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Abstract

This thesis presents a general, trainable system for object detection in static images

and video sequences. The core system �nds a certain class of objects in static im-

ages of completely unconstrained, cluttered scenes without using motion, tracking, or

handcrafted models and without making any assumptions on the scene structure or

the number of objects in the scene. The system uses a set of training data of positive

and negative example images as input, transforms the pixel images to a Haar wavelet

representation, and uses a support vector machine classi�er to learn the di�erence

between in-class and out-of-class patterns. To detect objects in out-of-sample im-

ages, we do a brute force search over all the subwindows in the image. This system

is applied to face, people, and car detection with excellent results.

For our extensions to video sequences, we augment the core static detection system

in several ways { 1) extending the representation to �ve frames, 2) implementing

an approximation to a Kalman �lter, and 3) modeling detections in an image as a

density and propagating this density through time according to measured features.

In addition, we present a real-time version of the system that is currently running in

a DaimlerChrysler experimental vehicle.

As part of this thesis, we also present a system that, instead of detecting full pat-

terns, uses a component-based approach. We �nd it to be more robust to occlusions,

rotations in depth, and severe lighting conditions for people detection than the full

body version. We also experiment with various other representations including pixels

and principal components and show results that quantify how the number of features,

color, and gray-level a�ect performance.
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Chapter 1

Introduction

Until recently, digital information was practically limited to text. Now, we are in the

midst of an explosion in the amount of digital visual information that is available. In

fact, the state of technology is quickly moving from where databases of images are

standard to where the proliferation of entire video databases will be de rigeur.

With this increase in the amount of online data available, there has been a corre-

sponding push in the need for e�cient, accurate means for processing this informa-

tion. Search technology thusfar has been almost exclusively targeted to processing

textual data [Yahoo!, Inc., 1994, Compaq Computer Corp., 1995, Lycos, Inc., 1995,

Excite, Inc., 1995]; indeed, the amount of online data was heavily weighted towards

text and the automatic processing of image information has signi�cantly lagged. Only

recently, as the amount of online image data has exploded, have there been systems

that provide indexing and cataloging of image information in mainstream search

services [IBM, 1993, Virage, Inc., 1994]. These systems provide various means for

searching through mainly static online image libraries but are fairly limited in their

capabilities. We can expect that, as the standard in available online visual informa-

tion transitions from images to entire video libraries, e�ective techniques and systems

for searching this data will quickly become imperative. Consider this hypothetical

problem: a digital historian is looking for all of the CNN video footage from the past

�ve years that shows Bill Clinton and Monica Lewinsky together in the same scene.

Manually searching this data would be a daunting if not impossible task. A system

that would be able to automatically search for speci�c objects and situations would

be indispensable.

In addition to the Internet as a motivator and forum for video search, the im-

proved, cheaper processing power of computers has opened the door to new applica-

tions of image and video searching that were previously infeasible, if not inconceivable.

In the near future, we can expect on-board automotive vision systems that inform or

alert the driver about people, track surrounding vehicles, and read street signs. Secu-

rity systems will soon be able to detect when a person is in the �eld of view, and will

be able to intelligently ignore benign \intruders" like domestic animals. Robots will

be able to autonomously navigate through complicated terrain, by detecting di�erent

landmarks and comparing these to internal maps. One day, there may even be smart

bombs that are able to home in on speci�c parts of buildings or bridges by \seeing"
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the target and determining where the correct point of impact should be. Devices that

implement object detection could also be useful for applications that aid the blind

and deaf.

1.1 Object Detection

Fast, robust object detection systems are fundamental to the success of these types

of next-generation image and video processing systems. Object detection systems are

capable of searching for a speci�c class of objects, such as faces, people, cars, dogs,

or airplanes. In contrast, the problem of recognition, which is the ability to identify

speci�c instances of a class, deals with understanding the di�erence between my face

and your face 1 not the di�erence between faces and things that are not faces; see
[Murase and Nayar, 1995] for relevant work in object recognition.

On the surface, this may seem trivial; people are able to immediately detect ob-

jects, with little, if any, thought. People, though, have had the bene�t of millions

of years of evolution and development. In contrast, object detection for computers

is a nontrivial task as we are faced with the problem of giving a mass of wires and

mosfets the ability to see. We must deal with questions such as: How are images

represented digitally? What are the characteristics of people, for instance, that dis-

tinguish them from similar looking objects like columns and �re hydrants? How do

we tell a computer program to look for this information?

In this thesis the reader will �nd an analysis of these questions and several pro-

posed solutions to the problem of automatic object detection in images and video

sequences.

The work in this thesis addresses the problem of object and pattern detection

in video sequences of cluttered scenes. The general problem of object detection by

computers is a di�cult one as there are a number of variables that we cannot account

for or model in any but the most contrived situations. The system should not make

any assumptions about the scene lighting, the number of objects present, the size or

pose of the objects, or motion, among other characteristics.

There are two basic angles this problem could take: static images or video se-

quences. If we would like to detect objects in static images, the problem becomes a

pure pattern classi�cation task; the system must be able to di�erentiate between the

objects of interest and \everything else." With the variability in the scene and the

uncontrollable conditions identi�ed above, the model of a person must be rich enough

to cope with these variations.

On the other hand, if the problem is to detect objects in video sequences, there is a

richer set of information available, namely the dynamical information inherent in the

video sequence. However, for a general purpose system that does not make limiting

1
These two types of systems often complement one another: the �rst step in a recognition system

usually is to locate the object.
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...
static images: pure pattern classification video sequences: can take advantage of

dynamical information

Figure 1-1: An illustration of the inherent di�erences in doing detection in static

images and video sequences. In static images, the detection task becomes a pure

pattern classi�cation problem. Dynamical information available in video sequences

(usually) makes the detection problem easier.

assumptions about the objects, we cannot exclusively rely on motion information per

se. What if the particular scene is of a group of people standing at a bus stop? A

system that relies on motion to detect people would clearly fail in this case. Figure

1-1 contrasts the two types of visual data.

What we need is a technique or combination of techniques that use a model that

is rich enough to both a) describe the object class to the degree that it is able to

e�ectively model any of the possible shapes, poses, colors, and textures of the object

for detection in static images, and b) when we know that we are processing video

sequence, harness the dynamical information inherent in video sequences without

making any underlying assumptions about the dynamics.

1.2 Pattern Classi�cation and Machine Learning

Pattern classi�cation encompasses a wide variety of problems. We assume that some

system is presented with a certain pattern, x, and a set of possible classes, yi, one

of which is the true class of the pattern. The elements of the pattern are individual

features that can encode characteristics of the pattern like height, color, length, pixel

value, center of mass, mood, etc. { literally, anything that can describe the thing we

are trying to classify. The goal of the system is to decide to which class x belongs.

Put forth in this manner, it is essentially equivalent to asking \what kind of thing

is the pattern?". In this thesis, we will focus on the two class classi�cation problem,

11



where every pattern falls into exactly one of two possible classes.

There are several ways that the system can encode the knowledge needed to tackle

this problem. Using a rule-based approach, a user can describe a set of rules that

the system should follow in the decision process. While these systems have been

successful for certain types of problems, they typically involve signi�cant e�ort in

engineering the rules and hence are quite expensive to develop. A more promising

approach is one where the system learns to classify the patterns. This is exactly the

approach we will take.

Machine learning describes a large set of techniques, heuristics, and algorithms

that all share a single common characteristic: by using a set of examples, they some-

how impart upon a system the ability to do a certain task. In the context of our

pattern classi�cation problem, we are interested in presenting the system with a set

of example patterns of both classes from a set of training data and have it automati-

cally learn the characteristics that describe each class and di�erentiate one class from

the other. The positive examples are labeled as +1 and the negative as -1. The goal,

and measure of success, is the degree of performance that the trained system achieves

on a set of examples that were not present in the training set, or test set. What we

are determining when using the test set to evaluate the performance is how well the

system is able to generalize to data it has never seen.

The problem of learning from examples is formulated as one where the system

attempts to derive an input/output mapping, or equivalently, a model of the domain,

from a set of training examples. This type of approach is particularly attractive for

several reasons. First and foremost, by learning the characteristics of a problem from

examples, we avoid the need for explicitly handcrafting a solution to the problem.

A handcrafted solution may su�er from the users imposition of what he thinks are

the important features or characteristics of a decision problem. With a learning

based approach, the important features and relationships of a decision problem are

automatically abstracted away as a trained model. On the other hand, learning

based approaches may su�er from the problem of poor generalization on account of

over�tting, where the model has learned the decision problem \too well" and is not

able to generalize to new data.

For a given learning task, we have a set of ` N -dimensional labeled training ex-

amples:

(x1; y1); (x2; y2); : : : ; (x`; y`) xi 2 RN
; yi 2 f�1;+1g (1:1)

where the examples have been generated from some unknown pdf, P (x; y). We would

like the system to learn a decision function fa : x ! y that minimizes the expected

risk,

R(�) =

Z
jf�(x)� yjdP (x; y) (1:2)

In most cases, we will not know P (x; y); we simply see the data points that the

12



distribution has generated. Thus, direct minimization of Equation 1.2 is not possible.

What we are able to directly minimize is the empirical risk, the actual error over the

training set,

Remp(�) =
1

`

X̀
i=1

jf�(xi)� yij (1:3)

Learning engines that minimize empirical risk tend to over�t the training data.

This means that, though the error rate on the training data may be extremely low,

the error rate on out-of-sample test data could be quite high. There are a variety of

techniques to overcome this including introducing a prior [MacKay, 1992, Wolpert,

1995], early stopping [Nelson and Illingworth, 1991], and using a hold-out data set
[Bishop, 1995].

These methods for improving generalization are largely ad hoc. Recently, a new

training technique for classi�ers, called Support Vector Machines, has emerged that

directly minimizes both the empirical risk and the complexity of the classi�er at the

same time. We will be exclusively using SVM training for our system. This technique

is described in more detail in Section 2.4 and Appendix B.

1.3 Previous Work

In this section, we describe prior work in object detection in static images and in video

sequences that is relevant to our technique. The descriptions are grouped according to

application area: faces, people, and cars, from the simpler to more complex systems.

The descriptions are very roughly chronological.

The types of technologies used for object detection have largely been dictated by

computing power. For instance, early systems for object detection in static images

generally used edge detection and simple heuristics, while recent systems that have

access to muchmore storage and processing power are able to use large sets of training

data to derive complex models of di�erent objects. The �rst systems for object

detection typically used motion information to segment out the moving object. While

assuming the availability of this type of information can be seen as restrictive for

certain applications, motion remains a powerful source of information used to both

provide better detection and faster processing even in some of the more recent systems.

1.3.1 Face Detection

Much of the work in object detection in static images has been concentrated in face

and people detection. These choices of domains are obvious ones as detecting faces

and people are important steps in most systems where there is some sort of human-

computer interaction.
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Most of the early systems that �nd faces in images use simple shapes and con-

straints. Yang and Huang, 1993 and 1994 developed a system that uses local con-

straints on an image pyramid to detect components of faces. A similar rule based

approach is described in [Kotropoulos and Pitas, 1997]. These rule based approaches

have the bene�t of low computational cost and work well for faces on account of the

regular interior structure across faces. This concept was extended by [Sinha, 1994a,

Sinha, 1994b] who introduced the idea of the \template ratio" | encoding a human

face as a set of binary relationships between the average intensities of 11 regions.

The assumption behind the template ratio approach was that these relationships will

hold regardless of signi�cant changes in illumination direction and magnitude. For

example, the eye sockets are almost always darker than the forehead or the cheeks.

The success and robustness of the simple rule-based and template ratio approaches

for face detection indicate that a representation based on the encoding of di�erences

in average intensities of di�erent regions is a promising direction.

A number of systems take advantage of the regular structure in faces by processing

patterns to �nd �ne scale edges corresponding to individual facial features and then �t

the geometry of the components to a deformable template. In these systems [Yuille,

1991, Yuille et al., 1992, Kober et al., 1994, Kwon and Lobo, 1994, Venkatraman

and Govindaraju, 1995], the deformable templates are hand-crafted based on prior

knowledge of the structure of human faces.

Often, these systems are plagued by the noise and spurious information in the

�ne scale edges they use. One way of countering the e�ects of inconsistent �ne scale

edges is to use multiscale gradient features instead of the �ner information. In [Le-

ung et al., 1995, Burl et al., 1995, Burl and Perona, 1996], they use local templates

based on oriented Gaussian derivatives to match eye, nose, and mouth features on the

human face and determine valid arrangements of these features using random graph

matching. Similar systems include [Yow and Cipolla, 1996b, Yow and Cipolla, 1996a,

Yow and Cipolla, 1997] where the features are 2nd derivative Gaussians combined us-

ing a Bayesian network and [Guarda et al., 1998] where gradient features are combined

in a genetic algorithm framework. There have also been e�orts that use Laplacian

of Gaussian features [Hoogenboom and Lew, 1996] or gradient features [Qian and

Huang, 1997] to compare an entire face pattern to a set of templates, instead of

individual components.

Wavelets, describe in Section 2.3.1 and Chapter A, provide another formulation

for multiscale intensity di�erences. Some motivation for using wavelets as features

is provided in [Micheli-Tzanakou and Marsic, 1991], where they hypothesize that

wavelets may provide excellent features for detection and recognition when combined

with a classi�er. Initial work showing that wavelet response peaks over objects in

a fairly uniform background is shown in [Braithwaite and Bhanu, 1994] and [Chapa

and Raghuveer, 1996]. In a related area of research, [Kruger et al., 1997] determine

the pose of a face by matching wavelet features to learned 3D head representations.

While many face detection systems have used features based on intensity di�er-
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ences of some sort, the regularity in the intensity between faces (see [Sinha, 1994a,

Sinha, 1994b]) makes it possible for approaches using intensity features to succeed for

face detection. We will see later that this is not the case with people images, where the

intensities have little regularity across an ensemble of examples. Lew and Huang, 1996

use the Kullback relative information as a measure of closeness between a face candi-

date and a known template image of a face. Similarly, [Colmenarez and Huang, 1996,

Colmenarez and Huang, 1997, Colmenarez and Huang, 1998] present face detection

systems using quantized intensity images combined with maximum likelihood and

cross entropy decision measures. Lakshmi Ratan et al., 1998, describe a system that

detects faces by using a dynamic programming approach over quantized intensity

values to match a small number of prototype images.

