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Abstract

A diversity of possible communication assumptions complicates the study of algorithms and
lower bounds for radio networks. We address this problem by defining an Abstract MAC Layer.
This service provides reliable local broadcast communication, with timing guarantees stated in
terms of a collection of abstract delay functions applied to the relevant contention. Algorithm
designers can analyze their algorithms in terms of these functions, independently of specific
channel behavior. Concrete implementations of the Abstract MAC Layer over basic radio net-
work models generate concrete definitions for these delay functions, automatically adapting
bounds proven for the abstract service to bounds for the specific radio network under consider-
ation. To illustrate this approach, we use the Abstract MAC Layer to study the new problem of
Multi-Message Broadcast, a generalization of standard single-message broadcast, in which any
number of messages arrive at any processes at any times. We present and analyze two algorithms
for Multi-Message Broadcast in static networks: a simple greedy algorithm and one that uses
regional leaders. We then indicate how these results can be extended to mobile networks.
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1 Introduction

The study of bounds for mobile ad hoc networks is complicated by the large number of possible
communication assumptions: Do devices operate in slots or asynchronously? Do simultaneous
transmissions cause collisions? Can collisions be detected? Is message reception determined by
geographical distances or by more complex criteria such as signal-to-noise ratio? And so on. This
situation causes problems. Results for one set of communication assumptions might prove invalid for
a slightly different set of assumptions. In addition, these low-level assumptions require algorithm
designers to grapple with low-level problems such as contention management, again and again,
making it difficult to highlight interesting high-level algorithmic issues. This paper proposes a
possible solution to these concerns.

The Abstract MAC Layer. We introduce a simple abstract MAC layer service for mobile ad
hoc networks (MANETs). We intend this service to be implemented over real MANETs, with very
high probability. At the same time, we intend it to be simple enough to serve as a good basis for
theoretical work on high-level algorithms in this setting. The use of this service allows algorithm
designers to avoid tackling issues as contention management and collision detection. They can
instead summarize their effects with abstract delay bounds.

The abstract MAC layer service delivers transmitted messages reliably within its local neighbor-
hood, and provides feedback to the sender of a message in the form of an acknowledgement that
the message has been successfully delivered to all nearby receivers. The service does not provide
the sender with any feedback about particular recipients of the message. The service provides
guaranteed upper bounds on the worst-case amount of time for a message to be delivered to all its
recipients, and on the total amount of time until the sender receives its acknowledgement. It also
may provide a (presumably smaller) bound on the amount of time for a receiver to receive some
message among those currently being transmitted by neighboring senders. These time guarantees
are expressed using delay functions applied to the current amount of contention among senders
that are in the neighborhoods of the receivers and the sender.

To implement our abstract MAC layer over a physical network one could use popular contention-
management mechanisms such as carrier sensing, backoff, or receiver-side collision detection with
NACKs. A completely different kind of implementation might involve network coding methods,
such as the ZigZag Decoding method of Gollakota and Katabi [11]. Our MAC layer encapsulates the
details of these mechanisms within the service implementation, presenting the algorithm designer
with a simple abstract model that involves just message delivery guarantees and time bounds.1

We believe that this MAC layer service provides a simple yet realistic basis for theoretical work
on high-level algorithms and lower bounds for MANETs. For instance, one might use it to study
problems of communication (such as network-wide broadcast or point-to-point message routing);
problems of establishing and maintaining basic structures (clusters, leaders, or spanning trees);
problems of implementing higher-level services (group membership, resource management, data
management, or consensus); or application-inspired problems (such as robot or vehicle control).
More fundamentally, since our MAC layer does not provide senders with feedback about who
received their messages, some basic problems must also be studied, such as local unicast with
acknowledgement and neighbor discovery. In this sense, our layer exists at a lower level than
existing practical layers, such as 802.11, which implement local unicast as a primary primitive. We
treat such primitives as higher-level problems to be solved using our basic layer.

1Note that MAC layer implementations are usually probabilistic, both because assumptions about the physical
layer are usually regarded as probabilistic, and because many MAC layer implementations involve random choices.
Thus, these implementations implement our MAC layer with very high probability, not absolute certainty.
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Multi-Message Broadcast and Regional Leader Election. In this paper, we validate our
formalism by studying two problems: Multi-Message Broadcast (MMB) and Regional Leader Elec-
tion (RLE). The MMB problem is a generalization of single-message broadcast; c.f., [1, 2, 3, 4, 6,
5, 7, 8, 17, 15, 16, 18, 19]. In the MMB problem, an arbitrary number of messages originate at
arbitrary processes in the network, at arbitrary times; the problem is to deliver all messages to all
processes. We present and analyze two MMB algorithms in static networks, and indicate how the
second of these can be extended to mobile networks.

Our first MMB algorithm is a simple greedy algorithm, inspired by the strategy of the single-
message broadcast algorithm of Bar-Yehuda et al. [3]. We analyze this algorithm using the abstract
MAC layer delay functions. We obtain an upper bound on the time for delivery of each message
that depends in an interesting way on the progress bound—the small bound on the time for a
receiver to receive some message. Specifically, the bound for MMB to broadcast a given message
m, is of the form O ((D + k)Fprog + (k − 1)Fack), where D is the network diameter, k is a bound on
the number of messages whose broadcast overlaps m, and Fack and Fprog are the acknowledgement
and progress bounds, respectively. Note that a dependency on a progress bound was implicit in
the analysis of the single-message broadcast algorithm in [3]. Our use of the abstract MAC layer
allows us to make this dependency explicit.

Our second MMB algorithm achieves better time complexity by exploiting geographical informa-
tion; in particular, it uses a solution to the RLE problem as a sub-protocol. In the RLE problem,
the geographical area in which the network resides is partitioned statically into regions; the problem
is to elect and maintain a leader in each occupied region. Regional leaders could be used to form
a backbone network that could, in turn, be used to solve many kinds of communication and coor-
dination problems. We give an RLE algorithm whose complexity is approximately bFprog, where b
is the number of bits required to represent process ids.

Using the RLE algorithm, our second MMB algorithm works as follows: After establishing
regional leaders, the MMB algorithm runs a version of the basic greedy MMB algorithm, but using
just the leaders. In order to transfer messages that arrive at non-leader processes to leaders, all the
processes run a collect sub-protocol in parallel with the main broadcast algorithm. The complexity
of the resulting MMB algorithm reduces to O (D + k + bFprog + Fack), a significant improvement
over MMB without the use of leaders.

Finally, to extend our second MMB algorithm to the mobile case, we provide a preliminary
theorem that says that the MMB problem is solved given certain restrictions on mobility and
message arrival rates.

Contributions. The contributions of this paper are: (a) the definition of the abstract MAC layer,
and the suggestions for using it as an abstract layer for writing mobile network algorithms, and
(b) new algorithms for Multi-Message Broadcast and Regional Leader Election, and their analysis
using the abstract MAC Layer.

2 Model

We model a Mobile Ad Hoc Network (MANET) using the Timed I/O Automata (TIOA) formalism.
Our model captures n user processes, which we label with {1, ..., n}, in a mobile wireless network
with only local broadcast communication.
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Figure 1: The MANET system.

2.1 System Components

A MANET system consists of three main components: the network automaton, the abstract MAC
layer automaton, and the user automaton, connected as shown in Figure 1. We briefly describe
each component:

The Network Automaton. The network automaton models the relevant properties of the real
world: time, location, and physical layer behavior. We assume this automaton provides a physical
layer interface that captures the low-level communication on the radio channel. It might also output
user location and time. We do not assume an external interface for controlling motion. That is,
we model mobility as entirely encapsulated within the network automaton, and independent of
the behavior of other system components. In this paper, we assume that the location and time is
accurate. It might be more practical to guarantee only an approximation of this information. For
the protocols we consider, however, such a change would not generate significant modifications.

For every network automaton we assume there exists a pair of functions fG and fG′ that map
from states to directed node interaction graphs (V,E) where V = {1, ..., n} and E ⊆ V × V . We
call the graph G = fG(s), for some network state s, the communication graph. It captures the
processes that are within communication range in that state. We call G′ = fG′(s) the interference
graph. It captures the processes within interference range. We separate communication from
interference because in many practical radio network models the interference range exceeds the
reliable communication range.2 The algorithms we consider in this paper assume the common
special case where fG(s) = fG′(s), for all s. We introduce both graphs in our definitions, however,
because we believe the examination of the general case, where the two graphs can differ, to be
interesting future work. When we refer to the edge set E at a given point in an execution of a
MANET system, we refer to the edge set from the graph fG(s) where s is the network state at that
point. The same holds for E′ with respect to fG′ . Throughout the paper, we use the term network

2To capture some physical layer models, notably a Signal to Interference-plus-Noise Ratio model, we might need
to extend our definition of G′ to allow weights on the edges; that is, capture not just who might interfere but also
how much interference they contribute. We do not make this extension here but leave it as future work.
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as a shorthand to refer to the Network Automaton.

