MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

Technical Report No. 956 August, 1988

Dependency-Directed Backtracking
in Non-Deterministic Scheme

Ramin Zabih

Non-deterministic LISP can be used to describe a search problem without specifying
the method used to solve the problem. We show that SCHEMER, a non-deterministic
dialect of SCHEME, can support dependency-directed backtracking as well as chronological

backtracking. Full code for a working SCHEMER interpreter that provides dependency-di-
rected backtracking is included.

This is a greatly revised version of a thesis submitted to the Massachusetts Institute of Technol-
ogy Department of Electrical Engineering and Computer Science on January
fulfillment of the requirements for the degree of Master of Science,

Draft of August 19, 1988 22:13

2, 1987, in partial

Dependency-Directed Backtracking in Scheme 1

1. Introduction

Many problems in Artificial Intelligence involve search. SCHEMER is a non-
deterministic dialect of LISP which can be used to formally define search problems.
Dependency-directed backtracking is a sophisticated strategy for solving search
problems. We describe how to apply dependency-directed backtracking to search
problems defined in SCHEMER.

We begin by describing the SCHEMER language. We next provide an overview of
dependency-directed backtracking and list its requirements. We then show how to
meet these requirements in interpreting SCHEMER. This demonstrates the possibility
of applying sophisticated search algorithms and search heuristics to any search
problem which can be defined abstractly in non-deterministic LISP. In the final
section we suggest that other search techniques which might be applied to arbitrary
search problems defined in non-deterministic LISP.

2. SCHEMER

We view non-determinstic LISP as a formal language for defining search prob-
lems. More specifically, we are interested in search problems that are defined as
programs in a particular dialect of non-deterministic functional LISP called SCHEM-
ER. The language SCHEMER is based on the LISP dialect SCHEME [16]. SCHEMER
consists of functional, normal-order SCHEME plus McCarthy’s ambiguous operator
AMB [13], and the special form (FAIL).

The semantics of SCHEMER will be introduced informally here, mainly by ex-
ample. The formal semantics of a subset of SCHEMER are given in Appendix 1 of [6].

.... e

diverges.

The function AMB takes two arguments and non-deterministically returns the
value of one of them. SCHEMER expressions involving AMB can thus have different
possible executions, depending upon which values the AMB’s return. The expression
(AMB 0 (+ 1 2)) for example has two possible executions; one in which the AMB
returns the value of its first argument, and one in which the AMB returns the value
of its second. The possible executions give a SCHEMER expression a set of possible
values. The two possible executions for the expression (AMB 0 (+ 1 2)) produce the
values 0 and 3; (AMB 0 (+ 1 2)) therefore has the possible values {0,3}.

Some possible executions might evaluate (FAIL); such executions are said to
fail. More precisely, they do not contribute a possible value to the set associated
with the expression. For example, the expression (AMB 0 (FAIL)) has two possible
executions. However, this expression has only one possible value; the set associated
with the expression is {0}. In general, the possible values of a SCHEMER expression
consist of the results of all possible executions of that expression which do not fail
(or diverge).

In the program below, the possible values of the expression (ANY-NUMBER) are
the non-negative integers {0,1,2,...}.

Dependency-Directed Backtracking in Scheme ! 2

(DEFINE ANY-NUMBER
{LAMBDA ()
(AMB 0 (1+ (ANY-NUMBER)))))

The possible values of (ANY-PRIME) are the prime numbers {2,3,5,7,11,...}.

(DEFINE ANY-PRIME
(LAMBDA ()
(LET ({NUMBER (ANY-NUMBER)))
(IF (PRIME? NUMBER)
NUMBER
(FAIL)))))

There are many possible executions of the expression (ANY-PRIME); there is a possible
execution for every value that (ANY-NUMBER) mjghr. return. The possible executions
in which the value of (ANY-NUMBER) is not prime fail, while the possible executions
in which the value of (ANY-NUMBER) is prime return that value.

The above procedure is an example of general generate and test. Many search
problems can be viewed as the problem of finding possible values for an expression
of the form:

(LET ((CANDIDATE (GENERATE)))
(IF (TEST? CANDIDATE)
CANDIDATE
(FAIL)))

Constraint satisfaction problems [14], for example, can be written as generate and
test procedures in this manner.

A SCHEMER expression can be viewed as defining a search problem. The
search problem is to find the possible values of the expression, i.e., the results
of all non-failing possible executions. The idea of expressing search problems in a
non-deterministic language is not new; see [7] for a review of previous work along
these lines. Qur emphasis, however, is on applying sophisticated search algorithms
to problems defined in SCHEMER. In particular, we are interested in applying de-
pendency-directed backtracking.

3. Dependency-Directed Backtracking

Dependency-directed backtracking is a general search strategy invented by
Stallman and Sussman [18]. We will define it as a technique for pruning search

trees. Consider an arbitrary search tree generated by some particular search. The

Dependency-Directed Backtracking in Scheme

f t¢ ¢f t¢ ¢¢ ¢Ff 3¢ ¢ ¢

Figure 1. A search tree with one solution. Failures are labeled “f".

f

Dependeuncy-Directed Backtracking in Scheme

m= 0 m
.. -
- 2N 0
- Z
.
- X7 0

{C,

Figure 2. The same search tree after labeling and dependency analysis. Capital
letters are labels. Dependency analysis is shown only for the leftmost failure.

Dependency-Directed Backtracking in Scheme 5

leaf nodes of the search tree will be candidates. These candidates are either solu-
tions to the search problem, or they are failures. Such a tree 1s shown in Figure 1;
failures have been labeled with the letter “f”.

Dependency-directed backtracking is a technique for identifying unsearched
fragments of the tree which cannot contain solutions. This is done by augmenting
the search tree with two pieces of information from the search problem. First, the
non-root nodes must be assigned labels. Each label represents a statement that is
known to be true of all leaf nodes beneath the labeled node (a label on a leaf node
represents a statement that is known to true of that leaf). Second, each failing
leaf node must be associated with a subset of the set of labels that appear at or
above that leaf. The process of assigning sets of labels to failing leaf nodes is called
dependency analysis.

Labeling and dependency analysis on the tree shown in Figure 1 might result
in the tree shown in Figure 2. (Note that dependency analysis must produce a
set of labels for each failure; to make the figure simpler, the set is only shown
for the leftmost failure.) Suppose, for example, that the above tree represents the
search for a coloring of a graph such that adjacent vertices have distinct colors, and
suppose that n is a vertex in the graph. In this case the label A might represent the
statement that n is assigned the color red. All candidate colorings at or beneath
the search node labeled A would color n red.

The leftmost leaf node in the tree of Figure 2 has been assigned the set of labels
{C,E}. This means that the failure was “caused” by the labels C' and E. More
specifically, it means that every leaf node which js beneath both a node labeled ¢
and a node labeled E is guaranteed to be a failure. Such a set of labels is called a
nogood. For example in a graph coloring problem C may represent the statement
that p is colored red and E may represent the statement that m is colored red, and
we may know that no solution can color both p and m red.!

Nogoods can be used to prune fragments of the search tree, In the above tree
the nogood {C,E} prunes the first and second leaf nodes (counting from the left)
as well as leaf nodes nine and ten. These represent about a quarter of the search
tree. If the nogood had consisted of {C}, it would have pruned about half of the
entire search tree. If M and NV are two distinct nogoods such that M c N, M will
prune a larger fragment of the search tree than N.

More formally, let V be a nogood, i.e. a set of labels. We say that NV prunes a
node in the search tree if every label in the set N appears at or above that node.
Dependency-directed backtracking maintains a set of nogoods, and never looks at
nodes that are pruned by a nogood in this set. When the search process examines
a leaf node that turns out to be a failure, dependency analysis is used to generate
a new nogood; this is added to the set of nogoods and the process continues.

A particular method of node labeling and dependency analysis is called sound

!One need not assume that a single nogood is generated at a failure; multiple nogoods
are also possible. However, they can be treated in much the same way, and so we will
focus on single nogoods for simplicity.

Dependency-Directed Backtracking in Scheme 6

if the nogoods associated with failures only prune failures; solutions should never
be pruned. The labels above a candidate provide a set of statements about that
candidate. If the candidate is a failure, dependency analysis is required to determine
the labels (statements) which were responsible for the failure. This process can be
viewed as localizing the failure; however, it must be done with care to avoid creating
unsound nogoods. For example, if dependency analysis on the leftmost failure in
Figure 2 overlooked the contribution of C, a nogood consisting of {E} would be
created, which would discard the only solution.

3.1 Selective backtracking and lateral pruning

Because of its tree-pruning, dependency-directed backtracking need not search
the entire tree to find the solutions. When the search process comes to a failure, it
might not backtrack to the most recent choice; dependency-directed backtracking
sometimes skips over irrelevant choices. Consider the leftmost failure in Figure 2.
Exhaustive left to right depth first search would backtrack to the most recent choice
(which happens to be labeled F'), and would next visit the second failure from the
left. Dependency-directed backtracking, however, will use the nogood {C,E} to skip
back over the most recent choice. Instead, it will backtrack to the choice before that
(the second most recent, which happens to be labeled C). It will thus avoid the
second failure from the left entirely.