One of the recent focuses in the literature has been trainable systems for face

detection that take advantage of increases in computing power and storage. These

systems for detecting unoccluded vertical frontal views of human faces in images have

been developed using example-based approaches; a typically large set of training data

is processed by the systems, eventually enabling them to di�erentiate between faces

and non-faces. These view-based approaches can handle detecting faces in cluttered

scenes and have shown a reasonable degree of success when extended to handle non-

frontal views [Sung, 1995, Sung and Poggio, 1998, Rowley et al., 1997]. These systems

can be subdivided into those using density estimation based methods and those that

are \pure" pattern classi�cation techniques.

For the density based techniques, [Sung and Poggio, 1994, Sung and Poggio, 1998],
[Moghaddam and Pentland, 1995], [Duta and Jain, 1998], and [Reiter and Matas,

1998] essentially model faces in a high dimensional space and do detection by �nding

where new patterns fall in this density. In these systems, some measure of distance

from or closeness to a density is needed; typically, a Mahalanobis-like metric is used.

The work of [Schneiderman and Kanade, 1998] develops a face detection system that

is also based on density estimation but they model the joint statistics of local pat-

terns. Rikert et al., 1999, accomplish detection by clustering the output of multiscale,

multiorientation features and model the clusters as mixtures of Gaussians, for a set

of both in-class and out-of-class data. Of course, all of these approaches rely on the

availability of large data sets so that density estimation is possible. The system of
[Duta and Jain, 1998] is essentially equivalent to that of [Sung and Poggio, 1994,

Sung and Poggio, 1998] and that of [Reiter and Matas, 1998], and is based on
[Moghaddam and Pentland, 1995].

Pattern classi�ers like neural networks and support vector machines can be viewed

as techniques that take as input large sets of labeled data and �nd a nonlinear decision

surface that separates the in-class (faces) patterns from the out-of-class (non-faces)

patterns. The bene�t of these types of systems is that no explicit modeling needs

to be done. One the other hand, they are typically expensive computationally {

especially during training { and it can be di�cult to extract intuition from a trained

system as to what they are \learning" internally. Pattern classi�cation approaches
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to face detection have been developed by [Rowley et al., 1995, Rowley et al., 1998],
[Vaillant et al., 1994], and [Osuna et al., 1997a]. Rowley and Vaillant use neural

networks with di�erent receptive �elds and Osuna uses a support vector machine to

classify the patterns.

There have been several systems that combine the previous ideas and use wavelet

features as input to example based systems. Whereas the particular class of wavelets

and learning techniques di�er, the general structure of these approaches are similar to

ours but use very small numbers of features, are developed for a particular domain,

and are not rigorously tested on large out-of-sample data sets. Philips, 1994 uses

matching pursuit over Gabor wavelet features to detect features on a face. This tech-

nique decomposes an out-of-sample pattern into a linear combination of wavelets and

matches the linear coe�cients to those of a known face. The systems of [Mirhosseini

and Yan, 1996] and [Shams and Spoelstra, 1996] use a neural network trained on

Gabor wavelet features to detect eyes, while [Weber and Casasent, 1997] use a similar

approach to detect tanks in IR imagery.

There are other types of information that have been used in face detection systems.

While these features are exclusive to faces and do not generalize to other object classes,

they nevertheless can be powerful cues for face detection. Several researchers use the

fact that the colors of human faces fall into a narrow range. These systems use the

prior knowledge that color can be used to segment out skin regions as information

for detection [Saber and Tekalp, 1996, Wu et al., 1999, Garcia et al., 1999]. Another

system by [Crowley and Berard, 1997] uses the unique time signature of blinks as well

as color to detect faces.

1.3.2 People Detection

The existing work in people detection has largely not addressed the detection prob-

lem per se; rather, most existing systems use some sort of prior knowledge, place

heavy restrictions on the scene, assume �xed cameras with known backgrounds, or

implement tracking.

The early systems that detect people focused on using motion and simple shapes or

constraints; much of this is due to computational limitations of the time. Tsukiyama

and Shirai, 1985, use simple shape descriptions to determine the location of leg mo-

tion against a white background and a distance measure is utilized to determine the

correspondences between moving regions in consecutive images. This system can han-

dle multiple people in an image, but requires a stationary camera and only uses leg

movement to track people. Leung and Yang, 1987, use a voting process to determine

candidate edges for moving body parts and a set of geometric constraints to determine

actual body part locations. This architecture also assumes a �xed camera. Another

important restriction is that it is only able to deal with a single moving person.

The use of 3D models has been prominent in �nding people in video sequences.

This type of system, while adequate for particular, well-de�ned domains, involves
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using domain speci�c information in the development of the model and is not easily

portable to new domains. Hogg, 1983, describes a system that is based on modeling

a human �gure as a hierarchical decomposition of 3D cylinders, using dynamic con-

straints on the movement of the limbs as well. Edge detection is used to determine

the possible locations of body parts and a search tree is used to determine the loca-

tion that maximizes a \plausibility" measure, indicating the likelihood that there is

a person at this location. Rohr, 1993, develops a system using similar 3D cylindrical

models of the human body and kinematic motion data. Model contours are matched

with edges that are found in an image using a grid search method. A Kalman �lter is

used to determine the exact position and pose of the walking person across multiple

frames. Both these architectures assume a �xed camera and a single moving person

in the image.

A large number of systems use the fact that, if our camera is �xed and we know

what the scene background is, we can e�ectively subtract the background from a new

image of the scene and recover the moving objects. They can further restrict the

domain to specify that the only objects that move will invariably be people. Once

the moving bodies have been segmented out, it is possible to do tracking with \blob"

models of the di�erent body parts assigned by a maximum a posteriori approach as

in [Wren et al., 1995]. A similar system, [Sullivan et al., 1995], models and tracks

moving people using a simple deformable model. McKenna and Gong, 1997, cluster

the motion information to separate di�erent bodies of motion and subsequently use

a Kalman �lter to track di�erent people.

This use of background subtraction can be extended to do more than just detection

and tracking. Kahn and Swain, 1995, use motion and color to segment a person,

then use prior knowledge about the geometry of the body to determine where the

person is pointing. In [Haritaoglu et al., 1998], they present a real-time surveillance

system for \recognizing" actions that analyzes basic shapes and is able to cope with

occlusions and merging bodies (a related approach is describe in [Takatoo et al.,

1996]). Similarly, [Davis and Bobick, 1997] present a system for recognizing actions

based on time-weighted binarized motion images taken over relatively short sequences.

However, the system is not used for detection.

In a di�erent vein, [Heisele et al., 1997] use the clusters of consistent color to track

moving objects. Initially, the system computes the color clusters for the �rst image

in a sequence. The system recomputes the cluster centroids for subsequent images,

assuming a �xed number of clusters. To track an object, the clusters corresponding

to that object are manually labeled in an initial image and are tracked in subsequent

frames { the user is, in e�ect, performing the �rst detection manually. The authors

highlight, as future work, investigating object detection with this algorithm. An

important aspect of this system is that, unlike other systems described in this section,

this technique does not assume a stationary camera. This system has been combined

with a time delay neural network to detect and recognize pedestrians [Heisele and

Wohler, 1998].
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Another approach that di�ers from the traditional techniques is to mark speci�c

points on the human body with sensors or lights and to record data o� of moving

people. This information is more suited to understanding human motion and can

subsequently be used for analysis or animation. Campbell and Bobick, 1995, take

a di�erent approach to analyzing human body motion. They present a system for

recognizing di�erent body motions using constraints on the movements of di�erent

body parts. Motion data is gathered using ballet dancers with di�erent body parts

marked with sensors. The system uses correlations between di�erent part motions

to determine the \best" recognizer of the high-level motion. They use this system

to classify di�erent ballet motions. Lakany and Hayes, 1997, also use moving light

displays (MLDs) combined with a 2D FFT for feature extraction to train a neural

network to recognize a walker from his/her gait.

While systems relying on motion or background information are prevalent for peo-

ple detection, there have been recent e�orts in developing systems that actually do

detection. In [Forsyth and Fleck, 1997] and [Forsyth and Fleck, 1998], they describe

a system that uses color, texture, and geometry to localize horses and naked people

in images. The system can be used to retrieve images satisfying certain criteria from

image databases but is mainly targeted towards images containing one object. Meth-

ods of learning these \body plans" of hand coded hierarchies of parts from examples

are described in [Forsyth and Fleck, 1997]. In a direction of work more similar to

ours, a recent system by [Gavrila and Philomin, 1999] describes a technique for �nd-

ing people by matching oriented outlines generated by an edge detector to a large

set of 5,500 people template images via a distance transform measure. The system is

related to ours in that it looks at some sort of intensity di�erence information, but,

unlike ours, only considers outlines composed of �ne scale edges and uses an explicit

holistic match metric.

1.3.3 Car Detection

Cars, like people, have been less heavily studied than faces as a domain for object

detection. Indeed, most systems for car detection typically impose many of the same

restrictive assumptions as for people detection, largely due to the variability in the

patterns and shapes and the availability of characteristic motion cues in video se-

quences. Much of the work relies on background subtraction[Ali and Dagless, 1990,

Ebbecke et al., 1997]. Several systems use some other segmentation method that keys

o� of the fact that cars occur against fairly constant backgrounds of pavement. For

example, [Kalinke et al., 1998] describe a technique based on local image entropy.

Beymer et al., 1997, present a tra�c monitoring system that has a car detection

module. This portion of the system locates corner features in highway sequences and

groups features for single cars together by integrating information over time. Betke

et al., 1997, and Betke and Nguyen, 1998, use corner features and edge maps com-

bined with template matching to detect cars in highway video scenes. This system
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can a�ord to rely on motion since it is designed for a fairly narrow domain { that of

highway scene analysis from a vehicle.

Most of these systems are applying heuristics that are speci�c to the fairly limited

domains in which the systems are designed to run, typically from a �xed camera

monitoring a piece of road, highway, or intersection, or from the front of a vehicle.

A more relevant example of a true trainable car detection system is that of

Rajagopalan et al., 1999, which clusters the positive data in a high dimensional

space and, to classify an unknown pattern, computes and thresholds a distance mea-

sure based on the higher order statistics of the distribution. This technique has a

good deal in common with the face detection system of [Sung and Poggio, 1994,

Sung and Poggio, 1998]. A similar detection system is described by Lipson, 1996

, who uses a deformable template for side view car detection. In this system, the

wheels, mid-body region, and regions above the wheels are roughly detected based on

photometric and geometric relations. The wheels are then more precisely localized

using a Hausdorf match. Processing is con�ned to high resolution images, which is

possibly a restriction for more general detection tasks. This system has been applied

to scene classi�cation [Lipson et al., 1997, Ratan and Grimson, 1997], and shares

some conceptual similarity with that of [Sinha, 1994a, Sinha, 1994b].

All these systems have succeeded to varying degrees but have relied on the follow-

ing restrictive features:

� explicit modeling of the domain

� assumption that the object is moving

� stationary camera and a �xed background

� marking of key moving features with sensors/lights

� implement tracking of objects, not detection of speci�c classes

Model-based approaches need a large amount of domain speci�c knowledge while

marking features is impractical for real world use. The tracking systems have problems

handling the entrance of new objects into the scene. To overcome this problem, a

tracking system would need to emulate a detection system. This work will overcome

these problems by introducing an example-based approach that learns to recognize

patterns and avoids the use of motion and explicit segmentation.

1.4 Our Approach

The approach taken in this thesis has two components. First, we develop a robust,

trainable object detection system for static images that achieves a high degree of
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Figure 1-2: Example images of people used in the training database of our static de-

tection system. The examples show variation in pose, color, texture, and background.

performance. We then develop several modi�cations and enhancements of the original

system that allow us to take advantage of dynamical information when we process

video sequences.

The core static detection system is one that learns from examples. We present it

with a set of training data that are images of the object class we would like to detect

and a set of data that are examples of patterns not in the object class, and the system

derives an implicit model from this data. To allow the system to �nd a better model,

we do not directly use the pixel images as training data since the pixel patterns have a

high degree of variability. Rather, we transform the pixel images into a representation

that encodes local, oriented, multiscale, intensity di�erences and provides for a more

descriptive model of a variety of object classes.

The system learns using patterns of a �xed size, but in general images we do

not know what size objects we will be looking for, how many of these objects will

be in the scene, and where they will be located. To detect objects at all sizes and

locations, we implement a brute force search in the image looking at all locations and

sizes of patterns. We assume that the orientations that we are interested in must be

expressed in the training data.

When we are processing video sequences, the naive approach of using our core

system is to directly apply the static detection system to each frame sequentially.

This, however, ignores all the dynamical information inherently available in video

sequences. We can take advantage of the facts that objects that appear in one frame

typically appear in approximately the same position in subsequent frames and that

objects do not (usually) spontaneously appear in a frame when they are not present

in previous frames. This general idea can be coded more rigorously in several ways,

each which use the core static detection technique as their basis. We will describe

and provide empirical results using these di�erent methods.

1.5 Thesis Contributions
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Representation

From the example images of people shown in Figure 1-2, it is clear that a pixel-based

representation is plagued by a high degree of variability. A learning-based approach

would have a di�cult time �nding a consistent de�nition of a person using this type

of representation. We describe a new representation where the features are derived

as the responses of �lters that detect oriented intensity di�erences between local

adjacent regions. This is accomplished within the framework of Haar wavelets and

the particular transform we use results in an overcomplete dictionary of these Haar

features.

We will also investigate the power of this representation compared with both

a pixel representation and principal components analysis (PCA), local and global

representations, respectively.