The Abstract MAC Layer Automaton. The abstract MAC layer automaton mediates the
communication of messages between the user processes and the network. Each user process i
interacts with the MAC layer via inputs bcast(m)i and abort(m)i and MAC layer outputs rcv(m)i

and ack(m)i, where m is a message from some fixed alphabet. The abort is used in cases where
the sender is satisfied that “enough” neighbors have already received the message, and so is willing
to terminate efforts by the MAC layer to continuing broadcasting. Though real world MAC layers
do not usually include an abort functionality, it seems both useful and feasible to implement, so
we include it in our interface. As mentioned, the abstract MAC layer automaton connects to the
network through the physical layer interface. It might also receive the network’s location and time
outputs. In Section 2.2, we describe the properties an abstract MAC layer automaton composed
with a network automaton must satisfy to be considered an abstract MAC layer service.

The User Automaton. The user automaton models n user processes with unique labels from
{1, ..., n}. Each process i connects to a MAC layer through the bcast, abort, rcv, and ack interface
described above. It might also receive the network location and time outputs, depending on what
is needed by the protocol being modeled.

2.2 Guarantees for the Abstract MAC Layer Service

Here we provide a set of properties that constrain the behavior of the abstract MAC layer automaton
composed with a network automaton. An abstract MAC layer service is a composition that satisfies
the constraints below. For simplicity we use the shorthand MAC layer to refer to this service
throughout the paper. In these properties, and in the rest of the paper, we assume all executions
are infinite.

Well-Formedness Properties. To define meaningful properties for an abstract MAC layer we
must first assume some well-formedness conditions for the user automaton interacting with the
layer. Fix an execution α of a MANET system. We say α is user-well-formed if and only if the
following hold: (a) α contains at most one bcast event for each message m. (That is, all messages
are unique.) (b) No process i submits more than one abort(m)i for any message m, and only
submits an abort(m)i after a bcast(m)i but not after an ack(m)i. (c) No process i submits a bcast
until after its previous bcast (if any) ended with an abort or had a matching ack returned.

Let α be a user-well-formed execution. We continue with what properties the abstract MAC
layer automaton must satisfy in this execution to be considered an abstract MAC layer service:

The Cause Function. We assume there exists a “cause” function that maps every rcv(m)j

event to a preceding bcast(m)i event, where i 6= j, and that maps each ack(m)i and abort(m)i to
a preceding bcast(m)i.

Constraints on Message Behavior. We now define two safety conditions and one liveness
condition regarding the relationships captured by the cause function:

1. Receive correctness: Suppose that bcast(m)i event π causes rcv(m)j event π′ in α. Then:

(a) Proximity: At some point between events π and π′, (i, j) ∈ E′ (the edge set of the
interference graph).
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(b) No duplicate receives: No other rcv(m)j event caused by π precedes π′.

(c) No receives after acknowledgements: No ack(m)i event caused by π precedes π′.

2. Acknowledgment correctness: Suppose that bcast(m)i event π causes ack(m)i event π′

in α. Then:

(a) Guaranteed communication: If for every point between events π and π′, (i, j) ∈ E
(the edge set of the communication graph), then a rcv(m)j event caused by π precedes
π′.

(b) No duplicate acknowledgements: No other ack(m)i event caused by π precedes π′.

(c) No acknowledgements after aborts: No abort(m)i caused by π precedes π′.

3. Termination: Every bcast(m)i causes either an ack(m)i or an abort(m)i.

Notice, in the proximity and guaranteed communication bounds above, we use the interference
graph G′ to describe who might be able to communicate and the communication graph G to
describe who is guaranteed to communicate. In practice, the former includes more processes than
the latter.

Time Bounds. We now impose upper bounds on the time from a bcast(m)i event to its cor-
responding ack(m)i and rcv(m)j events. These bounds are expressed in terms of the contention
involving i and j during the interval of the broadcast. To help define these bounds, we provide a
few auxiliary definitions:

Let frcv, fack, and fprog be functions from natural numbers to nonnegative real numbers.
We will use these to bound delivery times for a specific message being delivered, an acknowledge-

ment being received, and some message from among many being received, respectively, with respect
to a given amount of contention. We call these the delay functions. Notice, in many MAC imple-
mentation we expect fprog to yield smaller values than fack, as the time to deliver some message
among many is typically better than the time to deliver a specific message.

We assume that frcv, fack, and fprog are monotonically non-decreasing. That is, as the contention
increases, so does the time to receive a specific message, an acknowledgement, and some message
from among many, respectively.

Let εa be a non-negative constant. We use this constant to bound the amount of time beyond
an abort when a message from the originating broadcast can still be received. We intend εa to
cover messages that are already on the channel, or in the hardware send or receive buffers—thus
unreachable by higher layers. We assume this constant to be small.

We use the term “message instance” to refer to a matched pair of bcasti and acki, or bcasti
and aborti events. Let α be an execution, α′ be a closed execution fragment within α3, and j be
a process. We then define contend(α, α′, j) as follows. This function returns the set of message
instances in α that intersect with fragment α′, such that (i, j) ∈ E′ at some point in this intersection,
where i is the sender from the instance in question. These are the message instances that might
reach j during α′. Similarly, we define connect(α, α′, j) as follows. This function returns the set of
message instances in α such that α′ is contained between the corresponding bcasti and acki events
and (i, j) ∈ E for the duration of α′, where i is the sender. These are the messages instances that
must reach j if α′ is sufficiently long. Notice that connect(α, α′, j) is a subset of contend(α, α′, j).

3Formally, that means that there exist fragments α′′ and α′′′ such that α = α′′α′α′′′, and moreover, the first state
of α′ is the last state of α′′. Notice, this allows α′ to begin and/or end in the middle of a trajectory.
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Given an execution α and two events π and π′ in α, the notation α[π, π′] to describes the execution
fragment within α that spans from π to π′.4 We continue with the time bounds:

5. Receive: Suppose that a bcast(m)i event π causes a rcv(m)j event π′ in α. Then the time
between π and π′ is at most frcv(c), where c is the number of distinct senders of message
instances in contend(α, α[π, π′], j). In other words, the bound for when m must be received at
j grows with the number of other nearby processes (e.g., connected in G′) that have message
instances intersecting with the instance in question. Furthermore, if there exists an abort(m)i

event π′′ such that π causes π′′, then π′ cannot occur more than εa time after π′′. The εa

constant requires that that an abort actually aborts the corresponding message within a
bounded amount of time.

6. Acknowledgement: Suppose that a bcast(m)i event π causes an ack(m)i event π′ in α.
Let ackcon be the set containing i and every process j such that there exists a rcv(m)j with
cause π. Then the time between π and π′ is at most fack(c), where c is the number of dis-
tinct senders of message instances in

⋃
j∈ackcon contend(α, α[π, π′], j). The acknowledgement

bound is defined similarly to the receive bound, with the exception that we now include the
contention at the sender and every receiver. This captures the intuition that an acknowledge-
ment requires the receivers to somehow communicate their receipt of the message back to the
sender.

7. Progress: For every closed fragment α′ within α, for every process j, and for every integer
c ≥ 1, it is not the case that all three of the following conditions hold:

(a) The total time described by α′ is strictly greater than fprog(c).

(b) The number of distinct senders of message instances in contend(α, α′, j) is at most c,
and connect(α, α′, j) is non-empty.

(c) No rcv(m)j event from a message instance in contend(α, α′, j) occurs by the end of α′.

In other words, the bound on when j should receive some message (when there is a least one
message being sent by a neighbor in G), grows with the total number of processes that are
in interference range. As mentioned in the introduction, this style of progress property was
implicitly used in previous work—e.g., [3]—to derive bounds that are tighter than could be
generated from a basic acknowledgement bound alone.

A stronger version of (c) could require that the received message is sent by a neighbor with
an edge to j in G, rather than just G′, at some point during α′. This stronger property, if
needed, might be implemented on top of a MAC layer guaranteeing the weaker property from
above. The details would depend on the radio network model.

2.3 Implementing an Abstract MAC Layer

It is beyond the scope of this paper to offer a detailed implementation of an abstract MAC layer
automaton, using, for example, one of the popular radio network models from the existing theo-
retical literature (e.g. [3, 10, 12, 13, 24]). Here we discuss, only informally, some basic ideas for
implementations with the aim of providing some intuition regarding the type of concrete definitions

4Formally, by the definition of a fragment this must span from the point trajectory immediately preceding π to
the point trajectory immediately following π′.
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our delay functions might adopt in practice. For simplicity, we assume G and G′ are fixed (e.g.,
the network is static) and undirected.

