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A. THEORY OF MODE COUPLING: A SUMMARY

Studies reported in the last Quarterly Progress Report (1) have been modified

and extended. The purpose of these studies is to find a formal basis and justifi-
cation for Pierce's coupling-of-modes formalism (2) as it applies to uniform slow-
wave structures containing two or more subsystems that individually propagate

slow waves (e.g., traveling-wave tubes).

If it can be assumed that the coupling is weak, approximations that lead to
simple coupling equations like those discussed by Pierce can be made. Specific
expressions have been found for the coupling coefficients - for example, for
Pierce's K for a traveling-wave tube with a thick beam, which was given in
reference 1. We found that the expressions previously derived (1) are not valid
at strong coupling; therefore second-order terms must be considered in the
coupling coefficients. Expressions that are valid at strong coupling can be obtained
if a different approach is taken.

As before, we recognize that the coupling-of-modes formalism discussed by
Pierce is, in principle, an expansion of the actual fields in terms of the modes
of two (or more) (sub)systems. In the neighborhood of a particular (sub)system,
the field expansion in terms of the modes of that particular (sub)system is used

to represent the actual field. Expressions were obtained that differ at strong
coupling from those given in reference 1.

The method for obtaining them was discussed at the URSI May 1957 meeting
in Washington, D.C. A paper on this subject is in preparation.

H. A. Haus
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B. CAVITY-TO-HELIX COUPLING

An analysis of the coupling of electromagnetic power from a cavity resonator to a

helix that passes through the cavity gap, which was illustrated in the Quarterly Progress

Report of January 15, 1957, page 36 (Fig. VI-1), has been completed. The analyzed

system, which consists of a sheath helix of radius b surrounded by a conducting cylin-

der of radius a, is considered to be lossless, to contain a single medium, and to be of

infinite length. The procedure consists of expanding the fields of the combined system

as a summation of the natural modes of the shielded sheath-helix system, with the

cavity gap replaced by a sheet of magnetic current that is placed just inside the outer

cylinder and is of a proper configuration for providing the assumed electric-field distri-

bution across the gap at r = a. The current sheet is divided into rings of infinitesimal

length to which the transverse fields are matched, the amplitude of a single mode being

obtained through the use of the orthogonality conditions for the general uniform cylin-

drical system given by Kino (1). By superimposing the current-ring solutions and

calculating the total power Ph in a single mode (Ph/2 in each direction), an expression

for a "helix admittance," Gh = ZPh/ V 2 (where V is the peak gap voltage), is obtained.

2 2 2 H,(a)I
G h = Tr a [f(yk)] p

where i is the gap length; y is the transverse propagation constant of the mode; and

H 0 (a) and P are properties of a normalized traveling wave of the mode, being the angu-

lar component of the transverse magnetic field evaluated at r = a, and the power associ-

ated with the wave. The form of the function, f(y ), depends on the electric-field

distribution assumed at the gap edge and might be either sin / 2 or Jo , as shown

in the Quarterly Progress Report of January 15, 1957, page 36, and further discussed

by Beck (2).

By considering the explicit expressions given by Mathers and Kino (3), for the usual

slow helix mode, that is, the mode with no angular variation, we obtain

G 2 2 2 a 2 2(yb) G 1 0 (ya,ya) F3(yb)G =Ci E'r a [f('yk)] - ) I? (yb) 1( F ("yb)
k Go (yb, ya)

G 1 0 (x, Y) = 11(x) K (y) + K1 (X) lo(Y)

G 00 (x, Y) = 10(x) Ko(y) - Ko(x) Io(Y)

where p is the longitudinal propagation constant (PZ = y + k ), and F(yb), which is

plotted by Mathers and Kino (3), is related to the helix impedance by
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E z(0) 4
Z = = - F3(yb)

The Bessel-function combinations, G10 and G00, have been tabulated (1). Stark (4)

predicts that, for a sufficiently small outer cylinder radius, the tape-helix mode whose

fundamental space harmonic corresponds to this sheath-helix mode, is the only mode

capable of propagation.