When a failure node is found in the search process one is always justified in
backtracking to the first node which is above some member of the generated nogood
set. The process of backtracking to some choice other than the most recent one
will be called selective backtracking. It is easy to see that selective backtracking is
a kind of pruning.

Selective backtracking accounts for some of the pruning done by dependency-
directed backtracking, but not all. The nogood created at a failure is also recorded
for later use and can prune parts of the search tree that are laterally distant from
the original failure. (We will say that two nodes in the search tree are laterally
distant if neither is a descendant of the other.) This second kind of pruning can
occur when the same label appears down different branches of the search tree. In
Figure 2, the labels C' and E appear above the ninth failure from the left (among
others); the originating failure is the leftmost one, which is laterally distant. We
will call this behavior lateral pruning.

Some researchers have constructed systems which perform selective backtrack-
ing but not lateral pruning. In some cases lateral pruning is ineffective because a
given label never appears down more than one branch of the search tree. Even if
a given label can appear on more than one branch, lateral pruning may still lead
to a less efficient search procedure; lateral pruning, unlike selective backtracking,
requires storing and accessing a potentially large set of nogoods. On the other
hand, there are cases where lateral pruning eliminates very large fragments of the
search space. The next section shows that full dependency-directed backtracking,

Dependency-Directed Backtracking in Scheme ’ 7T

with both selective backiracking and lateral pruning, can be applied to any search
problem defined in SCHEMER.

4. Dependency-Directed Backtracking for SCHEMER

Finding the possible values for a given SCHEMER expression involves searching
the possible executions for ones which do not evaluate (FAIL). The search has an
associated binary search tree; each branch in the search tree corresponds to selecting
either the first or second argument as the value of a particular AMs expression.
The leaf nodes of the search tree correspond to possible executions; each possible
execution either produces a value or fails.

Once can solve an arbitrary problem defined in SCHEMER by searching all possi-
ble executions of the given SCHEMER expression in a brute force manner. It is more
difficult, however, to apply dependency-directed backtracking to such a search prob-
lem, as this requires a way of labeling the search tree and performing dependency
analysis on the failures, This must be done in such a way that the induced pruning
1s sound; no possible values should be eliminated via pruning. Furthermore, to al-
low lateral pruning, it must be possible for the same label to appear down different
branches of the search tree.

Recall that a label on a node in a search tree represents a statement that is
true of all candidates under that node. We will label SCHEMER search trees with
statements of the form “AMB-37 chooses its first argument” where AMB-37 refers to
a particular occurrence of AME in the expression. Such a statement will hold of
the possible executions underneath this label. In general, to label the search tree
we need to name particular occurrences of AMB in the expression. We will call an
AMB expression that has been given a name, like AMB-37, a named AMB (in this case,
named AMB number 37).

Figure 3 shows how dependency-directed backtracking can be used to find the
possible values of the following expression.

(LET ((X (AMB 2 (AMB 3 4)))
(Y (AMB 5 6)))
(+ XY (IF (= Y 5) (FAIL) 2)))

This expression has the possible values {10,11,12}. At the top of the figure is
a new version of this expression, where the AMB’s have been given names. The
corresponding search tree is shown beneath.

The non-root nodes of the search tree have been labeled with statements about
particular AMB’s choosing their left or right arguments, and dependency analysis has
been performed on the leftmost failure. The label AMB-37-L, for example, represents
the statement that the AMB expression AMB-37 chooses its first (left) argument, while
the label AMB-37-R represents the statement that AMB-37 chooses its second (right)
argument. In this tree the failure of the leftmost node is caused by the fact that

Dependency-Directed Backtracking in Scheme

5
(LET ((X (AMB-37 2 (AMB-38 3 433}
(Y (AMB-39 5 8)))
(+ XY (IF (= Y 5.] (FAIL) 2)))
AMB-37-L AMB-37-R
AMB-39-L AMB-39-R AMB-35-R

f 10
{AMB-39-L}

AMB-39-L AMB-33-R AMB-39-L AMB-39-R
f 11 f 12

Figure 3. A SCHEMER expression with named AMB’s, and its labeled search tree.
Dependency analysis is shown for the leftmost failure.

Dependency-Directed Backtracking in Scheme 9

AMB-39 chose its first argument. The nogood consisting of the single label aMB-39-L
prunes the first, third and fifth leaf nodes. It should be clear from the SCHEMER
expression that any possible execution in which AMB-39 chooses its first argument
will fail.

In order to label the search tree for an arbitrary SCHEMER expression, we must
first name the AMB’s. This turns out to be surprisingly difficult. We will devote most
of this section to solving this problem, returning to dependency analysis at the end.

4.1 Named AMB’s and Equivalent Expressions

The obvious technique of naming each occurrence of AMB and then deriving
labels in the search tree from these names works on the example we showed in
Figure 3. However, it is unsound in general. This is because an occurrence of AMB
inside a lambda expression may lead to several semantically distinct choice points.
A single occurrence of AMB inside a lambda expression therefore cannot be given a
single name.

For example, consider the expression

(LET ((BIT-GENERATOR (LAMBDA () (AME 0 1))))
(+ (BIT-GENERATOR) (BIT-GENERATOR)))

There is only one occurrence of AMB in the above expression but there are two
independent choices to be made in determining a possible execution, and thus four
possible executions. The above expression has the possible values {0,1,2} (two of
the possible executions yield the value 1). Because the single occurrence of AMB
generates two independent choices, it would be unsound to give this occurrence a
single name.

Our approach to this problem will be to convert a SCHEMER expression into
an “equivalent” expression which is “fully named”. The notion of equivalence for
expressions and the notion of a fully named expression are defined more precisely
below.

Formally, 2 named AMB is a symbol of the form AMB-n where n is a natural
number. Let E be a SCHEMER expression which contains named aMB's. The set of
possible values of E is defined in much the same way that the set of possible values
for a SCHEMER expression are defined. However, we require that in any possible
execution all occurrences of the same named AMB are consistent, i.e. they either
all choose their left argument or they all choose their right argument.? We say
that two expressions E; and E; are equivalent if they have the same set of possible
values.

We can now give some examples of converting a SCHEMER expression into an
equivalent expression where every AMB has been given a name. The expression

2This will be made more precise in Section 4.2.

Dependency-Directed Backtracking in Scheme 10

((LAMBDA (G) (+ (G) (G))
(LAMBDA () (AMB 0 1))))

is equivalent to the expression

(+ (aMB-40 0 1) (AMB-41 0 1))

Both of these expression have the possible values {0,1,2}. The two arguments
to + represent different, independent choices, and may have different values. This
example suggests that if we eliminate applications of lambda expressions by 3-
substitution, it is then possible to name the AMB's correctly.

However, consider the expression

(C(LAMBDA (X) (+ X X))
(AMB 0 1))

which is equivalent to

(+ (AMB-42 0 1) (AMB-42 0 1))

Both of these expressions have the possible values {0,2}. The number 1 is not a
possible value because the two arguments to the primitive + must always be the
same. This example suggests that one should S-substitute, but only after giving
the AMB’s names.

However, neither strategy is valid for the following expression. The ‘naming
before 3-substitution’ strategy and the ‘3-substitution before naming’ strategy both
lead to non-equivalent expressions for

(CLAMBDA (G N) (+ (G) (G) W N))
(LAMBDA () (AMB 0 1))
(AMB 2 3))

This expression has three independent choices and is equivalent to

(+ (AMB-43 0 1) (AMB-43 0 1) (AMB-44 2 3) (AMB-45 2 3))
As these example suggest, converting an expression into an equivalent expression
where every AMB has been named is non-trivial,

Our algorithm for converting an expression into an equivalent fully named
expression will be given in Section 4.4. The key idea is to interleave naming and
B-substitution. More specifically, the algorithm recursively names the arguments to
a function before performing 3-substitution.

Dependency-Directed Backtracking in Scheme 11

4.2 Contexts and Fully Named Expressions

An algorithm to name the AMB’s in a SCHEMER expression must meet two sound-
ness conditions.

Equivalence: The resulting expression must have the same possible values as
the original expression.

Full naming: All occurrences of AMB in the resulting expression which corre-
spond to a split in the search tree must be given a name.

If a SCHEMER expression satisfies the second condition, we say that it is fully
named. We will discuss full naming first, returning to equivalence at the end of
Section 4.4.

To define the notion of full naming more precisely, we need some more termi-
nology.

Definition: A SCHEMER expression E is deterministic if it has exactly one
possible execution,

The search tree corresponding to a deterministic expression is, obviously, trivial (as
1t contains only the root node). Not all deterministic expressions have a possible
value; the expression (FAIL), for example, has no possible values, Any expression
which does not involve AMB is deterministic. However there are expressions which
contain occurrences of AMB but are nonetheless deterministic. For example the ex-
pression

(LAMBDA () (AMB 0 1))

has only one possible value: the function of no arguments which, when called, non-
deterministically chooses to return either 0 or 1. The AMB in this expression does
not correspond to a split in the search tree. All lambda expressions in SCHEMER
are deterministic.

The application of a lambda expression, however, may be non-deterministic.
For example consider the expression

((LAMBDA (X) (+ X (AMB 0 1))) 5)

This has two possible executions, depending upon which value the AMB returns. and
therefore has the possible values {5, 6}.