A common radio network model is the slotted broadcast model of [3, 10, 21, 23, 14]. This model
assumes that the communication graph G and the interference graph G′ are identical, that there
is no collision detection (i.e., a collision cannot be distinguished from silence), and that a message
from a sender i is correctly received by a neighbor j in a particular time slot if and only if i is the
only neighbor of j broadcasting during this time slot. If we assume synchronized clocks, allowing
for synchronized slots, a simple strategy derived from the decay function in [3] can be used to
implement our abstract MAC layer service. In this approach, time is divided into synchronized
epochs of Θ(log ∆) time slots, where ∆ is the maximum node degree in G. Processes that have
a message to broadcast, start broadcasting at the beginning of the next epoch. During an epoch,
the probability of broadcasting is exponentially decreased from 1 to 1/∆. It is guaranteed that
every process that has at least one neighbor sending a message during an epoch receives at least one
message with constant probability. We therefore get a progress delay function fprog this is O(log ∆)
for all contention parameters, with probability 1 − ε. Similarly, our receive and acknowledgement
delay functions, frcv and fack, are both O(∆ log ∆) for all contention parameters. Notice, this
simple scheme requires time proportional only to the worst-case contention. More sophisticated
MAC layer implementations, we expect, would include the contention parameter c in the delay
function definitions.

If time is not synchronized, a technique similar to the one used in the context of the wake-up
problem in single-hop networks [10, 14] and multi-hop networks [21, 23] can be used to synchronize
the start of decay phases. Specifically, starting at a small probability, processes exponentially
increase their sending probability until they either hear a message from a neighbor or decide to
broadcast in a particular time slot. As soon as a process decides to broadcast, it resets its probability
to the small start value. Let us assume that there are two physical communication channels.5 As
soon as a process hears a message, it starts the decay routine on the second communication channel.
If we assume that the communication graph is a unit disk graph (or more generally a bounded
growth graph as defined in [20]) and if the parameters are chosen correctly, it can be shown that
with reasonable probability, the number of different start times of the decay routine is bounded in
the neighborhood of every process. An adapted version of the decay function then allows a progress
delay function that is polylogarithmic in ∆, and receive and acknowledgement delay functions that
are O(∆ · polylog(∆)).

For the case where G 6= G′, similar techniques can be used. The details depend on how the radio
network model captures communication and interference between nodes that are neighbors only in
G′.

2.4 Multiple Abstract MAC Layer Automata

To simplify the analysis of multiple user protocols running on the same network it proves useful
to allow for multiple independent abstract MAC automata in the same system (see Figure 2). In
this scheme, each protocol (or perhaps even sub-protocol) connects with its own MAC automaton.
These automata all connect to the same single network automaton. Each MAC automaton satisfies
the specifications of the abstract MAC layer service with respect to the network.

Such an approach certainly simplifies analysis, but we also argue that it matches reality. Indeed,
there exist a variety of practical realizations of multiple MAC automata. For example, most radio-
equipped computing devices have access to many communication frequencies. If a device has several

5In [21], it is described how to simulate different communication channels at the cost of a polylogarithmic factor.
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Figure 2: The MANET system with m abstract MAC layers.

transmitters, it can execute several simultaneous MAC protocols on independent frequencies. If the
device has a single transceiver and/or access to only a single frequency, it can use a TDM scheme
to partition use of the frequency among the different logical MAC layers.

In other words, by allowing multiple independent abstract MAC automata in our model we
remove the need for the protocol designer to tackle issue of contention between protocols and focus
instead on proving properties about their individual behavior. The complexity of this contention
will be captured by the concrete implementation of the multiple layers using a single network.

2.5 Upper Bounds on Message Delivery Times

We describe upper bounds on the message delivery time bounds of Section 2.2. We use these for
algorithm development and analysis. We begin, however, with some graph notation used by these
upper bounds and elsewhere in the paper.

Graph Notation. For any graph G, we use D(G) to describe the diameter of G, that is the
maximum d(u, v), over all vertex pairs (u, v), where d(u, v) describes the length of the shortest
directed path between u and v.

Upper Bounds. We describe three constants that prove useful when describing message delivery
times in our later analysis and definition of algorithms. For the following definitions, fix α to be a
user-well-formed execution of a MAC layer and let ∆α equal the maximum ∆(G′) over all G′ that
appear in a state of α.

1. We define Fprog with respect to α to be fprog(∆α + 1). This bound captures the maximum
amount of time until a process receives some message, starting from a point in the execution
at which: (a) there is at least one message it should eventually receive (i.e., the message is
sent by a process that is and will remain a neighbor in G); and (b) the message instances
for previously received messages have completed. (The addition of 1 to ∆α, in this definition
and the two below, captures the possibility that the receiver is also sending a message, which
would be counted in the contend set.)
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2. We define Frcv with respect to α to be frcv(∆α + 1). This bound captures the maximum
amount of time until a process receives a message sent by a neighbor in G.

3. We define Fack with respect to α to be fack((∆α + 1)2). This bound captures the maximum
amount of time until a process receives an acknowledgement for a message it sent. (The square
is necessary to bound the worst-case value of the union calculated in the acknowledgement
bound definition—a union that includes the contention at the sender and at all of its neighbors
in G.)

Sometimes we need to define constants over all possible executions of a MAC layer (e.g., if we
want to use them as upper bounds in a protocol definition). With this in mind we define F+

prog,
F+

rcv, and F+
ack to be the maximum values of Fprog, Frcv, and Fack, respectively, over all executions

of the MAC layer under consideration.

3 The Multi-Message Broadcast Problem

The Multi-Message Broadcast (MMB) problem assumes that the environment submits messages
to the user processes at arbitrary times during an execution. The goal is to propagate every such
message to all of the users in the network.

3.1 Preliminaries

In this section we assume a static network; i.e., for any given execution, the location of each node,
and the G and G′ graphs never change. Furthermore, we assume that G = G′, and the graphs are
undirected; i.e., all communication links are bidirectional. We note that the algorithm and proof
below would work for the general case, where G 6= G′, if one could guarantee the slightly stronger
progress property that requires that the message received is from a neighbor in G.

We assume a message set M of possible broadcast messages. A user automaton is considered
to be an MMB protocol only if its external interface includes an arrive(m)i input and deliver(m)i

output for each user process i and message m ∈M.
We a say an execution of an MMB protocol is MMB-well-formed if and only if it contains at

most one arrive(m)i event for each m ∈ M. (That is, each broadcast message is unique). We say
an MMB protocol solves the MMB problem if and only if for every MMB-well-formed execution of
the MMB protocol composed with a MAC layer, the following hold: (a) For every arrive(m)i event
and every process j, there exists a deliver(m)j event. (b) For every m ∈ M and process j, there
exists at most one deliver(m)j event and it comes after an arrive(m)i event for some i.

3.2 The Basic Multi-Message Broadcast Protocol

We describe a simple MMB protocol that nonetheless achieves efficient runtime.

The Basic Multi-Message Broadcast (BMMB) Protocol
Every process i maintains a FIFO queue named bcastq and a set named rcvd. Both are initially
empty. If process i is not currently broadcasting a message (i.e., not waiting for an ack from
the MAC layer) and bcastq is not empty, it broadcasts the message at the head of the queue.
If i receives an arrive(m)i event it immediately performs a deliver(m)i output and adds m to
the back of bcastq. It also adds m to rcvd. If i receives a broadcast message m from the MAC
layer it first checks rcvd. If m ∈ rcvd it discards it. Else, i immediately performs a deliver(m)i

event, and adds m to the back of bcastq and to the rcvd set.
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Theorem 3.1. The BMMB protocol solves the MMB problem.

Proof. Let α be an MMB-well-formed execution of the BMMB protocol composed with a MAC
layer. We first note that α is user-well-formed, as the definition of the protocol has each process
wait for an ack before submitting its next bcast. There are no aborts. It follows that the abstract
MAC layer properties are satisfied by the MAC layer.

Let arrive(m)i be an event in α. At the point when this event occurs, the size of the MMB
queue at process i is of some finite size. Let us call this q. After at most (q + 1)Fack time after
this point, i will have succeeded in transmitting all q elements ahead of m in its queue, and then
m itself, to its neighbors. We can reapply this argument D times for each message, to show that it
eventually arrives (and is delivered) at all processes.

We continue with a collection of definitions used by our complexity proof. In the following, let α
be some MMB-well-formed execution of the BMMB protocol composed with a MAC layer.

The get Event. We define a get(m)i event with respect to α, for some arbitrary message m and
process i, to be one in which process i first learns about message m. Specifically, get(m)i is the
first arrive(m)i event in case message m arrives at process i, otherwise, get(m)i is the first rcv(m)i

event.