In addition, we present a set of experiments that capture the informational con-

tent inherent in color images versus gray level images by comparing the performance

achieved with color and gray level representations. In other words, these experiments

will show the exact value of color information, in the context of e�ective detection

performance.

Learning Machine

Traditional training techniques for classi�ers, such as multilayer perceptrons, use em-

pirical risk minimization and only guarantee minimum error over the training set.

These techniques can result in over�tting of the training data and therefore poor

out-of-sample performance. In this thesis, we use a relatively new pattern classi�ca-

tion technique, support vector machines, that has recently received a great deal of

attention in the literature. The number of applications of SVMs is still quite small,

so the presentation of SVMs as the core learning machine represents a signi�cant

advancement of the technique in the context of practical applications.

Support Vector Machines (SVM) [Vapnik, 1995, Cortes and Vapnik, 1995, Burges,

1998] approximates structural risk minimization which is a well-founded learning

method with guaranteed theoretical bounds on the generalization performance. SVMs

minimize a bound on the generalization error by simultaneously controlling the com-

plexity of the machine and the performance on the training set, and therefore should

perform better on novel data. The SVM framework is characterized by the use of

nonlinear kernels that maps data from the original input space into a much higher

dimensional feature space in which the learning capability of the machine is signi�-

cantly increased. In the higher dimensional feature space, an SVM classi�er �nds the

optimal separating hyperplane, that is, the one that maximizes the margin between

the two classes.
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Faces, People, Cars

Much of the previous work in object detection in static images has focused on the prob-

lem of face detection [Sung and Poggio, 1998, Rowley et al., 1998, Vaillant et al., 1994,

Moghaddam and Pentland, 1995, Osuna et al., 1997a]. While this is an important

domain for static object detection systems, we consider frontal face detection to be

essentially a solved problem2.

To explore the generality of our system and highlight its performance in less stud-

ied domains, we provide in-depth results on people and car detection, as well as face

detection. To our knowledge, this work is the �rst exposition of people detection

in static images, without making any assumption on motion, scene structure, back-

ground, or the number of people in the scene. In addition, while there have been

several car detection systems developed in the literature, they too typically require

the use of dynamical information.

This thesis explores the three object detection domains { faces, people, and cars

{ and shows that our single, general purpose, trainable architecture is able to handle

each of these classes of objects with excellent results.

Detection by Components

The most prevalent problem with our static detection system is its di�culty in de-

tecting objects when a portion of the pattern is occluded or there is little contrast

between the background and part of the pattern. This is a consequence of the fact

that we are training our system on the complete patterns of our objects of interest.

Many object classes are decomposable into a hierarchy of constituent elements. For

instance, we know that a person is composed of a head, left arm, right arm, torso,

and legs. When we see these components in the proper con�guration, we know that

we are looking at a person.

One would expect that if we knew there was a head, left arm, and legs in the

proper con�guration, but we could not see the right arm, that this may still be a

person. In other words, if we look for the core building blocks, or components of an

object, and allow some leniency in allowing one or two of the components that make

up the object to be missing, this may result in a more robust detection system than

our full pattern approach.

This thesis presents a component based framework for object detection and shows

that for a test domain of people detection, the system performs better than the full

body detection system.

2
We note that the more general problem of pose invariant face detection still has not been

su�ciently dealt with.
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Dynamical Detection

This thesis presents experiments of object detection in video sequences using several

di�erent methods that take advantage of dynamical detection information in di�erent

manners. We will use the brute force technique of applying a static detection system

to individual frames of a video sequence as our baseline.

Our �rst system is a pure pattern classi�cation approach to dynamical object

detection; here we seek to circumvent the need for 1) the extensive engineering that

is quite typical in current dynamical detection systems and 2) assuming particular

underlying dynamics. We will modify our base static detection approach to represent

dynamic information by extending the static representation into the time domain.

With this new representation, the system will be able to learn the dynamics of people,

with or without motion. The system will learn what a person looks like and what

constitutes valid dynamics over short time sequences, without the need for explicit

models of either shape or dynamics.

The second system to take advantage of dynamical information is a rule based

module that integrates information through time as an approximation to a Kalman

�lter. Kalman �ltering theory assumes an underlying linear dynamical model and,

given measurements of the location of a person in one image, yields a prediction of

the location of the person in the next image and the uncertainty in this prediction.

Our heuristic smooths the information in an image sequence over time by taking

advantage of this fundamental a priori knowledge that a person in one image will

appear in a similar position in the next image. We can smooth the results through

time by automatically eliminating false positives, detections that do not persevere

over a small subsequence.

The third system we will develop uses a new approach to propagating general,

multi-modal densities through time, based on the so called Condensation technique
[Isard and Blake, 1998]. This technique has a signi�cant advantage over the Kalman

�lter, namely that it is not constrained to model a single Gaussian density.

A Practical Application

This thesis presents a real-time application of a particular optimized version of our

static detection system. Our people detection technology has been integrated into a

system for driver assistance. The combined system, including our people detection

module, is currently deployed \live" in a DaimlerChrysler S Class demonstration

vehicle.

1.6 Outline

In Chapter 2, we describe our core trainable object detection system for static images,

with details on our wavelet representation and support vector machine classi�cation
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and test results. Chapter 3 investigates the use of alternate representations including

pixels and principal components analysis for the purposes of object detection. The

chapter also describes a manual technique for feature selection, as well as experiments

quantifying how training set size a�ects detection performance. In Chapter 4, we

describe the component based approach for object detection and test it on the domain

of people detection. Chapter 5 highlights a real application of our system as part of a

driver assistance system in a DaimlerChrysler test vehicle and describes experiments

using a focus of attention module. In Chapter 6, we extend the static system into

the time domain to take advantage of dynamical information when we are processing

video sequences; several di�erent approaches are described and tested. Chapter 7

summarizes our results and provides some direction for future work.
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Chapter 2

The Static Detection System

2.1 Architecture

The architectural overview of our system is provided in Figure 2-1 as applied to the

task of people detection and shows the training and testing phases. In the training

step, the system takes as input 1) a set of images of the object class that have been

aligned and scaled so that they are all in approximately the same position and are the

same size and 2) a set of patterns that are not in our object class. An intermediate

representation that encapsulates the important information of our object class is

computed for each of these patterns yielding a set of positive and negative feature

vectors. These feature vectors are used to train a pattern classi�er to di�erentiate

between in-class and out-of-class patterns.

In the testing phase, we are interested in detecting objects in out-of-sample images.

Figure 2-12 presents an algorithmic summary of the detection process. The system

slides a �xed size window over an image and uses the trained classi�er to decide which

patterns show the objects of interest. At each window position, we extract the same

set of features as in the training step and feed them into our classi�er; the classi�er

output determines whether or not we highlight that pattern as an in-class object. To

achieve multi-scale detection, we iteratively resize the image and process each image

size using the same �xed size window.

This section addresses the key issues in the development of our trained pattern

classi�er: the representation and the learning engine.

2.2 Training Data

Our example based approach uses a set of images of an object class to learn what

constitutes an in-class and out-of-class pattern. Here, we take people detection as a

sample domain. Since the output of our system will be an image with boxes drawn

around the people, the training process needs data that reects what is and is not a

person, so we need our positive data to be examples of people. To ensure that our

classi�cation engine will learn on data that has consistent information, we require

that the example images of people be scaled to the same size and aligned so that the
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Figure 2-1: The training and testing phases of our system.
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body is located in the same position in each image. We have developed a simple tool

that allows a user to click on a few identifying marks of an object in an image and

then automatically cuts, scales, and aligns the pattern for use in training. Negative

training data is gathered by randomly sampling patterns in images that do not contain

the object of interest.

Figure 2-2: Examples from the database of faces used for training. The images are

gray level of size 19 � 19 pixels.

2.3 Representation

2.3.1 Wavelets

One of the key issues in the development of an object detection system is the rep-

resentation of the object class. Even within a narrowly de�ned class of objects such

as \faces" or \people," the patterns can show a great deal of variability in the color,

texture, and pose, as well as the lack of a consistent background. Our challenge is to

develop a representation that achieves high inter-class variability with low intra-class

variability.
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Figure 2-3: Examples from the database of people used for training. The images

are color of size 128 � 64 pixels. The examples vary in pose, color, texture, and

background.

To motivate our choice of representation, we can start by considering several

traditional representations. Pixel based and color region based approaches are likely

to fail because of the high degree of variability in the color in certain object classes

like \people" and the number of spurious patterns. Traditional �ne scale edge based

representations are also unsatisfactory due to the large degree of variability in these

edges.

The representation that we use is an overcomplete dictionary of Haar wavelets

in which there is a large set of features that respond to local intensity di�erences at

several orientations. We present an overview of this representation here; details can

be found in Appendix A and [Mallat, 1989, Stollnitz et al., 1994]. The Haar wavelets

in their possible orientations are shown in Figure 2-5b.

For a given pattern, the wavelet transform computes the responses of the wavelet

�lters over the image. Each of the three oriented wavelets { vertical, horizontal, and

diagonal { are computed at several di�erent scales allowing the system to represent

coarse scale features all the way down to �ne scale features. In our object detection
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Figure 2-4: Examples from the database of cars used for training. The images are

color of size 128�128 pixels, normalized so that the front or rear bumper is 64 pixels

wide.

systems, we use 2 consecutive scales of wavelets. In the traditional wavelet transform,

the wavelets do not overlap; they are shifted by the size of the support of the wavelet

in x and y. To achieve better spatial resolution and a richer set of features, our

transform shifts by 1
4
of the size of the support of each wavelet, yielding an overcom-

plete dictionary of wavelet features (see Figure 2-5c). The resulting high dimensional

feature vectors are used as training data for our classi�cation engine.

There is certain a priori knowledge embedded in our choice of the wavelets. First,

we use the absolute values of the magnitudes of the wavelets. This tells the system

that a dark object on a light background and a light object on a dark background

have the same information content. Second, for color images, we compute the wavelet

transform for a given pattern in each of the three color channels and then, for a wavelet

of a speci�c location and orientation, we use the one that is largest in magnitude.

This allows the system to use the most visually signi�cant features.

Motivation

Our main motivation for using wavelets is that they capture visually plausible features

of the shape and interior structure of objects that are invariant to certain transforma-

tions. The result is a compact representation where dissimilar example images from

the same object class map to similar feature vectors.

With a pixel representation, what we would be encoding are the actual intensities
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Figure 2-5: The Haar wavelet framework; (a) the Haar scaling function and wavelet,

(b) the three types of 2-dimensional non-standard Haar wavelets: vertical, horizontal,

and diagonal, and (c) the shift in the standard transform as compared to quadruply

dense shift resulting in an overcomplete dictionary of wavelets.

of di�erent parts of the patterns; a simple example makes it clear that this encoding

does not capture the important features for detection. Take, for instance, our example

of two data points of the same class where one is a dark body on a white background

and the other is a white body on a dark background. With an intensity based rep-

resentation (like pixels), each of these examples maps to completely di�erent feature

vectors. A representation that encodes local, oriented, intensity di�erences (like Haar

wavelets) would yield similar feature vectors where the features corresponding to uni-

form regions are zero and those corresponding to boundaries are non-zero. In fact,

since, in our representation, we encode only the magnitude of the intensity di�erence,

the feature vectors for this simple two example case would be identical.

We do not use all the very �ne scales of wavelets as features for learning since

these scales capture high frequency details that do not characterize the class well.

For instance, in the case of people, the �nest scale wavelets may respond to checks,

stripes, and other detail patterns, all of which are not features that are characteristic

to the entire class. Similarly, the very coarse scale wavelets are not used as features
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Figure 2-6: The top row shows examples of images of people in the training database.

The bottom row show edge detection of the pedestrians. Edge information does not

characterize the pedestrian class well.

for learning since their support will be as large as the object and will therefore not

encode useful information. So, for the object detection system we have developed,

we throw out the very �ne and very coarse wavelets and only use two medium scales

of wavelets as features for learning. These scales depend on the object class and the

size of the training images and are chosen a priori.

2.3.2 The Wavelet Representation

The Haar transform provides a multiresolution representation of an image with wavelet

features at di�erent scales capturing di�erent levels of detail. The coarse scale

wavelets encode large regions while the �ne scale wavelets describe smaller, local

regions. The wavelet coe�cients preserve all the information in the original image,

but the coding of the visual information di�ers from the pixel-based representation

in two signi�cant ways.

First, the wavelets encode the di�erence in average intensity between local regions

along di�erent orientations in a multiscale framework. Constraints on the values of

the wavelets can express visual features of the object class. Strong response from a

particular wavelet indicates the presence of an intensity di�erence, or boundary, at

that location in the image while weak response from a wavelet indicates a uniform

area.

Second, the use of an overcomplete Haar basis allows us to propagate constraints

between neighboring regions and describe complex patterns. The quadruple density

wavelet transform provides high spatial resolution and results in a rich, overcomplete

dictionary of features.

In the following sections, we show how our wavelet representation applies to faces,

people, and cars. This coding of local intensity di�erences at several scales provides
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a exible and expressive representation that can characterize complex object classes.

Furthermore, the wavelet representation is computationally e�cient for the task of

object detection since we do not need to compute the transform for each image region

that is examined, but only once for the whole image and then process the image in

the space of wavelets.

Analyzing the Face Class

For the face class, we have a training set of 2,429 gray scale images of faces. This set

consists of a core set of faces with some small angular rotations to improve general-

ization and 24,730 nonface patterns. These images are all scaled to the dimensions

19� 19 and show the face from above the eyebrows to below the lips. Typical images

from the database are shown in Figure 2-2. Databases of this size and composi-

tion have been used extensively in face detection [Sung, 1995, Rowley et al., 1998,

Osuna et al., 1997a]. For the size of patterns our face system uses, we have at our

disposal wavelets of the size 2�2, 4�4, 8�8, and 16�16. Instead of using the entire
set of wavelets, we a priori limit the dictionary to contain the wavelets of scales 2� 2

and 4 � 4, since coarser features do not contain signi�cant information for detection

purposes. At the scale 4 � 4 pixels, there are 17 � 17 features in quadruple density

for each wavelet class, and at 2� 2 pixels there are 17� 17 features in double density

for each class, for a total of 1,734 coe�cients.

