguity here: now is a variable of several of the system components. However, by Property 1 of
this definition and Theorem 3.2, the value of now is the same in all of these components.

19

(b) u 6= w ⇒ ∃t′ ∈ [t, t + e] : ∃P ′ ⊂ P ∪ U : 〈〈geocast,m, w, v, t〉, w, t′, P ′〉 ∈ vbcastq.
If VSA u is not the source, then there is a record of the original broadcast of the geocast
tuple in vbcastq, associated with a time tag t′ that is within e of the tuple’s timestamp t,
and with a proper subset P ′ of the entire set of nodes. In other words, there is evidence
that a vcast of the tuple happened between time t and t + e, and was either received or
dropped by at least one node.

3. For each u ∈ U : ¬failedu : for each 〈〈geocast,m, w, v, t〉, t′〉 ∈ to sendu :

(a) now ≤ t + (e + d)dist(w, u) + (rtimeru − t′).

(b) now ≥ t.

(c) u 6= w ⇒ ∃t′′ ∈ [t, t + e] : ∃P ′ ⊂ P ∪ U : 〈〈geocast,m, w, v, t〉, w, t′′, P ′〉 ∈ vbcastq.

If a nonfailed VSA’s VBDelay queue contains a geocast tuple, then the timestamp on the
message indicates that it was sent by the VSA before the tuple expired, and at a time that is
not in the future. Moreover, if the VSA is not the source, then there is a record of the original
broadcast of the geocast tuple in vbcastq associated with a time tag t′′ that is within e of the
tuple’s timestamp t, and with a proper subset P ′ of the entire set of nodes.

4. For each 〈〈geocast,m, w, v, t〉, u, t′, P ′〉 ∈ vbcastq :
[P ′ 6= ∅ ⇒ ∃t′′ ∈ [t, t + e] : ∃P ′′ ⊂ P : 〈〈geocast,m, w, v, t〉, w, t′′, P ′′〉 ∈ vbcastq].
If a geocast tuple with timestamp t is in transit in VBcast (meaning the tuple has yet to be
either delivered to or dropped by every node), then there is a record of the original broadcast
of the geocast tuple in vbcastq associated with a time tag t′′ that is within e of the tuple’s
timestamp t, and with a proper subset P ′ of the entire set of nodes.

Lemma 4.5. Lgeo is a legal set for GeoCast.

Proof: Let x be any state in Lgeo . By the definition of a legal set, we must verify two things for
state x: (1) For each discrete transition (x, a, x′) of GeoCast , state x′ is in Lgeo . (2) For each closed
trajectory τ of GeoCast such that τ.fstate = x and τ.lstate = x′, state x′ is in LGeo .

By Lemma 4.3, we know that if x satisfies the first property of Lgeo , then any discrete transition
or closed trajectory of GeoCast starting from x will lead to a state x′ that also satisfies the first
property. It remains to check that, in the two cases of the legal set definition, the state x′ satisfies
Properties 2, 3, and 4 of Lgeo .

For the first case of the legal set definition, we consider each action in turn.

1. GPSupdate(l, t)p, drop(n, j), failu, restartu, geocast(m, v)u, georcv(m)u, ledgerClean(〈m,w, v, t〉)u:
These are trivial to verify.

2. time(t)u:
If x(failedu), that is, if failedu = true in state x, then none of the properties are affected; so
we consider the case where ¬x(failedu). Since Property 4(a) of L1

geo holds in state x, either
t = x(clocku), implying that all properties still hold because V Nu’s state does not change,
or x(clocku) = ⊥ and the step initializes ledgeru. In the second case, Property 2 becomes
vacuously true, and Property 4 is not affected. Since Property 3(a) of L1

geo holds in x, we
know that no geocast tuples are in to sendu, making Property 3 of Lgeo vacuously true.

3. vrcv(〈geocast,m, w, v, t〉)u:
The only non-trivial property to verify is Property 2(b). Assume that u 6= w, meaning that

20

the region now receiving the message is not the region that originally received the associated
geocast. We must show that there exist t′ ∈ [t, t + e] and P ′ ⊂ P ∪ U such that the received
tuple, tagged with w, t′, and P ′, is in x′(vbcastq). By the precondition for this action, we
know that there is some 〈〈geocast,m, w, v, t〉, w′, t′′, P ′′〉 in x(vbcastq) such that P ′′ is non-
empty. Since state x satisfies Property 4, we know that there is some t′ ∈ [t, t + e] and P ′ a
proper subset of P ∪U such that 〈〈geocast,m, w, v, t〉, w, t′, P ′〉 is in x(vbcastq), and hence in
x′(vbcastq), showing Property 2(b).

4. vcast(〈geocast,m, w, v, t〉)u:
The only non-trivial properties to verify are 2(a) and 3. For Property 2(a) we consider two
cases, based on whether or not u = w. If u 6= w, then Property 2(a) for x′ follows from the
fact that Property 2(b) holds in state x. On the other hand, if u = w, then it follows from
the fact that the step adds an appropriate tuple to to sendu.

For Property 3, we must check that (1) the tuple added to to sendu has a timestamp t such
that now ≤ t + (e + d)dist(w, u), (2) now ≥ t, and (3) if u 6= w, then vbcastq contains a
record of the original geocast. Condition (1) follows from Property 4(b)i of L1

geo for state x.
Condition (2) follows from Property 4(b)iv of L1

geo for x. Condition (3) follows from Property
2(b) for x.

5. vcast′(〈geocast,m, w, v, t〉, true)u:
The only non-trivial properties to verify are properties 2(a) and 4. Property 2(a) is easy to
see since an effect of this action is moving a tuple from to sendu into vbcastq . For Property
4, we need to show that there is a tuple 〈〈geocast,m, w, v, t〉, w, t′′, P ′′〉 in x′(vbcastq), where
t′′ ∈ [t, t + e]. If u 6= w, this follows from the fact that Property 3 holds in state x. On the
other hand, if u = w, then we show that the tuple placed in vbcastq by the transition is of the
required form. This follows because Property 3(a) for x implies that now ≤ t+(rtimeru− t′),
which by Property 2 of L1

geo for x implies that now ≤ t+e, and because Property 3(b) implies
that now ≥ t. Since now is the new time tag associated with the tuple by VBcast , the tuple
is of the required form.

For the second case of the legal set definition, we consider any closed trajectory τ such that
x = τ.fstate and x′ = τ.lstate. We must show that x′ ∈ Lgeo , by verifying that each property of
Lgeo holds. Because the only evolving variables referenced in the properties are clocku, rtimeru,
and now , which evolve at the same rate, it is easy to see that, Properties 2, 3(c), and 4 hold.
Property 3(b) is straightforward because now can only increase.

The only interesting property to check is Property 3(a), which says that, if a VSA u is not failed
and its VBDelay buffer contains a geocast tuple from region w with timestamp t and VBDelay timer
tag t′, then now ≤ t + (e + d)dist(w, u) + (rtimeru − t′). However, since now and rtimeru evolve
at the same rate (and the other variables are all discrete variables, hence do not change during
the trajectory), the two sides of the inequality increase by the same amount and the inequality is
preserved.

4.2.3 Properties of execution fragments starting in Lgeo

Now we consider the behavior of execution fragments of GeoCast that begin in legal states. We
show that these execution fragments satisfy a set of properties similar to the ones we described
for executions in Section 4.1.3. Namely, recall that, in Section 4.1.3, we showed that GeoCast
guarantees that, for every execution, there exists a function mapping each georcv(m)v event to the

21

geocast(m, v)u event that caused it in such a way that five properties (Integrity, Same-Time Self-
Delivery, Bounded-Time Delivery, Reliable Self-Delivery, and Reliable Serviceable Delivery) hold.
Now we state a lemma saying that analogous properties hold for execution fragments starting from
states in Lgeo .

Lemma 4.6 has two parts. The first basically says that the five properties of an execution of
GeoCast also hold for execution fragments that begin in legal states, provided that we are allowed
to consider functions that map only a subset of the georcv events. The second part constrains the
set of unmapped georcv events to be ones that occur early enough in the execution fragment that
no corresponding geocast event is required.

Lemma 4.6. For any execution fragment α of GeoCast beginning in a state in Lgeo, there exists
a subset Π of the georcv events in α such that:

1. There exists a function mapping each georcv(m)v event in Π to the geocast(m, v) event that
caused it such that the five properties (Integrity, Same-Time Self-Delivery, Bounded-Time
Delivery, Reliable Self-Delivery, and Reliable Serviceable Delivery) hold.

2. For every georcv(m)v event π not in Π where π occurs at some time t, it must be the case
that t ≤ (e + d) maxu∈U dist(u, v).

The two properties together say that execution fragments of GeoCast that begin in legal states
demonstrate behavior similar to that of executions of GeoCast , modulo some orphan georcv events
that can be viewed as being mapped to geocast events that occur before the start of the execution
fragment.

Proof sketch: Consider the same mapping described in the proof sketch for Lemma 4.1. We can
show the same results as in Section 4.1.3 for geocast events and for those georcv events that are
mapped to geocast events. Now consider any georcv(m)v that is not mapped to a geocast, and
suppose that it occurs at time t after the start of the execution fragment. It is enough to show that
there exists some region u such that t ≤ (e + d)dist(u, v) (so that georcv could be viewed as being
mapped to a geocast(m, v)u that occurs before the start of the execution fragment).

The assumed georcv(m)v arises from a ledgerv entry that satisfies property 4(b) of L1
geo . Taking

the source region in the entry as u, we know that the associated timestamp t′ is no more than
(e + d)dist(u, v) old when the georcv occurs. Since this tuple must have been in the system (either
in transit or in a ledger) at the beginning of the execution fragment, this implies that t ≤ (e +
d)dist(u, v).

4.3 Self-Stabilization for GeoCast

We have shown that Lgeo is a legal set for GeoCast . Now we show that
∏

u∈U Fail(VBDelayu‖V Geo
u)

self-stabilizes to Lgeo relative to R(RW ‖VW ‖VBcast) (Theorem 4.9). This means that if cer-
tain “software” portions of the implementation are started in an arbitrary state and run with
R(RW ‖VW ‖VBcast), the resulting execution eventually gets into a state in Lgeo . We do this in
two phases, corresponding to the legal sets L1

geo and Lgeo . Using Theorem 4.9, we then conclude
that after GeoCast has stabilized, the execution fragment starting from the point of stabilization
satisfies the properties in Section 4.2.3.

The first lemma describes the first phase of stabilization, to legal set L1
geo .

Lemma 4.7. Let t1geo > εsample. Then
∏

u∈U Fail(VBDelayu‖V Geo
u) self-stabilizes in time t1geo to

L1
geo relative to R(RW ‖VW ‖VBcast).

22

Proof sketch: To see this result, just consider any time after each node has received a time input,
which takes at most εsample time to happen.

The next lemma shows that starting from a state in L1
geo , GeoCast ends up in a state in Lgeo

within t2geo time, where t2geo is any time greater than ε+(e+d)(D+1). (Recall that D is the network
diameter in region hops.) This result takes advantage of the timestamping of geocast tuples as a
way of preventing data from becoming too old.

Lemma 4.8. Let t2geo > ε+(e+d)(D+1). Then Frags
L1

geo

GeoCast stabilizes in time t2geo to Frags
Lgeo

GeoCast .

Proof: We must show that, for any length-t2geo prefix α of an element of Frags
L1

geo

GeoCast , α.lstate is
in Lgeo . We examine each property of Lgeo . Since the first state of α is in L1

geo and L1
geo is a legal

set, we know that Property 1 of Lgeo holds in each state of α.
For Property 2(a) it is plain that for any state in α, any new tuple added to a VSA u’s ledger

will satisfy the property since the tuple will initially map to false, making the property trivially
hold with respect to that tuple. Also, any tuple that maps to false will continue to satisfy the
property even when it changes to being mapped to true, since such a change occurs only when the
geocast-tagged tuple is added to to send . The tuple is then removed from to send only if the node
fails or a similar tuple is added to vbcastq , either of which ensures that Property 2(a) continues to
hold.

It remains to consider tuples with a non-u destination that a VSA u’s ledger maps to true in the
first state of α. Since α.fstate ∈ L1

geo and hence satisfies Property 4(b)i, we know that such a tuple
will have a timestamp no smaller than now − ε− (e + d)D. This implies that in α.lstate, the entry
will have been removed, giving us that the algorithm stabilizes to satisfy the property.

For Property 3, consider what happens when a nonfailed region has a geocast tuple in its to send
buffer. For parts (a) and (b), we would like to show that the tuple’s timestamp is consistent with
what it would have been if the tuple were broadcast before it expired. Since α.fstate ∈ L1

geo and
hence satisfies property 4(b)i, we know that any new messages added to to send will satisfy this
requirement. This leaves only problematic tuples that were present in to send in α.fstate. However,
we know that each tuple in to send spends at most e time there. Since this is less than t2geo we are
done with parts (a) and (b) of Property 3.

Properties 2(b), 3(c), and 4 are very similar in their proof obligations. Hence, we discuss only
Property 4 here.

For Property 4, notice that for each geocast tuple added for the first time anywhere in the
system to a to send queue, and then propagated within e time to vbcastq , the property will hold
and continue to hold as the message makes its way through the system. It remains to consider the
tuples anywhere in the system in α.fstate. The worst case is a “bad” tuple in a to send queue. At
worst, the tuple could take time e + d to be propagated to vbcastq and delivered at a client, and
could contain a timestamp just under e+d ahead of real-time in α.fstate. The tuple will eventually
stop being forwarded when it stops being accepted for ledger entries, at most time (e + d)(D − 1)
later. Its entries in ledgers can take up to an additional e + d + ε time before being removed by
ledgerClean actions. This total time of ε + (e + d)(D + 1) is less than t2geo , and we are done.

Now we can combine our stabilization results to conclude that the composition of Fail(VBDelayu‖V Geo
u)

components started in an arbitrary state and run with R(RW ‖VW ‖VBcast) stabilizes to Lgeo in
time tgeo , where tgeo is any time greater than εsample + ε + (e + d)(D + 1). The result is a simple
application of the transitivity of stabilization (Lemma 2.4) to the prior two results.