The clear Event. Let m ∈ M be a message for which an arrive(m)i event occurs in α. We
define clear(m) to describe the final ack(m)j event in α for any process j.6

The Set K(m). Let m ∈M be a message such that arrive(m)i occurs in α for some i. We define
K(m) = {m′ ∈M : an arrive(m′) event precedes the last deliver(m) event and the clear(m′) event
follows the arrive(m)i event}. That is, K(m) is the set of messages whose processing overlaps the
interval between the the arrive(m)i event and the last deliver(m) event.

The obvious complexity bound would guarantee the delivery of a given message m in O(D(G)kFack)
time, for k = |K(m)|, as there can be no more than k messages ahead of m at each hop, and each
message is guaranteed to be sent, received, and acknowledged within Fack time. The complexity
theorem below, by contrast, does better. It separates kFack from the diameter, D(G), instead mul-
tiplying this term only by the smaller progress bound, Fprog. This captures an implicit pipelining
effect that says some message always makes progress in Fprog time.

Theorem 3.2. Let k be a positive integer and α be an MMB-well-formed execution of the BMMB
protocol composed with a MAC layer. Assume that an arrive(m)i event occurs in α. If |K(m)| ≤ k
then the time between the arrive(m)i and the last deliver(m)j is at most:
(D(G) + 2k − 2)Fprog + (k − 1)Fack.

Theorem 3.2 is a direct consequence of the following lemma.

Lemma 3.3. Let α be an MMB-well-formed execution of the BMMB protocol composed with a
MAC layer. Assume that at time t0, arrive(m)i0 occurs in α for some message m ∈M and some
process i0. Let j be a process at distance d = dG(i0, j) from the process i0. Further, let M′ ⊆ M
be the set of messages m′ for which arrive(m)i0 precedes clear(m′). For integers ` ≥ 1, we define

6Notice, by the definition of BMMB if an arrive(m)i occurs then i eventually broadcasts m, so ack(m)i occurs.
Furthermore, by the definition of BMMB, there can be at most one ack(m)j event for every process j. Therefore,
clear(m) is well-defined.
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td,` := t0 + (d + 2`− 2) · Fprog + (`− 1) · Fack.

For all integers ` ≥ 1, at least one of the following two statements is true:

(1) The get(m)j event occurs by time td,` and ack(m)j occurs by time td,` + Fack.

(2) There exists a set M′′ ⊆ M′, |M′′| = `, such that, for every m′ ∈ M′′, get(m′)j occurs by
time td,`, and ack(m′)j occurs by time td,` + Fack.

Proof. We first define sets Gi(t) ⊆ M′ and Ci(t) ⊆ M′ of messages for every process i and time
t ≥ 0 in execution α of the BMMB protocol. Gi(t) is the set of messages m′ ∈ M′ for which
a get(m′)i event occurs by time t. Ci(t) ⊆ Gi(t) is the set of messages m′ ∈ M′ for which the
ack(m′)i event occurs by time t. Hence, Gi(t) is the set of messages that have been received by
process i and Ci(t) is the set of messages that process i has finished processing by time t. From
the MAC layer properties and the definition of the BMMB protocol, we obtain the following three
statements:

a) Consider a process i. If Gi(t)∩ (Gi′(t)\Ci′(t)) = ∅ for every neighbor process i′ of i and there
is a neighbor i′ for which Gi′(t) \ Ci′(t) 6= ∅, then a get(m′)i event occurs after time t and
by time t + Fprog. Hence if the neighbors of i only process messages m′ at time t for which
get(m′)i has not occurred, i will soon receive a new message.

b) For every process i and message m′ ∈ Ci(t), a get(m′)i′ event occurs at all neighbors i′ of i
by time t.

c) Assume that a message m′ is in the queue of a process i at time t and let Q, |Q| = q, be the
set of messages in i’s queue ahead of m′ at time t. For k ≤ q, by time t + k · Fack, there are
ack(m′′)i events for k messages m′′ ∈ Q and by time t+(q+1)Fack, an ack(m′)i event occurs.

We prove the lemma by induction on ` and for every ` by induction on d. For all `, as a base
case for the induction on d, we start by considering the case d = 0, i.e., the case where j = i0. Let
M′

0 ⊆ M′, |M′′
0| = `0, be the set of messages m′ ∈ M′ that are in i’s queue at the time of the

arrive(m)i and thus of the get(m)i event. For ` ≤ `0, by statement c) above, by time t0 + ` · Fack,
ack(m′)i events occur for ` messages in M′′

0 and for ` > `0, ack(m)i occurs by time t0+(`0+1)·Fack.
Hence, for ` ≤ `0, statement (2) is true whereas for ` > `0, statement (1) is true.

We now come to the base case of the induction on `, ` = 1 and d > 0. By induction (on d),
there is a neighbor j′ of j for which Gj′(td−1,1) is non-empty. If Gj(td−1,1) is non-empty, there is
a message m′ for which a get(m′)j event occurs by time td−1,1 and by property c), an ack(m′)j

event occurs by time td−1,1 + Fack. If Gj(td−1,1) = ∅, there is a message m′ ∈ Gj′(td−1,1) for which
a get(m′)j occurs by time td−1,1 + Fprog = td,1 by property a) and an ack(m′)j occurs by time
td,1 + Fack by property c). The lemma is therefore also true for all d and ` = 1.

Let us now consider the case d > 0 and ` > 1. Assume that for some neighbor j′ of j, statement
(1) is true for `− 1. Then, by applying property b), there is a get(m)j event by time:

td+1,`−1 + Fack = (d + 1 + 2(`− 1)− 2) · Fprog + (`− 2) · Fack + Fack

< (d + 2`− 2) · Fprog + (`− 1) · Fack

= td,`.

If the ack(m)j event does not occur by time td,`−1 + Fack < td,`, by induction (on `), ack(m′)j

events for a set M′
0 of ` − 1 messages m′ 6= m happen before time td,`. If m reaches the front of
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j’s queue by time td,`, the ack(m)j event happens by time td,` + Fack by statement c). Otherwise,
let m′ be the first message in j’s queue at time td,`. Note that m′ 6∈ M′

0. By statement c), the
ack(m′)j event occurs by time td,` + Fack.

It remains to consider cases where for all neighbors j′ of j only statement (2) is true for ` − 1.
Then, by time td+1,`−1 + Fack, `− 1 different ack(m′)j′ events occur for each neighbor j′. Assume
that there are two neighbors j′ and j′′ for which the sets of the first ` − 1 messages m′ ∈ M′ for
which get(m)j′/get(m)j′′ events and thus (by the FIFO ordering) ack(m′)j′/ack(m′)j′′ events occur
are different. Because by statement b), there is a get(m′)j event by time t for every message for
which there is an ack(m′)j′ event at a neighbor j′ by time t, there are at least ` different get(m′)j

events by time td+1,`−1 +Fack ≤ td,` in this case. By induction (on `) the first `−1 ack(m′)j events
occur by time td,`−1 +Fack < td,` and by statement c), there is thus another ack(m′)j event by time
td,` + Fack.

Finally, let us consider the last remaining case where all neighbors of j receive the same first
`− 1 messages m′ 6= m by time td+1,`−1. Then, there is a get(m′)j event by time td+1,`−1 +Fack for
all these messages by statement b). If by this time, there is another message m′′ for which there is
a get(m′′)j event, the conclusion of the lemma is true for the same reason as in the previous case.
If there is no such message m′′, for t = td+1,`−1 + Fack, we have Gj(t) ∩ (Gj′(t) \ Cj′(t)) = ∅ for
every neighbor j′ of j. By induction (on d), there is a neighbor j′ at distance d− 1 to i0 for which
a get(m′′)j′ event for an additional message m′′ occurs by time td−1,` = td+1,`−1 + Fack. Hence,
by property a), there is a get(m′′)j event by time td−1,` + Fprog = td,` for an `th message m′′. By
induction on `, the ack(m′)j events for the first `−1 messages occur by time td,`−1 +Fack < td,` and
thus by statement c), the ack(m′′)j event occurs by time td,` +Fack which completes the proof.

Proof of Theorem 3.2. Let t0 be the time when the arrive(m)i event occurs. Assume that |K(m)| ≤
k. We show that the last deliver(m) event occurs by time t1 = t0+(D(G)+2k−2)Fprog+(k−1)Fack.

Let M′ ⊆ M be the set of messages m′ for which arrive(m)i precedes clear(m′). By Lemma
3.3 for all processes j by time t1, a get(m)j event occurs or there exists a set M′′ ⊆ M′ of size
|M′′| = k such that get(m′)j events occur for all messages m′ ∈ M′′. In the first case, since the
deliver(m)j event occurs at the same real time as the get(m)j event, we have satisfied the Theorem
bound.