When computing a possible value for an expression which contains named AMB's
one must ensure that a named AMB, say AMB-52, behaves the same way at every oc-
currence: the function AMB-52 either chooses its first argument at every occurrence
or chooses its second argument at every occurrence. This can be modeled by intro-
ducing the functions

(LAMBDA (X Y) X)

which we will write £, and
(LAMBDA (X Y) Y)

written R. We can then ensure consistency by requiring that AMB-52 either denotes
L or denotes R.

Dependency-Directed Backtracking in Scheme 1 12

Definition: An assumptionis a binding of the form AMB-n+f where f is either
the function £ or the function R. A context p is a set of assumptions about
named AMB’s that does not contain two assumptions about the same named AMB,
le. a partial map from the set of named AMB’s to the set {£,R}. If a context p
contains an assumption AMB-n«— f we will define p(AMB-n) = f. For any context
p and expression E we define p(E) to be the result of replacing each named
AMB in E that also appears in p with either the function £ or R as given by p.
If a context p contains an assumption about every named AMB that appears in
E, we will say that p is complete for E.

Definition: A SCHEMER expression E is fully named if for every context p
which is complete for E, the expression p(E) is deterministic.

To find the possible values of a SCHEMER expression, the expression is first
converted to a fully named expression via the algorithm described in Section 4.4.
If the expression is fully named then every AMB that corresponds to a split in the
search tree will be named, and every node in the search tree can be labeled with an
assumption of the form AMB-n«—L. or AMB-n«—TR.

In order to ensure that every AMB occurrence that corresponds to a split in the
search tree is in fact named, the naming algorithm is sometimes forced to perform
infinite B-substitution. To represent such infinite B-substitution the algorithm is
capable of returning an infinite expression. We handle infinite expressions with lazy
S-expressions. Lazy S-expressions, which are analogous to streams [1], delay the
computation of their parts until those parts must be computed. When a portion
of a lazy S-expression is computed, the result is saved. Conceptually, however, the
infinite expression is created in full and returned by the naming algorithm.

4.3 Syntactically Named Expressions

In general it is not possible to determine if a given expression is fully named;
even if the expression is finite, there may be a fragment of the expression which
contains an unnamed occurrence of AMB such that one cannot determine if that frag-
ment will ever be executed. Fortunately, it turns out that there is a simple syntactic
criterion which guarantees that an expression is fully named. This criterion is ex-
pressed in the following definition. It is important to remember that syntactically
named expressions may be infinite.

Definition: A syntactically named expression is any one of the following:
A constant (SCHEME atom),
(FAIL) (i.e. failure),

A lambda expression of the form (LAMBDA (z1...7n) E), where the z;'s
are symbols, E is an arbitrary SCHEMER expression which may contain
both named and anonymous AMB’s,

A primitive application (P E; E,), where P is a SCHEME primitive such
as + and E; and E, are syntactically named expressions,

Dependency-Directed Backtracking in Scheme 13

An expression of the form (AMB-n E; E.) where E, and E, are syntacti-
cally named expressions,

A conditional (IF Epred Eionseq Ealter), where Brgrau; Ecpnaeq and E, .,
are syntactically named expressions.

In a primitive application the function P cannot be a lambda expression. Fully
named expressions are similar to Bohm trees in the lambda calculus [2].

The reason we are interested in syntactically named expressions is that they
are fully named. So if we turn a SCHEMER expression into an equivalent expression
which is syntactically named, we will have succeeded in labeling the search tree while
preserving the possible values of the expression. Formally, we have the following
statement.

Determinism Theorem: If E is syntactically named then E is fully named.
More precisely, if E is syntactically named, then for an complete context p the
expression p(E) is deterministic.

Proof: This theorem can be proved for finite expressions via structural induc-
tion. The theorem is true for constants and failure. As mentioned, lambda
expressions are deterministic in SCHEMER, and so the theorem holds for them.
The remaining cases in the definition of a syntactically named expression can
be proven by assuming that the theorem holds for fully named subexpressions.
To see that the theorem holds for infinite expressions consider a fully named
infinite expression E with more than one possible execution. In this case there
must be some finite subset of E which also has more than one possible execu-
tion. But the above induction shows that finite fully named expressions have
only one possible execution. 0O

The naming algorithm given below will convert a SCHEMER expression into
an equivalent syntactically named expression. The above theorem states that this
process gives names to enough AMB’s so that we can completely label the search tree
for dependency-directed backtracking.

4.4 The Naming Algorithm

We are finally ready to present our naming algorithm. This algorithm con-
verts SCHEMER expressions into equivalent syntactically named expressions. The
algorithm takes as input an expression E, which may already contain some named
AMB’s. Selecting numbers for use in naming AMB’s is done via a global name counter
which is incremented every time a new name is selected. At any point in any
computation the name counter will have a finite value. The potentially infinite ex-
pressions generated by this algorithm are implemented as lazy S-expressions which
are expanded on demand.

ALGORITHM name(E):

1. [Name aMB’s] If E is the symbol AMB, let n be the current value of the global
name counter. Increment the global name counter, and return aMB-n.

Dependency-Directed Backtracking in Scheme 14

2. [Constants] If E is any other atom, or (FAIL), or a lambda expression, then
return E.

3. [Combinations] Otherwise E is an expression of the form (F E; ... En). Let
G = name(F).

3.1. [Simple applications] If G is either a primitive function, a named AMB,
or IF, then return the expression

(G name(E;) ... name(En)).
3.2. [Applying conditionals] If G is a conditional (IF Eored Econseg Eaiter)
then return
(IF Epreq name((Econseq E1 ... En)) name((Egper E1 ... En))).

3.3. [Applying AMB applications] If G is (AMB-n E; E,) then return
(AMB-n name((E; E; ... En)) name((E; E; ... En)))

3.4. [Applying lambdas] If G is a lambda expression
(LAMEDA (z1...z0) E)

let E' be the result of simultaneously replacing each z; in E with name(E;)
under the rules of §-substitution. Return name(E').

To see that this algorithm works, we will apply it to some examples from Section 4.1.
Consider applying the above algorithm to the expression

((LAMBDA (G) (+ (G) (G))) (LAMBDA () (AMB 0 1)))
Step 3.4 will replace G in the body of the first LAMBDA with
name((LAMBDA () (AMB 0 1))).
By step 2 we have
name((LAMBDA () (AMB 0 1))) = (LAMBDA () (AMB 0 1))
Replacing G with this produces
(+ ((LAMBDA () (AMB 0 1))) ((LAMBDA () (AMB 0 1))))
Step 3.4 then recursively names this expression, ultimately yielding
(+ (AMB-40 0 1) (AMB-41 0 1))
which is an equivalent fully named expression.
Another example was
((LAMBDA (X) (+ X X)) (AMB 0 1))

Step 3.4 will replace X in the body of this LAMEDA with name((4MB 0 1)). From the
definition of the algorithm one can see that name((AMB 0 1)) is an application of a
named AMB such as (AMB-42 0 1). Step 3.4 thus generates

(+ (AMB-42 0 1) (AMB-42 0 1))
which is an equivalent fully named expression.

The reader may wish to verify that our naming algorithm also produces the
correct result for the other sample SCHEMER expressions given in this paper.

Dependency-Directed Backtracking in Scheme 15

This naming algorithm turns a SCHEMER expression E into an equivalent fully
named expression. name(E) is fully named because it is a syntactically named
expression. name(FE) is syntactically named because the algorithm returns either
(FAIL), a lambda expression, a named AMB, an application of a named AMB, a condi-
tional expression or an application of a primitive. In particular, the only applications
n name(E') are applications of primitives.

The proof that name(E) is equivalent to B works by induction on the computa-
tion: if we assume that this correctness property holds for each recursive call then
it holds for the overall algorithm. The most interesting case is step 3.4, the applica-
tion of a lambda expression, F-substitution need not be sound when some argument
has more than one possible execution. The following theorem, however, shows that
B-substitution is sound as long as the arguments to the lambda application are fully
named.

Equivalence Theorem: If E is fully named, then performing f-substitution
on the expression

((LAMBDA (X) B) E)

produces an equivalent expression. (Here, B is an arbitrary SCHEMER expres-
sion, possibly containing some named choices.)

Proof: Recall that two expressions are equivalent if they have the same set
of possible values. The set of possible values of any expression G is equal to
the union over all complete contexts p for G of the set of possible values of
the expression p(G). Let C be the application shown above, and let C' be
the result of the substitution (i.e., replacing occurrences of X within B by E
under the rules of B-substitution). To prove the above theorem, therefore, it
suffices to show that for each complete context p for C' the expression p(C) is
equivalent to p(C'). Since F is fully named, p(E) must be deterministic. The
theorem now follows from the fact that in SCHEMER B-substitution is sound if
the argument to the lambda expression is deterministic. 0O

The above theorem depends on the fact that the semantics of SCHEMER are based
on normal order interpretation. If applicative order semantics are used then 3-
substitution is not sound even in the case where the arguments are deterministic.
The expression

(CLAMBDA (F) NIL) ((LAMBDA (X) (X X)) (LAMBDA (X) (X DI
will diverge in an applicative order interpreter, but has the value NIL after substitu-

tion. This demonstrates that S-substitution is unsound for deterministic applicative
order LISP.