23

Theorem 4.9. Let tgeo > εsample + ε + (e + d)(D + 1). Then
∏

u∈U Fail(VBDelayu‖V Geo
u) self-

stabilizes in time tgeo to Lgeo relative to R(RW ‖VW ‖VBcast).

Proof: By definition of relative self-stabilization, what we must show is that
ExecsU(

Q
u∈U Fail(VBDelayu‖V Geo

u))‖R(RW ‖VW ‖VBcast) stabilizes in time tgeo to Frags
Lgeo

GeoCast . The result
follows from the application of transitivity of stabilization (Lemma 2.4) to the results of Lemmas 4.7
and 4.8.

Let t1geo = εsample + (tgeo − εsample − ε − (e + d)(D + 1))/2 and t2geo = ε + (e + d)(D +
1) + (tgeo − εsample − ε − (e + d)(D + 1))/2; these values are chosen so as to satisfy the con-
straints that t1geo > εsample and t2geo > ε + (e + d)(D + 1), as well as the constraint that t1geo +

t2geo = tgeo . Let B be ExecsU(
Q

u∈U Fail(VBDelayu‖V Geo
u))‖R(RW ‖VW ‖VBcast), C be Frags

L1
geo

GeoCast , and

D be Frags
Lgeo

GeoCast , in Lemma 2.4. Then by Lemma 2.4 and Lemmas 4.7 and 4.8, we have that
ExecsU(

Q
u∈U Fail(VBDelayu‖V Geo

u))‖R(RW ‖VW ‖VBcast) stabilizes in time t1geo +t2geo to Frags
Lgeo

GeoCast . Since
tgeo = t1geo + t2geo , we conclude that

∏
u∈U Fail(VBDelayu‖V Geo

u) self-stabilizes in time tgeo to Lgeo

relative to R(RW ‖VW ‖VBcast).

Combining Theorem 4.9 with Lemma 4.6, we conclude that after GeoCast has stabilized, the
execution fragment starting from the point of stabilization satisfies the properties in Section 4.2.3:

Corollary 4.10. Let tgeo > εsample + ε + (e + d)(D + 1).
Then ExecsU(

Q
u∈U Fail(VBDelayu‖V Geo

u))‖R(RW ‖VW ‖VBcast) stabilizes in time tgeo to a set A of execution
fragments such that for each α ∈ A, there exists a subset Π of the georcv events in α such that:

1. There exists a function mapping each georcv(m)v event in Π to the geocast(m, v) event that
caused it such that the five properties (Integrity, Same-Time Self-Delivery, Bounded-Time
Delivery, Reliable Self-Delivery, and Reliable Serviceable Delivery) hold.

2. For every georcv(m)v event π not in Π where π occurs at some time t, it must be the case
that t ≤ (e + d) maxu∈U dist(u, v).

For the rest of the paper, fix tgeo > εsample + ε + (e + d)(D + 1).

5 Location Management

Finding the location of a moving node in an ad-hoc network is much more difficult than in a
cellular mobile network, where a fixed infrastructure of wired support stations exists (as in [33]), or
in a sensor network, where some approximation of a fixed infrastructure may exist [2]. A location
service in an ad-hoc network is a service that allows any client to discover the location of any
other client using only its identifier. A popular paradigm for location services is that of a home
location service: hosts called home location servers are responsible for storing and maintaining the
locations of mobile nodes [1, 31, 39]. Several ways to determine the home location servers, both in
the cellular and entirely ad-hoc settings, have been suggested, as discussed in the Introduction.

In this section, we present our self-stabilizing algorithm for location management. Our algorithm
is built upon the VSA Layer and uses our GeoCast service from Section 4. It uses the home locations
paradigm, with a hashing strategy to determine home locations. Namely, each client node identifier
hashes to a region identifier, which serves as the client’s home location. The client updates its home
location VSA periodically with information about its current location. The home location VSA
is responsible for answering queries about the client’s current location. To locate a client node, a

24

VSA computes the client’s home location by applying the hash function to the client’s identifier,
and then queries the VSA in the resulting region, contacting it using geographical routing.

Since our focus in this paper is on algorithmic simplicity, our location management algorithm
does not include sophisticated methods for tolerating failures of VSAs. To tolerate crash failures
of a limited number of VSAs, we could allow each mobile client identifier to hash to a sequence of
home location VSAs, rather than just one. For example, we could use a permutation hash function,
where permutations of region ids are lexicographically ordered and indexed by client identifier. A
version of our algorithm that used this strategy was presented in [23].

In Section 5.1, we present our location management algorithm, along with some properties of its
executions. In Section 5.2, we define a set Lhls of legal states for the algorithm and give properties
of execution fragments starting in legal states. In Section 5.3, we argue that our algorithm self-
stabilizes to Lhls .

5.1 The Location Management Algorithm

5.1.1 Overview

Our location service allows a VSA u to submit a query for a recent region of a client node p via
a HLquery(p)u action. Under certain conditions, the service allows VSA u to receive a reply to
this query, indicating that p was recently in a region v, though an HLreply(p, v)u action. In our
implementation, which we call the Home Location Service (HLS) we accomplish this using home
locations. The home locations are calculated with a hash function h, mapping client identifiers to
VSA regions; we assume that h is known to all nodes. The home location VSA of each client node
p is periodically updated with p’s region (at least every ttlhb time) and can be queried by other
VSAs to determine a recent region of p.

The HLS implementation consists of two parts: a client-side portion and a VSA-side portion.
The client portion, CHL

p , is a subautomaton of client p that interacts with VSAs to provide HLS .
It is responsible for telling VSAs in its current and neighboring regions which region it is in.

The VSA portion, V HL
u , is a subprogram of the VSA at region u that takes a request for the

location of some client node p’, calculates p’s home location h(p), and then sends location queries to
the home location using GeoCast . The home location subprogram at the receiving VSA responds
with the region information it has for p, which is then output by V HL

u . V HL
u also is responsible both

for informing the home location of each client p located in its region of p’s region, and maintaining
and answering queries for the regions of clients for which it is a home location.

The TIOA specification for the the individual clients is in Figure 8, and the specification for the
individual VSAs is in Figure 9. The complete service, HLS , is the composition of∏

u∈U Fail(V HL
u ‖V Geo

u ‖VBDelayu),
∏

p∈P Fail(CHL
p ‖VBDelayp), and RW ‖VW ‖VBcast . In other

words, the service consists of a fail-transformed automaton for each region, consisting of home
location, geocast, and VBDelay machines; a fail-transformed automaton for each client, consisting
of home location and VBDelay machines; and the environment RW ‖VW ‖VBcast .

Just as with the geocast automata V Geo
u in Section 4, we note that for each u ∈ U , V HL

u ‖V Geo
u

is technically not a VSA since its external interface contains non-vcast, vrcv, time actions. We will
resolve this issue in Section 6.1.1.

In the next two subsections, we describe the pieces of the HLS service in more detail.

5.1.2 Client algorithm

The code executed by client p’s CHL
p is in Figure 8.

25

Signature:
2 Input GPSupdate(l, t)p, l ∈ R, t ∈ R≥0

Output vcast(〈update, p, u, t〉)p, u ∈ U, t ∈ R≥0

4

State:
6 analog clock ∈ R≥0 ∪ {⊥}, initially ⊥

reg ∈ U ∪ {⊥}, the current region, initially ⊥
8 hbTO ∈ N, initially 0

10 Trajectories:
evolve

12 d(clock) = 1
stop when

14 Any precondition is satisfied.

16Transitions:
Input GPSupdate(l, t)p

18Effect:
if reg 6= region(l) ∨ clock 6= t then

20clock ← t
reg ← region(l)

22hbTO ← 0

24Output vcast(〈update, p, u, t〉)p

Precondition:
26t = clock ∧ u = reg 6= ⊥

hbTO ∗ttlhb ≤ clock ∨ hbTO ∗ttlhb > clock + ttlhb

28Effect:
hbTO ← bclock/ttlhbc + 1

Figure 8: Client CHL[ttlhb]p periodically sends region updates to its local VSA.

Clients expect to receive GPSupdates every εsample time from the GPS automaton (lines 17-22),
making them aware of their current region and the time. If a client’s region or local clock changes
as a result, the variable hbTO is set to 0 (line 22), forcing the immediate send of an update message,
with its id, current time and region information (lines 24-29). The client also periodically (at every
multiple of ttlhb time) reminds its current VSA of its region by broadcasting an additional update
message.

5.1.3 VSA algorithm

The code for automaton V HL
u appears in Figure 9.

The VSA learns which clients are in own region and in its neighboring regions through update
messages. If the VSA vrcvs an update message from a client p claiming to be in its region (lines
44-47), the VSA sends an update message for p, with p’s heartbeat timestamp and region, through
GeoCast to h(p), the VSA home location of client p (lines 49-53).

When a VSA receives one of these update messages for a client p, it stores both the region
indicated in the message as p’s current region and the attached heartbeat timestamp in its dir
table (lines 55-59). This location information for p is refreshed each time the VSA receives an
update for client p with a newer heartbeat timestamp (line 58). Recall that client p sends an update
message every ttlhb time. This update message takes at most d time to arrive at its local VSA u,
which then sends an update message through GeoCast , which takes at most (e + d)dist(u, h(p))
time to be delivered at the home location. Therefore, an entry for client p indicating the client was
in region u is erased by its home location if its timestamp is older than ttlhb +d+(e+d)dist(u, h(p))
(lines 102 and 109-110).

The other responsibility of the VSA is to receive and respond to requests for client location
information. A request for a client p’s location arrives at VSA u via a HLquery(p)u input (line
61). This sets lastreq(p), the time of the last query for p’s location (used later to clean up expired
queries), to the current time, and updates the flag req(p) to true, indicating that a query should be
sent to p’s home location (lines 63-65). This triggers the geocast of a 〈hlquery, p, u〉 message to p’s
home location (lines 67-71). Any home location that receives such a message and has an unexpired
entry for p’s region responds with a hlreply to the querying VSA with the region and the timestamp
of the information (lines 79-83).

If the querying VSA at u receives a hlreply for a client p with newer information than it currently
has, it stores the attached region, v, and timestamp in lastLoc(p) (lines 84-90). This information
stays in lastLoc(p) until replaced with newer information, or until the entry’s timestamp is older
than the maximum time for a client to send the next update, have the update received by its local

26

1 Signature:
Input time(t)u, t ∈ R≥0

3 Input vrcv(〈update, p, v, t〉)u, p ∈ P, v ∈ U, t ∈ R≥0

Input HLQuery(p)u

5 Input georcv(m)u, m ∈ ({hlquery} ×P ×U)
∪ ({update, hlreply} ×P ×U ×R≥0)

7 Output geocast(m, v)u, v ∈ U, m ∈ ({hlquery} ×P ×{u})
∪ ({update, hlreply} ×P ×U ×R≥0)

9 Output HLreply(p, v)u, p ∈ P, v ∈ U
Internal cleanu

11

State:
13 analog clock: R≥0 ∪ {⊥}, initially ⊥

local, lastreq: P → R≥0 ∪ {⊥}, initially ⊥
15 dir, lastLoc: P → U ×R≥0, initially null

req: P → Bool, initially false

17 answer: P → 2U , initially ∅

19 Trajectories:
evolve

21 d(clock) = 1
stop when

23 Any output precondition is satisfied
∨∃p ∈ P: [lastreq(p) ≤ clock -2(e+d) dist(u, h(p)) -ε

25 ∨∃〈v, t〉 = dir(p): t ≤ clock -ttlhb -d -
(e + d) dist(v′, u) -ε
∨∃〈v, t〉 = lastLoc(p): t ≤ clock -ttlhb -d

27 -(e + d) (dist(v, h(p)) + dist(h(p), u)) -ε]

29 Transitions:
Input time(t)u

31 Effect:
if clock 6= t ∨∃p ∈ P: (local(p) /∈ [clock -d, clock) ∪ {⊥}

33 ∨ lastreq(p) > clock ∨ [req(p) ∧ lastreq(p) = ⊥]
∨ [∃〈v, t〉 ∈ {dir(p), lastLoc(p)}: t ≥ clock]

35 ∨ [¬ ∃〈v, t〉 = dir(p): t ≥ clock -ttlhb -d -
(e + d) dist(v′, u)

∧ answer(p) 6= ∅]∨ [h(p) 6= u ∧ dir(p) 6= ⊥])then
37 clock ← t

for each p ∈ P
39 local(p), lastreq(p) ← ⊥

dir(p) ← null
41 req(p) ← false

answer(p) ← ∅
43

Input vrcv(〈update, p, v, t〉)u

45 Effect:
if v = u ∧ t ∈ [clock -d, clock) then

47 local(p) ← t

49 Output geocast(〈update, p, u, t〉, v)u

Precondition:
51 local(p) ∈ [clock -d, clock) ∧ v = h(p)

Effect:
53 local(p) ← ⊥

Input georcv(〈update, p, v, t〉)u

56Effect:
if h(p) = u ∧ t ∈ [clock -d -(d + e) dist(u, v), clock)

58∧ (dir(p) = null ∨ [dir(p) = 〈v′, t′〉 ∧ t′ < t]) then
dir(p) ← 〈v, t〉

60

Input HLQuery(p)u

62Effect:
if clock 6= ⊥then

64lastreq(p) ← clock
req(p) ← true

66

Output geocast(〈hlquery, p, u〉, v)u

68Precondition:
clock 6= ⊥∧ req(p) = true ∧ v = h(p)

70Effect:
req(p) ← false

72

Input georcv(〈hlquery, p, v〉)u

74Effect:
if h(p) = u ∧∃〈v′, t〉 = dir(p):

76t ∈ [clock -ttlhb -d -(e + d) dist(v′, u), clock) then
answer(p) ← answer(p) ∪ {v}

78

Output geocast(〈hlreply, p, v, t〉, v′)u

80Precondition:
clock 6= ⊥∧ v′ ∈ answer(p) ∧ u = h(p) ∧ dir(p) = 〈v, t〉

82Effect:
answer(p) ← answer(p) − {v′}

84

Input georcv(〈hlreply, p, v, t〉)u

86Effect:
if t∈ [clock-ttlhb-d-(e+d)(dist(v,h(p))+dist(h(p),u)),clock)

88∧ [(∃v′ ∈ U: lastLoc(p) = 〈v′, t′〉 ∧ t′ < t)
∨ lastLoc(p) = null] then

90lastLoc(p) ← 〈v, t〉

92Output HLreply(p, v)u

Precondition:
94[∃t∈ [clock-ttlhb-d-(e+d)(dist(v,h(p))+dist(h(p),u)),clock):

lastLoc(p)= 〈v,t〉]∧ lastreq(p)≥ clock-2(e+d)dist(u,h(p))
96Effect:

lastreq(p) ← ⊥
98

Internal cleanu

100Precondition:
∃p ∈ P: [lastreq(p) < clock -2(e+d) dist(u, h(p))

102∨∃〈v, t〉 = dir(p): t < clock -ttlhb -d -(e + d) dist(v′, u)
∨∃〈v, t〉 = lastLoc(p): t <

104clock -ttlhb -d -(e + d) (dist(v, h(p)) + dist(h(p), u))]
Effect:

106for each p ∈ P
if lastreq(p) < clock -2(e+d) dist(u, h(p)) then

108lastreq(p) ← ⊥
if ∃〈v,t〉= dir(p):t< clock-ttlhb-d-(e+d)dist(v′,u) then

110dir(p) ← ⊥
if ∃〈v, t〉 = lastLoc(p): t < clock -ttlhb -d

112-(e + d) (dist(v, h(p)) + dist(h(p), u)) then
lastLoc(p) ← ⊥

Figure 9: VSA V HL[ttlhb , h : P → U]u automaton.