If a cavity with shunt conductance Gs , defined at the gap, is tuned to resonance with

the helix inserted, the ratio of cavity-input power to helix-coupled power will be given

by

Ph Gh

Pin Gs Gh

B. A. Highstrete
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C. CURRENT GROWTH IN MULTICAVITY KLYSTRONS*

The propagation of small signals along a drifting electron beam can be described by

a set of differential equations, similar to transmission-line equations, which relate the

kinetic voltage V and the current modulation I in the beam (1, 2).

dV =j Z I (1)

dl

d= j Y V  
(z)

This work was supported in part by the Office of Naval Research under Contract
Nonr 1841(05).
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Fig. VI-1. Multicavity klystron.

where 0 = pqZ is the plasma transit angle in the direction of electron flow, and Y =

-1 - - is the characteristic admittance of the beam.
Z 2V o

o o q
In a multicavity klystron a drifting electron beam passes through the gaps of the

resonant cavities, as shown in Fig. VI-1. If these gaps are very short, the interaction

between the gap fields and the electron beam can be formulated (see Fig. VI-2) as

follows:

ELECTRON CAVITY GAP
BEAM

V, V2 = V, - M 2 Z

Fig. VI-2. Modulated electron beam passing
through a short gap of a cavity.

I2 =1 I (3)

V 2 = V 1 - M Z I (4)

where M is the beam-cavity coupling coefficient and Z is the cavity-gap impedance.

If we consider such cavity gaps placed at discrete points along the electron beam, as in

Fig. VI-1, then in order to account for the change in kinetic voltage at the gaps, Eq. 1

must be modified according to Eq. 4. The propagation of small signals along the beam

of a multicavity klystron with short gaps is then given by

dV= j Z - M Z o(0 I (5)

dO j Y o V

where Uo(0 - 0i ) is the unit impulse function that occurs at O = Oi , the position of the ith

cavity. The summation extends over all cavities that are of interest. Equations 5 and

6 are analogous to loaded transmission-line equations (3).
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Our attention will be focused upon the current modulation in the beam. The kinetic

voltage can then be found from Eq. 6. Combining Eqs. 1 and 2, we obtain

d2 +1 +j Y M. Z. u (0 6.)I =0 (7)
dZ o i i i o

A solution for I can be found as follows. Consider the n t h drift region in Fig. VI-I.
Equation 7 becomes

dl
n
d 2 +I =0;

dO2 n
0 <0<0
n-i n

I =A cos 0 + B sin 0n n n

Similarly, the current in the (n-1) drift region is

I = A cos 0 + B sin 0n-i n-I n-i (10)

The boundary conditions at the (n-1) gap are:

(a) The current is continuous

In = I at 0 = n-n n-i n-i (11)

(b) The derivative of the current jumps (i.e., the kinetic voltage is discontinuous)

dI dI
n n-1 2  2

d - d n-+ j Y Mn- n- I at 6 = (12)
dO dO o n-1 n-1 n-I

From Eqs. 9, 10, 11, and 12, we obtain

An =An-1 o n-1 Zn-1 (An sin n-1 cos 0n-1 + Bn-i sin2 n-1

B =B - j Y M 2  Z B sin 6 cos 0 + A cos 0n n-1 o n-1 n-1 n-1 n-1 n-1 n-1 n- 1

For any given initial conditions, namely I and V at 0 = 0, the current along the
successive drift regions is given by Eqs. 9, 13, and 14. An ordinary set of initial con-
ditions is that of a beam excited by an externally driven short-gap cavity. Then, we
have

I(0) = 0

V(0) is finite

and hence

Hence

(13)

(14)

(15)
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A = 0

B1 = j Yo V(O)

In terms of the slow- and fast-beam waves, the solution to Eq. 8 can be written as

I = I ej 0 + I- e- j
n n n

0 < < 6n-i n

Matching boundary conditions at the (n-1) gap, as before, we obtain

+  + 1 2I =-I Y M
n n-I 2 o n-1

- - 1
I -= I + - Y
n n-1 2

n +

Mn- Zn Io n-1 1In-I

-jZ6n-1
1 n-1 e

+ n- n-1

n-1

For the initial conditions of Eq. 15, we have

+ - 1I = -I = - Y V(0)

Equation 7 can be simulated conveniently on an analog computer.

at the present time.