4.5 Dependency Analysis

The purpose of dependency analysis is to generate a sound nogood from a
failure. In SCHEMER, a failure is a possible execution of an expression E which
evaluates (FAIL). The labeling process we have described names the AMB's in E.
The labels that appear above a failure will be assumptions; the assumptions above

Dependency-Directed Backtracking in Scheme 16

a failure form a context p. This context determines a possible execution for £ which
fails.

Recall from Section 3 that dependency analysis must produce a subset of the
labels that appear above the failure which forms a nogood. If we can find a subset
of the assumptions in p whose presence in any context guarantees that E fails, we
will have a nogood. To be more precise about this, we again need some terminology.

Definition: A partial context p is said to determine an expression E if for

all contexts p' containing p the expression p'(E) is equivalent (has the same

possible values) as the expression p(E).

Consider a particular failing leaf node in the search tree for a search problem defined
by a fully named SCHEMER expression E. Such a failing leaf node is associated with
a set of assumptions, i.e. a context, p such that expression p(E) has no possible
values. (We will say that p(E) has no possible values if every possible execution of
p(E) fails.)

Dependency analysis must find a subset of p which “caused” the failure. It
suffices to find a subset p' of p such that p' determines E; if p' determines E
then, by the definition of determination, p(E) must be equivalent to p'(E) and any
context which contains p’' will lead to failure. So any subset p' of p such that p'
determines E will be a valid nogood. Of course the subset p' should be made as
small as possible; small nogoods prune large fractions of the search space.

To make this more concrete, let E be the SCHEMER expression shown in Fig-
ure 3. The leftmost failure is the result of the context p = {AMB-37-L, AMB-39-L}.
The subset {AMB-39-L} actually determines the expression; if a context p' contains
{aMB-39-L} then the expression p'(E) has no values.

There is a simple recursive algorithm for dependency analysis in SCHEMER.
For any fully named expression E and complete context p we compute a subset
just(E, p) of the context p such that just(E,p) determines p. If p(E) has no
values then just(E,p) is a nogood which can be used to prune the search.
ALGORITHM just(E, p):

1. [Terminals] If E is a constant, (FAIL), or a lambda expression then just(E, p)
is the empty set 0.

2. [Choices| If E is an application of a named AMB, (AMB-n E; E,.), then
: [{aMB-n—L} U just(Ey, p) if p(AMB-n) = L;
just(B,p) = { {aMB-n—R} U just(E,,p) if p(aMB-n) = R.
3. [Conditionals] If E is a conditional (IF E ..y E.onseq Eatter) then
3.1. [Failure] If p(Epreq) fails, then just(E,p) = just(Epred, p)-
3.2. [False] If p(E,r.q) evaluates to® NIL, then
just(E, p) = just(Ep eq, p) U just(Eaiter, o).

*formally, we should say “has the value, under the standard normal-order LISP evaluation
rules”. p(E,,.q) might be something like ((LAMBDA (X Y) X) NIL).

Dependency-Directed Backtracking in Scheme 1 17

3.3. [True] Otherwise,
just(E,p) = just(Epred, p) U Just(Econseq, 2).

4. [Primitive application] Otherwise, E is a primitive application (P E, E,). If
p(E1) has the value (FAIL), then p(E) also fails and just(E, p) = just(Ey, p).
Similarly, if p(E;) has the value (FAIL) then p(E) fails and just(E,p) =
just(E;, p). Otherwise

juSt(E?pJ = juSt{El !P} Uj'IlSt[Eg,p).

The reader may want to verify that this algorithm produces the nogood {AMB-39-L}
for the leftmost failure in Figure 3.

The last clause in the algorithm makes use of the fact that primitives in SCHEM-
ER are strict in all of their arguments; if any one argument fails then the application
fails. For example, an expression of the form

(+ E (FAIL))

will fail independent of the expression E. This is the major optimization that our
algorithm for dependency analysis performs.

4.5.1 Optimal dependency-analysis is intractable

We mentioned in Section 2 that the smaller a nogood is, the more of the search
tree it will prune. Dependency analysis produces a nogood from a failure. Since
this nogood will be used to prune the search tree, it is should be as small as possible
(subject, of course, to the constraint that a nogood never prunes a solution).

This provides a natural way to evaluate an algorithm for dependency analy-
sis; the smaller the nogoods an algorithm produces, the better that algorithm is.
Furthermore, there is an ideal against which to measure nogoods. At a particular
failure, there will be at least one subset of the labels above that failure that prunes
the largest portion of the search tree without removing any solutions. Such a subset
would be an “optimal” nogood. An ideal algorithm for dependency analysis should
produce an optimal nogood at each failure. Unfortunately, this is impossible.

Undecidability Theorem: The problem of computing the optimal nogood
for a SCHEMER expression is undecidable.

Proof: A SCHEMER expression E fails under all possible executions just in case
the empty set @ is a sound nogood for E. The empty set is the smallest
possible nogood, so- E always fails if and only if {) is the optimal nogood for E.
Determining that an arbitrary SCHEMER expression always fails is undecidable;
this can be proven in any number of ways, but we will do it by reduction from
Post’s Correspondence Problem (see [12]).

We can write a SCHEMER procedure ANY-SEQUENCE which takes a, list of strings
as an argument, such that the possible values of (ANY-SEQUENCE z) are the
sequences constructed from the strings of z. Let our input lists of strings be 4
and B, and consider the following expression.

Dependency-Directed Backtracking in Scheme 18

(LET ((A-SEQUENCE (ANY-SEQUENCE A))
(B-SEQUENCE (ANY-SEQUENCE B)))
(IF (EQUAL A-SEQUENCE B-SEQUENCE)
T
(FAIL)))

The above expression always fails just in case there is no solution to the corre-
spondence problem for the sequences A and B. O

One might doubt the relevance of this theorem, since it relies upon SCHEMER ex-
pression with an infinite number of possible executions. However, determining the
smallest sound nogood is difficult even for expressions with a finite number of pos-
sible executions.

Intractability Theorem: The problem of computing the smallest sound
nogood for a SCHEMER expression is N'P-hard even if the expression has only
a finite number of possible executions.

Proof: The argument is very similar to the above, except that we reduce from
SAT (see [11]) and we are restricted to expressions with a finite number of
possible executions. Let ¥ be the propositional formula Conjunctive Normal
Form whose satisfiability we are trying to determine, and let ¢;,¢2...¢, be
the propositional symbols occuring in ¥. Consider the following expression.

(LET ((w; (AMB T NIL))
(g2 (AMB T NIL))

(en (AMB T NIL)))
(IF ¥

T

(FAIL)))

This expression has only a finite number (in fact, 2™) of possible executions.
Furthermore, it always fails just in case ¥ is unsatisfiable. O

There is much more that could be said about the way that dependency analysis is
done in SCHEMER. It is clearly possible to produce smaller nogoods by, for exam-
ple, adding some knowledge of arithmetic; the algorithm for dependency analysis
described in section 4.5 will claim that the failure of

((LAMBDA (X) (IF (= X X) (FAIL) 23)) (AMB 0 1))
depends upon the value of X, which is clearly irrelevant.

Another way to produce smaller nogoods is to use “nogood resolution”. Sup-
pose we know that both {AMB-39-L, AMB-40-L} and {AMB-39-L, AMB-40-R} are nogoods;

Dependency-Directed Backt racking in Scheme 19

nogood resolution allows us to deduce that {AMB-39-L} is therefore a nogood. No-
good resolution can be viewed as a way of using propoesitional inference to make
smaller (hence, hopefully, better) nogoods from a set of larger ones.

However, producing better nogoods do not necessarily result in better perfor-
mance on search problems. Nogood resolution, for example, can consume consid-
erable computational resources without necessarily reducing the search space very
much. It is an open question whether nogood resolution is actually worthwhile in
practice. It is also simple to add nogood resolution to the dependency analysis
algorithm described above. In the concluding section of this paper, we will sketch a
way of using an arbitrary algorithm for determining CNF propositional satisfiability
with SCHEMER; this includes nogood resolution as a special case.

5. Related Work

SCHEMER can be used to define a search problem without making any commit-
ment as to how that problem is to be solved. We have shown that it is possible to
construct a search mechanism which applies dependency-directed backtracking to
any search problem defined in SCHEMER. An interpreter for SCHEMER which makes
use of the mechanism described in Section 4 has been implemented in SCHEME; it
is contained in [20].

There are several software systems which have been constructed to provide
facilities for dependency directed search. The best known systems include Truth
Maintenance Systems (or TMS’s) [10], deKleer’s consumer architecture [8], and the
language AMORD [9]. These systems require the user to explicitly provide labels and
logical relations which form the basis of dependency analysis. All of these systems
record and use logical implications between data objects which can be viewed as
statements of propositional logic. Furthermore, all of these systems require that the
user give explicit names to propositions, and explicitly state implication relation-
ships between propositions. These systems therefore do not allow for a definition
of the search problem which is independent of the search technique.

The programming langauge PROLOG is similar to SCHEMER in that it allows for
concise definitions of search problems. Furthermore, there has been considerable
work on selective backtracking within the PROLOG community [4] and, more re-
cently, some work on lateral pruning [17]. Using lateral pruning in finding solutions
of a PROLOG search problem is similar to using lateral pruning to find values of
SCHEMER expression. The primary problem in lateral pruning is labeling the nodes
in the search tree so that a given label appears down many different branches.
In both PROLOG and SCHEMER this requires an infinite naming process which is
independent of the search.