We can therefore assume that there is a set M′′ ⊆ M′ of size k such that for all messages
m′ ∈M′′, either a get(m′)j event happens for all processes j by time t1. By the definition of K(m)
and M′, we have that K(m) ⊆ M′. Hence, from the assumption that the last deliver(m) event
happens after time t1 and the definition of K(m), we have m′ ∈ K(m) for every message m′ ∈M′

for which a get(m′) event occurs by time t1. As a consequence, M′′ ⊆ K(m). Because |M′′| = k
and |K(m)| ≤ k, this implies that M′′ = K(m). Because m ∈ K(m), there is a get(m)j event and
thus a deliver(m)j for every process j by time t1, as needed.

4 Regionalized Networks

Recall that our model requires the network automaton to encode and report the location of every
node at all times. It does not, however, place any constraints on the geography in which these
locations reside or their relation to G and G′. In this section we define such general constraints,
which we use in Section 6 to improve the complexity of our MMB solutions.

Preliminaries. Let L be a set of locations. (For example, this could describe points in the 2D
plane.) Let R be a set of regions ids. Let region mapping reg be a mapping reg : L → R. And
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let NR be a neighbor relation among regions in R. Consider the graph Gregion = (R,NR). We
call Gregion a region communication graph if and only if it is connected. Let N ′

R be some neighbor
relation such that NR ⊆ N ′

R. Consider the graph G′
region = (R,N ′

R). We call G′
region a region

interference graph if and only if ∆(G′
region) = O(1).

Regionalized Network. Fix a network N . Let L describe the set of locations used by N . Given
any state s of N , and node i, we use the notation loc(i) to refer to the location of node i encoded
by N in s. Let R be a set of region ids, reg be a region mapping from L to R, and NR and N ′

R be
neighbor relations for R such that NR ⊆ N ′

R. Assume Gregion = (R,NR) is a region communication
graph and G′

region = (R,N ′
R) is a region interference graph.

We say network N is regionalized with respect to L, R, reg, NR, and N ′
R, if and only if for every

execution of N , and every point in the execution:

1. For every pair of nodes i and j such that reg(loc(i)) = reg(loc(j)) or (reg(loc(i)), reg(loc(j))) ∈
NR: (i, j) ∈ E.

2. For every pair of nodes i and j such that (i, j) ∈ E′, either: reg(loc(i)) = reg(loc(j)) or
(reg(loc(i)), reg(loc(j))) ∈ N ′

R.

That is, if two nodes are in the same region or neighboring regions in the region communication
graph, then they must be connected in G, and if two nodes are connected in G′ (i.e., can interfere
with each other) then they are in the same region or in regions that are neighbors in the region
interference graph. It follows that the region communication graph captures which regions are
always in communication range while the region interference graph captures which regions could
be in interference range. For example, a simple grid topology where we set the length of the grid
square diagonal to be half the reliable broadcast range, and classifying grid squares sharing an edge
as neighbors, might be used to define a regionalization that matches these constraints.

Fixing a Regionalized Network. For Sections 5 and 6 we fix a static network N that is
regionalized with respect to some parameters L, R, reg, NR, and N ′

R. As in Section 3 we assume
that G = G′ and the graphs are undirected. We also assume that the network occupies every region
in every execution. When we refer to MAC layers in these sections, we implicitly mean MAC layers
that include N . When we refer to any region r, we implicitly assume that r ∈ R.

5 The Leader Election Problem

Notice that the BMMB protocol did not make use of location information or synchronized clocks.
This begs an obvious question: can we do better if the processes know this information? To
answer this question, we first study the problem of local leader election in a single region of our
fixed regionalized network, then use this protocol to elect a leader in every region. Our solutions
rely on synchronized clocks, running at the same fixed rate, to coordinate the beginning and
end of the relevant phases among the different processes. The resulting leader backbone forms
a connected dominating set (CDS). The use of a CDS in radio networks is a common strategy;
c.f.,[25, 22, 21, 26, 9]. Unlike this existing work, however, our task is simplified by both the
availability of location information and the lack of need to deal explicitly with contention on the
channel.
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5.1 Solving the RLE Problem

We say a user automaton is a RLE protocol if and only if it has a leader(r)i and notleader(r)i

output for every process i and every region r. We say a RLE protocol solves solves the RLE
problem for region r by time t if and only if for every execution α of the protocol composed with a
MAC layer the following hold:

1. By time t in α exactly one process i such that reg(loc(i))) = r outputs leader(r)i and every
process j 6= i such that reg(loc(j)) = r, outputs notleader(r)j .

2. For every process i such that reg(loc(i)) = r, there exists at most one event π in α such that
π = leader(r′)i or π = notleader(r′)i for some region r′.

We continue with some RLE protocol definitions. Throughout the definitions that follow, we assume
a fixed positive constant εb, which we will use in multiple protocols to add an extra buffer to the
end of intervals calculated to match the length of the message receive time bounds. (The use of
this extra buffer is a technicality required by the fact that the TIOA model allows multiple events
can occur at the same time; the εb is used to make sure a check of received messages happens after
every relevant message receive event has occurred.) We also assume that processes know the value
of F+

ack and F+
prog in advance, as these are upper bounds on the delay for all possible executions of

the network, and can therefore be seen as modeling system constants.

5.2 The Basic RLE Protocol

The Basic Regional Leader Election (BRLE) protocol is described below:

The r-Basic Regional Leader Election (BRLE) Protocol
In the r-BRLE protocol for some region r, each process i in r behaves as follows. At time
0, i broadcasts its own id. At time F+

ack + εb, i processes its set of received messages. If i is
greater than every id described in a received message, then i triggers a leader(r)i output. Else
it triggers notleader(r)i. The output happens instantaneously at time F+

ack + εb (i.e., we assume
a processing time of 0).

Theorem 5.1. For any region r, the r-BRLE protocol solves the RLE problem for region r by time
F+

ack + εb.

Proof. We begin by noting that the protocol preserves user-well-formedness, so we can assume the
abstract MAC layer properties hold.

Fix some pair of processes i and j in r. We first prove that i and j receive each other’s messages.
Both processes broadcast at time 0. According to the termination property of the MAC layer, each
broadcast is the cause of either an abort or ack. Because neither aborts, each must eventually cause
an ack.

By the definition of a regionalized network, we know (i, j) ∈ E. Therefore, by the acknowledge-
ment correctness property, i receives j’s message and j receives i’s message, both before their ack
events.

By the acknowledgement time bound, these receive events and the subsequent acks, must occur
by time F+

ack. It follows that at time F+
ack + εb > F+

ack, the messages have been received. Apply
this argument to all pairs in the region to show that all processes in r receive all messages in r,
therefore they make a common leader decision.
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5.3 The Fast Regional Leader Election Protocol

As mentioned, we assume that in many MAC layer implementations, fprog will be much smaller
than fack. To accommodate this possibility we describe a Fast Regional Leader Election (FRLE)
protocol that relies only on fprog and the size of the id space. For the following, let b be the number
of bits needed to describe the id space. (A common assumption is that b = dlg ne, but this might
not always hold.)

The r-Fast Regional Leader Election (FRLE) Protocol
In the r-FRLE protocol for some region r , each process i in r behaves as follows. Let ε′

a = εa+εb.
Divide the time interval from 0 to b(F+

prog + ε′
a) into b phases each of length Fprog + ε′

a. We
associate phase p with bit p of the id space. At the beginning of phase 1, process i broadcasts
the phase number and its id if it has a 1 bit in location 1 of its id. Otherwise it does not
broadcast. After F+

prog time has elapsed in the phase, if i broadcast and has not yet received
an ack, it submits an abort. At the end of the phase (i.e., ε′

a time after the potential abort),
i processes its received messages. If i did not broadcast in this phase yet received at least one
message, it outputs notleader(r)i and terminates the protocol. Otherwise, it continues with the
next phase, which proceeds the same as before with respect to bit position 2. This continues
until i terminates with a notleader(r)i output or finishes the last phase without terminating.
In the latter case, i submits a leader(r)i output.

Theorem 5.2. For any region r, the r-FRLE protocol solves the RLE problem for region r by time
b(F+

prog + εa + εb).

Proof. We begin by noting that the protocol preserves user-well-formedness, so we can assume the
abstract MAC layer properties hold.

We prove the following: if any process broadcasts at the beginning of phase p, then every process
that does not broadcast receives at least one phase p message by the end of the phase.

Fix a phase p. Let Π be the set of bcast events that occur at the beginning of p. These broadcasts
are the only messages that intersect with the interval defined by phase p (remember: all broadcasts
from previous stages were aborted by the end of those phases).

Fix a process i that does not broadcast in this phase. The definition of a static regionalized
network provides that all processes in r are neighbors of i in G for this entire interval. So far we
have satisfied conditions (a) and (b) of the progress time bound.

It follows that condition (c) cannot also be satisfied. Therefore, a rcv(m)i caused by some
broadcast in Π must occur for i in this interval. Satisfying our claim.