The raw value of a coe�cient may not necessarily be indicative of a boundary;

a weak coe�cient in a relatively dark image may still indicate the presence of an

intensity di�erence that is signi�cant for the purposes of classi�cation. To reduce

these e�ects on the features used for classi�cation, we normalize a coe�cient's value

against the other coe�cients in the same area. For the normalization step, we compute

the average of each wavelet's class (fvertical; horizontal; diagonalg � f2; 4g) over

the current pattern and divide the wavelet response at each spatial location by its

corresponding class average. We calculate the averages separately for each class since

the power distribution between the di�erent classes may vary. For a given pattern p

(in this case, a 19 � 19 pixel pattern), the class averages are:

avgo;s =
1

n

X
i2p

wo;s[i] (2:1)

where c denotes a �xed orientation, s denotes a �xed scale, i indexes into the wavelets

in the pattern p, and wo;s denote the n individual wavelet coe�cients at orientation

o and scale s. The normalization for all wavelets within the pattern p is then:

w

�

o;s[i] =
wo;s[i]

avgo;s

(2:2)

After the normalization, the average value of a coe�cient for random patterns

should be one. Three classes of feature magnitudes will emerge: ensemble average
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values much larger than one, which indicate strong intensity di�erence features that

are consistent along all the examples; values that are much less than one, which indi-

cate consistent uniform regions; and values that are close to one, which are associated

with inconsistent features, or random patterns.

To visualize the detected face features, we code the ensemble average of the wavelet

coe�cients using gray level and draw them in their proper spatial layout (Figure 2-

7). Coe�cients with values close to one are plotted in gray; those with values larger

than one are darker; and those with values less than one are lighter. It is interesting

to observe the emerging patterns in the facial features. The vertical coe�cients

capture the sides of the nose, while the horizontal coe�cients capture the eye sockets,

eyebrows, and tip of the nose. Interestingly, the mouth is a relatively weak feature

compared to the others. The diagonal coe�cients respond strongly to the endpoint

of facial features.

(a) (b) (c) (d) (e) (f)

Figure 2-7: Ensemble average values of the wavelet features of faces coded using gray

level. Coe�cients whose values are above the average are darker, those below the

average are lighter. (a)-(c) are the vertical, horizontal, and diagonal wavelets at scale

4� 4; (d)-(f) are the vertical, horizontal, and diagonal wavelets at scale 2 � 2.

1.05 1.42 1.73 1.97 2.07 1.97 1.70 1.48 1.46 1.61 1.89 2.08 2.08 1.93 1.65 1.27 1.12

1.04 1.30 1.45 1.55 1.62 1.56 1.37 1.26 1.26 1.30 1.44 1.56 1.56 1.50 1.36 1.15 1.09

0.86 0.98 1.03 1.00 0.95 0.82 0.69 0.69 0.72 0.71 0.79 0.92 1.01 1.04 1.03 0.94 0.94

1.10 1.27 1.31 1.27 1.08 0.83 0.70 0.67 0.70 0.77 0.85 1.05 1.26 1.38 1.42 1.33 1.28

1.54 1.81 1.91 1.83 1.61 1.29 0.99 0.84 0.83 0.96 1.20 1.53 1.81 1.99 2.01 1.82 1.72

1.50 1.78 1.90 1.78 1.54 1.24 0.90 0.73 0.72 0.82 1.12 1.45 1.72 1.91 1.89 1.67 1.56

0.99 1.19 1.30 1.20 1.00 0.80 0.59 0.54 0.55 0.54 0.71 0.94 1.14 1.28 1.24 1.06 0.97

0.57 0.68 0.75 0.70 0.60 0.51 0.48 0.56 0.60 0.56 0.58 0.62 0.70 0.77 0.74 0.64 0.62

0.60 0.73 0.81 0.81 0.79 0.83 0.96 1.15 1.21 1.08 0.92 0.82 0.82 0.85 0.81 0.73 0.70

0.86 1.01 1.04 0.99 0.98 1.11 1.39 1.69 1.73 1.48 1.16 0.96 0.90 0.99 1.06 1.01 0.95

0.93 1.01 0.97 0.86 0.84 1.02 1.35 1.64 1.68 1.45 1.11 0.84 0.79 0.92 1.04 1.03 0.99

0.80 0.83 0.85 0.79 0.71 0.75 0.93 1.12 1.15 0.99 0.81 0.75 0.80 0.87 0.87 0.84 0.81

0.62 0.66 0.76 0.85 0.85 0.82 0.85 0.96 0.98 0.90 0.87 0.90 0.91 0.82 0.70 0.63 0.61

0.56 0.56 0.68 0.82 0.89 0.87 0.84 0.87 0.89 0.86 0.90 0.95 0.89 0.73 0.59 0.54 0.56

0.61 0.54 0.62 0.77 0.85 0.85 0.83 0.86 0.88 0.85 0.87 0.91 0.85 0.71 0.59 0.57 0.64

0.72 0.58 0.58 0.74 0.90 0.92 0.87 0.87 0.88 0.87 0.91 0.93 0.83 0.68 0.61 0.67 0.79

0.44 0.35 0.32 0.36 0.43 0.47 0.47 0.50 0.51 0.48 0.46 0.44 0.38 0.35 0.35 0.41 0.47

Table 2.1: Ensemble average of normalized horizontal coe�cients of scale 4 � 4 of

images of faces. Meaningful coe�cients are the ones with values much larger or

smaller than 1. Average values close to 1 indicates no meaningful feature.
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Analyzing the People Class

For learning the people class, we have collected a set of 1,800 color images of people

in di�erent poses (Figure 2-3) and use the 1,800 mirror images as well and 16,726

nonpeople patterns. All of the images are normalized to the dimensions 128� 64 and

the people images are aligned such that the bodies are centered and are approximately

the same size (the distance from the shoulders to feet is about 80 pixels).

As in the case of faces, to code features at appropriate scales for people detection

{ scales at which we expect relevant features of people to emerge { we restrict the

system to the wavelets at scales of 32�32 pixels (13�5 features for each orientation)
and 16 � 16 pixels (29� 13 features for each orientation).

In our people detection system, our training database is of color images. For

a given pattern, we compute the quadruple density Haar transform in each color

channel (RGB) separately and take, as the coe�cient value at a speci�c location

and orientation, the one largest in absolute value among the three channels. This

technique maps the original color image to a pseudo-color channel that gives us 1,326

wavelet coe�cients, the same number as if we had been using gray level images.

To visualize the patterns that emerge using this wavelet representation for people,

we can code the average values of the coe�cients in gray level and display them in the

proper spatial layout as we did for the faces. Figure 2-8 shows each average wavelet

displayed as a small square where features close to one are gray, stronger features are

darker, and weaker features are lighter. As with faces, we observe that each class

of wavelet coe�cients is tuned to a di�erent type of structural information. The

vertical wavelets capture the sides of the people. The horizontal wavelets respond to

the shoulders and to a weaker belt line. The diagonal wavelets are tuned to \corner

features," i.e. the shoulders, hands, and feet. The 16� 16 scale wavelets provide �ne

spatial resolution of the body's overall shape, and smaller scale details, such as the

head and extremities, are clearly evident.

Analyzing the Car Class

The car detection system uses a database of 516 frontal and rear color images of cars,

normalized to 128 � 128 and aligned such that the front or rear bumper is 64 pixels

across. For training, we use the mirror images as well for a total of 1,032 positive

patterns and 5,166 negative patterns. A few examples from our training database are

shown in Figure 2-4. The two scales of wavelets we use for detection are 16� 16 and

32 � 32. Like the processing for people, we collapse the three color channel features

into a single channel by using the maximum wavelet response of each channel at a

speci�c location, orientation, and scale. This gives us a total of 3,030 wavelet features

that are used to train the SVM.

The average wavelet feature values are coded in gray level in Figure 2-9. The

gray level coding of the average feature values shows that the wavelets respond to the

signi�cant visual characteristics of cars. The vertical wavelets respond to the sides
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(a) (b) (c) (d) (e) (f)

Figure 2-8: Ensemble average values of the wavelet features of people coded using

gray level. Coe�cients whose values are above the average are darker, those below the

average are lighter; (a)-(c) are the vertical, horizontal, and diagonal wavelets at scale

32 � 32, (d)-(f) are the vertical, horizontal, and diagonal wavelets at scale 16 � 16.

of the car; the horizontal wavelets respond to the roof, underside, top of the grille

and bumper area; and the diagonal wavelets respond to the corners of the car's body.

At the scale 16 � 16, we can even see evidence of what seem to be license plate and

headlight structures in the average responses.

(a) (b) (c) (d) (e) (f)

Figure 2-9: Ensemble average values of the wavelet features of cars coded using gray

level. Coe�cients whose values are above the average are darker, those below the

average are lighter; (a)-(c) are the vertical, horizontal, and diagonal wavelets at scale

32 � 32, (d)-(f) are the vertical, horizontal, and diagonal wavelets at scale 16 � 16.

Discussion

Comparing the database of people, Figure 2-3, to the database of faces, Figure 2-2,

illustrates an important fundamental di�erence in the two classes. In the case of faces,

there are clear patterns within the face consisting of the eyes, nose and mouth. These

patterns are common to all the examples. This is not the case with full-body images

of people. The people do not share any common color or texture. Furthermore, the
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people images have a lot of spurious details such as jackets, ties, and bags. On the

other hand, we would expect that people can be characterized quite well by their

fairly similar overall body shape, or \silhouette." Our approach treats these two

cases, where there is di�erent underlying information content in the object classes,

in a uniform manner. Frontal and rear views of cars have both a certain amount of

common interior structure (top of grille, license plates, headlights), as well as fairly

uniform outer boundaries. We will see that our wavelet representation is also suitable

for car detection as well.

There is certain a priori knowledge embedded in our choice of the wavelets. The

use of the absolute value of the coe�cient is essential in the case of people since the

direction of the intensity di�erence of a certain feature's orientation is not important;

a dark body against a light background and a light body against a dark background

should be represented as having the same information content. Furthermore, we

compute the wavelet transform for a given pattern in each of the three color channels

and then, for a wavelet at a speci�c location and orientation, we use the one that is

largest in magnitude amongst the three channels. This is based on the observation

that there is little consistency in color between di�erent people and allows the system

to key o� of the most visually signi�cant features.

Once we have generated the feature vectors for an object class and have done the

same for a set of images not in our object class, we use a learning algorithm that

learns to di�erentiate between the two classes. The particular learning engine we use

is a support vector machine, described below.

2.4 Support Vector Machines

(a) small margin (b) large margin

Figure 2-10: The separating hyperplane in (a) has small margin; the hyperplane in

(b) has larger margin and should generalize better on out-of-sample data.
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Support vector machines (SVM) is a technique to train classi�ers that is well-founded

in statistical learning theory [Vapnik, 1995, Burges, 1998]. One of the main attractions

of using SVMs is that they are capable of learning in high dimensional spaces with

very few training examples. SVMs accomplish this by minimizing a bound on the

empirical error and the complexity of the classi�er at the same time.

This concept is formalized in the theory of uniform convergence in probability:

R(�) � Remp(�) + �

 
h

`

;

�log(�)
`

!
(2:3)

with probability 1 � �. Here, R(�) is the expected risk; Remp(�) is the empirical

risk; ` is the number of training examples; h is the VC dimension of the classi�er

that is being used; and �(�) is the VC con�dence of the classi�er. Intuitively, what

this means is that the uniform deviation between the expected risk and empirical risk

decreases with larger amounts of training data ` and increases with the VC dimension

h. This leads us directly to the principle of structural risk minimization, whereby we

can attempt to minimize at the same time both the actual error over the training set

and the complexity of the classi�er. This will bound the generalization error as in

Equation 2.3. It is exactly this technique that support vector machines approximate.

(a) original data set (b) mapped feature space

Figure 2-11: The original data set may not be linearly separable. The support vector

machine uses a nonlinear kernel to map the data points into a very high dimen-

sional feature space in which the classes have a much greater chance of being linearly

separable.

This controlling of both the training set error and the classi�er's complexity has

allowed support vector machines to be successfully applied to very high dimensional
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learning tasks; [Joachims, 1997] presents results on SVMs applied to a 10,000 dimen-

sional text categorization problem and [Osuna et al., 1997b] show a 283 dimensional

face detection system.

The separating boundary is in general of the form:

f(x) = �

 X̀
i=1

�iyiK(x;xi) + b

!
(2:4)

where ` is the number of training data points (xi; yi) (yi being the label �1 of train-
ing point xi); �i are nonnegative parameters learned from the data; and K(�; �) is
a kernel that de�nes a dot product between projections of the two arguments in

some feature space [Vapnik, 1998, Wahba, 1990] where a separating hyperplane is

then found (Figure 2-11). For example, when K(x;y) = x � y is the chosen ker-

nel, the separating surface is a hyperplane in the space of x (input space). The

kernel K(x;y) = exp(�kx � yk2) de�nes a Gaussian radial basis function [Girosi

et al., 1995] and K(x;y) = (x � y + 1)n describes an n
th degree polynomial. In

general, any positive de�nite function can be used as the kernel [Vapnik, 1998,

Wahba, 1990].

The main feature of SVM is that it �nds, among all possible separating surfaces

of the form (2.4), the one which maximizes the distance between the two classes of

points (as measured in the feature space de�ned by K). The support vectors are the

nearest points to the separating boundary and are the only ones (typically a small

fraction of the training data) for which �i in Equation (2.4) is positive.

Using the SVM formulation, the classi�cation step for a pattern x using a poly-

nomial of degree two { the typical classi�er we use for our system { is as follows:

f(x) = �

 
NsX
i=1

�iyi(x � xi + 1)2 + b

!
(2:5)

where Ns is the number of support vectors, or training data points that de�ne the

decision boundary; �i are Lagrange parameters; and � is a threshold function. If

we introduce d(x), which returns a value proportional to the distance of x to the

seperating hyperplane, then f(x) = � (d(x)).