Alan Bawden describes a simple SCHEMER interpreter that uses a TMS as a
backend in [3]. Bawden’s interpreter manages to do dependency-directed back-
tracking without using syntactically named expressions, although we believe that
his scheme is quite similar to our own. His interpreter also does some additional

Dependency-Directed Backtracking in Scheme 20

lateral transfer of information that the interpreters presented at the end of this
paper do not.

Some earlier work done by David Chapman as part of the planning research de-
scribed in [5] is closely related to SCHEMER. Chapman attempted to use dependency
directed pruning techniques in a non-deterministic LISP with side effects.

Unfortunately, side-effects complicate dependency analysis by making it too
difficult to show that a certain choice is irrelevant to a failure. In SCHEMER, depen-
dency analysis can be done incrementally. When the variable X is bound to the value
of (F00), all the choices that affect the value of X can be collected incrementally in
the process of evaluating the body of F00, and no other choice can affect the value
of X. In the code below, the AMB shown is always irrelevant to the value of %.

(LET ((X (FOD)))
(LET (({Y (AMB (F) (G))))
{(BAR X Y)))

In the presence of side-effects it is hard to prove that the value of X does not depend
on whether Y is (F) or (G). This is because (G) could side-effect data shared with X.
This makes it difficult to design a method for dependency analysis which is sound
in the presence of side-effects. Sound techniques for dependency analysis in the
presence of side effects seem to yield large nogoods that are not useful for pruning.

6. Conclusions and Areas for Future Research

Our main thesis is that non-derministic programming languages like SCHEMER
and PROLOG provide a way of defining search problems independent of the search
techniques. Furthermore, it is possible to apply sophisticated search techniques such
as dependency-directed backtracking to arbitrary search problems defined in this
way. It should be possible to apply other search strategies to search problems defined
In SCHEMER. We are currently examining ways of applying another sophisticated
search technique, rearrangement search, to arbitrary SCHEMER expressions.

One approach to applying sophisticated search strategies to arbitrary SCHEMER
programs is to first translate a SCHEMER expression E into a Conjunctive Normal
Form formula ¥ in the propositional calculus. This formula should have the prop-
erty that the possible values of E can be determined from the truth assignments
which satisfy ¥. Any technique for finding satisfying truth assignments of a CNF
formula can then applied to the formula ¥. The rearrangement search ideas de-

scribed in [21], for example, can be used in finding the satisfying truth assignments
of .

This is actually more complex than it sounds, because the equivalent formula
need not be finite; instead, the expression E must be incrementally converted into
a formula. Here is an outline of a simple way to accomplish this.

Dependency-Directed Backtracking in Scheme 21

For every named AMB in the expression E, create a proposition ¢ with the
meaning that this AMB returns its first argument: the opposite of this proposition
—¢ will mean that this AMB returns its second argument. Let the set of these
propositions be ®. We will maintain a CNF formula ¥ over the propositions in
P as a list of clauses, initially empty. Note that any complete truth assignment to
the propositions in ® defines a possible execution for E.

We start by picking an arbitrary possible execution of the expression E. Let
us assume this results in failure* . Dependency analysis at this failure produces a
set of assumptions that is a nogood, such as {AMB-0-L, AMB-1-R}. This nogood has
an associated formula over @, in this case wo A ~p1. We can negate this formula to
get a clause, in this case ~pg V ;. We then add this clause to ¥. We will perform
this process every time we examine a possible execution of E; essentially, we will
record all the nogoods in the CNF formula 0.

Now instead of picking an arbitrary possible execution to examine next, we
can pick one whose associated truth assignment is consistent with . If ¥ is un-
satisfiable, then the nogoods that have been discovered so far rule out all possible
executions, and E always fails. Any execution consistent with ¥ is consistent with
all the nogoods that have been discovered so far, and hence might produce a solu-
tion.

This technique allows one to hook up an arbitrary method for determining
propositional satisflability to a SCHEMER interpreter. Unless the method emploved
is quite weak, this will give the effect of nogood resolution (something that the
interpreters in the appendix choose not to do). More importantly, it shows that
quite a variety of search strategies can be used on search problems defined in this
simple, elegant language.

6.1 Acknowledgments

It is difficult to overstate the debt that this research (as well as this author) owes
to David McAllester. It could not have been done without him. David Chapman’s
work on DDL also played a vital role. Gerald Sussman supervised the Master's
Thesis that this paper is based upon.

Numerous individuals helped with this research, but Alan Bawden deserves
special mention. Phil Agre, Jonathan Rees, Mark Shirley, Jeff Siskind. Daniel Weise,
Dan Weld and Brian Williams also contributed useful insights. John Lamping and
Joe Weening read and commented on earlier drafts of this paper.

This paper describes research done at the Artificial Intelligence Laboratory at the
Massachusetts Institute of Technology, supported in part by the Advanced Research
Projects Agency of the Department of Defense under Office of Naval Research con-
tracts N00014-80-C-0505 and N00014-86~-K-0180, in part by National Science Foun-
dation grant MCS-8117633, and in part by the IBM Corporation. Ramin Zabih is
supported by a fellowship from the Fannie and John Hertz Foundation.

4We leave the generalization to the case where there are non-failing possible executions
as an easy exercise for the reader

Dependency-Directed Backtracking in Scheme . 22

Appendix

This appendix contains code for two SCHEMER interpreters, which use chrono-
logical backtracking and dependency-directed backtracking. The code is written in
SCHEME. The purpose of these interpreters is completely pedagogical.

If you wish to play with the code contained herein, you can either re-type it in
yourself or you can obtain it electronically. As of this writing, these sources are avail-
able in the directory “ftp/pub/schemer” on the host “gang-of-four.stanford.edu”.
You can also write to me directly (as “rdz@score.stanford.edu”) if you want to know
the current state of SCHEMER.

There are several things included here besides the actual two interpreters of
interest, in hopes of making things clearer. First there is a simple SCHEME inter-
preter using continuation-passing style. There follows a simple SCHEMER interpreter
which does not do naming, and which uses chronological backtracking. Examining
the differences between these first two interpreters should help the reader under-
stand what I call “continuation-mapping style”, which is used extensively in the
later interpreters.

In a continuation passing evaluator, EVAL takes three arguments: an expression,
an environment, and a continuation (a function of one argument). The contract of
EVAL is to invoke the continuation on the value of the expression in the environment.
In SCHEMER, however, an expression has a set of values. So rather than passing
the value of the expression to the continuation, the job of EVAL is to produce the
stream of possible values of the expression and to MAP-STREAM the continuation over
this stream. The resulting stream is then returned.

Preliminaries

The file trivial.sem contains various support functions needed for all inter-
preters. Of particular interest is the variable *GLOBAL-ENV* which contains the
SCHEME primitives that the various interpreters will support. The absence of pro-
cedures like DISPLAY shows that the code here is didactic rather than practical.

File: trivial.sem

;33 -7~ Mode: SCHEME; Syntax: SCHEME; Package: SCHEME -*-
;i3 Elementary support for various interpreters.
;13 Trivial data types. "Self documenting”.
(define (quotation? obj)
(and (pair? obj) (eq? (car obj) *quote)))
(define (primitive? obj)
(and (pair? obj) (eq? (car obj) ’primitive)))
(define (lambda? obj)
(and (pair? obj) (eq? (car obj) *lambda)))

Dependency-Directed Backtracking in Scheme

(define (self-evaluating? exp)
(or (number? exp) (string? exp) (boolean? expl))

;17 Short names for list selectors
(define second cadr)

(define third caddr)
(define fourth cadddr)

;13 Closures
(define (closure? obj)
(and (pair? obj) (eq? (car obj) ’closure)))

(define (make-closure exp env)
(1ist ’closure exp env))

(define (closure-body c)
(third (second c)))

(define (closure-args c)
(second (second ¢)))

(define (closure-env c)
(third <))

;37 Environment support
;71 Standard top-level environment
(define *global-envs
“((+ (primitive ,+))
(- (primitive ,-))
(* (primitive ,*))
(= (primitive ,=))
(¢ (primitive ,<))
(> (primitive ,>))
(1+ (primitive ,1+))
(not (primitive ,not))
(£.1)
QO

(define (primitive-func prim) (cadr prim))

113 Unbound variable result
(define *unbound* (list ’* ’‘unbound %))

(define (no-binding? result)
(eg? result *unbounds*))

;3: Environment selector and constructor
(define (lookup var env)
(cond ((null? env) *unbounds)
((eq? var (car (car env)))
(cadr (car env)))

23

Dependency-Directed Backtracking in Scheme 24

(else (lookup var (cdr env)))))

(define (bind vars vals env)
(append (map list vars vals) env))

End of trivial.sem

The file streams.sem contains some additional stream support. It assumes that
your implementation of SCHEME provides the following:

CONS-STREAM, HEAD, TAIL, EMPTY-STREAM? and THE-EMPTY-STREAM
If any of these are missing in your implementation you will have to provide them.