We are left to prove that the search logic produces a single leader. This follows from two
observations. First, it is impossible for all processes that are non-terminated at the beginning of
some phase to submit notleader(r) outputs at the end of the phase. Assume for contradiction that
this occurs at the end of some phase p. To terminate a process must not broadcast and also receive
a message. It follows that some non-terminated process broadcasts during phase p. (Recall: from
our above argument that the only message intervals that intersect a given phase p are those that
contain phase p messages.) By definition, a process that broadcasts in a given phase cannot be
terminated in that phase. A contradiction.

Second, we show that two or more processes cannot both survive all b phases to become leader.
Assume for contradiction that both i and j become leader. Because their ids are unique, there
must be one bit position in which they differ. Without loss of generality assume it is position k and
that i has a 1 in this position while j has a 0. It follows that in phase k, i broadcasts and j does
not. By our claim at the beginning of the proof, j will receive some message in this phase—leading
it to terminate. Another contradiction.

It follows that the protocol elects one and only one leader as required.
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5.4 The Complete Regional Leader Election Protocol

The RLE solutions described above work for a single region. It proves useful, however, to elect
such a leader in every region in a regionalized network. Below we describe a protocol that elects
a leader in every region. As with FRLE, let b be the minimum number of bits needed to describe
the id space. This protocol uses a minimal-sized region TDMA schedule T defined with respect to
the region interference graph for the regionalized network. That is, T describes minimally-sized
sequence of sets of region ids such that: (a) every region id shows up in exactly one set; (b) no set
contains two region ids that are neighbors in the region interference graph.

The Complete Regional Leader Election (CRLE) Protocol
In the CRLE protocol each process i behaves as follows. We dedicate b(F+

prog + ε′
a) time to each

set in T . Process i does nothing until the start of the time dedicated to the single set in T that
contains i. Process i runs the reg(loc(i))-FRLE protocol during the time interval dedicated to
this set, adding a fixed offset to the time input used by FRLE such that the transformed time
at the beginning of the interval evaluates to 0.

Theorem 5.3. The CRLE protocol solves RLE problem for every region by time Θ
(
b · (F+

prog + εa)
)

Proof. Using standard techniques we can construct a minimal TDMA schedule T to contain
∆(G′

region) = O(1) sets. By the definition of T , each process runs FLRE exactly once, during
the time allocated to the slot containing its region. No two regions running the protocol concur-
rently are within interference range, and all outstanding messages were aborted before the protocol
begins (by definition of FLRE, every process aborts any non-ack’d messages by the end of each
slot), so from the perspective of the processes running FLRE it is as if their region is running it
alone starting at time 0. The correctness of their outputs follows from Theorem 5.2.

6 Regional Multi-Message Broadcast

We combine the CRLE protocol from the previous section with the BMMB protocol to generate a
new protocol we call Regional Multi-Message Broadcast (RMMB). The resulting protocol improves
the performance of BMMB by confining the propagation of messages to the low-degree backbone
of leaders elected by CRLE.

The Regional Multi-Message Broadcast (RMMB) Protocol
To simplify analysis, the RMMB protocol makes use of three independent MAC automata (see
Section 2.4 for more on the use of multiple MAC automata). We label the automata collect,
leader election, and broadcast. At a high-level, we use the leader election MAC automaton to
elect a leader in each region using CRLE. We use the broadcast automaton to run BMMB on
this leader backbone once CRLE terminates. And we use the collect automaton to transfer
messages from arrive events at non-leaders to the leader in the region. This collect protocol
runs concurrently with the CRLE and BMMB protocols. Before CRLE completes, all processes
running collect will queue the messages in case they are elected leader.

State. Each process i maintains a broadcast queue and an arrive queue. Both are initially empty.
It also maintains a leader flag which is initially false, and two sets, delivered and rcvd, both
initially empty.

Leader Election. Each process i in region r behaves as follows with the leader election MAC
automaton. Starting at time 0, i executes the ε-CRLE leader election protocol for some fixed
positive constant ε. At the end of the protocol (i.e., after the time dedicated to the last set in
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the TDMA schedule has transpired), i sets its leader flag to true if and only if it triggered a
leader(r)i output during the CRLE protocol.

Collect. Each process i in region r behaves as follows with the collect MAC automaton. When
an arrive(m)i or rcv((m, r))i event occurs,7 i places the message (m or (m, r)) on the back of
its arrive queue. As soon as i’s arrive queue becomes non-empty it does the following. If the
element at the head of the queue is a single message m′, it removes m′ from the arrive queue,
performs a deliver(m′)i output, adds m′ to the delivered set, places m′ on the back of the
broadcast queue, and then propagates m′ before moving on to the next element in the arrive
queue (if any). The propagate step depends on the status of the leader flag. If leader = true,
then propagate is a noop and takes up 0 time. If leader = false then i broadcasts (m′, r) and
then waits for the corresponding ack((m′, r))i.

If the element at the head of the arrive queue is an (m′, r) message, then i removes (m′, r) from
the queue, performs a deliver(m′)i output, adds m′ to the delivered set, places m′ on the back
of the broadcast queue. (There is no propagate step for this case.)

Broadcast. Each process i in region r behaves as follows with the broadcast MAC automaton.
Process i waits the fixed amount of time required for the CRLE protocol executed on the leader
election MAC automaton to complete. If i has leader = true at this point, then it executes the
BMMB protocol using the broadcast queue maintained by the protocol running on the collect
MAC automaton, and using its delivered set in addition to the list rcvd used by BMMB to
determine when to pass along a message. If i is not a leader, then for each m received from the
broadcast MAC automata, if m is not in the delivered set it performs a deliver(m)i output and
then adds m to the delivered set.

We continue with the relevant theorems.

Theorem 6.1. The RMMB protocol solves the MMB problem.

Proof. Let α be an MMB-well-formed execution of the RMMB protocol composed with the speci-
ficed MAC automata and our fixed regionalized network. We note that α is user-well-formed, so it
follows that the abstract MAC layer service properties are satisfied for each MAC automaton.

Let arrive(m)i be an event in α. At the point when this event occurs, the size of the arrive
queue at process i is of some finite size. Let us call this q. After at most (q + 1)Fack time after
this point, i will have succeeded in transmitting all q elements ahead of m in its queue, and then m
itself, to its neighbors in G, a set which includes all processes in its same region. All processes in
its region add these messages to their arrive queue and therefore eventually their broadcast queue,
in the order they arrive. This includes the single process j that eventually sets its leader flag to
true in this region.

There exists a point in α, therefore, where j both has leader = true and m in its broadcast queue.
At this point, we can apply the argument from the correctness theorem for BMMB (Theorem 3.1)
to argue that this message eventually gets to a leader in every region, and from there, to every
process in every region, in finite time.

We now turn our attention to the time complexity of RMMB. The key observation is that
RMMB executes on a backbone of leaders. The contention on the broadcast MAC automaton is
at most ∆(G′

region) = O(1); therefore the relevant delay functions, fack and fprog, both evaluate to
constants.

For the following theorem, we assume a bound on the rate of of arrive events at individual
processes. Specifically, we bound the rate of arrive events at each process at O(1/Fack)—preventing

7The rcv((m, r))i inputs describes a message (m, r) arriving from the MAC layer at i.
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any process from having more than a constant number of messages in its arrive queue at any one
point.

The bound presented below improves the BMMB by removing the Fack and Fprog as multiplicative
factors on k and D(G), respectively.

We note that our restriction on arrival rates would not change the bound for the original BMMB
protocol (increased message arrivals is captured by K(m)). In the regionalized setting, however,
without this restriction we would have to complicate our analysis to take into account the possible
sizes of the arrive queues of non-leader processes. For faster arrival rates these queue sizes would
increase our time bound, perhaps toward infinity as the execution continues and queues continue
to grow faster then they can be emptied. Even with no arrival rate bound, we can still show
that with a simple improvement (the leader acknowledging collect messages using a separate MAC
automaton), some messages will arrive at the leader every Fprog time if there are any messages to
be sent. This style of analysis might lead to a theorem that captures a bound on throughput, not
the fate of a specific message. It remains interesting future work to formalize such bounds.

Finally, as before, we use b to describe the number of bits required to describe the id space.

Theorem 6.2. Let k be a positive integer and α be an MMB-well-formed execution of the RMMB
protocol composed with three MAC automata and a network. Assume that an arrive(m)i event oc-
curs in α. If |K(m)| ≤ k then the length of the interval between arrive(m)i and the last deliver(m)j

is O
(
max{b(F+

prog + εa), Fack}+ D(G) + k
)
.

Proof. We apply Theorem 3.2 to BMMB running on the leaders to get a bound on the interval
from when m arrives at a leader until the final deliver(m) at a leader. We then modify this bound
to take into account the time required for m to move between non-leaders and leaders.