In our case, the feature vector we use is composed of the wavelet coe�cients for

the pattern we are currently analyzing.

2.4.1 SVMs and Conditional Densities

The raw output of a single SVM classi�cation, d(x), is a real number that is pro-

portional to the distance of the point x to the separating hyperplane. To facilitate

comparisons between the outputs of di�erent support vector machines and provide

a probabilistic interpretation, it is necessary to normalize the outputs somehow; in
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their raw form, they are not directly comparable. Several methods for providing in-

terpretations of the output of a SVM as a conditional density have emerged. While

we do not use these methods in our system, they are outlined below for completeness.

Density estimation in the space of d(x)

In [Niyogi et al., 1999], they describe a method for converting SVM outputs to prob-

abilities that simply relies on the approximation P (xjy) � P (d(x)jy), thereby doing

density estimation in the lower dimensional space of distances from the hyperplane

rather than the full feature space. To estimate the posterior density:

P (yjx) = P (d(x)jy)P (y)
P (d(x)jy)P (y) + P (d(x)jy)P (y) (2:6)

Maximum likelihood �tting

In [Dumais et al., 1998, Platt, 1999], they directly �t a sigmoid to the output of an

SVM using a regularized maximum likelihood approach. The resulting posterior is:

P (yjx) = 1

1 + e
Ad(x)+B

(2:7)

Decomposition of feature space

Another method for estimating conditional probabilities from SVMs is presented in
[Vapnik, 1998]. Here, the feature space is decomposed into 1) a direction orthogonal to

the seperating hyperplane, and 2) the other dimensions. Each of these decompositions

is parameterized seperately by t (a scaled version of d(x)) and u, respectively, and

the density along the orthogonal line is:

P (yjt;u) = a0(u) +
NX
i=1

an(u)cos(it) (2:8)

2.5 Experimental Results

An algorithmic summary of the out-of-sample detection process is shown in Figure

2-12.

In Figures 2-13, 2-14, and 2-15, we present examples of our trainable object detec-

tion system as applied to the domains of face, people, and car detection, respectively.

We reiterate that the system makes no a priori assumption on the scene structure

or the number of objects present and does not use any motion or other dynamical

information. The performance of each of these particular instantiations of detection

systems could easily be improved by using more training data. We have not sought

to push the limits of performance in particular domains; rather, our goal has been to
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show that this uniform architecture for object detection leads to high performance in

several domains.
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Let I be the image on which we are running the detection system.

Let sr be the rescaling factors for our image; we use sr = 1:1.

Let si be the initial scale; we use si = 0:2.

Let sf be the final scale; we use sf = 1:5.

Let sc be the current scale of image we are processing.

Let Ic be the input image scaled by sc.

Let H(I) be the Haar transform of image I.

Let q be a 128 � 64 pattern in wavelet space.

Let fv be the feature vector used to classify a pattern.

1. set sc = si

2. while sc 6= sf then do

3. Ic resize I by sc

4. H(Ic) compute the Haar wavelet transform of Ic

5. loop over all rows and columns (r; c) in H(Ic)

6. q  128 � 64 pattern at (r; c)

7. compute the average response of each type of wavelet

scale = f16; 32g � orientation = fV;H;Dg in pattern q

7. fv  normalize each wavelet in q by its class average

8. class classify fv using the SVM classifier

9. if (class == 1) then

10. pattern q is a person so draw a rectangle around q

11. if (class == �1) then

12. pattern q is not a person so ignore

13. sc  sc � sr
14. end

Figure 2-12: Algorithm for detecting people in out-of-sample images.
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Figure 2-13: Results of our face detection system on a set of out-of-sample images.

A, C, E, F, G, H, I, J, K, L, M, N are from the test database of Sung and Poggio; B,

D are from www.starwars.com; O is from www.corbis.com. Missed faces (B, F, I, J,

K, M) are due to signi�cant head rotations that were not present in the training data.

False positives (E, F, N) are due to insu�cient training data and can be eliminated by

using more negative training data. The face detection system processes approximately

125,000 patterns per image.
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Figure 2-14: Results of people detection on out-of-sample images. A, I, K are from

www.starwars.com; B, D, E, F, H, J, N are from www.corbis.com; C, G are from

www.cnn.com; L, O, P were taken in Boston and Cambridge; M was provided by

DaimlerChrysler. Missed detections are due to the person being too close to the edge

of the image (B) or when the person has a uncharacteristic body shape not represented

in the training data (I). False positives often look very similar to people (A) or are

due to the presence of strong vertical and horizontal intensity di�erences (D, E, K,

L, M, O). The people detection system processes approximately 35,000 patterns per

image.
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Figure 2-15: Results of car detection on out-of-sample images. A is from

www.lewistonpd.com; B, C, D, E, F, G, H, J, K, L, M, O are from www.corbis.com;

I is from www.enn.com; N is from www.foxglove.com. Missed positive examples are

due to occlusions (A, F, O) or where a car is too close to the edge of the image (A).

False positives (C, J, I, N) are due to insu�cient training and can be eliminated with

more negative training patterns. The car detection system processes approximately

125,000 patterns per image.
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Chapter 3

Experimental Results

Our criteria for the representation we are using is that it be e�ciently computable and

identify local, oriented intensity di�erence features. Haar wavelets satisfy these crite-

ria and are perhaps some of the simplest such features with �nite support. Thusfar,

we have focused on the Haar wavelet representation but could have considered other

possible representations including pixels and principal components. This chapter em-

pirically quanti�es the added value in using the wavelet representation as compared

with several alternate representations. We also present the result of experiments that

compare the e�ect of using di�erent types of classi�ers including linear, polynomial,

and radial basis function classi�ers. Finally, we provide empirical evidence that shows

that relatively few training examples may be needed to su�ciently train an object

detection system.

3.1 Test Procedure

To accurately measure our detection system's performance, we use a receiver op-

erating characteristic (ROC) curve which quanti�es the tradeo� between detection

accuracy and the rate of false positives. In all of our ROC curves, the y scale is the

percentage of correct positive detections and the x scale is the rate of false positives

measured as the number of false positives per negative pattern processed.

To test our detection system, we have developed an automated testing package

that gives us a detailed view of how well our system is performing. The testing pro-

cedure measures positive and negative pattern performance separately over di�erent

sets of data. The positive test data consists of aligned, but not scaled, examples of the

object class with a su�ciently large boundary around them such that the detection

system can run at several di�erent locations and scales. While these images can be of

various sizes, the proportions at which the object occurs in the image is constant from

test example to test example. This allows us to check whether or not each detection

in the image falls on the actual object. We allow tolerances of a few pixels in the

detections; exact tolerances are given in Table 3.1.

To generate the false positive rate, we have a set of 50 images of di�erent nat-

ural and man-made scenes that do not contain any examples of the objects we are
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Faces People Cars

Tolerance +/- 3 +/- 8 +/- 10

Table 3.1: Pixel tolerances for the automated testing procedure; given tolerances are

for both x and y positions as normalized to the sizes of the objects in the training

set, i.e. for faces, tolerances are scaled for 19� 19 patterns, for people 128� 64, and

for cars 128 � 128.

detecting. The false positive rate is simply the number of detections in this set of

data divided by the total number of patterns that are examined. Using the actual

backgrounds of images containing people may give a more accurate false positive rate

but we ignore this issue, opting for the most simple method of determining the false

positive rate. Table 3.2 gives the number of positive examples and negative patterns

for each of the object detection systems we develop in this thesis.

Faces People Cars

Positive Examples 105 123 90

Negative Patterns 3,909,200 794,906 600,272

Table 3.2: Summary of the test set sizes for each of the detection systems.

This technique gives us a single detection/false positive point. To generate a full

ROC curve, we shift the SVM decision surface and obtain detection/false positive

points for various shifts. Shifting the decision surface has the e�ect of tuning the

system to be more strict or more relaxed in its de�nition of what is and is not an

element of the object class. The shifting is accomplished as

f(x) = �

 X̀
i=1

�iyiK(x;xi) + b+ s

!
(3:1)

where s dictates the magnitude and direction of the shift as shown in Figure 3-1.

For s = 0 we have the decision surface that SVM training providesl s > 0 moves

the decision surface towards the positive class making classi�cation more strict; and

s < 0 moves the decision surface towards the negative class making classi�cation more

lenient.

3.2 Experiments

The dense Haar transform captures a rich set of features that allow the SVM classi�er

to obtain a powerful class model; the wavelets respond to signi�cant visual features

while smoothing away noise. This choice of features is a priori, however; this section

presents the results of many tests comparing di�erent features for object detection.
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peoplenon-people

s=0s<0 s>0

Figure 3-1: Shifting the original decision surface s = 0 by changing the bias term

makes classi�cation more strict if s > 0 or more lenient if s < 0. Each shifted decision

boundary yields a detection system with di�erent performance characteristics. We

generate ROC curves by plotting the performance obtained for each shifted decision

surface.

There are many possible alternate representations that have been used in the liter-

ature, including pixels and PCA, and these di�erent representations are compared

in our detection framework. Another decision we made was to ignore the sign of

the wavelets and use their absolute value, tested against the signed values. In addi-

tion, for people detection, our training set is in color. We empirically quantify the

improvement in performance using color data as opposed to gray level data.

In the results presented in this section, our people detection system is trained on

1,848 positive patterns (924 frontal and rear people images and their mirror images)

and 11,361 non-people patterns, and is tested on 123 images containing people and

794,906 non-people patterns. The face detection system is trained on 2,429 face

images and 13,229 non-face patterns, and is tested on 105 images containing faces

and 3,909,200 non-face patterns. The car detection system is trained on 1,032 frontal

and rear color images of cars (516 examples and their mirrors) and 5,166 non-car

patterns, and is tested on 90 images containing cars and 600,272 non-car patterns.
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(a) (b) (c)

Figure 3-2: Comparing histogram equalized pixels to histogram equalized scaling

coe�cients; (a) raw pixels (128�64), (b) histogram equalized pixels, and (c) histogram

equalized overlapping 8 � 8 scaling coe�cients (61 � 29).

3.2.1 Pixels, Wavelets, PCA

Our main premise for choosing a wavelet based representation is that intensity dif-

ferences between local adjacent regions contain higher quality information for the

purpose of object detection than other traditional representations. Pixel representa-

tions capture the \most local" features. These have been used extensively for face

detection but due to the variability in the people patterns, we would expect pixel

representations to fail for people detection. At the other end of the locality spectrum

are global representations like PCA which encodes a class in terms of basis functions

that account for the variance in the data set. We can change the class of features

to see which yields the best performance. For people, we use the 1,769 overlapping

8� 8 averages instead of pixels for a more fair comparison that uses similar numbers

of features. Furthermore, these averages are histogram equalized in the same manner

as the pixel representation (see Figure 3-2).
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3.2.2 Signed vs. Unsigned Wavelets

The features our system uses do not contain information on the sign of the intensity

gradient but are the absolute values of the wavelet responses. With these features,

we are solely describing the strength of the intensity di�erences. For an object class

like people, where a dark body on a light background has the same information as

a light body on a dark background and there is little consistency in the intensities,

the sign of the gradient should not matter. On the other hand, if we consider face

patterns, there is consistent information in the sign of the gradient of the intensity

di�erences. For instance, the eyes are darker than the cheeks and the forehead, and

the mouth is darker than the cheeks and the chin. These types of relationships have

been explored in [Sinha, 1994b]. We might expect that using the sign information (+

or �) would enhance results in this case.

3.2.3 Complete vs. Overcomplete

The motivation for using the overcomplete Haar wavelet representation is to provide

a richer set of features over which the system will learn and, ultimately, a more

accurate description of a person. We test this against the standard complete Haar

representation1.

3.2.4 Color vs. Gray Level

For color images in the case of people detection, we collapse information from the

three color channels into a single pseudo-channel that maintains the strongest local

intensity di�erences. It is intuitively obvious that color images contain much richer

information than the corresponding gray-scale versions. We present experiments that

quantify the inherent information content in using color images as opposed to gray

level for object detection.

3.2.5 Faces, People, and Cars

Our ROC curves highlight the performance of the detection system as accuracy over

out-of-sample data against the rate of false positives, measured as the number of false

positives per pattern examined. The ROC curves that compare di�erent representa-

tions for the face detection system are shown in Figure 3-3. The representations used

for face detection are raw pixels (361 features); histogram equalized pixels (361 fea-

tures); principal components of histogram equalized pixels (361 features); gray signed

wavelets (1,740 features); and gray unsigned wavelets (1,740 features). Gray unsigned

1
The wavelets that we use actually form an undercomplete basis for this space. A more correct

characterization of the representation is that the features are the wavelets from the complete basis

that are at the two scales (32� 32 and 16� 16) we are using.
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Figure 3-3: ROC curves for face detection comparing di�erent features using pixel

features as a benchmark. The graph shows gray unsigned and signed wavelets, raw

and histogram equalized pixels, and PCA of histogram equalized pixels. The face

detection system typically processes about 125,000 patterns per image.
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Figure 3-4: ROC curves for people detection comparing di�erent features using pixel

type features as a benchmark. The graph shows color and gray, signed and unsigned

wavelets (overlapping), color unsigned wavelets (non-overlapping), 8� 8 overlapping

pixel averages, and PCA of the 8 � 8 overlapping pixel averages. We compare the

1,326 wavelets against the 1,769 overlapping 8� 8 pixel averages instead of the 8,192

pixels themselves to use approximately the same number of features for a more fair

comparison. The people detection system typically processes about 35,000 patterns

per image.
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Figure 3-5: Preliminary ROC curve for car detection using wavelet features over

color images. The car detection system typically processes about 125,000 patterns

per image.

wavelets yield the best performance while gray signed wavelets and histogram equal-

ized gray pixels lead to the same level of performance (slightly worse than the gray

unsigned wavelets). The version using principal components is less accurate than

the histogram equalized pixels. That the unsigned wavelets perform better than the

signed wavelets is somewhat counterintuitive; we had postulated that the signs of

the wavelets contain important information for face detection since human faces have

consistent patterns. Using the absolute magnitude of the wavelets may result in a

representation with less variability than the signed version while still encoding the

important information for detection, allowing the classi�er to �nd a better decision

surface. To gauge the performance of the system, we can take a point on the ROC

curve and translate the performance into real image terms. For instance, for a 90%

detection rate, we must tolerate 1 false positive for every 100,000 patterns processed,

or approximately 1 false positive per image.