An interesting property of the STREAM-APPEND procedure is that if the arguments
in the recursive call are reversed, the resulting procedure appends breadth-first
rather than depth-first. This will make the SCHEMER interpreters that use syn-
tactically named expressions traverse the search tree in breadth-first. rather than
depth-first, order.

File: streams.scm

133 -*- Mode: SCHEME; Syntax: SCHEME;: Package: SCHEME -*-

117 Some additional stream support in Scheme. Nothing very complicated,
i35 really.

13 This assumes the existence of the primitives:

;37 CONS-STREAM, HEAD, TAIL, EMPTY-STREAM?,

;i and THE-EMPTY-STREAM.

(define (make-singleton x) (cons-stream x the-empty-stream))
(define stream-null? empty-stream?)

(define (stream-append s1 s2) ; depth first
(if (stream-null? si1)
s2
(cons-stream (head s1)
i1 Reversing these two arguments gives breadth-first
(stream-append (tail s1) s2))))

(define (stream-map func stream)
(if (stream-null? stream)
stream
(cons-stream (func (head stream))
(stream-map func (tail stream)))))

(define (display-stream stream)
(define (mapstream func stream)
(if (not (stream-null? stream))
(begin (func (head stream))

Dependency-Directed Backtracking in Scheme 25

(mapstream func (tail stream)))))

(display " ")
(mapstream (lambda (v)
(begin
(write w)
(display " ")))
stream)

(display ""))
(define (stream-flatten streams-stream)
(if (stream-null? streams-stream)
streams-stream
(stream-append (head streams-stream)
(stream-flatten (tail streams-stream)))))

End of streams.sem

Simple Interpreters

The file cps-eval.scm contains a continuation-passing SCHEME evaluator, while
schemer-eval.sem contains a chronological backtracking SCHEMER evaluator using
continuation-mapping style. A careful comparison of these two evaluators (which
are almost identical) is advised for those confused by continuation-mapping.

File: cps-eval.sem

i33 -7~ Mode: SCHEME; Syntax: SCHEME: Package: SCHEME -*-
i1; Interpreter for Scheme, using continuation-passing style.
;33 Evaluator. Call CONT on the value of EXP in ENV.
(define (scheme-eval exp env cont)
(cond ((self-evaluating? exp)
{cont exp))
((symbol? exp) ; variable
(let ({val (lookup exp env)))
(if (no-binding? val)
(error "Unbound variable" exp)
(cont val))))
((not (pair? exp))
(error "Unknown expression" exp))
(else
(case (car exp)
((quote)
(cont (cadr exp)))
((lambda)

Dependency-Directed Backtracking in Scheme

(cont (make-closure exp env)))
((if)
(let ((predicate (cadr exp))
(cons (caddr exp))
{alt (cadddr exp)))
(scheme-eval predicate env
(lambda (pred)
(if pred
(scheme-eval cons env cont)
(scheme-eval alt env cont))))))
(else
(let ((args (cdr exp))
func {car exp)))
(scheme-eval func env
(lambda (function)
(eval-args args env ()
{lambda (evaled-args)
(scheme-apply
function
evaled-args

comnt))IIINNNNN)

;73 Call CONT on the list of values of the elements of ARGS
;17 in ENV.
(define (eval-args args env answer cont)
(if (null? args)
{cont (reverse answer))
(scheme-eval (car args) env
(lambda (ans)
(eval-args (cdr args) env
(cons ans answer) cont)))))
;37 Call CONT on the result of applying FUNC to ARGS.
(define (scheme-apply func args cont)
(cond ((eq? (car func) ’primitive)
(cont (apply (cadr func) args)))
((closure? func)
(scheme-eval (closure-body func)
(bind (closure-args func) args
{clesure-env func))
cont))
(else (error "Invalid function to apply" func))))

;i1 Interpreter loop
(define (mini-scheme)
(display "SCHEME==> ")

]
=1

Dependency-Directed Backtracking in Scheme

(scheme-aval (read)
global-env
(lambda (value)
(vrite value)
{newline)
{mini-scheme))))

End of ¢ps-eval.sem

File: schemer-eval sem

;37 -7 Mode: SCHEME; Syntax: SCHEME: Package: SCHEME -*-
;31 Interpreter for SCHEMER, using a variant of continuation-passing
;11 style. This is probably the simplest SCHEMER interpreter [ever
;37 wrote, but it’s still somewhat complex. It uses chronological
i;: backtracking.
;11 The evaluator. Produce the flattened stream of values that result
113 from calling CONT on each possible value of EXP in ENV. This value
131 is *returned®.
(define (schemer-eval exp env cont)
(cond ((self-evaluating? exp)
(cont exp))
((symbol? exp) ; variable
(let ({val (lockup exp env)))
(if (no-binding? val)
(error "Unbound variable" exp)
{cont val))))
((not (pair? exp))
(error "Unknown expression" exp))
(else
(case (car exp)
((quote)
(cont (cadr exp)))
((lambda)
(cont (make-closure exp env)))
((if)
(let ((predicate (cadr exp))
(cons (caddr exp))
(alt (cadddr exp)))
(schemer-eval predicate env
(lambda (pred)
(if pred
(schemer-eval cons env cont)

Dependency-Directed Backtracking in Scheme

(schemer-eval alt env cont))))})
:+ Return a stream of values
{ (amb)
(stream-append (schemer-eval (second exp) env cont)
(schemer-eval (third exp) env cont))})
:: Return the empty stream
((fail)
the-empty-stream)
(else
(let ((args (cdr exp))
(func (car exp)))
(schemer-eval func env
{lambda (function)
(schemer-eval-args args env ’()
{(lambda (vals)
(schemer-apply functicn vals

cont))N}

;13 Return the stream of values created by calling CONT on
:++ the values of the elements of ARGS in ENV.,
(define (schemer-eval-args args env answer cont)
(if (null? args)
{cont (reverse answer))
(schemer-eval (car args) env
(lambda (ans)
(schemer-eval-args (cdr args) env (cons ans answer)

cont)))))

;i3 Do the application of FUNC to ARGS, calling CONT on the result.
(define (schemer-apply func args cont)
(cond ((eq? (car func) ’primitive)
(cont (apply (cadr func) args)))
({closure? func)
(schemer-eval (closure-body func)
(bind (closure-args func) args
(closure-env func))
cont))
(else (error "Invalid function to apply" func))))

;13 Interpreter loop
(define (schemer)
(newline)
(display "SCHEMER==> ")
(let ((exp (read)))
(display-stream
(schemer-eval exp

Dependency-Directed Backtracking in Scheme 29

global-env

(lambda (value) (make-singleton value))))
(schemer)))

End of schemer-eval.scm

Naming interpreters

Now we come to the most important toy interpreters, the ones that use the
algorithms described in the body of this paper. First we have the implementation
of the naming algorithm itself, contained in the file namer.sem. This is surprisingly
complex. Much of the complexity is due to the use of lazy S-expressions in order
to cause delayed evaluation to work correctly. In addition, there is a reasonable
amount of simple code to support tagged datastructures.

An important note is that the “memoization” of syntactically named expres-
sions is not merely an efficiency optimization; instead, it is required to get depen-
dency-directed backtracking to work correctly. Because the AMB counter is kept in a
global variable, not memoizing a syntactically named expression could result in the
identity of a choice changing over time.

File: namer.sem

i35 =%~ Mode: SCHEME; Syntax: SCHEME: Package: SCHEME -*-
133 SCHEMER Namer. This takes a SCHEMER expression and turns it into a
;73 named choice expression. Since the result may be infinite, we use
i1; delayed evaluation all over the place.
(define (name-eval exp env)
(cond ((named? exp)
exp)
((self-evaluating? exp)
(make-named-constant exp))
((symbol? exp)
(let ((val (lookup exp env)))
(if (no-binding? val)
(error "Unbound variable" exp)
val)))
((not (pair? exp))
(error "Invalid expression" exp))
((eq? (car exp) ’quote)
(cadr exp))
(else
(case (car exp)
((lambda) (make-named-closure sxp env))

Dependency-Directed Backtracking in Scheme 30

((if)
(let ((pred (name-eval (second exp) env)))
(if (constant? pred)
(if (test pred)
(name-eval (third exp) env)
(name-eval (fourth exp) env))
(make-named-conditional pred
(delay (name-eval (third exp) env))
{(delay (name-eval (fourth exp) env))}))))
((amb) (make-named-choice (new-choice)
{delay (name-eval (second exp) env))
(delay (name-eval (third exp) env))))
((fail) failure)
(else
(name-apply (name-eval (car exp) env)
(map (lambda (arg) (name-eval arg env))
(cdr expl))))))))

(define (name-apply func args)
(cond ({and (constant? func) (primitive? (constant-value func)))
(cond ((some (lambda (arg) (failure? arg)) args)
failure)
((every constant? args)
{make-named-constant
{apply (primitive-func (constant-value func))
{map constant-value args)))})
(else
(make-named-application func args))))
((named-closure? func)
(let#* ((lambda (named-closure-exp func))
(env (named-closure-env func))
(body (third lambda))
(lvars (second lambda)))
(name-eval body (bind lvars args env))))
({named-choice? func)
(let* ((left-function (choice-left func))
(right-function (choice-right func))
(number (choice-number func))
(named-args (map name-aval args)))
(make-named-choice number
(delay (name-apply left-function named-args))
(delay (name-apply right-function named-args)))))
(({named-cenditional? func)
(let ((pred (conditional-test func)))