Let j be the process that is elected leader in i’s region. Let π be the later of the following two
events: m being received (or arriving in the case i = j) or CRLE completes. By Theorem 3.2, the
interval between π and the last deliver(m) event at a leader is at most (D(G) + 2k − 2)Fprog +
(k−1)Fack. We can improve this further by observing that on the broadcast MAC automaton only
the leaders broadcast. This constraint improves the parameters passed to fprog and fack to be no
larger than ∆(G′

L), where G′
L is the subgraph of G′ including only leaders. By the definition of

a regionalized network, ∆(G′
L) = O(1), therefore we replace Fprog and Fack with two O(1) terms

yielding a bound that is O (D(G) + k).
We now increase the bound to include the time that might elapse between arrive(m)i and π.

There are two cases. If π describes m being received by j, then by our arrival rate assumption
when the arrive(m)i occurs, the size of the arrive queue at i is O(1). We apply the same argument
as for claim (c) from the proof of Lemma 3.3 to establish that m arrives at the leader in i’s region
within O(Fack) time.

If on the other hand π describes CRLE completing then by Theorem 5.3 this requires O
(
b · (F+

prog + εa)
)

time. In either case the time is at most max{b(F+
prog + εa), Fack}.

We increase the bound further to include the time that might elapse between the last deliver(m)
event a leader and the last deliver(m) at any process. Consider the deliver(m)l event for any
leader l. At this point in the execution l has at most k messages ahead of m in its broadcast queue.
Because the contention on the broadcast MAC automata is constant l will broadcast and receive
an ack for m in O(k) time. (Notice, it follows that non-leader processes receive the broadcast
messages automatically simply by being in the same region as a leader that broadcasts.) This
does not change the asymptotics of our bound, leaving us with a result that matches the theorem
statement.
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7 Adapting RMMB for Mobile Networks

Our previous results assumed static networks. Here we adjust RMMB to tolerate (bounded) mo-
bility. The original RMMB protocol was comprised of three sub-protocols: leader election, collect,
and broadcast. Our mobile RMMB protocol uses the same structure, with these sub-protocols
modified as needed to accommodate mobility. As before, we make use of leader election, collect,
and broadcast MAC automata. We now include a fourth MAC automaton called leader-ack used
by the collect sub-protocol in addition to the collect automaton.

7.1 The Region Exit Bound

We assume each process maintains a region exit bound state variable which in all execution states
contains a time value no later than the time when the process will next exit the current region.
We assume that while a process remains within a region, this value does not change. In some
settings, enough information might be available to calculate a non-trivial bound (e.g., as a function
of velocity and position); in other cases, such information might not be available. However, even
without any information on process mobility, the constraints of the bound can be trivially satisfied
by setting the variable equal to the current time upon first entering a region.

We continue by describing each of the sub-protocols used by our mobile RMMB protocol.

7.2 Mobile leader election

Our mobile leader election sub-protocol should satisfy the following properties in any given execu-
tion α. There exist two time bounds t1 and t2, such that, for every region r: (a) at every point
in α, there is at most one leader in r; (b) if at every point in α, there is some process in r whose
region exit bound is at least t1 greater than the current time, then there is always a leader in r;
and (c) for every process j that transforms from leader to not leader while in r, the exit bound of
j in r is less than t2 beyond the current time when the transformation occurs.

Below we describe the modified leader election sub-protocol of RMMB. In the following, let
tCF = tCRLE + tFLRE , where tCRLE describes the time required to complete an instance of CRLE
and tFLRE describes the time required to complete an instance of FRLE.

The t-Mobile Leader Election Sub-Protocol.
In the t-mobile leader election sub-protocol, for some time bound t, each process i runs the
leader election sub-protocol from RMMB with the following mobility-inspired modifications.
Process i now runs CRLE continuously, launching a new instance immediately following the
global completion of the previous. (Recall that an instance of CRLE requires a fixed amount
of time, so all processes are trivially synchronized.) At the beginning of each TDMA slot s
in a given instance of CRLE, i executes the (reg(loc(i)), ε)-FRLE sub-protocol, for some fixed
constant ε, if and only if reg(loc(i)) ∈ s. It does not join ongoing instances of FRLE when
entering a new region in the middle of a slot. In addition, instead of using its own id in the
sub-protocol, i calculates and uses a leader id (lid) which is a triple (`, x, i), where ` is a boolean
flag. The flag ` is set to 1 if and only if: (a) i is currently the leader in the region; and (b) its
exit bound is at least max{t, tCF } beyond the current time. The value x encodes the region
exit bound for i at this point. Process i calculates its lid at the beginning of a slot and uses
that same lid throughout the FRLE instance.

Mobile leader election satisfies desired property (a) by the safety of FRLE and the restriction
that processes execute FRLE only if they are in the region at the beginning of the corresponding
slot. Property (b) is satisfied for t1 = tCF . To see why, consider any region r, and the first TDMA
slot for r. By assumption, at least one process knows it will be around for at least tCF more time.
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Because the lid encodes this dwell time, and FRLE favors higher ids, then the leader elected will
remain in the region for at least tCLRE additional time (tCF = TCRLE + TFRLE , and tFRLE was
used by the slot)—enough to make it to the end of the next slot for this region. At the beginning
of this next slot, there will be at least one process remaining with an exit bound at least tCF in
the future. If the leader also has at least this much dwell time, it will remain leader and remain in
the region until the next election, otherwise, a new process will be elected leader that will remain
in the region until the next election. The argument can be extended to all slots. Finally, we note
that property (c) holds for t2 = max{t, tCF }.

7.3 Mobile Collect

Our mobile collect sub-protocol should satisfy the following property in any given execution for a
particular function fcol from natural numbers to positive reals: (a) if an arrive(m)i event occurs
for some process i in region r with leader j, such that i’s arrive queue is of size q at this point,
and both i and j remain in r for at least fcol(q) time after the event, and j remains a leader during
this time, then within this interval m is removed from i’s arrive queue and added to j’s broadcast
queue.

Below we describe the modified collect sub-protocol of RMMB.

The Mobile Collect Sub-Protocol.
In the mobile collect sub-protocol each process i runs the collect sub-protocol from RMMB with
the following mobility-inspired modifications. For every arrive(m)i event occurring at some time
t, we label m with a timestamp (t, k, i), where k describes the number of arrive events that
occurred at i at time t before this event. We add the labelled message to the arrive queue which
we now maintain sorted lexicographically on the timestamps. In addition, we now require each
leader to send an acknowledgement message for each message received from a non-leader. The
leader can use the leader-ack MAC automaton for these acknowledgements. (Because contention
on this MAC automaton is constant, these acknowledgements can be sent and received fast.)
A non-leader receiving an acknowledgement message from a leader removes the message from
its arrive queue. It also aborts the broadcast of this message if it has not already received a
corresponding MAC ack. A non-leader continually rebroadcasts the message at the head of its
queue (waiting for a MAC ack before broadcasting again) until it receives an acknowledgement
from a leader.

Mobile collect satisfies desired property (a) for fcol(q) = Fack · (q + 1).
Notice, that if only process i is broadcasting on the collect automaton, this function can be

improved to O(Fprog · (q + 1)), as the leader’s acknowledgements arrive in O(1) time on the leader-
ack MAC automaton.

7.4 Mobile Broadcast

Our mobile broadcast sub-protocol should satisfy the following property in any given execution for
a particular function fbcast from natural numbers to positive reals: (a) if m is added to a broadcast
queue of length q at leader process i in region r, and this process, as well as the leaders of all regions
neighboring r at this point, remain leaders for fbcast(q) time, then by the end of this interval m
has been removed from i’s broadcast queue and has been present in the broadcast queue of some
leader in each region neighboring r at some time by the interval’s end. (Notice, this property is
satisfied even if a former leader in a neighboring region had m in its broadcast queue a long time
before i added m to its queue. Informally, it says that for each neighboring region r′, either i gets
m to the current leader of r′, or this leader, or a former leader in r′, has already received m.)

Below we describe the modified broadcast sub-protocol of RMMB.
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The Mobile Broadcast Sub-Protocol.
In the mobile broadcast sub-protocol each process i behaves the same as in the broadcast
sub-protocol of RMMB with the following mobility-inspired modifications. Process i keeps the
broadcast queue sorted on the timestamps added to each message by mobile collect. If i is a
leader then becomes a non-leader, it empties the contents of its broadcast queue into the arrive
queue used by its collect sub-protocol. If i is a non-leader and then becomes a leader, it empties
its arrive into its broadcast. In both cases it sorts the resulting non-empty queue as usual.
Process i can deliver any broadcast message it receives that it has not yet delivered.

Property (a) is satisfied for some fcol(q) = Θ(q), as each message on a broadcast queue requires
only a constant amount of time to be sent from a leader to its neighboring leaders.