The ROC curves for the people detection system are shown in Figure 3-4. Here,

using all the color features performs the best, where, for instance, a 90% detection rate

leads to one false positive for every 10,000 patterns that are processed (about three

false positives per image). Gray level wavelets perform signi�cantly better than the

corresponding gray level averages. Here, unlike in the case of face detection, the raw

pixel values do not characterize the object class well. When we use the 1,769 PCAs of

the 8�8 averages the performance is signi�cantly worse. Figure 3-4 also supports our

hypothesis on the necessity of an overcomplete versus a complete representation. The

system starting from a complete representation (120 color wavelets) underperforms

all of the systems based on the overcomplete representation. The signed versions of
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both the color and gray level wavelets perform worse than their unsigned versions.

We hypothesize that the reason is the same as the case for faces: that the unsigned

versions result in more compact representations over which it is easier to learn (see

the intuition given in Section 2.3.1).

The preliminary ROC curve for our car detection system using unsigned wavelet

features on color images is shown in Figure 3-5.

3.2.6 Discussion

There is a simple relation between linear transformations of the original images and

kernels that bears mentioning. An image x can be linearly decomposed into a set of

features c = c1; : : : ; cm by c = Ax, where A is a real matrix (we can think of the

features c as the result of applying a set of linear �lters to the image x).

If the kernel used is a polynomial of degree m
2 as in the experiments, then

K(xi;xj) = (1 + x>i � xj)m, while K(ci; cj) = (1 + c>i � cj)m = (1 + x>i (A
>
A)xj)

m.

So using a polynomial kernel in the \c" representation is the same as using a kernel

(1 + x>i (A
>
A)xj)

m in the original one. This implies that one can consider any linear

transformation of the original images by choosing the appropriate square matrixAT
A

in the kernel K of the SVM.

As a consequence of this observation, we have a theoretical justi�cation of why

the pixel and eigenvector representations should lead to the same performance. In

the case of using the PCA, the matrix A is orthonormal, therefore AT
A = I which

implies that the SVM should �nd the same solution in both cases. On the other hand,

if we choose only some of the principal components, or if we project the images onto

a non-orthonormal set of Haar wavelets, the matrix A is no longer orthonormal so

the performance of the SVM may be di�erent.

This theoretical justi�cation is empirically validated, or at least not contradicted,

in the case of faces, where the PCA and pixel representations perform at about the

same level. However, for people, our results seem to contradict the theory: the PCA

of the local averages perform much worse than the local averages themselves. Why

might this be happening?

Closer analysis reveals that the pixel and principal component representations do

not in fact lead to identical solutions. In the case of pixels, our polynomial kernel has

the form:

K(xi;xj) = (1 + x>i � xj)m (3:2)

In the case of PCA, we actually compute the eigenvectors over the set of mean nor-

malized pixel images (x� �x), yielding as the kernel:

K(ci; cj) = (1 + c>i � cj)m = (1 + (xi � �x)>(A>A)(xj � �x))m (3:3)

2
Generally this holds for any kernel for which only dot products between input arguments are

needed - i.e. also for Radial Basis Functions.
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where now c = A(x � �x) are computed from the mean normalized pixel features.

Since A is orthonormal, in the case of PCA we are actually computing:

K(ci; cj) = (1 + c>i � cj)m = (1 + (xi � �x)> � (xj � �x))m (3:4)

which is strictly not equivalent to the kernel in the case of pixels. Further analysis of

these issues is an area of future research.

The number of support vectors in the di�erent solutions is one indicator of how

di�cult the individual problems are. Table 3.3 lists the number of support vectors

for each of the di�erent representations we have considered above. One of the most

important conclusions we can draw from this table is that the signed representations

do indeed result in more complex SVM decision surfaces than their unsigned coun-

terparts, meaning that the signed representations are not as conducive to learning.

Faces People Cars

pixels (raw) 521 - -

pixels (histogram equalized) 239 853 -

pca 577 202 -

gray signed 1,006 1,639 -

gray unsigned 668 703 -

color signed - 1,803 -

color unsigned - 547 396

Table 3.3: Number of support vectors in each of the solutions to the classi�cation

problems using di�erent representations.

3.3 Di�erent Classi�ers

As we stated in Section 2.4, our main motivation for using classi�ers trained by

the support vector machine algorithm is its ability to �nd separating hyperplanes in

sparsely populated high dimensional feature spaces that do not over�t. Until now,

we have ignored exactly what form the classi�er has and have described the system

in the context of using a polynomial classi�er of degree two. In this section, we

present further experiments where several di�erent types of classi�ers are used and

we compare the results over an identical test set.

The general form of the decision surface found through SVM training is:

f(x) = �

 X̀
i=1

�iyiK(x;xi) + b

!
(3:5)

where ` is the number of training data points (xi; yi) (yi being the label �1 of training
point xi); �i are nonnegative parameters learned from the data; and K(�; �) is the
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Figure 3-6: ROC curves for people detection with the full 1,326 feature set comparing

di�erent classi�ers: linear and polynomial classi�ers of degree 2 through 5, including a

polynomial classi�er of degree 2 with no bias term. There is no appreciable di�erence

in the performance using these di�erent classi�ers.

kernel that de�nes a dot product between projections of the two arguments in some

feature space. By choosing di�erent kernels K(�; �), we de�ne qualitatively di�erent

decision surfaces. For instance, K = (x �y+1)n de�nes an nth degree polynomial and

K(x;y) = exp(�kx� yk2) de�nes a Gaussian radial basis function.

Here, we consider polynomial classi�ers of varying degree n, from a perceptron

(n = 1) to a 5th degree polynomial; several attempts at using Gaussian RBF classi�er

would not converge in SVM training. Figure 3-6 shows the performance of each of

these systems. From the ROC curves, it is immediately evident that there is no appre-

ciable di�erence in any of the classi�ers. This has important practical rami�cations;

with a linear classi�er, the decision surface can be described as:

f(x) = �

 X̀
i=1

�iyi(x � xi) + b

!
(3:6)

but, since the �i, yi, and xi are all predetermined at runtime, we can write the decision

function in its more general form:

f(x) = � (w � x+ b) (3:7)

since w =
P`

i=1 �iyi. This means that we can classify a point with a single dot

product.

54



3.4 Feature Selection

The goal of feature selection is to identify which features are important for detec-

tion and subsequently use this (sub)set of features as the representation over which

learning occurs. Until now, we have described systems with no feature selection; after

deciding on a feature class (pixels or wavelets or PCA), we use all of the features of

that class. Generally, we pay a price for large sets of features in the form of expensive

computation. Moreover, it may be the case that certain features are not important

for detection. For instance, the wavelets in the background portion of the people

patterns are not good indicators of the presence of a person. It may be possible to

reduce the dimensionality of the representation through a feature selection step while

still preserving most of the system's representational power.

To �nd the optimal set of features, we would need to determine the performance of

our system using every possible subset of features; for the wavelet representation, this

would mean checking the
P1;326

s=1

 
1; 326

s

!
unique subsets of features, an astronomical

number. For a given size s, the selection of the best s features amounts to an integer

programming problem which is NP-complete.

We have implemented a manual feature selection technique that results in much

lower dimensional data, and therefore less expensive classi�cation, while still main-

taining a reasonable level of accuracy.

To do manual feature selection, we start with the tables of the average wavelet

responses for our training set broken down by scale and orientation. From these tables

we manually choose the strongest and weakest features, while at the same time, we

ensure that the features we choose are not overly redundant, i.e. do not overlap. This

process is fairly subjective but, at the same time, allows for the enforcement of criteria

such as picking strong features that span the space in some greedy manner, rather

than just picking the n strongest features, some of which may overlap signi�cantly

and therefore not provide improvement.

For the people detection case, the tables of raw averages are shown in Appendix

C. The 29 manually chosen features are shown overlayed on an example person in

Figure 3-7. The performance of this 29 feature system is shown in Figure 3-8. While

it underperforms the versions using the full feature sets (1,326 wavelets), the system is

able to capture much of the structure of the human form using just 29 local features.

The resulting performance may be acceptable for certain applications.

3.5 Training with Small Data Sets

Most example-based systems for object detection have relied on large sets of positive

and negative examples that are used to train a system to di�erentiate between the

target class and the non-target class. Table 3.4 enumerates that number of positive

and negative examples used to train di�erent detection systems reported on in the
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Figure 3-7: The reduced set of 29 manually chosen wavelet features for fast people

detection overlayed on an example image of a person.

literature.

Gathering positive examples of an object class is an expensive, tedious task; all

these systems require input data where the objects are aligned in the same position in

the image and the images are scaled to the same size. Typically, we have cheap access

to an unlimited number of negative examples, while obtaining a large number positive

examples is relatively expensive. In our domain of people detection, we invested

signi�cant e�ort in gathering a large number of positive examples. Furthermore, the

domains for object detection that people have tackled are well-de�ned and easily

accessible. While it is time consuming to gather more positive examples, there are

no inherent limitations in doing so; we know what a face or person looks like, so we

simply �nd or take pictures of examples from these classes. We bring to bear much

prior knowledge in engineering object detection systems for these domains.

What if our detection problem was such that we only had information about a

small number of elements of the positive class? Let us also assume that we have no

prior experience or information about this detection problem. This is not too unbe-

lievable a situation; consider a hypothetical task of detecting certain rare anomalies

in images taken with an electron microscope. Taking this one step further, what if
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Figure 3-8: ROC curves for people detection comparing di�erent wavelet features and

di�erent feature set sizes.

Researchers Domain Positive Examples Negative Examples

Vaillant, Monrocq, Le Cun Faces 1,792 1,792

Sung and Poggio Faces 4,150 (1,067 base) 43,166

Rowley, Baluja, Kanade Faces 15,750 (1,050 base) 9,000

Moghaddam and Pentland Faces 7,562 NA

Schneiderman and Kanade Faces 119,911 (991 base) 1,552

Papageorgiou Faces 2,249 24,730

Papageorgiou People 3,600 (1,800 base) 16,726

Table 3.4: Training set sizes for several object detection system reported on in the

literature.

it is also the case that our knowledge of negative examples is severely restricted, as

well?

One of the main attractions of the SVM framework is that it controls both the

training error and the complexity of the decision classi�er at the same time. This

can be contrasted with other training techniques, like back propagation, that only

minimize training error. Since there is no controlling of the classi�er complexity, this

type of system will tend to over�t the data and provide poor generalization.

In practical terms, this means that SVMs can �nd good solutions to classi�cation

problems in very high dimensions. In addition to being a theoretically sound property,

this capability has been demonstrated empirically in the literature in face detection
[Osuna et al., 1997b], text categorization [Joachims, 1997], and people detection [Pa-

pageorgiou et al., 1998]. All of these systems and other object detection systems
[Sung and Poggio, 1998, Rowley et al., 1998] use a large set of positive examples in
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addition to a large set of negative examples.

Figure 3-9 quanti�es the performance of our 1,326 wavelet feature, color people

detection system when the positive training set size is varied as 1, 10, 100, and the

full set of 1,848 people (924 plus mirror images) and the negative training set size

is varied as 10, 100, and the full set of 11,361 non-people patterns. The size 1, 10,

and 100 training set experiments were each run 10 times with randomly chosen data

points; the ROC curves report the average performance.

If we assume that we have unlimited access to negative examples as represented

by Figure 3-9a, we can see that with just one positive example, the system performs

extremely well. Using the fully trained system's benchmark of one false positive per

10,000 patterns with a 90% detection rate, the systems trained with one positive ex-

ample correctly detect 50% of the people. Increasing the number of positive examples

to 10 results in an 80% detection rate.

With limited access to negative examples, Figures 3-9b and c show that the system

still performs very well. For as few as 10 negative training examples, the system

reaches 75% accuracy in both the 10 and 100 positive training versions, for the rate

of one false positive per 10,000 patterns.

This leads us to believe that, for the domain of people detection, the choice of the

representation we use is more important than gathering large sets of training data. In

our case, the transformation from pixels to wavelets compresses the image information

into a model that seems to be quite compact, so that even a single positive training

example characterizes the class well.
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Figure 3-9: ROC curves comparing di�erent sized positive training sets for people

detection. The full 1,848 example positive training set is compared against 100, 10,

and 1 positive examples each averaged over 10 iterations. We vary the size of the

negative training set from 11,361, 100, and 10 negative examples in (a), (b), and (c),

respectively. Even with 1 positive example, the system is able to learn a great deal

of the structure of the people class.
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Chapter 4

Detection by Components

One of the most prevalent problems with our static people detection system is its

di�culty in detecting people when a portion of the body is occluded or there is little

contrast between the background and part of the body. One would expect that if we

knew there was a head, left arm, and legs in the proper con�guration, but we could

not see the right arm, that this may still be a person. In other words, if we look

for the core building blocks, or components of an object, and allow some leniency in

allowing one or two of the components that make up the object to be missing, this

may result in a more robust detection system than our full pattern approach.

This chapter develops a component based object detection system for static im-

ages. Here, we apply it to the problem of people detection, but the architecture is

quite general and could be applied to, among other objects, faces and cars. The

description in this chapter closely follows the material published in [Mohan, 1999]

and [Mohan et al., 1999]. In Section 4.1, we introduce the detection by components

framework and review some relevant work in component-based object detection. Sec-

tion 4.2 describes the system development and architecture. Finally, we show results

of the system and compare it to the original full-body people detection system in

Section 4.3.