This is being done

An example of current growth along a seven-cavity klystron is shown in Fig. VI-3.

The cavities are spaced along the beam equidistantly 60 plasma degrees apart. They
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Fig. VI-3. Current growth along a seven-cavity klystron
for two input signals of different frequencies.
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are assumed to have equal bandwidths (approximately equal Q's); and are stagger-tuned,
as shown in the upper left corner of Fig. VI-3. Their detuning with respect to a chosen

(normalized) frequency xo = 0 is given in terms of half-bandwidths of the cavities. The

input cavity is assumed to be broadband.

The two plots in Fig. VI-3 show current growth along the tube for two frequencies

of the input signal. Note that when the current in the beam encounters a capacitive gap

(i. e., a gap that is resonant at a lower frequency than the signal), it is debunched, but

when it passes through an inductive gap (i. e., a gap resonant at a higher frequency than
the signal), it becomes bunched. Maximum bunching occurs in the drift region just

after the gap that is resonant at the signal frequency

A. Bers
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D. HOLLOW-BEAM KLYSTRON*

The seven-cavity, stagger-tuned, hollow-beam klystron described in the Quarterly
Progress Report of April 15, 1957, page 47, is being designed. Most of the work has
been concerned with the detailed design of the intermediate and output cavities, and with
details of gun fabrication.

The shop is fabricating some stainless-steel prototype cavities.

H. Fock, A. Czarapata

E. NEW METHOD OF MEASURING THE CORRELATION BETWEEN KINETIC-

VOLTAGE AND BEAM-CURRENT FLUCTUATIONS

The lower limit of the noise figure (1) of a microwave beam amplifier is given by

Fmin = 1 + k 1 1 (S-II) (1)

This work was supported in part by the Office of Naval Research under Contract
Nonr 18.41(05).
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where T is the temperature of the circuit, G is the available gain of the amplifier, and

S - IIis the critical noise parameter determined by the noise process near the potential

minimum. Although the expression S - 1I can be considered to be a single noise

parameter, it has been split into two parameters, since both S and 11 are independently

measurable. The value of S has been measured with reasonable accuracy by many

researchers (2, 3, 4). But the value of II, which is directly related to the correlation

between the kinetic-voltage and beam-current fluctuations, has not been fully determined,

although two different measurements (3, 4) have been made.

A new measuring method, by using a "directional beam coupler," has been proposed

(5) and measurements are being made, although the final results have not been obtained.

The electron beam is associated with the two plasma-wave components, fast-wave

and slow-wave, in the same way as a conventional electromagnetic wave which has

forward-wave and reflected-wave components. If we define A l and A Z as the self-power

density spectra (SPDS) of the fluctuations in the fast-wave and slow-wave modes, and

A12 as the correlation-power density spectrum (CPDS) of the two modes, then S and

II can be written (1) as

S = (A +A ) - 4A A 1/2
1 2 12 12

II =A 1 -A 2

The new measuring equipment, a directional beam coupler, can pick up each of the two

wave components just as the conventional directional coupler picks up either the forward-

wave component or the reflected-wave component. Therefore, we can measure the

ratio A 2 /A 1 . Since we can measure the noise-current standing-wave ratio, p, by the

usual sliding-cavity technique, the ratio of II/S can be obtained by the following equa-

tion:

I p2 +1 1-(Az/A 1)

-- P (3)S 2p 1 + (AZ/A 1 )

Figure VI-4 is a diagram of the measuring equipment. The vacuum chamber,

which contains the electron gun for testing, the beam shutter for shot-noise calibration,

and two movable cavities, is approximately the same as the chamber that was previously

used (3), although many electrical and mechanical design features have been improved.