7.5 The Mobile RMMB Protocol

We combine the sub-protocols described above to generate the mobile RMMB protocol. Below we
prove a preliminary theorem that proves RMMB solves the MMB problem under a certain set of
constraints on the rate of arrive events and the mobility of nodes.

In the following, we say a network is T -stable, for some nonnegative real T , if and only if every
process calculates an exit bound at least T past the current time upon entering a new region, and
for all regions and for all times there exists at least one process with an exit bound at least T past
the current time. We also reference the tCF time bound defined in our discussion of the mobile
leader election sub-protocol. In the following, we use the constant D to refer to the maximum
diameter over all G and all executions of the network.

We begin with a key lemma which we use to prove the more general theorem that follows.

Lemma 7.1. Let k be a positive integer and X be a nonnegative real. Let α be a MMB-well-formed
execution of the mobile RMMB protocol, composed with four MAC automata and a regionalized
(2X + max{X, tCF })-stable network, with X + tCF passed as the parameter to the mobile leader
election sub-protocol.
Assume an arrive(m)i event occurs in α at time t, there are at most k messages with timestamps
smaller than m in process arrive and broadcast queues over all states labelled with time t, and
X ≥ kFack. It follows that a deliver(m)j event occurs for all j by time t + (D + 1)2X + X.

Proof. We first establish the following three claims:

1. At all points in α, there exist no more than k messages ahead of m in any broadcast or arrive
queue.

2. At all points in α, and every region r, there is a leader r that has at least X time left in the
region.

3. If a message m arrives at a leader in region r at time t′, then for every neighboring region r′,
at some time t′′ ≤ t′ + 2X a leader in r′ receives m.

Claim 1 follows from our theorem assumption which states that at most k messages with smaller
timestamps than m are in process queues in any state labelled with time t. Any messages that
arrive after time t will have a later timestamp, and because the queues are sorted by timestamps,
they will be placed behind m.

To prove the first part of claim 2—that there is always a leader—we defer to property (b) of
the leader election sub-protocol. To prove the second part—that this leader has at least X time
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left—fix some leader i in some region r at some point in α. Consider the last leader election TDMA
slot for r. Let t′ be the time this election began. We know i won this election. There are two cases
for i’s victory.

In the first case, i had its high order lid bit set to 1. By the definition of the leader election
protocol, and the parameter specified in the theorem statement, i keeps this bit at 1 only if it had
an exit bound value of at least t′ + tCF + X at the beginning of the slot.

In the second case, no process executed FRLE with the high order bit set to 1. Here, FRLE
favors the process with the highest exit bound at the beginning of the slot. By assumption, at least
one process has a bound of t′ + (2X + max{X, tCF }) > t′ + tCF + X, at this point. Therefore, if i
won, its bound was at least this large. In both cases, because no more than tCF time has elapsed
since the beginning of the last election, process i has at least X time left in the region.

To prove claim 3, consider a leader i that receives m in r for the first time at time t′. If i remains
leader for the next X time, this is sufficient for i to clear its broadcast queue and successfully
broadcast m. (Recall: X = kFack, and by our first claim, at most k messages can get ahead of m
in the queue.) By our second claim, there is always a leader in every neighboring region, so there
will be some leader process in each region to receive m when the broadcast occurs.

On the other hand, if i loses its leadership at some time t′′ ≥ t′, before broadcasting m, its
broadcast queue transforms into an arrive queue. The new leader in the region, which we label
j, has an exit bound of at least t′′ + (2X + max{X, tCF }). By our second claim, we know i will
remain in this region for at least X more time after losing its leadership—enough to finish clearing
its queue and get m to j. Leader j still has more than X time as leader at this point, enough time
to clear its broadcast queue and broadcast m. The total time for i to get m to j is X, and the
total time for j to broadcast m is also bounded by X, providing the needed 2X.

With our claims established, we can now finish the proof. Consider the arrive(m)i event from
the lemma statement. Within X time the message m arrives at a leader’s broadcast queue. We
then repeatedly apply the third claim from above to show that the message arrives at, and is
subsequently broadcast by, a leader in every region within (D + 1)2X additional time.

Now consider some arbitrary process j and the interval of length less than or equal to X + (D +
1)2X between the arrive(m) event and the message being received and broadcast by every leader.
During every point of this interval, label each region r as done if and only if m has been received
by a leader in r either from a neighboring leader or a process in r. Consider the first point at which
j inhabits a region labelled done. There are two cases. The first case is that j is in a region r that
transforms from not done to done. Here, m is coming from a neighbor or a process in r, meaning
that j will also receive (and subsequently deliver) message m. The second case is that j moves
from a region r′ that is not done into a region r that is done. At this point, the leader in r has
not yet broadcast m (if it had, we would be in the first case with respect to r′). By our stability
assumption, j remains in r for longer than the 2X upper bound on the time required for the leader
in r to broadcast. When this broadcast occurs, j will receive (and subsequently) deliver message
m.

We conclude with a theorem capturing a particular restriction on arrive-rates that ensures mobile
RMMB solves the MMB problem:

Theorem 7.2. Let k be a positive integer, Fmax
ack and tmax

CF be nonnegative reals, and T = (D +
1)2kFmax

ack + kFmax
ack . If we restrict the rate of arrive events such that no more than k such events

happen in any interval of length T , and consider only regionalized (2kFmax
ack + max{kFmax

ack , tmax
CF })-

stable networks with Fack ≤ Fmax
ack , and tCF ≤ tmax

CF , then the mobile RMMB protocol, executed with
kFmax

ack + tmax
CF passed as the parameter to the mobile leader election sub-protocol, solves the MMB

problem.
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Proof. We can show by induction on message arrival events that for each arrive(m) we satisfy the
queue size constraint needed by Lemma 7.1—thus ensuring the delivery of m to all processes.

In more detail, order the arrive events by their timestamps. We can describe them as an ordered
sequence e1, e2, .... For each ei, let m(ei) be the message associated with the ith arrive event in this
order, let t(ei) be the time at which this arrive occurred, and let q(ei) be the number of messages
with smaller timestamps than m(ei) in queues in any state labelled with time t(ei).

Our inductive hypothesis for a given i > 0 states that for all j, 1 ≤ j ≤ i, q(ej) ≤ k. (Notice, this
tells us that each satisfies the constraints of Lemma 7.1 for this k and will therefore be delivered
to all processes, and thus cleared out of all queues, in T time.)

To prove the inductive step for i + 1, given the hypothesis holds for i, we first note that there
are no more than k − 1 events ej such that j ≤ i and t(ej) ≥ t(ei+1)− T . If k such events existed
we violate the theorem assumption (this would be an interval of size T with k + 1 arrive events.)
However, for events that took place more than T time before ei+1 by our hypothesis and Lemma 7.1
they would have delivered and cleared out of the system before ei+1. It follows that q(ei+1) ≤ k,
as needed.

Finally, we note that the base case is trivial for i ≤ k.

8 Future Work

The abstract MAC layer approach to studying radio network algorithms generates a variety of
interesting open questions and future work, for example, the study of additional basic communica-
tion primitives such as neighbor discovery and unicast communication, and the exploration of more
advanced protocols, such as the construction of spanning trees or dominating sets without the use
of location information. It would also be interesting to study additional questions and extensions
to the MMB problem, such as the formulation of general throughput bounds or calculating the
costs of adding sender acknowledgements.

Improvements to the formalism itself provide another important area of study. An obvious
modification is to replace the deterministic delay functions with probability distributions, allowing
for more advanced analysis of the system’s probabilistic behavior. Another direction to investigate
is adding edge weights to the communication and interference graphs, allowing for more subtle
distinctions in the definition of interference. Such improvements will likely prove necessary for
the successful modeling of basic radio network models such as those that make use of signal to
interference-plus-noise ratios (SINR).

It is also important to study definitions of the abstract MAC layer that allow some properties
to fail. For example, consider a natural variant of the model that sometimes generates acknowl-
edgements even though some neighbor(s) did not receive the message. Can we design protocols
that degrade gracefully under such failures—perhaps always maintaining safety and relying on the
correct acknowledgements only for liveness?

In addition, this new model introduces new questions concerning fundamental limitations: what
can and cannot be solved using an abstract MAC layer, and under what conditions? Such lower
bounds can concern both high-level problems—e.g., is BMMB an optimal MMB solution for a static
network with no location information—and low-level distributed computation—e.g., is it possible
to break symmetry if the amount of possible contention, and therefore the amount of potential
delay before an acknowledgement, is unknown?

Finally, it will prove useful to analyze specific MAC layer strategies for specific radio network
models, providing concrete definitions for the delay functions. This work can span from the formal-
ization of existing strategies, like the decay approach described in Section 2.3, to novel strategies
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such as those based on network coding.
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