27

VSA, and have the information propagated to its home location and from the home location to
VSA u (lines 99, 103-104, and 111-113).

If there is an outstanding request for p’s location (indicated by the condition that lastreq(p) ≥
clock − 2(e + d)dist(u, h(p)) in line 95), the VSA performs a HLreply(p, v)u output and clears
lastreq(p), indicating that all outstanding queries for p’s location are satisfied (lines 92-97). If,
however, 2(e+d)dist(u, h(p)) time passes since a request for p’s region was received and there is no
entry for p’s region, lastreq(q) is just erased (lines 99, 101, and 107-108), indicating that the query
has expired.

5.1.4 Properties of executions of the location management algorithm

Our location service answers queries for the locations of clients. A VSA u can submit a query for a
recent region of client node p via a HLquery(p)u action. If p’s home location can be communicated
with and p has been in the system for a sufficient amount of time, the service responds within
bounded time with a recent region location v of p through a HLreply(p, v)u action.

More formally, we say that a node p is findable at a time t if there exists a time tsent such that:

1. tsent mod ttlhb = 0 and node p has been alive since time tsent − εsample .

2. For each u ∈ {reg−(p, tsent), reg+(p, tsent)}, tsent + d + (e + d)dist(u, h(p)) < t.4

3. For each t′ ∈ [tsent , t] and v ∈ {reg−(p, t′), reg+(p, t′)}, there exists at least one shortest path
from v to h(p) of regions that are nonfailed and have clock values equal to the real time for
the interval [t′, t′ + (e + d)dist(v, h(p))].

This amounts to saying that a node is findable if we can be assured that its home location will have
some information on the node’s whereabouts.

We say that a HLQuery by a region u for a node p at time t is serviceable if:

1. Node p is findable at time t′ for each t′ ∈ [t, t + (e + d)dist(u, h(p))].

2. There exists at least one shortest path from u to h(p) of regions that are nonfailed and have
clock values equal to the real time for the interval [t, t + 2(e + d)dist(u, h(p))].

Then we can show the following result:

Lemma 5.1. In each execution α of HLS, there exists a function mapping each HLreply event to
a HLQuery event such that the following hold:

1. Integrity: If a HLreply(p, v)u event π is mapped to a HLQuery(p′)u′ event π′, then p = p′,
u = u′, and π′ occurs before π.

2. Bounded-Time Reply: If a HLreply(p, v)u event π is mapped to a HLQuery(p)u event π′ and
π′ occurs at time t, then π occurs at a time in the interval [t, t + 2(e + d)dist(u, h(p))].

3. Reliable Reply: If a HLQuery(p)u event π′ occurs at time t, α.ltime > t+2(e+d)dist(u, h(p)),
and π′ is serviceable, then there exists a HLreply(p, v)u event π such that π occurs at some
time in the interval [t, t + 2(e + d)dist(u, h(p))].
This guarantees that a query will be answered if it is serviceable.

4The notation reg− refers to the region indicated by the last GPSupdatep that occurred strictly before the indicated

time, if any, else ⊥. The notation reg+ refers to the region indicated by the GPSupdatep that occurs at exactly the

indicated time, if any, else reg−.

28

4. Reliable Information: If a HLreply(p, v)u event occurs at some time t, then there exists a time
t′ ∈ [t−ttlhb−d−(e+d)(dist(v, h(p))+dist(h(p), u)), t] such that v ∈ {reg−(p, t′), reg+(p, t′)}.

Proof sketch: We define the needed mapping from HLQuery to HLreply events as follows: Consider
any HLreply(p, v)u event in α. There must be some time t 6= ⊥ such that t = lastreq(p)u (line 95)
when the HLreply occurs. We map the HLreply event to the first HLQuery(p)u event that occurs at
time t.

It is easy to check that the first two properties hold. Also, the properties of the underlying
GeoCast service make the Reliable reply property easy to check. (Due to properties of GeoCast ,
the only thing that really needs checking is that if p is findable, then when any 〈hlquery, p, u〉
message sent because of the HLQuery is received by p’s home location, the home location will have
information on p’s location. We can see that this holds because if p is findable, the properties of
GeoCast ensure that some recent-enough update message about p will have been received by p’s
home location.)

It remains to check the Reliable information property. For this, assume that a HLreply(p, v)u

event π occurs at some time t. We must show that there exists a time t′ ∈ [t − ttlhb − d − (e +
d)(dist(v, h(p)) + dist(h(p), u)), t] such that v ∈ {reg−(p, t′), reg+(p, t′)}. By the precondition for
the HLreply event on lines 94-95, we know that there exists a pair 〈v, t′′〉 equal to lastLoc(p) such
that t′′ ≥ t − ttlhb − d − (e + d)(dist(v, h(p)) + dist(h(p), u)). We now argue that t′′ satisfies the
properties of the t′ we are looking for. The only way that lastLoc(p) is set to 〈v, t′′〉 is by the receipt
of a 〈hlreply, p, v, t′′〉 message (lines 85-90). Such a message is sent by p’s home location only if the
home location’s dir(p) is set to 〈v, t′′〉 (lines 79-81). The home location’s dir(p) is set to 〈v, t′′〉 only
by the receipt of an 〈update, p, v, t′′〉 tuple (lines 55-59). Such an update tuple is sent by the region
v only if its local(p) is set to t′′ (lines 49-51).

Its local(p) is set to t′′ only if it received an 〈update, p, v, t′′〉 message through the VBcast service
(lines 44-47). Such a message must have been sent by a node p at time t. Since the message is sent
by the node p if its latest region update by time t was for region v, we have our result.

5.2 Legal Sets for HLS

Here we define Lhls , a legal set of states for HLS . We do this in five stages, defining five legal
sets, each a subset of the previous one. Again, we break up this definition to simplify the proofs
of legality and stabilization. Because the proofs in this section are routine, we omit them. At the
end of this section, we discuss properties of execution fragments of HLS that start in legal states.

5.2.1 Legal set L1
hls

The first legal set describes some basic properties of individual regions and clients. These become
true at an alive VSA after the first time input for the VSA, and at an alive client immediately after
the first GPSupdate input for the client, assuming the underlying GeoCast service is in a legal state.

Definition 5.2. L1
hls is the set of states x of HLS in which all of the following hold:

1. xdXGeoCast ∈ Lgeo.
The state restricted to the variables of GeoCast is a legal state of GeoCast.

2. For each p ∈ P : ¬failedp (for each nonfailed client):

(a) clockp 6= ⊥ ⇒ (clockp = now ∧ regp = reg(p)).
If the clock is not ⊥, then it is the same as the real time and regp is p’s current region.

29

(b) (hbTOp ∗ ttlhb = now + ttlhb ∧ 〈update, p, regp,now〉 6∈ to send−p to send+
p)

⇒ 〈〈update, p, regp,now〉, regp,now , P ∪ U〉 ∈ vbcastq.
If hbTO indicates that the client should have just sent an update and there is no such
message in the client’s VBDelay, then the update has already been propagated to VBcast.

(c) ∀〈update, q, u, t〉 ∈ to send−p to send+
p : (q = p∧t = now∧u ∈ {reg−(p,now), reg+(p,now)}).

Any update message in one of a client’s VBDelay queues correctly indicates a region that
the client has been in at this time.

3. For each u ∈ U : (¬failedu ∧ clocku 6= ⊥) (for each non-failed VSA that has received a time
input):

(a) clocku = now.
The VSA’s clock time is the same as the real time.

(b) ¬∃p ∈ P : ((localu(p) /∈ [now − d,now) ∪ ⊥) ∨ lastrequ(p) > now
∨(requ(p) ∧ lastrequ(p) = ⊥) ∨ (∃〈v, t〉 ∈ {diru(p), lastLocu(p)} : t ≥ now)
∨(∃〈v, t〉 = dir(p) : t ≥ now − ttlhb − d− (e + d)dist(v′, u) ∧ answeru(p) 6= ∅)
∨(h(p) 6= u ∧ diru(p) 6= ⊥)).
The state satisfies a list of simple local consistency conditions.

Lemma 5.3. L1
hls is a legal set for HLS.

5.2.2 Legal set L2
hls

The second legal set describes some properties that hold after any spurious VSA messages are
broadcast and spurious VBcast messages are delivered.

Definition 5.4. L2
hls is the set of states x of HLS in which all of the following hold:

1. x ∈ L1
hls .

This says that L2
hls is a subset of L1

hls .

2. For each 〈〈update, p, u, t〉, q, v, t′, P ′〉 ∈ vbcastq :
[t′ + d ≥ now ⇒ (q = p ∧ t = t′ ∧ u ∈ {reg−(p, t), reg+(p, t)})].
Any update tuple in vbcastq sent in the last d time correctly indicates a region of the sender
at the time the message was sent.

3. For each u ∈ U : ¬failedu (nonfailed VSA):

(a) 6 ∃〈〈update, p, v, t〉, t′〉 ∈ to sendu.
The VSA should not vcast an update tuple; note that VSAs only geocast update tuples.

(b) For each p ∈ P : [localu(p) = t 6= ⊥ ⇒ u ∈ {reg−(p, t), reg+(p, t)}].
If the VSA’s local(p) is set to t, then the VSA’s region is a region of client p at time t.

(c) For each v, v′ ∈ U, p ∈ P, t ∈ R≥0 :
[(ledger(〈〈update, p, v, t〉, u, v′,now〉) 6= null∨〈〈geocast, 〈update, p, v, t〉, u, v′,now〉, rtimeru〉 ∈
to sendu) ⇒ (u = v ∧ v′ = h(p) ∧ u ∈ {reg−(p, t), reg+(p, t)})].
If an update message for p has been geocast but has not yet been turned over to VBcast,
then it is being geocast to the home location of p and correctly indicates one of the regions
of p at the time t included in the message.

30

(d) For each p ∈ P, 〈v, t〉 = lastLocu(p) :
[t ≥ now − d ⇒ ∃〈〈geocast, 〈hlreply, p, v, t〉, v′, u, t′〉, v′′, t′′, P ′〉 ∈ vbcastq : t′′ ≥ t].
If lastLoc(p) is set to some 〈v, t〉 where t ≥ now − d, then there exists a geocast of an
hlreply tuple no older than t that indicates that v is a region of p at time t.

4. For each 〈〈geocast, 〈update, p, v, t〉, u, v′, t′〉, u′,now , P ∪ U〉 in vbcastq :
(t′ ∈ (t, t + d] ∧ u = v = u′ ∧ v′ = h(p) ∧ u ∈ {reg−(p, t), reg+(p, t)}).
Any update tuple for a node p and time t that has just been geocast and whose record is in
VBcast correctly indicates a region of p at time t. It also says that the message is being
geocast to p’s home location.

Lemma 5.5. L2
hls is a legal set for HLS.

5.2.3 Legal set L3
hls

The third legal set describes some properties that hold after any spurious geocast messages are
delivered.

Definition 5.6. L3
hls is the set of states x of HLS in which all of the following hold:

1. x ∈ L2
hls .

2. For each 〈geocast, 〈〈update, p, v, t〉, u, v′, t′〉, u′, t′′, P ′〉 in vbcastq:
[(t′′ ≥ now−(e+d)D) ⇒ (t′ ∈ (t, t+d]∧u = v = u′∧v′ = h(p)∧u ∈ {reg−(p, t), reg+(p, t)})].
A geocast of an update for a node p at time t that was passed to VBcast at time t′′ ≥
now − (e + d)D was sent to p’s home location by the VSA at a region of client p at time t.

Lemma 5.7. L3
hls is a legal set for HLS.

5.2.4 Legal set L4
hls

The fourth legal set describes some properties that hold after any bad location information stored
at home locations of nodes is cleaned up.

Definition 5.8. L4
hls is the set of states x of HLS in which all of the following hold:

1. x ∈ L3
hls .

2. For each 〈geocast, 〈〈update, p, v, t〉, u, v′, t′〉, u, t′′, P ′〉 in vbcastq:
[(t′′ ≥ now−ttlhb−d−2(e+d)D) ⇒ (t′ ∈ (t, t+d]∧u = v∧v′ = h(p)∧u ∈ {reg−(p, t), reg+(p, t)})].
This is similar to property 2 of L3

hls , only extended for t′′ ≥ now − ttlhb − d− 2(e + d)D.