A third cavity, used for calibrating the equipment by a cw signal, has been added. It

has a low loaded Q (QL = 60 at 3000 mc). It is located near the electron gun and is

provided with a mechanism for detuning. The outputs of both movable cavities, which

are one-quarter plasma wavelength apart, are transmitted through the precision attenu-

ators and phase shifters, and, finally, both are added in the Magic Tee. The output of
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Fig. VI-4. Diagram of measuring equipment.
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Example of measured results: (a) output of one cavity (sine
wave); (b) output of a directional beam coupler I (sine wave);
(c) output of directional beam coupler II (sine wave); (d) output
of one cavity (noise); (e) output of directional beam coupler I
(noise); (f) output of directional beam coupler II (noise).
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either the H- or E-branch of the Magic Tee is fed to the radiometer. By proper adjust-

ment of the phase shifters and attenuators, we can get the directional-coupler condition,

i. e., the two outputs of the Magic Tee correspond to the fast-wave and slow-wave com-

ponents. Such an adjustment can be made with the sine-wave signal which is fed into the

low-Q exciting cavity (this cavity is detuned in the noise measurement so that it does not

effect the beam noise).

One measured example is shown in Fig. VI-5. Figure VI-5a shows the pure

standing-wave pattern picked up by only one cavity in the case of sine-wave excitation.

In Fig. VI-5b and c the outputs of the directional beam coupler (flat response indicates

good directivity of this coupler) are shown. Figure VI-5d, e, and f corresponds to

Fig. VI-5a, b, and c in the measurement of beam noise. More measurements will be

reported in the next report.

S. Saito, S. Holly

References

1. H. A. Haus and F. N. H. Robinson, The minimum noise figure of the microwave
beam amplifier, Proc. IRE 43, 981-991 (1955).

2. W. R. Beam, R. C. Knetchi, and R. W. Peter, Quarterly Reports, Research and
development on microwave generators, mixing devices, and amplifiers,
David Sarnoff Research Center, RCA Laboratories Division, Princeton, N. J.,
1955-1956.

3. A. Bers, S. M. Thesis, Experimental and theoretical aspects of noise in microwave
tubes, Department of Electrical Engineering, M.I.T., Aug. 1955.

4. T. J. Connor, Minimum noise figure of traveling-wave amplifiers, S. M. Thesis,
Department of Electrical Engineering, M.I. T., Aug. 20, 1956.

5. S. Saito, Beam noise measurement, Quarterly Progress Report, Research Labora-
tory of Electronics, M.I.T., Jan. 15, 1956, p. 46.

F. BEAM LOADING AT HIGHLY RELATIVISTIC VELOCITIES

Slater (1) has compared the particle energy in standing-wave and traveling-wave

linear accelerators with negligible beam loading. Since his analysis, high-current

accelerators have become increasingly important. Johnson (2) and others have analyzed

the effect of beam loading in traveling-wave accelerators. The effect of beam loading

in standing-wave structures is considered here, and compared with traveling-wave

structures.

1. Standing-Wave Systems

If we consider a typical standing-wave accelerator cavity, with a gap length between

irises of /2, the energy gained by an electron traversing this gap will be
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e o 2
AE t o  sin2 wtd(wt)

; 0+wt
o

(1)

eff
S cos wt
4 o

where & is the peak electric field, K is the free-space wavelength, p is the propaga-

tion constant (P X ), and to is the time of entry of a particle with respect to the zero-

field time. The velocity of the particles is assumed to equal the velocity of light. The

maximum voltage across the gap can be written in terms of the peak field

V 0 (2)
1 T

If we consider a total charge Q uniformly spread from -t to +t , we can integrate

Eq. 1 over the interval and obtain the total energy gained by the bunch while it traverses

the gap:

AE =t o cos wtd(wt) (3)

Then, if we integrate and average over the time interval, the average power delivered

to the beam is obtained.

I V 1 sin wt

b 4 ct (4)

where V 1 is defined in Eq. 2, and I = is the average beam current.1 o K/c
In order to maximize this power, V l must maximized for a given amount of input

power. This can be done by adjusting the coupling to the accelerating cavity. From a

lumped-circuit model, we may think of the

incident power as a constant-current genera-

tor with the internal impedance of the input
Zo :n guide. This would be true only when we are

+ working into a matched load, but if it is

e s  R s  V1 ib  assumed that we can adjust the coupling to

the source, the approximation is good. With

this assumption, the equivalent circuit of

Fig. VI-6. Equivalent circuit of cavity the source accelerator structure is given in

with sources. Fig. VI-6.
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If we consider that all quantities are rms, the power flow into the beam is Pb = V ib"