Dependency-Directed Backtracking in Scheme 31

(if (constant? pred) i3 if constant, do it now
(if (test pred)
(name-apply (conditional-conseq func) args)
(name-apply (conditional-alter func) args))
(make-named-conditional 1+ otherwise delay
PTred
(delay (name-apply (conditional-conseq func) args))
(delay (name-apply (conditional-alter func) args)))
)))
((named-application? func)
(error "This primitive does not return an applicable function®
(constant-value func)))
(else (error "Unknown function type” func))))

137 All the code below is datastructure support for named choice
i1i expressions.
113 Support for thunks
(define thunk-tag (list ’# "thunk-tag ’*))
(define (make-thunk promise)
ii promise must be the result of (DELAY exp)
(cons thunk-tag promise))

(define (thunk? thing)
(and (pair? thing)
(eq? (car thing) thunk-tag)))
(define (force-thunk thunk)
(force (cdr thunk)))

111 Mini-structure support
(define (tag? thing val)
(and (pair? thing) (eq? (car thing) val)))

(define closure-tag (list ’# 'closure-tag ’#))
(define application-tag (list ’# *application-tag '*))
(define conditional-tag (1list ’=* ‘conditional-tag ’=))
(define choice-tag (list ’# ‘choice-tag ’#))
(define failure-tag (list '+ 'failure ’'*))
(define constant-tag (list ’x 'constant-tag ’*))
(define (named? thing)
(and (pair? thing)
(memg (car thing) name-tags)))
(define name-tags
(1ist closure-tag application-tag conditional-tag choice-tag
failure-tag constant-tag))

;3; Constants, closures and failures come first because they are not

Dependency-Directed Backtracking in Scheme

;11 delayed, and are therefore easier to deal with.
;13 Constants
(define (constant? thing)

(tag? thing constant-tag))

{(define (make-named-constant val)
(list constant-tag val))

(define (constant-value thing)
(second thing))

;2 Closures

(define (named-closure? thing)
(tag? thing closure-tag))

(define (make-named-closure exp env)
(l1ist closure-tag exp env))

(define (named-closure-exp thing)
(second thing))

(define (named-closure-env thing)
(third thing))

-+ Failures
(define (failure? thing)
(tag? thing failure-tag))

(define failure (list failure-tag))

;37 Primitive applications, it turns out, also do not need to be cached.
(define (named-application? thing)
(tag? thing application-tag))
(define (make-named-application prim args)
(1ist application-tag prim args))
(define (application-prim thing)
(second thing))
(define (application-args thing)
(third thing))

737 Conditionals and choices are cached and thus more complex.
::: Conditionals
(define (named-conditional? thing)

(ta2g? thing conditional-tag))

(define (make-named-conditional pred conseq alt)
(list conditional-tag
pred
(make-thunk conseg)
{make-thunk alt)))

Dependency-Directed Backtracking in Scheme 33

(define (conditional-test thing)
(second thing))

(define (conditional-conseq thing)
(let ((test (third thing)))
(if (thunk? test)

(let ((result (force-thunk test)))
(set-car! (cddr thing) result)
result)

test)))

(define (conditional-alter thing)
(let ((test (fourth thing)))
(if (thunk? test)

(let ((result (force-thunk test)))
(set-car! (cdddr thing) result)
result)

test)))

:3: Choices
{define (named-choice? thing) (tag? thing choice-tag))
(define (make-named-choice number left right)

(list choice-tag number
(make-thunk left) (make-thunk right)))

(define choice-counter Q)

{(define (new-choice)
(set! choice-counter (1+ choice-counter))
choice-counter)

(define (choice-number choice) (cadr choice))

(define (choice-left thing)
(let ((test (third thing)))
(if (thunk? test)

(let ((result (force-thunk test)))
(set-car! (cddr thing) result)
result)

test)))

(define (choice-right thing)
(let ((test (fourth thing)))
(if (thunk? test)

(let ({result (force-thunk test)))
(set-car! (cdddr thing) result)
result)

tast)))

113 Miscellaneous utilities

Dependency-Directed Backtracking in Scheme 34

(define (test node)
(not (and (constant? node) (eq? (constant-value node) *()))))

(define (terminal? node) (or (constant? node) (failure? nodel)))

(define *namer-global-env#
(map (lambda (pair)
(list (car pair) (make-named-constant (cadr pair))))
*global-env#))

End of namer.sem

Next we have the simplest SCHEMER interpreter that uses syntactically named
expressions, solver-chron.scm. (For historical reasons best forgotten, the programs
that take a syntactically named expression and returned its possible values were at
one point called “solvers”.) New assumptions are made and added to the variable
CONTEXT as the search progresses. This interpreter uses depth-first chronological
backtracking (as mentioned, with a small change to STREAM-APPEND it can be made to
do breadth-first chronological backtracking). The top-level continuation is included
in the very last file of this Appendix.

File: solver-chron.sem

i3 -¥- Mode: SCHEME; Syntax: SCHEME; Package: SCHEME -*-
:3; Simplest possible way of determining the value of a named choice
133 expression, using chronological backtracking. NODE is a2 named
;33 choice expression, CONTEXT is a set of assumptions.
:3; CONT is a continuation taking a new named choice expression and
i:3 @ new context (a superset of the old one).
(define (chron-eval node context cont)
{cond ((terminal? node)

(cont node context))

((named-conditional? node)

(let ((pred (conditional-test node))

(conseq (conditional-conseq node))
{alter (conditional-alter node)))
(chron-eval pred context
(lambda (pred-val new-context)
(cond ((failure? pred-val)
(cont pred-val new-context))
((constant-value pred-val)
(chron-eval conseq new-context cont))
(else
(chron-eval alter new-context cont)))

NN

Dependency-Directed Backtracking in Scheme 35

((named-choice? node)
(1et ((probe (assumption node context)))
(if (empty? probe)
(let ((left (choice-left node))
(right (choice-right node)))
(stream-append
(chron-eval left
(add-assumption node left context)
cont)
(chron-eval right
(add-assumption node right context)
cont)))
(chron-eval probe context cont))))
((named-application? node)
(let ((func (primitive-func
(constant-value (application-prim node))))
(args (application-args node)))
(chron-eval-args args () context
{lambda (values new-context)
(cont (if (failure? values)
values
(make-named-constant
(apply func
(map constant-value
values))))
new-context)))))
(else (error "Unknown node to CHRON-EVAL" node))))

(define (chron-eval-args args values context cont)
(if (null? args)
(cont (reverse values) context)
(chron-eval (car args) context
(lambda (value new-context)
(if (failure? value)
(cont value context)
(chron-eval-args (cdr args) (cons value values)
nev-context cont))))))

End of solver-chron.sem

Dependency-directed backtracking in SCHEMER

Finally, we have the payoff: a SCHEMER interpreter that uses dependency-di-
rected backtracking. First we need some support for storing nogoods and checking

Dependency-Directed Backtracking in Scheme 36

if a given context is a (not necessarily proper) superset of a nogood, and hence
inconsistent. In any real implementation, this would be done using a TMS (readers
interested in how this might work are urged to read Alan Bawden’s interpreter
described in [3]). In this toy interpreter, a set of nogoods is represented as a list,
and new nogoods are simply added to the front. The file contezts.scm contains
support for the nogood database.

File: contexts.sem

173 -%- Mode: SCHEME; Syntax: SCHEME; Package: SCHEME -*-
:37 Support for assumptions, contexts and justifications. Includes the
i3; inconsistency cache (the current set of nogoods).
i3; These two utility functions behave as in COMMON-LISP.
(define (every pred list)
{or (null? list)
(and (pred (car list))
(every pred (cdr list)))))
(define (some pred list)
(and list
(or (pred (car list))
(some pred (cdr 1list)))))

;33 Context support. An assumption is a pair of a named choice and a
333 value. A context is a list of assumptions.

133 The empty context

(define empty-context *())

(define no-value "~ (* no-value #))

;37 Lookup the value of the assumption about this node in this context
(define (assumption node context)
(let ((entry (assq node context)))
(if entry (cdr entry) no-value)))
;37 Is this assumption empty?
(define (empty? assumption)
(eq? assumption no-value))

713 Add the assumption that this choice has this value
(define (add-assumption choice value context)
(cons (cons choice value) context))

;11 Justifications are also contexts

i1+ Empty justification

(define empty-just empty-context)

i1; Union 2 justifications together

(define (union-just j1 j2)
(append j1 j2))

Dependency-Directed Backtracking in Scheme

135 Is context an extension (i.e. superset) of this nogood
(define (extension-of? context nogood)
(every (lambda (assumption)
(member assumption context))
nogood))

:3; Nogood support. This is absurdly inefficient. A real

;77 implementation would use a TMS. Instead, we keep a list of nogoods
735 (contexts known to be inconsistent),

;31 The inconsistent contexts

(define *inconsistent-contexts* *())

i33 Is this context intonsistent?
{define (inconsistent? context)
(some (lambda (nogoocd)
(extension-of? context nogood))
inconsistent-contexts))

;i3 Make this context inconsistent!
(define (nogood! context)
(set! *inconsistent-contexts#
{cons context *inconsistent-contexts+*)))

End of contexts.sem

37

The final SCHEMER is contained in solver-ddb.scm. New assumptions are col-
lected in CONTEXT, while the assumptions that will form a nogood if the current
expression fails are passed along to the continuation. The first thing done is to
check if the input context has become inconsistent; if so, a message is printed and

backtracking occurs.