3. For each u ∈ U : ¬failedu: for each p ∈ P : for each 〈v, t〉 = diru(p) :
[(t ≥ now − ttlhb − d − (e + d)dist(v, u)) ⇒ (∃〈geocast, 〈〈update, p, v, t〉, v, u, t′〉, v, t′′, P ′〉 ∈
vbcastq : (t′′ ≥ now − ttlhb − d− (e + d)D))].
At a nonfailed VSA, if the VSA is storing the location of a node p as region v at time t, then
if t ≥ now− ttlhb−d−(e+d)dist(v, u), then there was a geocast of an update tuple indicating
the same region and time information.

4. For each u ∈ U : ¬failedu, v, v′ ∈ U, p ∈ P, t ∈ R≥0 :
[(ledgeru(〈〈hlreply, p, v, t〉, u, v′,now〉) 6= null∨〈〈geocast, 〈hlreply, p, v, t〉, u, v′,now〉, rtimeru〉 ∈
to sendu) ⇒ (u = h(p) ∧ v ∈ {reg−(p, t), reg+(p, t)})].
If an hlreply message for a node p has been geocast but not yet turned over to VBcast, then
the VSA is the home location for p and the attached region v is a region of p at time t.

31

5. For each 〈geocast, 〈〈hlreply, p, v, t〉, u, v′, t′〉, u′,now , P ∪ U〉 in vbcastq:
(u = h(p) ∧ v ∈ {reg−(p, t), reg+(p, t)}).
Any geocast of an hlreply that has just been turned over to VBcast correctly names a region
that a client p was in at a time t and that was sent by p’s home location.

6. For each u ∈ U : ¬failedu : for each p ∈ P, v ∈ V, t ∈ R≥0 :
[(〈v, t〉 = lastLocu(p)∧t ≥ now−ttlhb−d−(e+d)D) ⇒ ∃〈geocast, 〈〈hlreply, p, v, t〉, h(p), u, t′〉, h(p), t′′, P ′〉 ∈
vbcastq : (t′′ ≥ t ∧ v ∈ {reg−(p, t), reg+(p, t)})].
If lastLoc(p) is set to some 〈v, t〉 where t ≥ now − ttlhb −d− (e+d)D, then there is a geocast
of an hlreply tuple no older than t that indicates that v is a region of p at time t. In addition,
v was a region of p at time t.

Lemma 5.9. L4
hls is a legal set for HLS.

5.2.5 Legal set Lhls

The fifth and final legal set, Lhls , describes some properties that hold after any bad location
information stored at location queriers is cleaned up.

Definition 5.10. Lhls is the set of states x of HLS in which all of the following hold:

1. x ∈ L4
hls .

2. For each 〈geocast, 〈〈hlreply, p, v, t〉, u, v′, t′〉, u, t′′, P ′〉 in vbcastq:
[t′′ ≥ now − (e + d)D ⇒ (u = h(p) ∧ v ∈ {reg−(p, t), reg+(p, t)})].
This is similar to Property 5 of L4

hls , only extended for t′′ ≥ now − (e + d)D, rather than just
t′′ = now.

3. For each u ∈ U : ¬failedu : for each p ∈ P, v ∈ V, p ∈ R≥0 :
[(〈v, t〉 = lastLocu(p)∧t ≥ now−ttlhb−d−2(e+d)D) ⇒ ∃〈geocast, 〈〈hlreply, p, v, t〉, h(p), u, t′〉, h(p), t′′,
P ′〉 ∈ vbcastq : (t′′ ≥ t ∧ v ∈ {reg−(p, t), reg+(p, t)}).
This is similar to Property 6 of L4

hls , only extended for t′′ ≥ now − ttlhb − d− 2(e + d)D.

It is trivial to see that since the second two properties are simply properties of L4
hls observed for

longer periods of time, the following result will follow:

Lemma 5.11. Lhls is a legal set for HLS.

5.2.6 Properties of execution fragments starting in Lhls

As for GeoCast , we show that execution fragments of HLS that begin in legal states satisfy proper-
ties similar to the ones we described for executions (in Section 5.1.4). As before, the difference is in
the mapping of some HLreply events that occur towards the beginning of the execution fragments.

Lemma 5.12. For any execution fragment α of HLS beginning in a state in Lhls , there exists a
subset Π of the HLreply events in α such that:

1. There exists a function mapping each HLreply event in Π to a HLquery event such that the
four properties (Integrity, Bounded-Time Reply, Reliable Reply, and Reliable Information)
hold.

2. For every HLreply(p)u event π not in Π where π occurs at some time t, it must be the case
that t ≤ 2(e + d)dist(u, h(p)).

The proof is similar to the one for Lemma 4.6.

32

5.3 Self-Stabilization for HLS

We have shown that Lhls is a legal set for HLS . Now we show that∏
u∈U Fail(VBDelayu‖V Geo

u ‖V HL
u)‖

∏
p∈P Fail(VBDelayp‖CHL

p) self-stabilizes to Lhls relative to
R(RW ‖VW ‖VBcast) (Theorem 5.19). This means that if certain “software” portions of the im-
plementation are started in an arbitrary state and run with R(RW ‖VW ‖VBcast), the resulting
execution eventually gets into a state in Lhls . Using Theorem 5.19, we then conclude that after
HLS has stabilized, the execution fragment starting from the point of stabilization satisfies the
properties in Section 5.2.6.

The proof of Theorem 5.19 breaks stabilization down into two large phases, corresponding to
stabilization of GeoCast , followed by stabilization of HLS assuming that GeoCast is already sta-
bilized. We have already seen, in Section 4.3, that GeoCast stabilizes to the legal set Lgeo . What
we need to show for Theorem 5.19 is that, starting from a set of states where GeoCast is already
stabilized, HLS stabilizes to Lhls (Lemma 5.18). We do this in five stages, one for each of the legal
sets described in Section 5.2. The first stage starts from a state where GeoCast is already stabilized
and ends up in the first legal set, L1

hls . The second stage starts in L1
hls and ends up in the second

legal set, L2
hls , and so on.

The first lemma describes the first stage of HLS stabilization, to legal set L1
hls . It says that

within t1hls time of GeoCast stabilizing, where t1hls > εsample , the system ends up in a state in L1
hls .

Lemma 5.13. Let t1hls > εsample . Then Frags
{x|xdXGeoCast∈Lgeo}
HLS stabilizes in time t1hls to Frags

L1
hls

HLS .

Proof sketch: To see this result, just consider the first time after each node has received a time or
GPSupdate input, which takes at most εsample time to happen.

The next lemma describes the second stage of HLS stabilization. It says that starting from a
state in L1

hls , HLS ends up in a state in L2
hls within t2hls time, where t2hls is any time greater than

2e + d.

Lemma 5.14. Let t2hls > 2e + d. Then Frags
L1

hls
HLS stabilizes in time t2hls to Frags

L2
hls

HLS .

Proof: We must show that, for any length-t2hls prefix α of an element of Frags
L1

hls
HLS , α.lstate is in

L2
hls . We examine each property of L2

hls . Since the first state of α is in L1
hls and L1

hls is a legal set,
we know that Property 1 of L2

hls holds in each state of α.
For Property 2, notice that for each update message added for the first time to one of a client’s

to send queues and then propagated to VBcast , the property will hold and will continue to hold
thereafter. Hence, we need only worry about the messages already in a to send queue or already in
VBcast in α.fstate. However, after d time elapses from the start of α, the property will be trivially
true.

Property 3(a) will hold after at most e time—the time it takes for any such errant messages
in α.fstate to be propagated out to VBcast . Property 3(b) will hold after at most d time after
Property 3(a) holds (giving any messages with bad location information time to be received and
then removed from local through the geocast of an update). Property 3(c) will hold within any non-
zero time after Property 3(b) holds, as each new geocast of an update will use location information
that is correct. Property 3(d) is straightforward.

For Property 4 notice that for each geocast tuple of an update message added for the first time
to a to send queue after Property 3(b) holds (which takes up to e + d time) and then propagated
within e time to vbcastq , the property will hold and continue to hold as the message makes its
way through the system. The only thing we need to consider are the tuples that are already in a

33

to send queue in α.fstate. In the worst case, such a tuple takes e time to be placed in vbcastq , and
any non-zero time afterwards to have its VBcast timestamp no longer be the current time.

The next lemma, for the third stage of HLS stabilization, says that starting from a state in L2
hls ,

HLS ends up in a state in L3
hls within t3hls time, where t3hls is any time greater than (e + d)D.

Lemma 5.15. Let t3hls > (e + d)D. (Recall D is the hop count diameter of the network.) Then

Frags
L2

hls
HLS stabilizes in time t3hls to Frags

L3
hls

HLS .

Proof: We must show that, for any length-t3hls prefix α of an element of Frags
L2

hls
HLS , α.lstate is in

L3
hls . We examine each property of L3

hls . Since the first state of α is in L2
hls and L2

hls is a legal set,
we know that Property 1 of L3

hls holds in each state of α.
For Property 2, notice that by Property 4 of L2

hls we have that all geocast tuples of update
messages added to vbcastq in α will satisfy the property and continue to do so. After (e + d)D
time has passed, we will have that the property holds for all such tuples broadcast within the prior
(e + d)D time.

The next lemma, for the fourth stage of HLS stabilization, says that starting from a state in L3
hls ,

HLS ends up in a state in L4
hls within t4hls time, where t4hls is any time greater than d+ttlhb+(e+d)D.

Lemma 5.16. Let t4hls > d + ttlhb + (e + d)D. Then Frags
L3

hls
HLS stabilizes in time t4hls to Frags

L4
hls

HLS .

Proof: We must show that, for any length-t4hls prefix α of an element of Frags
L3

hls
HLS , α.lstate is in

L4
hls . We examine each property of L4

hls . Since the first state of α is in L3
hls and L3

hls is a legal
set, we know that Property 1 of L4

hls holds in each state of α. Property 2 is easy to see due to its
similarity to Property 2 of L3

hls .
For Property 3, notice that at the beginning of α, the newest value of t in a dir tuple is less than

α.fstate(now). After t4hls time passes, these entries will be expired and won’t affect the property.
This means that all we have to check is that whenever a dir entry is updated in α, it satisfies
the property. This is obvious since such an update occurs only through the georcv of an update
message, which can only happen if Property 3 holds.

For Property 4, notice that any new hlreply tuple that is added to the ledger or added to VBDelay
after Property 3 holds will satisfy Property 4. Similarly, for Property 5, any new hlreply tuple added
to vbcastq after Property 4 holds will satisfy Property 5.

For Property 6, notice that at the beginning of α, the newest values of t in a lastLoc tuple is less
than α.fstate(now). After t4hls time passes, those entries still in lastLoc will be timestamped with
values less than those of concern for the property. This means that all we have to check is that
any additions or updates to lastLoc satisfy the property. Since such changes occur only through
the georcv of an hlreply, we just need to verify that any such message that arrives with the wrong
region for p at some time has a timestamp that is older than t4hls . This follows from the fact that
any hlreply sent in α with bad information must be using information timestamped from before α
(by Property 2 of L3

hls).

The next lemma, for the fifth stage of HLS implementation, says that starting from a state in
L4

hls , HLS ends up in a state in Lhls within t5hls time, where t5hls is any time greater than (e + d)D.

Lemma 5.17. Let t5hls > (e + d)D. Then Frags
L4

hls
HLS stabilizes in time t5hls to FragsLhls

HLS .

34

The proof of this lemma is simple for the same reason that the proof that Lhls is a legal set is
trivial; the property is a longer-interval version of properties that we already know hold.

We now have all of the pieces of reasoning for the five stages of the second phase of HLS sta-
bilization. (Recall that the second phase of HLS stabilization occurs after GeoCast has stabilized,
corresponding to the GeoCast state being in the set Lgeo .) We now combine the stabilization results
in Lemmas 5.13-5.17 to show that the second phase of stabilization of HLS takes at most t′hls time,
for any t′hls > εsample + ttlhb + 2e + 2d + 3(e + d)D.

Lemma 5.18. Let t′hls > εsample +ttlhb +2e+2d+3(e+d)D. Then Frags
{x|xdXGeoCast∈Lgeo}
HLS stabilizes

in time t′hls to FragsLhls
HLS .

Proof: The result follows from the application of Lemma 2.4 to the results of Lemmas 5.13-5.17.
Let t′ be (t′hls− (εsample + ttlhb +2e+2d+3(e+d)D))/5. Let t1hls be t′+ εsample , t2hls be t′+2e+d,

t3hls be t′ + (e + D)D, t4hls be t′ + d + ttlhb + (e + d)D, and thls be t′ + (e + d)D; these values are
chosen so as to satisfy the constraints that t1hls > εsample , t2hls > 2e+d, etc., as well as the constraint

that t1hls + t2hls + t3hls + t4hls + t5hls = t′hls . Let B0 be Frags
{x|xdXGeoCast∈Lgeo}
HLS , B1 be Frags

L1
hls

HLS , B2 be

Frags
L2

hls
HLS , B3 be Frags

L3
hls

HLS , B4 be Frags
L4

hls
HLS , and B5 be FragsLhls

HLS .
Then by four uses of Lemma 2.4 (applied to Bi, Bi+1, and Bi+2, i = 0, 1, 2, 3), and Lemmas 5.13-

5.17, we have that Frags
{x|xdXGeoCast∈Lgeo}
HLS stabilizes in time t1hls + t2hls + t3hls + t4hls + t5hls = t′hls to

FragsLhls
HLS .

Using Lemma 5.18 and our prior result on GeoCast stabilization (Theorem 4.9), we can finally
show the main stabilization result of this section. The proof of the result breaks down the self-
stabilization of HLS into two phases, the first being where GeoCast stabilizes, and the second being
where the remaining pieces of HLS stabilize.