Solving for V1 , we obtain

es
Zn bo ib

b 1 1 b
+2 R

Zn so

Pb can then be maximized for a given source voltage and beam current by adjusting the

coupling ratio. Setting dPb/dn = 0, we have

-ibRsZo )2 + 4ZoRsej

n= ZZ e
o s

which, for large beam loading iZRsZ >> e , becomes

h s
b o

giving a power delivered to the beam of

Pb es(es/ib)2

4Z +
o R s

(8)

where i b is found from Eq. 4. We define the efficiency T as the ratio of power delivered

to the beam to available power. Thus

4Z

7max = 4Z + (es/ib)

4Z +o R

(9)

This maximization process also gives the maximum energy gain of an individual

particle.

If the bunches are not riding at the maximum accelerating field, the induced back

voltage will not be 180' out of phase with the applied voltage. This will introduce a

reactive term equivalent to a detuning of the cavity; therefore the cavity tuning will have

to be adjusted, as well as the coupling.

A gap smaller than T can be analyzed, but the fringing fields caused by the finite

iris hole must then be considered. For an infinitesimal gap with a finite-diameter drift

tube, Eq. 4 is multiplied by the factor
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4 2
S2 P2  (10)

where a is the decay constant in the drift tube.

2. Traveling-Wave Systems

The beam loading in a traveling-wave structure can be determined in a more general

manner than is usually done, in order to take into account particles that are not riding

on a wave crest. By an analysis similar to that in Section VI-Fl, the field of a single

traveling wave arising from the beam alone, for a X/4 cavity, is

X r

t 8I o )

where rs is the shunt impedance per meter of the guide, and o is the loss length in

meters - that is, Io is the distance in which the power falls to I/e of its initial value in

an unloaded traveling-wave structure. If we now consider n such sections, the forward

traveling waves excited in each section will add in phase, while the backward traveling

waves will almost cancel. The forward traveling waves can then be added at any point,

if we remember that the individual waves decay exponentially because of guide losses.

rs 81 ( + e o +e o + ... -n/s o

r -no/8.

X rs Il-e o
1 1-e 0

For X << 810 which will always be true, Eq. 12 reduces to

ob = r I1(1 - e-z/2o) (13)

The discrete variable nX/4 has been replaced by a continuous function of distance, z.

The total field at the particle can now be written

6T c b- lb (14)

6c = fl sin e -Z/zo (15)

Equation 15 gives the usual field relation in an unloaded guide.

The energy gained by a particle is

z
E = o gT d (16)
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and the efficiency is

El
1 =p

where P is the incident power. Combining Eqs. 13, 14, 15, 16, and 17, we obtain

=- /Z I 0~ LZ£o sin -e - m o

r

If we maximize -q with respect to f for a given length of accelerator, we haveo

-zo/2 0 m
sin + m (19)

The maximum efficicncy of standing-wave and traveling-wave accelerators can now be

compared for a given set of input conditions. A comparison was made for a numerical

example in which P = 4 Mw, I ° = 0.25 amp, and r s = 5. 10 7 ohms/meter. For the sake

of simplicity, an infinitesimal bunch traveling on the wave crest was assumed. Effi-

ciency is plotted against accelerator length for the two structures in Fig. VI-7.

100r-

90-

50 (

2 3 4 5
z(METERS)

6 7 8 9

Comparison of efficiency in standing-wave
and traveling-wave accelerators.

where

(17)

- Z(1 - e o (18)

Fig. VI-7.
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The efficiencies of standing-wave and traveling-wave accelerators are quite
comparable. It must be noted, however, that assignment of identical shunt resis-
tances per meter to the two structures was somewhat unfair to the standing-wave device.
Since there are only half as many irises in a Tr-mode structure as in a rr/2-mode struc-
ture, the Q is considerably higher, and the shunt resistance is somewhat higher.

It is possible to decrease the length of a traveling-wave accelerator by means of
feedback. In reference 2 this is discussed, and traveling-wave systems with and with-
out feedback are compared. If the particles are not traveling on the crest of the wave,
Johnson's formulas must be modified to agree with Eq. 18.

A. J. Lichtenberg
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