File: solver-ddb.sem

737 -7~ Mode: SCHEME; Syntax: SCHEME; Package: SCHEME -*-
;33 Determine the value of the named choice expression NODE using

;;; dependency-directed backtracking. CONTEXT is the context in which

;33 we are to determine the possible values of NODE. CONT is a
j3; continuation taking a new named choice expression, a new context (a

;71 superset of CONTEXT), and a justification for the fact that NODE has

:;; this value in CONTEXT.
(define (ddb-eval node context cont)
(cond ;; Check for inconsistency
((inconsistent? context)
i3 Tell the user it’s done something.
(display "Pruning search tree...")

Dependency-Directed Backtracking in Scheme 38

the-empty-stream)
((terminal? node)
(cont node context empty-just))
((named-conditional? node)
(let ((pred (conditional-test node))
(conseq (conditicnal-conseq node))
(alter (conditional-alter node)))
(ddb-eval
pred context
(lambda (pred-val pred-context pred-just)
(let ((new-cont
(lambda (case-val case-context case-just)
(cont case-val case-context
(union-just pred-just case-just)))))
(cond ((failure? pred-val)
(cont pred-val pred-context pred-just))
((constant-value pred-val)
(ddb-eval conseq pred-context new-cont))
(else
(ddb-eval alter pred-context new-cont))))))))
((named-choice? node)
(let* ((probe-proc (assumption node context))
(left-context (add-assumption node choice-left context))
(right-context (add-assumption node choice-right context))
(left-cont (lambda (value new-context new-just)
(cont value new-context
(add-assumption node choice-left
new-just)
)
(right-cont (lambda (value new-context new-just)
(cont value new-context
(add-assumption node choice-right
new=-just)
1))
(if (empty? probe-proc)
(stream-append
(ddb-eval (choice-left node) left-context left-cont)
(ddb-eval (choice-right node) right-context right-cont))
(ddb-eval (probe-proc node)
context
(lambda (value new-context just)
(cont value new-context
(add-assumption node probe-proc

just))INN

Dependency-Directed Backtracking in Scheme 39

((named-application? node)
(let ((func (primitive-func (constant-value
(a2pplication-prim nede))))
(args (application-args node)))
(ddb-eval-args args () ’() context
(lambda (arg-values arg-context arg-just)
(cont (if (failure? arg-values)
arg-values
(make-named-constant
{apply func
(map constant-value
arg-values))))
arg-context arg-just)))))
(else (error "Unknown node to DDB-EVAL" node))))

(define (ddb-eval-args args just values context cont)
(if (null? args)
(cont (reverse values) context just)
(ddb-eval (car args) context
(lambda (value value-context value-just)
(if (failure? value)
(cont value value-context value-just)
(ddb-eval-args
(cdr args)
(union-just value-just just)
(cons value values)
value-context cont))))))

End of solver-ddb.sem

The top-level loops for the two important interpreters are contained in schemer. scm.
One can obtain a chronologically backtracking intereter by calling the procedure
CHRONOLOGICAL-SCHEMER, and an interpreter that uses dependency-directed back-
tracking by calling DDB-SCHEMER.

File: schemer.sem

i3 -7~ Mode: SCHEME; Syntax: SCHEME; Package: SCHEME -*-
737 Call this function to get a chronologically backtracking SCHEMER
i+1 interpreter.
(define (chronological-schemer)
(schemer-locp
(lambda (named-choice-exp)
(chron-eval named-choice-exp empty-context

Dependency-Directed Backtracking in Scheme 40

(lambda (terminal-ncde context)
(if (failure? terminal-node) the-empty-stream
(make-singleton terminal-node))))})))

;13 Call this function to get an interpreter with DDB.
({define (ddb-schemer)
(schemer-locp
(lambda (named-choice-exp)
:: Forget all previous nogoods
(set! *inconsistent-contexts* '())
(ddb-eval named-choice-exp empty-context
(lambda (terminal-node context justification)
{cond ((failure? terminal-node)
:; Record the inconsistency
(nogood! justification)
:; Beturn empty stream
the-empty-stream)
(else
(make-singleton terminal-node))))))))

113 The basic driver loop. SOLVER simply turns a named choice
:;1 expression into a stream of values (ie. terminal nodes).
(define (schemer-leop solver)
(display "SCHEMER==> ")
(let ((exp (read)))
(display-stream
(stream-map (lambda (node)
(cond ({constant? node)
(constant-value node))
((named-closure? node)
"#[Closure]")
(else
(error
"This value is not a valid terminal node"
nodel})))
(selver (name-eval exp *namer-global-env*))))
(newline)
(schemer-loop solver)))

End of schemer.sem

The anonymous continuation used in DDBE-SCHEMER is particularly important,
as it takes a nogood and records it in the database. The simplest example where
dependency-directed backiracking will occur is something like:

Dependency-Directed Backtracking in Scheme 41

((LAMBDA (X)
(+ X ({LAMBDA (V)
(IF (= Y 0) (FAIL) ¥))
(AMB 0 10D
(AMB 20 30))

The choice of a value for X is irrelevant to the failure. Let us name the choices

(AMB-0 0 1) and (AMB-1 20 30). The first (leftmost) failure will occur with the
context {AMB-0-L, AMB-1-L}. The nogood that dependency analysis will produce from
this failure will consist only of {AMB-0-L}. As a result the context {AMB-0-L, AMB-1-R}
will be pruned by dependency-directed backtracking.

=]

References

. Abelson, H. and Sussman, G., with Sussman, J .y Structure and Interpretation

of Computer Programs. MIT Press, Cambridge, Massachusetts, 1985.

Barendregt, H., The Lambda Calculus, Studies in Logic and the Foundations
of Mathematies. Volume 103, North-Holland, 1984.

Bawden, A., A normal order evaluator for nondeterministic Lisp, MIT AI
Working Paper 304, Cambridge, MA, 1987.

Bruynooghe, M. and Pereira, L., Deduction revision by intelligent backtrack-
ing, in: Implementations of Prolog, J. Campbell (Ed.), Ellis Horwood, 1984.

Chapman, D., Planning for conjunctive goals, MIT AI Technical Report 802,
November 1985. Revised version appears in: Artificial Intelligence 32 (1987),
333-377.

Clinger, W., Nondeterministic call by need is neither lazy nor by name, in:
Proceedings of the ACM Conference on LISP and Functional Programming,
226-234, 1982.

. Cohen, J., Non-deterministic algorithms, Computing Surveys 11 (1979), 79—

04.

deKleer, J., Problem solving with the ATMS, Artificial Intelligence 28 (1986),
197-224,

Dependency-Directed Backtracking in Scheme ' 42

9. deKleer, J., Doyle, J., Steele, G. and Sussman, G., Explicit control of reason-
ing, in: Artificial Intelligence: an MIT Perspective, P. Winston and R. Brown
(Eds.), MIT Press, Cambridge, MA, 1982.

10. Doyle, J., A truth maintenance system, Artificial Intelligence 12 (1979), 231-
272,

11. Garey, M. and Johnson, D., Computers and Intractability: A Guide to the
Theory of NP-Completeness, (Freeman, New York, 1979).

12. Hopcroft, J. and Ullman, J., Introduction to Automata Theory, Languages,

and Computation, (Addison-Wesley, 1979).

13. McCarthy, J., A basis for a mathematical theory of computation, in: Com-
puter Programming and Formal Systems, P. Braffort and D. Hirschberg (Eds.),
North-Holland, Amsterdam, 1963.

14. Montanari, U., Networks of constraints: fundamental properties and applica-
tions to picture processing, Information Sciences T (1974) 95-132.

15. Purdom, P., Brown, C. and Robertson, E., Multi-level dynamic search rear-
rangement, Aeta Informatica 15 (1981) 99-114.

16. Rees, J. et. al., Revised® report on the algorithmic language Scheme, ACM
SIGPLAN Notices 21 (12), December 1986.

17. Siskind, J., personal communication.

18. Stallman, R. and Sussman. G.. Forward reasoning and dependency directed
backtracking in a system for computer-aided circuit analysis, Artificial Intel-
ligence 9 (1977), 135-196.

19. Warren, D., Pereira, L. and Pereira, F., Prolog — the language and its im-
plementation compared with Lisp, in: ACM Symposium on Artificial Intelli-
gence and Programming Languages, 1977.

20. Zabih, R., Dependency-directed backtracking in non-deterministic Scheme,
M.S. thesis, MIT Department of Electrical Engineering and Computer Sci-
ence, January 1987.

21. Zabih, R. and McAllester, D., A rearrangement search strategy for deter-
mining propositional satisfiability, in: Proceedings AAAI-88, St. Paul, MN
(1988).

Dependency-Directed Backtracking in Scheme

22. Zabih, R., McAllester, D. and Chapman, D., Non-deterministic Lisp with

dependency-directed backtracking, in: Proceedings AAAI-87, Seattle, WA,
(1987) 59-64.

43