Theorem 5.19. Let thls > tgeo + εsample + ttlhb + 2e + 2d + 3(e + d)D.
Then

∏
u∈U Fail(VBDelayu‖V Geo

u ‖V HL
u)‖

∏
p∈P Fail(VBDelayp‖CHL

p) self-stabilizes in time thls to
Lhls relative to R(RW ‖VW ‖VBcast).

Proof: For brevity, let ExecsU−HLS denote
ExecsU(

Q
u∈U Fail(VBDelayu‖V

geo
u ‖V HL

u)‖
Q

p∈P Fail(VBDelayp‖CHL
p))‖R(RW ‖VW ‖VBcast). By definition of rela-

tive self-stabilization, we must show that ExecsU−HLS stabilizes in time thls to FragsLhls
HLS . The result

follows from the application of transitivity of stabilization (Lemma 2.4) on the two phases of HLS
stabilization.

For the first phase, we note that by Theorem 4.9, ExecsU−HLS stabilizes in time tgeo to Frags
{x|xdXGeoCast∈Lgeo}
HLS .

For the second phase, let t′hls = thls − tgeo . Since thls > tgeo + εsample + ttlhb + 2e + 2d + 3(e + d)D,
this implies that t′hls > εsample + ttlhb + 2e + 2d + 3(e + d)D. By Lemma 5.18, we have that
Frags

{x|xdXGeoCast∈Lgeo}
HLS stabilizes in time t′hls to FragsLhls

HLS . Taking B to be ExecsU−HLS , C to be
Frags

{x|xdXGeoCast∈Lgeo}
HLS , and D to be FragsLhls

HLS in Lemma 2.4, we have that ExecsU−HLS stabilizes in
time tgeo + t′hls to FragsLhls

HLS . Since thls = tgeo + t′hls , we conclude that∏
u∈U Fail(VBDelayu‖V Geo

u ‖V HL
u)‖

∏
p∈P Fail(VBDelayp‖CHL

p) self-stabilizes in time thls to Lhls

relative to R(RW ‖VW ‖VBcast).

Combining Theorem 5.19 with Lemma 5.12, we conclude that after HLS has stabilized, the
execution fragment starting from the point of stabilization satisfies the properties in Section 5.2.6:

35

Corollary 5.20. Let thls > tgeo + εsample + ttlhb + 2e + 2d + 3(e + d)D.
Then ExecsU(

Q
u∈U Fail(VBDelayu‖V Geo

u ‖V HL
u)‖

Q
p∈P Fail(VBDelayp‖CHL

p))‖R(RW ‖VW ‖VBcast) stabilizes in time
thls to a set A of execution fragments such that for each α ∈ A, there exists a subset Π of the HLreply
events in α such that:

1. There exists a function mapping each HLreply event in Π to a HLquery event such that the
four properties (Integrity, Bounded-Time Reply, Reliable Reply, and Reliable Information)
hold.

2. For every HLreply(p)u event π not in Π where π occurs at some time t, it must be the case
that t ≤ 2(e + d)dist(u, h(p)).

For the rest of the paper, fix thls > tgeo + εsample + ttlhb + 2e + 2d + 3(e + d)D.

6 End-to-End Routing

Now we present our self-stabilizing algorithm for mobile client end-to-end routing. Our algorithm
runs over the VSA Layer, and is built on our geocast and location management services, described
in Sections 4 and 5. Our algorithm is simple, given the geocast and location services. A client
sends a message to another client by forwarding the message to its local VSA, which then uses the
home location service to discover the destination client’s region and forwards the message to that
region using the geocast service.

We describe the routing algorithm in Section 6.1, along with some properties of its execution. In
Section 6.2, we define a set Le2e of legal states for the algorithm and give properties of execution
fragments starting in those legal states. In Section 6.3, we argue that our algorithm self-stabilizes
to Le2e and tie all of our results together.

6.1 Client End-to-End Routing Algorithm

6.1.1 Overview

End-to-end routing (E2E) is a service that allows arbitrary clients to communicate: a client p sends
a message m to client q using the esend(m, q)p action. The message may then be received by q
through the ercv(m)q action. Our implementation of the end-to-end routing service, E2E , uses the
home location service to discover a recent region location of a destination client node and then uses
this location in conjunction with geocast to deliver messages. Like our home location algorithm,
the end-to-end routing algorithm has two parts: a client-side portion and a VSA-side portion.

The client portion, CE2E
p , takes a request to send a message m to a client q and transmits it to

its local VSA for forwarding. It also listens for VBcast messages originating at other clients and
addressed to itself, and delivers them.

The VSA portion, V E2E
u , is very simple. A client may send it a message to be forwarded to a

client. The VSA looks up a recent location of the destination client using HLS and then sends the
message via GeoCast to the reported region.

The TIOA specification for the individual clients is in Figure 10, and the specification for the
individual VSAs is in Figure 11. The complete service, E2E , is the composition of∏

u∈U Fail(V E2E
u ‖V Geo

u ‖V HL
u ‖VBDelayu),

∏
p∈P Fail(CE2E

p ‖CHL
p ‖VBDelayp), and RW ‖VW ‖VBcast .

In other words, the service consists of a fail-transformed automaton for each region, consisting of
end-to-end, home location, geocast, and VBDelay machines; a fail-transformed automaton at each
client, consisting of end-to-end, home location, and VBDelay machines; and RW ‖VW ‖VBcast .

36

Signature:
2 Input GPSupdate(l, t)p, l ∈ R, t ∈\nnreals

Input esend(m, q)p, m ∈Msg, q ∈ P
4 Input vrcv(〈rdata, m, p〉)p, m ∈ Msg

Output vcast(〈sdata, m, q〉)p, m ∈ Msg, q ∈ P
6 Output ercv(m)p, m ∈ Msg

8 State:
analog clock ∈ R≥0 ∪ {⊥}, initially ⊥

10 reg ∈ U ∪ {⊥}, initially ⊥
sdataq ∈ (Msg ×P)∗, initially λ

12 deliverq ∈ Msg∗, initially λ

14 Trajectories:
evolve

16 d(clock) = 1
stop when

18 Any precondition is satisfied.

20 Transitions:
Input GPSupdate(l, t)p

22 Effect:
if clock 6= t ∨ reg = ⊥then

24 sdataq, deliverq ← λ
clock ← t

26 reg ← region(l)

28Input esend(m, q)p

Effect:
30sdataq ← append(sdataq, 〈m, q〉)

32Output vcast(〈sdata, m, q, reg〉)p

Precondition:
34〈m, q〉 = head(sdataq) ∧ clock 6= ⊥∧ reg 6= ⊥

Effect:
36sdataq ← tail(sdataq)

38Input vrcv(〈rdata, m, p〉)p

Effect:
40deliverq ← append(deliverq, m)

42Output ercv(m)p

Precondition:
44m = head(deliverq) ∧ clock 6= ⊥∧ reg 6= ⊥

Effect:
46deliverq ← tail(deliverq)

Figure 10: Client CE2E
p automaton.

Recall that in the geocast and location management sections, we noted that the various geocast
and home location automata at the regions were not technically VSAs, since their external interfaces
included more than just the allowed vcast, vrcv, and time actions. Here we can finally resolve this
issue. Namely, for each u ∈ U , the VSA at region u is the composition V E2E

u ‖V Geo
u ‖V HL

u , with
all geocast, georcv, HLQuery and HLreply actions hidden. The resulting automaton satisfies the
conditions for being a VSA.

We now describe the pieces of the E2E service in more detail.

6.1.2 Client algorithm

The code for CE2E
p is in Figure 10. The two main variables, sdataq and deliverq , are queues.

Variable sdataq stores pairs 〈m, q〉 of esend requests that have not yet been forwarded to a VSA,
where m is a message and q the intended recipient. Variable deliverq stores messages intended for
receipt by the client, but not yet ercved.

A GPSupdate(l, t)p transition (line 21) results in an update of the client’s reg variable to the
region region(l) and a reset of the local clock to time t (lines 25-26). If the clock variable was not
t when the action occurred or if reg was ⊥, then the sdataq and deliverq queues are also cleared
(lines 23-24); this corresponds to a resetting of the queues either because the client has just started
or because the client had incorrect local state.

Client p sends a message m to another client q via an esend(m, q)p input (line 28), which adds
the pair 〈m, q〉 to sdataq (line 30). This results in the forwarding of the information to p’s current
region’s VSA through vcast(〈sdata,m, q, reg〉)p and the removal of the pair from sdataq (lines 32-36).

Information about a message m for client p from other clients can be forwarded and ultimately
received through a vrcv(〈rdata,m, p〉)p input (line 38). This adds the message m to deliverq (line
40). The message m is subsequently delivered through the output ercv(m)p action (lines 42-46).

37

1 Signature:
Input time(t)u, t ∈ R≥0

3 Input vrcv(〈sdata, m, q, u〉)u, m ∈ Msg, q ∈ P
Input HLreply(p, v)u, p ∈ P, v ∈ U

5 Input georcv(〈fdata, m, p〉)u, m ∈ Msg, p ∈ P
Output HLQuery(p)u, p ∈ P

7 Output vcast(〈rdata, m, p〉)u, m ∈ Msg, p ∈ P
Output geocast(〈fdata, m, p〉, v)u,

9 m ∈ Msg, p ∈ P, v ∈ U

11 State:
analog clock ∈ R≥0 ∪ {⊥}, initially ⊥

13 bcastq ∈ 2Msg×P , initially ∅
tosend ∈ P → 2(Msg×(R≥0∪⊥)), initially ∅

15 findreg ∈ P → U ∪ {⊥}, initially ⊥

17 Trajectories:
evolve

19 d(clock) = 1
stop when

21 Any output precondition is satisfied
∨∃p ∈ P: [findreg(p) 6= ⊥∧ tosend(p) = ∅]

23 ∨∃p ∈ P, m ∈ Msg, t ∈ R≥0: (〈m, t〉 ∈ tosend(p)
∧ [t> clock ∨ t ≤ q clock -2(e+d)dist(u, h(p)) -ε])

25

Transitions:
27 Input time(t)u

Effect:
29 if clock 6= t then

clock ← t
31 bcastq ← ∅

for each p ∈ P
33 tosend(p) ← ∅

findreg(p) ← ⊥
35

Input vrcv(〈sdata, m, p, u〉)u

37 Effect:
tosend(p) ← tosend(p) ∪ {〈m, ⊥〉}

40Output HLQuery(p)u

Local: m ∈ Msg
42Precondition:

clock 6= ⊥∧ 〈m, ⊥〉∈ tosend(p)
44Effect:

tosend(p) ← tosend(p) − {〈m, ⊥〉} ∪ {〈m, clock〉}
46

Input HLreply(p, v)u

48Effect:
findreg(p) ← v

50

Output geocast(〈fdata, m, p〉, v)u

52Precondition:
clock 6= ⊥∧findreg(p) = v 6= ⊥

54∃t:(〈m, t〉∈ tosend(p)∧ [t = ⊥∨ t≤ clock-2(e+d) dist(u, h(p))])
Effect:

56tosend(p) ← tosend(p) − {〈m′, t〉 |m′ = m}

58Internal cleanFind(p)u

Precondition:
60findreg(p) 6= ⊥∧ tosend(p) = ∅

Effect:
62findreg(p) ← ⊥

64Internal cleanSend(p)u

Precondition:
66∃〈m, t〉∈ tosend(p): [t > clock ∨ t < clock-2(e+d) dist(u, h(p))]

Effect:
68tosend(p) ← tosend(p)

− {〈m, t〉 |t > clock ∨ t < clock -2(e+d) dist(u, h(p))}
70

Input georcv(〈fdata, m, p〉)u

72Effect:
bcastq ← bcastq ∪ {〈m, p〉}

74

Output vcast(〈rdata, m, p〉)u

76Precondition:
clock 6= ⊥∧ 〈m, p〉 ∈ bcastq

78Effect:
bcastq ← bcastq − {〈m, p〉}

Figure 11: VSA V E2E [ttlhb , h]u automaton.

6.1.3 VSA algorithm

Code for V E2E
u is in Figure 11. The V E2E [ttlhb , h]u automaton has three main variables. The

variable bcastq is a set of pairs of messages and node identifiers, each pair corresponding to a
mesasge that the VSA is about to broadcast locally for receipt by some client. The variable tosend
maps each mobile node identifier p to a set of messages that local clients have asked the VSA to
forward to p, tagged either with a timestamp indicating when it arrived at the VSA or ⊥, indicating
the message has just arrived but the location of p has not yet been requested. The variable findreg
maps each mobile node identifier to either a region corresponding to a recent location of the node,
or ⊥.

The VSA at a region u is told by a local client of its esend of message m to a client p via the
receipt of a tuple 〈sdata,m, p, u〉 (line 36). This receipt adds the pair 〈m,⊥〉 to tosend(p) (line
38), indicating that m is to be sent to p and that the VSA needs to look up p’s region. This
results in an HLQuery(p)u to look up the region, resulting in the replacement of the pair 〈m,⊥〉
with 〈m, clock〉 (lines 40-45). Whenever a response in the form HLreply(p, v)u occurs (line 47), the
variable findreg(p) is updated to v (line 49), indicating p was in region v recently. For each pair

38

〈m, t〉 in tosend(p), if findreg(p) is not ⊥, meaning that the VSA has a relatively recent location
for p, the VSA forwards the message information to p’s location and removes the message record
from tosend . It does this using a geocast(〈fdata,m, p〉)u output (lines 51-56). If there are no tuples
in tosend(p), meaning there are no messages that need to be forwarded to p outstanding, then
findreg(p) is cleared (lines 58-62).

When a 〈fdata,m, p〉 message is received from the geocast service, indicating that there is a
message m intended for some client p that should be nearby, the VSA adds the pair 〈m, p〉 to its
bcastq (lines 71-73). This results in the local broadcast via vcast(〈rdata,m, p〉)u (lines 75-79) to
inform the client p of the message m.