4.1 Introduction

In this type of system, geometric information concerning the physical structure of

the human body supplements the visual information present in the image and should

thereby improve the overall performance of the system. More speci�cally, the visual

data in an image is used to detect body components and knowledge of the structure of

the human body allows us to determine if the detected components are proportioned

correctly and arranged in a permissible con�guration. In contrast, a full-body person

detector relies solely on visual information and does not take advantage of the known

geometric properties of the human body.

Also, it is sometimes di�cult to detect the human body pattern as a whole due to

variations in lighting and orientation. The e�ect of uneven illumination and varying

viewpoint on individual body components, like the head, arms, and legs, is less drastic

61



and hence, they are comparatively easier to identify. Another reason to adopt a com-

ponent based approach to people detection is that the framework directly addresses

the issue of detecting people that are partially occluded or whose body parts have

little contrast with the background. This is because the system may be designed,

using an appropriate classi�er combination algorithm, to detect people even if all of

their components are not detected.

The fundamental design of the system is as a two-level hierarchical classi�er: there

are specialized detectors for �nding the di�erent components of a person at the base

level, whose results are combined in a top level classi�er. The component based

detection system attempts to detect components of a person's body in an image,

i.e. the head, the left and right arms, and the legs, instead of the full body. The

system checks to ensure that the detected components are in the proper geometric

con�guration and then combines them using a classi�er. We will show that this

approach of integrating components using a classi�er increases accuracy compared to

the full-body version of our people detection system.

The system introduces a new hierarchical classi�cation architecture to visual data

classi�cation. Speci�cally, it comprises distinct example based component classi�ers

trained to detect di�erent objects at one level and a similar example based combina-

tion classi�er at the next. This type of architecture, where example based learning

is conducted at more than two levels, is called an Adaptive Combination of Classi-

�ers (ACC). The component classi�ers separately detect components of the person

object, i.e. heads, legs, and arms. The combination classi�er takes the output of the

component classi�ers as its input and classi�es the entire pattern under examination

as a \person" or a \non-person."

4.1.1 Classi�er Combination Algorithms

Recently, a great deal of interest has been shown in hierarchical classi�cation struc-

tures, i.e. pattern classi�cation techniques that are combinations of several other

classi�ers. In particular, two methods have received considerable attention: bagging

and boosting. Both of these algorithms have been shown to increase the performance of

certain classi�ers for a variety of datasets [Breiman, 1996, Freund and Schapire, 1996,

Quinlan, 1996]. Despite the well documented practical success of these algorithms, the

reason why bagging and boosting work is still open to debate. One theory proposed

by Schapire [Schapire et al., 1998] likens boosting to support vector machines in that

both maximize the minimum margin over the training set. However, his de�nition

of \margin" di�ers from [Vapnik, 1995]. Bauer and Kohavi, 1998, present a study

of such structures including bagging and boosting, oriented towards determining the

circumstances under which these algorithms are successful.
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4.1.2 Previous Work

Most of the previous work in component based detection systems has focused on

face detection. An overview of relevant systems [Yuille, 1991, Yuille et al., 1992,

Leung et al., 1995, Burl et al., 1995, Burl and Perona, 1996, Shams and Spoelstra,

1996, Yow and Cipolla, 1997, Forsyth and Fleck, 1997, Forsyth and Fleck, 1998,

Lipson, 1996] is presented in the introduction (Section 1.3). We highlight several

systems here.

In Yuille, 1991, and Yuille et al., 1992, they describe systems that extract facial

features in a framework where the detection problem is cast as an energy minimization

problem; hand-crafted deformable templates are used for the individual features.

Leung et al., 1995, Burl et al., 1995, and Burl et al., 1996, use local templates to

match eye, nose, and mouth features on the human face and determine valid arrange-

ments of these features using random graph matching. Computationally, this amounts

to a constrained search through a very large set of candidate face con�gurations. This

system has been shown to have some robustness against occlusions.

The system of [Shams and Spoelstra, 1996] uses a neural network to generate

con�dences for possible left and right eye regions that are paired together to form

all possible combinations. The con�dences of these pairings are weighted by their

topographic suitability which are then thresholded to classify the pattern. These

weights are de�ned by a 2D Gaussian.

Yow and Cipolla, 1997, have also developed a component based approach to de-

tecting faces. In their system, potential features are categorized into candidate groups

based on topographic evidence and probabilities that they are faces are assigned to

these groups. The probabilities are updated using a Bayesian network. If the �nal

probability measure of a group is above a certain threshold, then it is declared as a

\detection." The features are initially identi�ed using an image invariance scheme.

Where the component based systems described take di�erent approaches to de-

tecting objects in images by components, they have two similar features:

� they all have component detectors that identify candidate components in an

image

� they all have a means to integrate these components and determine if together

they de�ne a face

4.2 System Details

In this section, we describe the structure and operation of the component based object

detection system as applied to the domain of people detection.
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4.2.1 Overview of System Architecture

The section explains the overall architecture of the system by tracing the detection

process when the system is applied to an image. Figure 4-1 is a graphical represen-

tation of this procedure.

The process of classifying a pattern starts by taking a 128 � 64 window as an

input. This input is then processed to determine where and at which scales the

components of a person { head, legs, left arm, and right arm { may be found within the

window using our prior knowledge of the geometry of bodies. All of these candidate

regions are processed by the respective component detectors to �nd the \strongest"

candidate components. There are four distinct component detectors in this system

which operate independently of one another and are trained to �nd separately the

four components of the human body: the head, the legs, and the left and right arms.

The component detectors process the candidate regions by applying the quadru-

ple density Haar wavelet transform to them and then classifying the resultant data

vector. The component classi�ers are quadratic polynomials that are trained using

the support vector machine algorithm. The training of the component and combi-

nation classi�ers is described in detail in Section 4.2.2. The \strongest" candidate

component is the one that produces the highest positive raw output, referred to in

this thesis as the component score, when classi�ed by the component classi�ers. The

raw output of a SVM is a rough measure of how well a classi�ed data point �ts in

with its designated class and is de�ned in Section 4.2.2.

The highest component score for each component is fed into the combination

classi�er which is a linear classi�er. If the highest component score for a particu-

lar component is negative, i.e. the component detector in question did not �nd a

component in the geometrically permissible area, then a component score of zero is

used instead. The combination classi�er processes the set of scores received from the

component classi�er to determine if the pattern is a person.

Since our classi�er is not shift and scale invariant, we follow the same brute force

search procedure as used in the general detection system. The 128 � 64 window is

shifted across and down the image. The image itself is processed at several sizes,

ranging from 0.2 to 1.5 times its original size. These steps allow the system to detect

various sizes of people at any location in an image.

4.2.2 Details of System Architecture

This section of the chapter outlines the details of the component detectors and the

combination classi�er.

Stage One - Identifying Components of People in an Image

When a 128 � 64 window is evaluated by the system, the component detectors are

applied only to speci�c areas of the window at only particular scales. This is because
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Original Image
128 x 64

Areas of the image, 
where it is possible to 
detect a head, legs, and 
arms are identified. 
Respective component 
detectors operate on 
these areas only. 

The "most suitable" head, 
legs, and arms are 
identified by the 
component detectors. 
The component scores,
i.e. raw output of the 
component classifiers, 
are fed into the 
combination classifier. 

The combination 
classifier classifies the 
pattern as a "person" or 
"non-person".

A person is detected.
The solid rectangle 
outlines the person. The 
dashed boxes mark the 
components of the 
person.

Face
Detector:
Quadratic
SVM

Right Arm
Detector:
Quadratic
SVM

Left Arm
Detector:
Quadratic
SVM

Leg 
Detector:
Quadratic
SVM

Combination Classifier:
Support Vector Machine

Component Detectors are
applied to all locations of 
permissible areas.

Figure 4-1: Diagrammatic description of the operation of the system.
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Figure 4-2: It is very important to place geometric constraints on the location and

scale of component detections. Even though a detection may be the \strongest" in

a particular window examined, it might not be located properly. In this �gure, the

shadow of the person's head is detected with a higher score than the head itself. If

we did not check for proper con�guration and scale, component detections like these

would lead to false alarms and/or missed detections of people.

the arms, legs, and head of a person have a de�ned relative con�guration, i.e. the head

is found above the legs, with left and right arms to either side and the components

must also be proportioned correctly. This is, in e�ect, prior information that is being

integrated into our detection system. By placing these geometric constraints on the

location and scale of the components, we ensure that they are arranged in the form

of a human body, and thus improve the performance of the object detection system.

This is necessary, because even though a component detection is the \strongest" in

a particular window under examination (i.e. it has the highest component score), it

does not imply that it is in the correct position, as illustrated in Figure 4-2.

Since the component detectors operate on rectangular areas of the image, the

constraints placed on the location and scale of component detections are expressed

in terms of the properties of the rectangular region examined. For example, the

centroid and boundary of the rectangular area determines the location of a component

detection and the width of the rectangle is a measure of a component's scale. All

coordinates are relative to the upper left hand corner of the 128 � 64 window.

We calculated the geometric constraints for each component from a sample of

the training images. The constraints themselves, both in location and scale, are

tabulated in Table 4.1 and shown in Figure 4-3. The values of quantities such as the

location of the centroid, and top and bottom boundary edges of a component, were

determined by taking the statistical mean of the quantities over positive detections

in the training set. The tolerances were set to include all positive detections in the

training set. Permissible scales were also estimated from the training images. There
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Component Centroid Scale Other Criteria

Row Column Minimum Maximum

Head and Shoulders 23 � 3 32 � 2 28� 28 42 � 42

Lower Body 32 � 3 42� 28 69 � 46 Bottom Edge:

Row: 124 � 4

Right Arm Extended 54 � 5 46 � 3 31� 25 47 � 31

Right Arm Bent 46 � 3 31� 25 47 � 31 Top Edge:

Row: 31 � 3

Left Arm Extended 54 � 5 17 � 3 31� 25 47 � 31

Left Arm Bent 17 � 3 31� 25 47 � 31 Top Edge:

Row: 31 � 3

Table 4.1: Geometric constraints placed on each component. All coordinates are in

pixels and relative to the upper left hand corner of a 128 � 64 rectangle.

are two sets of constraints for the arms, one intended for extended arms and the other

for bent arms.

For each of the component detectors, the pixel images are processed with the

quadruple density Haar wavelet transform described in Section 2.3.1 and Appendix

A. We use the wavelets at the scales 16� 16 and 8� 8 to represent the patterns. As

in the case of the full body detection system, we do the transform in each of the three

color channels and for each scale, location, and orientation of wavelet, we use the one

that is maximum in absolute value among the three color channels. In this way, the

information in the three color channels is collapsed into a single virtual color image.

We use quadratic polynomial classi�ers trained using support vector machines

to classify the data vectors resulting from the Haar wavelet representation of the

components. The optimal hyperplane is computed as a decision surface of the form:

f(x) = sgn (g(x)) (4:1)

where,

g(x) =

 
l�X
i=1

yi�iK(x;x�
i
) + b

!
(4:2)

In Equation 4.2, K is one of many possible kernel functions; yi 2 f�1; 1g is the class
label of the data point x�i ; and fx�igl

�

i=1 is a subset of the training data set. The x�i
are called support vectors and are the points from the data set that fall closest to the

separating hyperplane. Finally, the coe�cients �i and b are determined by solving a

large-scale quadratic programming problem. The kernel function K that is used in

the component classi�ers is a quadratic polynomial and has the form shown below:
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(a) (b)

(c) (d)

Maximum 
Size: 42x42

Minimum 
Size: 28x28

Centroid:
(23,32)
Tolerance:
Height +,- 2
Width +,- 3

(0,0)

(128,64)

Maximum
Size: 69x46

Minimum 
Size: 42x28

Centroid:
Width: 32
Tolerance:
+,- 3

Bottom Edge
Between 
120 & 128

(0,0)

(128,64)

Maximum
Size: 47x31

Minimum
Size: 31x25

Centroid:
(54,46)
Tolerance:
Height +,- 5
Width +,- 3

Top Edge
Between
28 & 34

Centroid:
Width: 46
Tolerance:
+,- 3

Minimum
Size: 25x17

Maximum 
Size: 47x31

(0,0) (0,0)

(128,64) (128,64)

Figure 4-3: Geometric constraints that are placed on di�erent components. All coor-

dinates are in pixels and relative to the upper left hand corner of a 128�64 rectangle.
Dimensions are also expressed in pixels. (a) illustrates the geometric constraints on

the head, (b) the lower body, (c) an extended right arm, and (d) a bent right arm.
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Figure 4-4: The top row shows examples of \heads and shoulders" and \lower bodies"

of people that were used to train the respective component detectors. Similarly,

the bottom row shows examples of \left arms" and \right arms" that were used for

training purposes.

K(x;x�
i
) = (x � x�

i
+ 1)2 (4:3)

f(x) 2 f�1; 1g in Equation 4.1 is referred to as the binary class of the data point

x which is being classi�ed by the SVM. Values of 1 and �1 refer to the classes of

the positive and negative training examples, respectively. As Equation 4.1 shows, the

binary class of a data point is the sign of the raw output g(x) of the SVM classi�er.

The raw output of an SVM classi�er is the distance of a data point from the decision

hyperplane. In general, the greater the magnitude of the raw output, the farther the

point is from the decision surface or the more likely the point belongs to the binary

class it is grouped into by the SVM classi�er.

The component classi�ers are trained on positive and negative images for their

respective classes. The positive examples are of arms, legs, and heads of people in

various environments, both indoors and outdoors, and under various lighting condi-

tions. The negative examples are taken from scenes that do not contain any people.

Examples of positive images used to train the component classi�ers are shown in

Figure 4-4.

Stage Two - Combining the Component Classi�ers

Once the component detectors have been applied to all geometrically permissible areas

within the 128 � 64 window, the highest component score for each component type

is entered into a four dimensional vector that serves as the input to the combination

classi�er. The component score is the raw output of the component classi�er and is

the distance of the test point from the decision hyperplane. This distance is a rough

measure of how \well" a test point �ts into its designated class. If the component

detector does not �nd a component in the designated area of the 128 � 64 window,

then zero is placed in the data vector. A component score of zero refers to a test

point that is classi�ed as neither a \component" nor a \non-component" because it

lies on the hyperplane.