If a tuple 〈m, t〉 is in tosend(p) but the timestamp t is either from the future (the result of
corruption) or from longer than 2(e+d)dist(u, h(p)) ago (meaning that the HLQuery for p’s location
timed out), then the VSA considers 〈m, t〉 to be expired and removes it from tosend(p) (lines 64-69).

6.1.4 Properties of executions of the end-to-end routing algorithm

The end-to-end routing service allows clients to send messages to other clients. A client p can send
a message m to another client q through the esend(m, q)p action. If client q can be found at an
alive VSA and q does not move too far for a sufficient amount of time, the message will be received
by client q through the ercv(m)q action.

More formally, we say that a client p is hosted by region u at a time t if:

1. For each t′ ∈ [t, t + 3(e + d)D + e + d], u is not failed.

2. For each t′ ∈ [t− ttlhb − d− (e + d)D, t + (e + d)D + d], reg−(p, t′) = reg+(p, t′) = u.

3. For each t′ ∈ [t + (e + d)D + d, t + 3(e + d)D + e + 2d], {reg−(p, t′) = reg+(p, t′)} ⊆ nbrs+(u)
and p is not failed.

This amounts to saying that a client is hosted by a region u at time t if: (1) region u is not failed
from time t until d before what will be the deadline for message delivery in the end-to-end routing
service; (2) region u has been the region of p long enough that any location information stored at
p’s home location from t until any location query started at time t can complete will indicate that
p is either in u or some newer region; and (3) client p stays in u or a neighboring region of u until
any end-to-end communication started at t can complete.

We say that an esend(m, q)p at time t is receivable if there exists some region u such that:

1. Client p is not failed at time t.

2. Client q is hosted by region u at time t.

3. For each t′ ∈ [t, t + d] and each v ∈ {reg−(p, t), reg+(p, t)}, any HLquery(q)v at time t′ is
serviceable.

4. For each v ∈ {reg−(p, t), reg+(p, t)}, there is at least one shortest path from v to u of VSAs
that are nonfailed and have clock values equal to the real time for the interval [t, t + (e +
d)(2dist(v, h(p)) + dist(v, u))].

Then we can show the following result:

Lemma 6.1. In each execution α of E2E, there exists a function mapping each ercv(m)q event to
an esend(m, q)p event such that the following hold:

39

1. Integrity: If an ercv(m)q event π is mapped to an esend(m′, q′)p event π′, then q = q′, m = m′,
and π′ occurs before π.

2. Bounded-Time Delivery: If an ercv(m)q event π is mapped to an esend(m, q)p event π′ and
π′ occurs at time t, then π occurs at a time in the interval (t, t + 3(e + d)D + e + 2d].

3. Reliable Receivable Delivery: If an esend(m, q)p event π′ occurs at time t, α.ltime > t+3(e+
d)D + e + 2d, and π′ is receivable, then there exists an ercv(m)q event π such that π occurs
at some time in the interval (t, t + 3(e + d)D + e + 2d].
This guarantees that a message that is sent end-to-end is received if it is receivable.

Proof sketch: We define the needed mapping from ercv to esend events by considering the chain
of events connecting an ercv and esend event: For each ercv(m)q event, m must have been removed
from deliverq (line 44). Such an m is added to deliverq through the receipt of a rdata message
containing m (lines 38-40), which in turn was sent by a VSA based on one of its local bcastq tuples
(lines 75-79). Such a tuple in bcastq came from the receipt of an fdata message (lines 71-73), which
was geocast by some VSA based on its local tosend and findreg variables (lines 51-56). Such a
value in a tosend queue is added based on receipt of an sdata message (lines 36-38) which is sent
by a client only in response to an esend. Hence, for each ercv(m)q event, there must have been an
esend(m, q)p event that occurred before. The mapping selects the latest such event.

The two interesting properties to check are Bounded-Time Delivery and Reliable Receivable
Delivery. Bounded-Time Delivery is guaranteed by the fact that in the reasoning above, there is an
upper bound on the amount of time each step can take. The receipt of the rdata message sent by a
VSA can take up to e + d time. The receipt of the fdata message at the VSA that caused the rdata
message can take up to (e + d)D time—the maximum time for a geocast to complete. The VSA
that geocast that fdata message only did so if its findreg indicated a location for the end-to-end
message recipient; this can take up to 2D(e+ d) time for the VSA to discover—the maximum time
for an HLQuery for the location to complete. This is all after the VSA that geocast that fdata
message received an sdata message sent from a client up to d time before. The sum of these times
is 3D(e + d) + e + 2d.

The Reliable Receivable Delivery property follows easily from the properties of the underlying
HLS and GeoCast services: Consider a receivable esend(m, q)p event π′ that occurs at time t. We
need to show that an ercv(m)q event π occurs within 3D(e + d) + e + 2d time. By Property 1 of
the definition of receivable, we know that p doesn’t fail at time t. This means that it transmits an
sdata message to its VSA at time t. By Property 3 of receivable, a local VSA receives this sdata
message by time t + d and either already has a listed location u for q or does an HLQuery for one.
If it performs an HLQuery, it receives a reply by time t + d + 2D(e + d), or 2D(e + d) later. This
then prompts the VSA to geocast an fdata message to u. Since Property 4 of receivable holds,
we know that the geocast arrives at region u at most (e + d)D later, by time t + d + 3D(e + d).
By Property 1 of our definition of hosting, we know that region u is alive to receive the message.
It then takes region u up to e time to vcast a rdata message to q, and a further d time for the
message to arrive at q. By Property 3 of hosting, q is alive and vrcvs the rdata message, causing it
to immediately ercv the message embedded in the rdata message. This happens by time at most
t + 3D(e + d) + e + 2d.

6.2 Legal Sets for E2E

We define legal set Le2e for E2E by defining a sequence of four legal sets, each a subset of the
previous one. We also discuss properties of execution fragments of E2E that start in legal states.

40

6.2.1 Legal set L1
e2e

The first legal set describes some basic properties of individual regions and clients. These become
true at an alive VSA after the first time input for the VSA and at an alive client after the first
GPSupdate input for the client, assuming the underlying HLS service is in a legal state.

Definition 6.2. L1
e2e is the set of states x of E2E in which all of the following hold:

1. xdXHLS ∈ Lhls .
The state restricted to the variables of HLS is a legal state of HLS.

2. For each p ∈ P : ¬failedp (nonfailed client):

(a) clockp 6= ⊥ ⇒ (clockp = now ∧ regp = reg(p)).
If p’s clock is not ⊥, then it is the current real time and regp is p’s current region.

(b) For each u ∈ U : [∃〈sdata,m, q, u〉 ∈ to send−p to send+
p ⇒ u ∈ {reg−(p,now), reg+(p,now)}].

If an sdata message is in one of a client’s VBDelay queues, then the message correctly
indicates a region that the client has been in at this time.

(c) For each m ∈ deliverqp : ∃〈〈rdata,m, p〉, u, t, P ′〉 ∈ vbcastq : (t ≥ now − d ∧ p /∈ P ′).
Each message in deliverq was sent in an rdata message to p within the last d time.

3. For each u ∈ U : (¬failedu ∧ clocku 6= ⊥) (nonfailed VSA that received a time input):

(a) clocku = now.
The VSA’s clock time is the same as the real time.

(b) For each p ∈ P and 〈m, t〉 ∈ tosendu(p) : t ≤ now.
A message that is waiting to be geocast to another region does not have a timestamp
from the future.

(c) For each p ∈ P, v ∈ U :
[findregu(p) = v ⇒ ∃t ∈ [now − ttlhb − d − (e + d)(dist(v, h(p)) + dist(h(p), u)),now] :
v ∈ {reg+(p, t), reg−(p, t)}].
If the VSA’s findreg indicates that a client p was recently located at region v, then client
p was in that region within the last ttlhb + d + (e + d)(dist(v, h(p)) + dist(h(p), u)) time.

(d) For each 〈m, p〉 ∈ bcastqu :
∃〈〈geocast, 〈fdata,m, p〉, w, u, t〉, w, t′, P ′〉 ∈ vbcastq : t ≥ now − (e + d)D.
Any pair in a VSA’s bcastq was part of an fdata message that was geocast to u within
the last (e + d)D time.

Lemma 6.3. L1
e2e is a legal set for E2E.

6.2.2 Legal set L2
e2e

The second legal set describes some properties that hold after any spurious VSA messages are
broadcast and spurious VBcast messages are delivered.

Definition 6.4. L2
e2e is the set of states x of E2E in which all of the following hold:

1. x ∈ L1
e2e .

2. For each 〈〈sdata,m, q, reg〉, u, t, P ′〉 ∈ vbcastq : [t ≥ now − d ⇒ reg ∈ {reg−(p, t), reg+(p, t)}].
Any sdata transmission within the last d time was sent by a client to a local VSA.

41

3. For each u ∈ U : ¬failedu (nonfailed VSA):

(a) 6 ∃〈〈sdata,m, q, v〉, t〉 ∈ to sendu.
The VSA cannot be in the process of transmitting an sdata message.

(b) For each 〈〈rdata,m, p〉, t〉 ∈ to sendu : ∃〈〈geocast, 〈fdata,m, p〉, w, u, t′〉, v, t′′, P ′〉 ∈ vbcastq :
t′ + (e + d)D + e ≥ t + now − rtimeru.
Any rdata message in VBDelayu can be matched to an fdata transmission to region u
made within the last (e + d)D + e time.

4. For each 〈〈rdata,m, p〉, u, t, P ′〉 ∈ vbcastq :,
[t ≥ now − d ⇒ ∃〈〈geocast, 〈fdata,m, p〉, w, u, t′〉, v, t′′, P ′〉 ∈ vbcastq : t′ + (e + d)D + e ≥ t].
Any rdata transmission in VBcast from the last d time can be matched to an fdata transmission
to region u made up to (e + d)D + e time before the rdata transmission.

Lemma 6.5. L2
e2e is a legal set for E2E.

6.2.3 Legal set L3
e2e

The third legal set describes some properties that hold after any VSA records that could cause the
forwarding of spurious end-to-end messages are removed.

Definition 6.6. L3
e2e is the set of states x of E2E in which all of the following hold:

1. x ∈ L2
e2e .

2. For each u ∈ U : ¬failedu: for each p ∈ P , m ∈ Msg:

(a) (∃v : ledgeru(〈〈fdata,m, p〉, u, v,now〉) 6= null) ⇒ (∃v′, t′, P ′ : 〈〈sdata,m, p, u〉, v′, t′, P ′〉 ∈
vbcastq ∧ u /∈ P ′ ∧ t′ ≥ now − d).

(b) (∃t : 〈m, t〉 ∈ tosendu(p)∧(t 6= ⊥ ⇒ t ≥ now−2D(e+d))) ⇒ (∃v′, t′, P ′ : 〈〈sdata,m, p, u〉, v′, t′, P ′〉 ∈
vbcastq ∧ u /∈ P ′ ∧ t′ ≥ now − d ∧ (t 6= ⊥ ⇒ t′ ≥ t− d)).

Any record in tosend or any fdata message that was just geocast can be matched to an sdata
transmission to the region made no more than d ago and d before the record’s timestamp if a
non-⊥ timestamp exists.

Lemma 6.7. L3
e2e is a legal set for E2E.

6.2.4 Legal set Le2e

The fourth and final legal set, Le2e , describes some properties that hold after any bad forwards of
end-to-end messages are removed.

Definition 6.8. Le2e is the set of states x of E2E in which all of the following hold:

1. x ∈ L3
e2e .

2. For each 〈〈geocast, 〈fdata,m, p〉, u, v, t〉, w, t′, P ′〉 ∈ vbcastq : t ≥ now − (D(e + d) + e + d):
((∃〈〈sdata,m, p, u〉, v, t′′, P ′〉 ∈ vbcastq : t′′ + d + 2(e + d)dist(u, h(p)) ≥ t)∧ (∃t∗ ∈ [t− ttlhb −
d− (e + d)(dist(v, h(p)) + dist(h(p), u)), t] : v ∈ {reg−(p, t∗), reg+(p, t∗)})).
This says that any fdata transmission from within the last (e + d)D + e + d time can be
matched to an sdata transmission that occurred no more than 2(e + d)dist(u, h(p)) + d time
before the timestamp of the fdata geocast. In addition, the fdata message is being geocast to a
region v that contained the intended end-to-end recipient at some time in the ttlhb + d + (e +
d)(dist(v, h(p)) + dist(h(p), u)) interval leading up to the time of the fdata transmission.

42

Lemma 6.9. Le2e is a legal set for E2E.

6.2.5 Properties of execution fragments starting in Le2e

As before, we now show that execution fragments of E2E that begin in legal states satisfy properties
similar to the ones we described for executions in Section 6.1.4. The difference is in the mapping
of some ercv events that occur towards the beginning of the execution fragment.

Lemma 6.10. For any execution fragment α of E2E beginning in a state in Le2e , there exists a
subset Π of the ercv events in α such that:

1. There exists a function mapping each ercv event in Π to an esend event such that the three
properties (Integrity, Bounded-time Delivery, and Reliable Receivable Delivery) hold.

2. For every ercv(m)q event π not in Π where π occurs at some time t, it must be the case that
t ≤ 3D(e + d) + e + 2d.

The proof is similar to the one for Lemma 4.6.

6.3 Self-Stabilization for E2E

We have shown that Le2e is a legal set for E2E . Now we show that∏
u∈U Fail(VBDelayu‖V Geo

u ‖V HL
u ‖V E2E

u)‖
∏

p∈P Fail(VBDelayp‖CHL
p ‖CE2E

p) self-stabilizes to Le2e

relative to R(RW ‖VW ‖VBcast) (Theorem 6.16). That is, if certain “software” portions of the
implementation are started in an arbitrary state and run with R(RW ‖VW ‖VBcast), the resulting
execution eventually gets into a state in Le2e . Using Theorem 6.16, we then conclude that after
E2E has stabilized, the execution fragment starting from the point of stabilization satisfies the
properties in Section 6.2.5.

The proof of Theorem 6.16 breaks stabilization down into two large phases, corresponding to
stabilization of HLS (which includes stabilization of GeoCast), followed by stabilization of E2E
assuming that HLS is already stabilized. We have already seen, in Section 5.3, that HLS stabilizes
to the legal set Lhls . What we need to show for Theorem 6.16 is that, starting from a set of states
where HLS is already stabilized, E2E stabilizes to Le2e (Lemma 6.15). We do this in four stages,
one for each of the legal sets described in Section 6.2. The first stage starts from a state where
HLS is already stabilized and ends up in the first legal set, L1

e2e . The second stage starts in L1
e2e

and ends up in L2
e2e , and so on.

The first lemma describes the first stage of E2E stabilization, to legal set L1
e2e . It says that

within t1e2e time of HLS stabilizing, where t1e2e > εsample , the system ends up in a state in L1
e2e .

Lemma 6.11. Let t1e2e > εsample . Then Frags
{x|xdXHLS∈Lhls}
E2E stabilizes in time t1e2e to Frags

L1
e2e

E2E .

Proof sketch: To see this result, just consider the first time after each node has received a time or
GPSupdate input, which takes at most εsample time to happen.

The next lemma describes the second stage of E2E stabilization. It says that starting from a
state in L1

e2e , E2E ends up in a state in L2
e2e within t2e2e time, where t2e2e is any time greater than

e + d.

Lemma 6.12. Let t2e2e > e + d. Then Frags
L1

e2e
E2E stabilizes in time t2e2e to Frags

L2
e2e

E2E .

43

Proof: We must show that, for any length-t2e2e prefix α of an element of frags
L1

e2e
E2E , α.lstate is in

L2
e2e . We examine each property of L2

e2e . Since the first state of α is in L1
e2e , and L1

e2e is a legal
set, we know that Property 1 of L2

e2e holds in each state of α.
For Property 2, we note that each new such sdata message added to one of a client’s to send

queues and then propagated to VBcast , the property will hold and continue to hold thereafter.
Hence, the only thing we need to worry about is messages already in a to send queue or in vbcastq
in α.fstate. However, after d time elapses from the start of α, the property will be trivially true.

Property 3(a) holds after at most e time—the time it takes for any such errant messages in
α.fstate to be propagated out to VBcast . For Property 3(b), we note that a new rdata message
is added to to sendu only if there previously was a corresponding pair 〈m, p〉 in the VSA’s bcastq ,
which by Property 3(d) of L1

e2e implies that any newly added rdata message satisfies this Property
3(b). This means that we need worry only about rdata messages already in to sendu in α.fstate.
Since these are removed within at most e time, after e time has passed, the property will be true.

For Property 4, since each new rdata message added to vbcastq is first in to sendu, we know that
any such messages added after Property 3(b) holds must satisfy Property 4. After d time elapses
from when Property 3(b) holds, the property will be true.

The next lemma, for the third stage of E2E stabilization, says that starting from a state in L2
e2e ,

E2E ends up in a state in L3
e2e within t3e2e time, where t3e2e is any time greater than 2D(e + d).

Lemma 6.13. Let t3e2e > 2(e + d)D. Then Frags
L2

e2e
E2E stabilizes in time t3e2e to Frags

L3
e2e

E2E .

Proof: We must show that, for any length-t3e2e prefix α of an element of Frags
L2

e2e
E2E , α.lstate is in

L3
e2e . We examine each property of L3

e2e . Since the first state of α is in L2
e2e and L2

e2e is a legal
set, we know that Property 1 of L3

e2e holds in each state of α.
For Property 2, notice that for each new entry added to tosend the property holds, since the

new entry is the result of the receipt of an sdata message that satisfies the properties from VBcast .
Hence, we need only worry about tosend entries in α.fstate. However, after 2D(e + d) time elapses
from the start of α, the property will be trivially true. For the ledger entries, we note that each
new entry in the ledger after the bogus tosend entries are cleared satisfy the property.

The next lemma, for the fourth stage of E2E stabilization, says that starting from a state in L3
e2e ,

E2E ends up in a state in Le2e within t4e2e time, where t4e2e is any time greater than d+e+(e+d)D.

Lemma 6.14. Let t4e2e > d + e + (e + d)D. Then Frags
L3

e2e
E2E stabilizes in time te2e to FragsLe2e

E2E .

Proof: We must show that, for any length-t4e2e prefix α of an element of Frags
L3

e2e
E2E , α.lstate is in

Le2e . We examine each property of Le2e . Since α.fstate ∈ L3
e2e and Le2e is a legal set, we know

that Property 1 of Le2e holds in each state of α. For Property 2, notice that for each new tuple
added to vbcastq for a geocast of an fdata message, the property is true since the message comes
from the VSA’s ledger , which we know by Property 2 of L3

e2e satisfies the property we need here.
Hence, we need only worry about fdata geocast messages that are in vbcastq in α.fstate. However,
after d + e + (e + d)D time, the property will trivially be true.

We now have all of the pieces of reasoning for the four stages of the second phase of E2E
stabilization. (Recall that the second phase of E2E stabilization occurs after HLS has stabilized,
corresponding to the HLS state being in the set Lhls.) We now combine the stabilization results in
Lemmas 6.11-6.14 to show that the second phase of stabilization of E2E takes at most t′e2e time,
for any t′e2e > εsample + (3D + 2)(e + d).

44

Lemma 6.15. Let t′e2e > εsample + (3D + 2)(e + d). Then Frags
{x|xdXHLS∈Lhls}
E2E stabilizes in time

t′e2e to FragsLe2e
E2E .

Proof: The result follows from the application of Lemma 2.4 to the results of Lemmas 6.11-6.14.
Let t′ be (t′e2e − (εsample + (3D + 2)(e + d)))/4. Let t1e2e be t′ + εsample , t2e2e be t′ + e + d, t3e2e
be t′ + 2(e + d)D, and t4e2e be t′ + d + e + (e + d)D; these terms satisfy the constraints that
t1e2e > εsample , t2e2e > e + d, etc., as well as the constraint that t1e2e + t2e2e + t3e2e + t4e2e = t′e2e . Let

B0 be Frags
{x|xdXHLS∈Lhls}
E2E , B1 be Frags

L1
e2e

E2E , B2 be Frags
L2

e2e
E2E , B3 be Frags

L3
e2e

E2E , and B4 be Frags
L4

e2e
E2E .

Let t1 be t1e2e , t2 be t2e2e , t3 be t3e2e , and t4 be t4e2e .
Then by three uses of Lemma 2.4 (applied to Bi, Bi+1, and Bi+2, i = 0, 1, 2), and Lemmas 6.11-

6.14, we have that Frags
{x|xdXHLS∈Lhls}
E2E stabilizes in time t1e2e+t2e2e+t3e2e+t4e2e = t′e2e to FragsLe2e

E2E .

Using Lemma 6.15 and our result on HLS stabilization (Theorem 5.19), we can finally show the
main stabilization result of this section. The proof of the result breaks down the self-stabilization
of E2E into two phases: where HLS stabilizes, and where the remaining pieces of E2E stabilize.

Theorem 6.16. Let te2e > thls + εsample + 2e + 2d + 3(e + d)D.
Then

∏
u∈U Fail(VBDelayu‖V Geo

u ‖V HL
u ‖V E2E

u)‖
∏

p∈P Fail(VBDelayp‖CHL
p ‖CE2E

p) self-stabilizes in
time te2e to Le2e relative to R(RW ‖VW ‖VBcast).

Proof: Let ExecsU−E2E denote
ExecsU(

Q
u∈U Fail(VBDelayu‖V Geo

u ‖V HL
u ‖V E2E

u)‖
Q

p∈P Fail(VBDelayp‖CHL
p ‖CE2E

p))‖R(RW ‖VW ‖VBcast). By defi-

nition of relative self-stabilization, we must show that ExecsU−E2E stabilizes in time te2e to FragsLe2e
E2E .

The result follows from the application of transitivity of stabilization (Lemma 2.4) on the two phases
of E2E stabilization.

For the first phase, we note that by Theorem 5.19, ExecsU−E2E stabilizes in time thls to Frags
{x|xdXHLS∈Lhls}
E2E .

For the second phase, let t′e2e = te2e−thls. Since te2e > thls+εsample+2e+2d+3(e+d)D, this implies
that t′e2e > εsample + 2e + 2d + 3(e + d)D. By Lemma 6.15, we have that Frags

{x|xdXHLS∈Lhls}
E2E stabi-

lizes in time t′e2e to FragsLe2e
E2E . Taking B to be ExecsU−E2E , C to be Frags

{x|xdXHLS∈Lhls}
E2E , and D to

be FragsLe2e
E2E in Lemma 2.4, we have that ExecsU−E2E stabilizes in time thls +t′e2e to FragsLe2e

E2E . Since
te2e = thls+t′e2e , we conclude that

∏
u∈U Fail(VBDelayu‖V Geo

u ‖V HL
u ‖V E2E

u)‖
∏

p∈P Fail(VBDelayp‖CHL
p ‖CE2E

p)
self-stabilizes in time te2e , to Le2e relative to R(RW ‖VW ‖VBcast).

Theorem 6.16 immediately implies the following corollary about the associated VSA layer algo-
rithm (see Section 3 for definitions):

Corollary 6.17. Let alge2e be the VAlg such that for each p ∈ P , alge2e(p) = CHL
p ‖CE2E

p and
for each u ∈ U , alge2e(u) = ActHide({geocast(m, v)u, georcv(m)v,HLQuery(p)u,HLreply(p, v)u|m ∈
Msg, u, v ∈ U, p ∈ P}, V Geo

u ‖V HL
u ‖V E2E

u), that is, the result of hiding the indicated actions in the
composition V Geo

u ‖V HL
u ‖V E2E

u).
Let te2e > thls + εsample + 2e + 2d + 3(e + d)D.
Then VLNodes[alge2e] self-stabilizes in time te2e to Le2e relative to R(RW ‖VW ‖VBcast).

Combining Corollary 6.17 and Lemma 6.10, we conclude that after E2E has stabilized, the
execution fragment starting from the point of stabilization satisfies the properties in Section 6.2.5:

Corollary 6.18. Let te2e > thls + εsample + 2e + 2d + 3(e + d)D.
Then ExecsU(V LNodes[alge2e])‖R(RW ‖VW ‖VBcast) stabilizes in time te2e to a set A of execution frag-
ments such that for each α ∈ A, there exists a subset Π of the ercv events in α such that:

45

1. There exists a function mapping each ercv event in Π to an esend event such that the three
properties (Integrity, Bounded-Time Delivery, and Reliable Receivable Delivery) hold.

2. For every ercv(m)q event π not in Π where π occurs at some time t, it must be the case that
t− ≤ 3D(e + d) + e + 2d.

In other words, if we start each client and VSA running the end-to-end routing program in an
arbitrary state and run them with the environment RW ‖VW ‖VBcast started in a reachable state,
then the execution soon reaches a point from which the properties of the end-to-end routing service
described in Section 6.2.5 are satisfied. These properties basically say that Integrity, Bounded-
Time Delivery, and Reliable Receivable Delivery hold for most of the ercv and esend events in the
fragment, modulo several straggler ercv events that occur early in the execution fragment.

Combining self-stabilizing emulation and self-stabilizing end-to-end routing: Finally,
recall the dicussion at the end of Section 3, about combining a self-stabilizing algorithm for emulat-
ing the VSA Layer over a MANET with a self-stabilizing application algorithm over the VSA Layer
to yield a self-stabilizing application algorithm for a MANET. Corollary 8.4 of Nolte’s thesis [45]
describes the guarantees for such a combination. Chapter 11 of [45] describes a particular emula-
tion algorithm, and Theorem 11.24 of [45] asserts the corrections of the emulation algorithm. Now
we can apply these results to our end-to-end routing protocol, thereby obtaining a self-stabilizing
end-to-end routing protocol for a MANET.

Namely, let system E2E-MANET be the tstab-stabilizing emulation algorithm from [45], running
alge2e . Let PBcast denote the local broadcast service for the physical MANET (which is nearly
identical to VBcast , but for the physical mobile nodes). Let te2e be as in Corollaries 6.17 and 6.18.

Theorem 6.19. (Paraphrase:) E2E-MANET self-stabilizes in time tstab + te2e to Le2e relative to
R(RW ‖PBcast).

Corollary 6.20. (Paraphrase:) Let α be any execution of U(E2E-MANET)‖R(RW ‖PBcast).
Then for any tstab + te2e-suffix of α, there exists a subset Π of the ercv events in α such that:

1. There exists a function mapping each ercv event in Π to an esend event such that the three
properties (Integrity, Bounded-Time Delivery, and Reliable Receivable Delivery) hold.

2. For every ercv(m)q event π not in Π where π occurs at some time t, it must be the case that
t− ≤ 3D(e + d) + e + 2d.

7 Conclusion

We have presented a new algorithm that uses Virtual Infrastructure (VI) to implement end-to-end
message routing for mobile ad hoc networks (MANETs). Our algorithm consists of three distinct
parts: a geographical routing algorithm, a home location algorithm, and an overall algorithm that
uses geographical routing and location services to implement end-to-end message routing. All
three parts of our algorithm are self-stabilizing, and it follows that their combination is also self-
stabilizing. Furthermore, the overall algorithm can be combined with a self-stabilizing emulation
of the VSA Layer over a MANET to yield a self-stabilizing routing algorithm over the MANET.
Self-stabilization here is a relative notion, involving corruption of only the “software” parts of the
system state, but not “environmental” parts representing physical motion and communication.

Our algorithms, and all of the supporting definitions, theorems, and proofs, are expressed in
terms of the Timed I/O Automata modeling framework of Kaynar, et al. [36]. Our results rest

46

upon general theory for self-stabilizing Timed I/O Automata from [36], and on general theory for
self-stabilizing emulations from [45].

In addition to their intrinsic interest, our algorithms serve to illustrate (1) how one can use
VI to simplify the task of constructing communication protocols for MANETs, especially routing
protocols, and (2) how one can make MANET algorithms self-stabilizing, and prove them to be
self-stabilizing. To illustrate these points most clearly, we have presented simple, basic versions of
our algorithms, rather than trying to optimize them. The algorithms given here could be improved,
for example, by using smarter search strategies for geographical routing, or by using backups for
home location VSAs. Other approaches to message routing over Virtual Infrastructure are also
possible, for example, finding and maintaining routes of VSAs.

Our algorithms tolerate continuing failures and recoveries of mobile nodes, but not continuing
message losses. Occasional message losses are handled naturally by our self-stabilization techniques;
however, if lost messages are very frequent, then other means may be needed for coping with them.
For example, Gilbert [25] and Chockler et al. [11] mask message losses by using consensus protocols
to reach agreement on messages to be received. These same authors [25, 11], and also Spindel [48],
and Griffeth and Wu [30]. weaken the semantics of the VSA Layer slightly to allow for some
un-masked message losses.

We have provided detailed definitions for all of our algorithm components and all of our legal
sets. However, our proofs for legality and stabilization properties are semi-formal sketches, not
complete formal proofs. The legality proofs are organized as systematic case analyses, and could,
in principle, be carried out in complete detail, even using a theorem-proving tool; however, in
practice, this would be prohibitively time-consuming. The stabilization proofs are less systematic,
relying on informal tracing of chains of dependencies among events. It is still a challenge to develop
usable methods for carrying out formal proofs for algorithms like those in this paper; we hope that
our informal proofs will provide some guidelines for developing such methods.

It remains to see if routing over VI can work well in practice. Griffeth and Wu [30] are currently
examining this issue. It also remains to develop other self-stabilizing protocols over VI, for example,
for other communication problems, and for problems of coordinating the behavior of robots or
vehicles. A self-stabilizing algorithm for robot motion coordination, based on The VSA Layer
described in this paper, appears in [29, 28, 45].

References

[1] I. Abraham, D. Dolev, and D. Malkhi. LLS: a locality aware location service for mobile ad hoc net-
works. In Proceedings of the DIALM-POMC Joint Workshop on Foundations of Mobile Computing,
Philadelphia, PA, October 2004. ACM.

[2] A. Arora, N. Demirbas, M. Lynch, and T. Nolte. A hierarchy-based fault-local stabilizing algorithm for
tracking in sensor networks. In T. Higashino, editor, Principles of Distributed Systems: 8th International
Conference on Principles of Distributed Systems (OPODIS 2004), Grenoble, France, December 15-17,
2004, volume 3544 of Lecture Notes in Computer Science, pages 299–315. Springer, 2005.

[3] M. A. Bender, J. T. Fineman, and S. Gilbert. Contention resolution with heterogeneous job sizes.
In Proceedings of the 14th Annual European Symposium on Algorithms (ESA 2006), pages 112–123,
September 2006.

[4] M. Brown, S. Gilbert, N. Lynch, C. Newport, T. Nolte, and M. Spindel. The virtual node layer: A
programming abstraction for wireless sensor networks. ACM SIGBED Review, 4(3), July 2007. Also,
Proceedings of the the International Workshop on Sensor Network Architecture (WWSNA), April, 2007,
Cambridge, MA.

47

[5] M. D. Brown. Air traffic control using virtual stationary automata. Master’s thesis, Massachusetts
Institute of Technology, September 2007.

[6] T. Camp and Y. Liu. An adaptive mesh-based protocol for geocast routing. Journal of Parallel and
Distributed Computing: Special Issue on Mobile Ad-hoc Networking and Computing, 63(2):196–213,
2003.

[7] G. Chockler, M. Demirbas, S. Gilbert, N. Lynch, C. Newport, and T. Nolte. Reconciling the theory
and practice of (un)reliable wireless broadcast. In Proceedings of the 4th International Workshop on
Assurance in Distributed Systems and Networks (ADSN 2005), pages 42–48, Columbus, Ohio, USA,
June 6 2005.

[8] G. Chockler, M. Demirbas, S. Gilbert, and C. Newport. A middleware framework for robust applications
in wireless ad hoc networks. In Allerton Conference 2005: Forty-Third Annual Allerton Conference on
Communication, Control, and Computing, Champaign-Urbana, IL, September 2005.

[9] G. Chockler, M. Demirbas, S. Gilbert, C. Newport, and T. Nolte. Consensus and collision detectors
in wireless ad hoc networks. In Proceedings of the Twenty-Fourth Annual Symposium on Principles of
Distributed Computing (PODC 2005), pages 197–206, Las Vegas, Nevada, July 2005.

[10] G. Chockler, M. Demirbas, S. Gilbert, C. Newport, and T. Nolte. Consensus and collision detectors in
radio networks. Distributed Computing, 21(1):55–84, June 2008.

[11] G. Chockler, S. Gilbert, and N. Lynch. Virtual infrastructure for collision-prone wireless networks.
In Proceedings of the 27th Symposium on Principles of Distributed Computing (PODC 2008), pages
233–242, Toronto, Canada, August 2008.

[12] S. Dolev. Self-stabilization. MIT Press, Cambridge, MA, USA, 2000.

[13] S. Dolev, S. Gilbert, R. Guerraoui, and C. Newport. Gossiping in a multi-channel radio network: An
oblivious approach to coping with malicious interference. In A. Pecl, editor, Proceedings of the 21th
International Symposium on Distributed Computing (DISC 2007), Lemesos, Cyprus, September 2007),
volume 4731 of Lecture Notes in Computer Science, pages 208–222. Springer, 2007.

[14] S. Dolev, S. Gilbert, R. Guerraoui, and C. Newport. Secure communication over radio channels. In
Proceeding of the 27th Symposium on Principles of Distributed Computing (PODC 2008), pages 105–
114, Toronto, Canada, August 2008.

[15] S. Dolev, S. Gilbert, L. Lahiani, N. Lynch, and T. Nolte. Timed virtual stationary automata for mobile
networks. In Allerton Conference 2005: Forty-Third Annual Allerton Conference on Communication,
Control, and Computing, page 323, Champaign-Urbana, IL, September 2005. Invited paper.

[16] S. Dolev, S. Gilbert, L. Lahiani, N. Lynch, and T. Nolte. Timed virtual stationary automata for
mobile networks. In Principles of Distributed Systems: 9th International Conference (OPODIS 2005),
pisa, Italy, December 12-14, 2005), volume 3974 of Lecture Notes in Computer Science, pages 130–145.
Springer, 2006.

[17] S. Dolev, S. Gilbert, N. Lynch, A. Shvartsman, and J. Welch. GeoQuorums: Implementing atomic mem-
ory in ad hoc networks. In F. E. Fich, editor, DISC 2003: 17 International Symposium on Distributed
Computing, volume 2848 of Lecture Notes in Computer Science, pages 306–320, Oct 2003.

[18] S. Dolev, S. Gilbert, N. A. Lynch, E. Schiller, A. A. Shvartsman, and J. L. Welch. Brief announcement:
Virtual mobile nodes for mobile ad hoc networks. In Proceedings of the 23rd ACM Symposium on
Principles of Distributed Computing (PODC 2004), St. Johns, Newfoundland, Canada, July 2004.

[19] S. Dolev, S. Gilbert, N. A. Lynch, E. Schiller, A. A. Shvartsman, and J. L. Welch. Virtual mobile nodes
for mobile ad hoc networks. In R. Guerraoui, editor, 18th International Symposium on Distributed
Computing (DISC 2004), Trippenhuis, Amsterdam, the Netherlands, October, 2004, volume 3274 of
Lecture Notes in Computer Science, pages 230–244. Springer, December 2004.

[20] S. Dolev, S. Gilbert, N. A. Lynch, A. A. Shvartsman, and J. Welch. GeoQuorums: Implementing atomic
memory in mobile ad hoc networks. Distributed Computing, 18(2):125–155, November 2005.

48

[21] S. Dolev, S. Gilbert, E. Schiller, A. A. Shvartsman, and J. Welch. Autonomous virtual mobile nodes.
In DIAL-M-POMC 2005: Third Annual ACM/SIGMOBILE International Workshop on Foundation of
Mobile Computing, pages 62–69, Cologne, Germany, September 2005.

[22] S. Dolev, T. Herman, and L. Lahiani. Polygonal broadcast, secret maturity and the firing sensors. In
Third International Conference on Fun with Algorithms (FUN), pages 41–52, May 2004. Also to appear
in Ad Hoc Networks Journal, Elsevier.

[23] S. Dolev, L. Lahiani, N. Lynch, and T. Nolte. Self-stabilizing mobile node location management and
message routing. In Self-Stabilizing Systems: Seventh International Symposium on Self-Stabilizing Sys-
tems (SSS 2005), Barcelona, Spain, October 26-27, volume 3764 of Lecture Notes in Computer Science,
pages 96–112. Springer, 2005. Also, Technical Report MIT-LCS-TR-999, MIT Computer Science and
Artificial Intelligence Laboratory, Cambridge, MA, August 2005.

[24] S. Dolev, L. Lahiani, and M. Yung. Secret swarm unit: Reactive k-secret sharing. In M. Y. K. Srinathan,
C. Pandu Rangan, editor, INDOCRYPT 2007, 8th International Conference on Cryptology in India,
Chennai, India, December 9-13, 2007, volume 4859 of Lecture Notes in Computer Science, pages 123–
137. Springer, 2007.

[25] S. Gilbert. Virtual Infrastructure for Wireless Ad Hoc Networks. PhD thesis, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, August
2007.

[26] S. Gilbert, R. Guerraoui, and C. Newport. Of malicious motes and suspicious sensors: On the efficiency
of malicious interference in wireless networks. In Proceedings of the 10th International Conference On
Principles Of Distributed Systems (OPODIS’06), December 2006.

[27] S. Gilbert, R. Guerraoui, and C. Newport. Of malicious motes and suspicious sensors: On the efficiency
of malicious interference in wireless networks. Theoretical Computer Science, 2008. To appear.

[28] S. Gilbert, N. Lynch, S. Mitra, and T. Nolte. Self-stabilizing robot formations over unreliable networks.
Submitted for journal publication.

[29] S. Gilbert, N. Lynch, S. Mitra, and T. Nolte. Self-stabilizing mobile robot formations with virtual
nodes. In Stabilization, Safety, and Security of Distributed Systems, 10th International Symposium
(SSS 2008), November, 2008, Detroit, MI, volume 5340 of Lecture Notes in Computer Science, pages
188–202. Springer, 2008.

[30] N. Griffeth and J. Wu. Personal communication.

[31] Z. Haas and B. Liang. Ad hoc mobility management with uniform quorum systems. IEEE/ACM
Transactions on Networking, 7(2):228–240, April 1999.

[32] J. Hubaux, J. Le Boudec, S. Giordano, and M. Hamdi. The terminode project: Towards mobile ad-hoc
WAN. In IEEE International Workshop on Mobile Multimedia Communications (MoMuC 1999), pages
124–128, San Diego, CA, November 1999.

[33] T. Imielinski and B. Badrinath. Mobile wireless computing: challenges in data management. Commu-
nications of the ACM, 37(10):18–28, October 1994.

[34] D. B. Johnson and M. D. A. Dynamic source routing in ad hoc wireless networks. In Mobile Computing,
pages 153– 81. Kluwer, 1996.

[35] B. Karp and H. T. Kung. GPSR: Greedy perimeter stateless routing for wireless networks. In Proceedings
of the 6th Annual International Conference on Mobile Computing and Networking, pages 243–254. SCM
Press, 2000.

[36] D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager. The Theory of Timed I/O Automata. Synthesis
Lectures on Computer Science. Morgan Claypool, November 2005. Also available as Technical Report
MIT-LCS-TR-917.

49

[37] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger. Geometric ad-hoc routing: Of theory and
practice. In Proceedings of the 22nd Annual ACM Symposium on Principles of Distributed Computing
(PODC 2003), Boston, MA, July 2003.

[38] F. Kuhn, R. Wattenhofer, and A. Zollinger. Asymptotically optimal geometric mobile ad-hoc rout-
ing. In Proceedings of the 6th International Workshop on Discrete Algorithms and Methods for Mobile
Computing and Communications (Dial-M), pages 24–33. ACM Press, 2002.

[39] J. Li, J. Jannotti, D. De Couto, D. Karger, and R. Morris. A scalable location service for geographic ad
hoc routing. In Sixth Annual International Conference on Mobile Computing and Networking (Mobicom
2000), Boston, MA, August 2000.

[40] N. Lynch, S. Mitra, and T. Nolte. Motion coordination using virtual nodes. In Proceedings of 44th
IEEE Conference on Decision and Control (CDC05), Seville, Spain, December 2005.

[41] B. Nath and D. Niculescu. Routing on a curve. ACM SIGCOMM Computer Communication Review,
22(1):150–160, 2003.

[42] J. Navas and T. Imielinski. Geocast- geographic addressing and routing. In Proceedings of the Third
Annual ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom 1997),
Budapest, Hungary, September 1997.

[43] T. Nolte and N. A. Lynch. Self-stabilization and virtual node layer emulations. In 9th International
Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2007), pages 394–408,
Paris, France, November 2007.

[44] T. Nolte and N. A. Lynch. A virtual node-based tracking algorithm for mobile networks. In International
Conference on Distributed Computing Systems (ICDCS 2007), Toronto, Canada, 2007.

[45] T. A. Nolte. Virtual Stationary Timed Automata for Mobile Networks. PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA, February 2009.

[46] C. Perkins and E. Royer. Ad hoc on-demand distance-vector routing. In 2nd Workshop on Mobile
Computing Systems and Applications (WMCSA’99), pages 90–100, New Orleans, Lousiana, February
1999.

[47] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker. GHT: A geographic
hash table for data-centric storage. In First ACM International Workshop on Wireless Sensor Networks
and Applications (WSNA 2002), Atlanta, GA, September 2002.

[48] M. Spindel. Simulation and evaluation of the reactive virtual node layer. Master of Engineering Thesis,
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,
Cambridge, MA, May 2008.

50