69



Head and Shoulder Lower Body Right Arm Left Arm

Scores Scores Scores Scores

Positive Examples

2.415 3.152 3.233 3.145

1.861 1.855 2.339 2.280

4.184 2.332 3.258 3.994

2.871 1.691 2.311 1.221

Negative Examples

0.677 0.694 0.817 1.020

4.530 0.231 0.252 0.824

0.105 0.021 0.002 0.560

1.869 0.010 0.718 1.746

Table 4.2: Examples of positive and negative data points used to train the combi-

nation classi�er. The entries are component scores. The component scores of the

positive examples are generally higher.

The combination classi�er is trained with a linear kernel and has the following

form:

K(x;x�
i
) = (x � x�

i
+ 1) (4:4)

This type of hierarchical classi�cation architecture where learning occurs at mul-

tiple stages is termed Adaptive Combination of Classi�ers (ACC).

Positive examples were generated by processing 128� 64 images of people at one

scale and taking the highest component score from detections that are geometrically

allowed for each component type. Table 4.2 shows examples of data vectors that were

used to train the combination classi�er.

4.3 Results

The performance of this system is compared to that of other component based person

detection systems that combine the component classi�ers in di�erent ways, as well as

the full body person detection system. This framework allows us to determine the

strengths of the component based approach to detecting objects in images and the

performance of various classi�er combination algorithms.

4.3.1 Experimental Setup

All of the component based detection systems that were tested in this experiment are

two tiered systems. Speci�cally, they detect heads, legs, and arms at one level and
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Component Number of Number of

Classi�er Positive Examples Negative Examples

Head and Shoulders 856 9315

Lower Body 866 9260

Left Arm 835 9260

Right Arm 838 9260

Table 4.3: Number of Positive and Negative Examples Used to Train the Di�erent

Component Classi�ers.

at the next they combine the results of the component detectors to determine if the

pattern in question is a person or not. The component detectors that were used in

all of the component based people detection systems are identical and are described

in section 4.2.2. The positive examples for training these detectors were obtained

from the same database that is used in the full body system. The images of people

were taken in Boston and Cambridge, Massachusetts, with di�erent cameras, under

di�erent lighting conditions, and in di�erent seasons. This database includes images

of people who are rotated in depth and who are walking, in addition to frontal and rear

views of stationary people. The positive examples of the lower body include images

of women in skirts and people wearing full length overcoats as well as people dressed

in pants. Similarly, the database of positive examples for the arms was varied in

content, and included arms at various positions in relation to the body. The negative

examples were obtained from images of natural scenery and buildings that did not

contain any people. The number of positive and negative examples that were used to

train the di�erent component classi�ers is presented in Table 4.3.

Adaptive Combination of Classi�ers Based Systems

Once the component classi�ers were trained, the next step in evaluating the Adap-

tive Combination of Classi�ers (ACC) based systems was to train the combination

classi�er. Positive and negative examples for the combination classi�er were collected

from the same databases that were used to train the component classi�ers. A positive

example was obtained by processing each image of a person at a single appropriate

scale. The four component detectors were applied to the geometrically permissible

areas of the image and at the allowable scales. The greatest positive classi�er output

for each component were assembled as a vector to form a positive training example.

If all of the component scores were not positive then no vector was formed and the

window examined did not yield an example. The negative examples were computed

in a similar manner except that this process was repeated over the entire image and

at various scales. The images for the negative examples did not contain people.

We used 889 positive examples and 3,106 negative examples to train the combi-
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nation classi�ers. First, second, third, and fourth degree polynomial classi�ers were

trained and tested.

The trained system was run over our positive test database of 123 images of people

to determine the positive detection rate. There was no overlap between these images

and the ones that were used to train the system. The out-of-sample false alarm rate

was obtained by running the system over the negative test database of 50 images that

do not contain any people. These images are pictures of natural scenery and buildings.

By running the system over these 50 images, 796,904 windows were examined and

classi�ed, as in our full-body detection system. We generate ROC curves to measure

their performance by shifting the decision surface.

Voting Combination of Classi�ers Based System

The other method of combining the results of the component detectors that was tested

is a Voting Combination of Classi�ers (VCC). VCC systems combine classi�ers by

implementing a voting structure amongst them. One way of viewing this arrangement

is that the component classi�ers are \weak experts" in the matter of detecting people.

VCC systems poll the weak experts and then, based on the results, decide if the

pattern is a person. For example, in a possible implementation of VCC, if a majority

of the weak experts classify a pattern as a person, then the system declares the pattern

to be a person.

One motivating reason for trying VCC as an approach to combining the component

classi�ers is that since VCC is one of the simplest classes of classi�er combination al-

gorithms, it a�ords the best opportunity to judge the strengths of a component based

object detection system that is not augmented with a powerful classi�er combina-

tion method. Similarly, when compared to an ACC based system, one can determine

the bene�ts of more sophisticated classi�er combination methods. Since the com-

putational complexity of these methods is known and the experiment described in

this section determines their performance, this framework characterizes the tradeo�

involved between enhanced performance and greater computational complexity for

these systems. The person detection systems that are evaluated here are: the ACC

based system, the VCC based system, and the baseline full-body system.

In the incarnation of VCC that is implemented and tested in this experiment, a

positive detection of the person class results only when all four component classes

are detected in the proper con�guration. The geometric constraints placed on the

components are the same in the ACC and VCC based systems and are described in

Section 4.2.2. For each pattern that the system classi�es, the system must evaluate

the logic presented below:

person = Head & Legs & Left arm & Right arm (4:5)

where a state of true indicates that a pattern belonging to the person class has been

detected.
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Figure 4-5: ROC curves illustrating the ability of the component detectors to correctly

detect a person in an image. The positive detection rate is plotted as a percentage

against the false alarm rate which is measured on a logarithmic scale. The false alarm

rate is the number of false positive detections per window inspected.

The detection threshold of the VCC based system is determined by selecting ap-

propriate thresholds for the component detectors. The thresholds for the component

detectors are chosen such that they all correspond to approximately the same positive

detection rate. This information was estimated from the ROC curves of each of the

component detectors that are shown in Figure 4-5. For example, if one wished to run

the VCC based system at a threshold that corresponded to a positive detection rate of

92%, then they would choose thresholds of 0.77, 0.69, and 0.80 for the head, legs, and

arm classi�ers, respectively. These ROC curves were calculated in a manner similar

to the procedure described earlier in Section 4.3.1. A point of interest is that these

ROC curves indicate how discriminating the individual components of a person are

in the process of detecting the full body. The legs perform the best, followed by the

arms and the head. The superior performance of the legs may be due to the fact that

the background of the lower body in images is usually either the street, pavement, or

grass and hence is relatively clutter free compared to the background of the head and

arms.

4.3.2 Experimental Results

An analysis of the ROC curves suggests that a component based person detection

system performs very well, and signi�cantly better than the baseline full body system

at all thresholds. This is noteworthy because the baseline system has produced very

accurate results. It should be emphasized that the baseline system uses the same

image representation scheme (Haar wavelets) and classi�er (SVM) that the component

73



10
−6

10
−5

10
−4

10
−3

65

70

75

80

85

90

95

100

False Detection Rate

P
os

iti
ve

 D
et

ec
tio

n 
R

at
e 

(%
)

Methods of Combining Classifiers

Complete Person Detector − Baseline
Voting Combination of Classifiers
Adaptive Combination of Classifiers − Linear SVM
Adaptive Combination of Classifiers − Quadratic SVM
Adaptive Combination of Classifiers − Cubic SVM
Adaptive Combination of Classifiers − 4th degree polynomial SVM

Figure 4-6: ROC curves comparing the performance of various component based

people detection systems. The systems di�er in the method used to combine the clas-

si�ers that detect the various components of a person's body. The positive detection

rate is plotted as a percentage against the false alarm rate which is measured on a

logarithmic scale. The false alarm rate is the number of false positives detections per

window inspected. The curves indicate that a system in which a linear SVM com-

bines the results of the component classi�ers performs best. The baseline system is a

full body person detector similar to the component detectors used in the component

based system.
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detectors used in the component based systems. All of the component based systems'

performance were comparable to, or better than, the baseline system.

For the component based systems, the ACC approach produces better results than

VCC. In particular, the ACC based system that uses a linear classi�er to combine

the components is the most accurate. During the course of the experiment, the

linear SVM system displayed a superior ability to detect people even when one of the

components was not detected, in comparison to the higher degree polynomial SVM

systems. A possible explanation for this observation may be that the higher degree

polynomial classi�ers place a stronger emphasis on the presence of combinations of

components due to the structure of their kernels [Burges, 1998]. The second, third,

and fourth degree polynomial kernels include terms that are products of up to two,

three, and four elements, which are component scores. This suggests that all of

those elements must be \person like" for the pattern to be classi�ed as a person.

The emphasis placed on the presence of combinations of components increases with

the degree of the polynomial classi�er. The results show that the performance of

the ACC based systems decreases with an increase in the degree of the polynomial

classi�er. In fact, the ROC curve for the ACC based system that employs a fourth

degree polynomial classi�er is very similar to the VCC based system. Interestingly,

both of the above systems look for all four components in a pattern. The VCC based

system explicitly requires the presence of all four components where as the ACC

based system that uses the fourth degree polynomial classi�er makes it an implicit

requisite due to the design of its kernel. Two other possible reasons for the decrease

in performance with higher degree polynomials is that higher degree classi�ers may

need more training data, or they could be over�tting.

It is also worth mentioning that the database of test images that was used to gen-

erate the ROC curves did not just include frontal views of people, but also contained

a variety of challenging images. Some of these classes of images portray exactly the

situations in which we would expect a component based approach to improve results.

Included are pictures of people walking and running. In some of the images, the

person is partially occluded or a part of their body has little contrast with the back-

ground. A few of the images depict people who are slightly rotated in depth. Figure

4-7 is a selection of these images.

Figure 4-8 shows the results obtained when the system was applied to images of

people who are partially occluded or whose body parts blend in with the background.

In these examples, the system detects the person while running at a threshold that,

according to the ROC curve shown in Figure 4-6, corresponds to a false detection

rate of less than one false alarm for every 796,904 patterns inspected.

Figure 4-9 shows the result of applying the system to sample images with clutter

in the background. Even under such circumstances the system performs very well.

The lower four images were taken with di�erent cameras than the instruments used

for the training set images. The conditions and surroundings for these pictures are

di�erent, as well.
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Figure 4-7: Samples from the test image database. These images demonstrate the

capability of the system. It can detect running people, people who are slightly rotated,

people whose body parts blend into the background (bottom row, second from right

- person detected even though the legs are not), and people under varying lighting

conditions (top row, second from left - one side of the face is light and the other dark).

76



Figure 4-8: Results of the system's application to images of partially occluded people

and people whose body parts have little contrast with the background. In the �rst

image, the person's legs are not visible; in the second image, her hair blends in with

the curtain in the background; and in the last image, her right arm is hidden behind

the column.
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Figure 4-9: Results from the component based person detection system. The solid

boxes outline the complete pedestrian, where the dashed rectangles are the compo-

nents.
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Chapter 5

A Real-Time System and Focus of

Attention

While the core system is quite e�ective, the processing time (among other charac-

teristics of the system) limits any practical applications. Clearly, considering every

pattern in an image is wasteful and there may be ways of limiting the number of

patterns that are processed. Taking people detection as our domain, we view the

proper use of our detection system for practical applications as one where some focus

of attention mechanism identi�es areas in the image where there may be a person and

then our detection system processes patterns in only those regions.

This chapter presents:

� A real-time implementation of our people detection system as part of a driver

assistance system that uses an obstacle detection module to provide a bounding

box for the detection system.

� An integration of our people detection system with a biologically inspired focus

of attention module that identi�es salient areas of an image using several feature

maps.

5.1 A Real-Time Application

As alluded to in the introduction, there are many possible applications of our object

detection technology, ranging from automotive assistance systems to surveillance. The

only factor that is inhibiting our system from being used right now in such systems

is the relatively slow processing speed. It is important to note that our full system is,

for the most part, an unoptimized research tool as we have not invested signi�cant

amounts of e�ort in improving the core speed.

As an alternative to dynamic detection strategies, we can use a modi�ed version of

our static detection system to achieve real-time performance. This section describes

a real-time application of our technology as part of a larger system for driver as-

sistance. The combined system, including our people detection module, is currently
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Figure 5-1: Side view of the DaimlerChrysler S Class vehicle with the Urban Tra�c

Assistant (UTA); our people detection system has been integrated into the system.

deployed "live" in a DaimlerChrysler S Class demonstration vehicle (Figure 5-1). The

remainder of this section describes the integrated system.

5.1.1 Speed Optimizations

Our original unoptimized static detection system for people detection in color images

processes sequences at a rate of 1 frame per 20 minutes which is clearly inadequate

for any real-time automotive application. We have implemented optimizations that

have yielded several orders of magnitude worth of speedups.

subset of 29 features: Instead of using the entire set of 1,326 wavelet features,

we use just 29 of the more important features (manually chosen) that encode the

outline of the body. This changes the 1,326 dimensional inner product in Equation

2.5 into a 29 dimensional dot product. The 29 features are shown overlayed on an

example person in Figure 3-7.

reduced set vectors: From Equation B.14, we can see that the computation

time is also dependent on the number of support vectors, Ns. In our system, this

is typically on the order of 1,000. We use results from [Burges, 1996] to obtain an

equivalent decision surface in terms of a small number of synthetic vectors. This

method yields a new decision surface that is equivalent to the original one but uses

just 29 vectors.

gray level images: Our use of color images is predicated on the fact that the

three di�erent color channels (RGB) contain a signi�cant amount of information that
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Figure 5-2: A view of the cameras in UTA.

gets washed out in gray level images of the same scene. This use of color information

results in signi�cant computational cost; the resizing and Haar transform operations

are performed on each color channel separately. In order to improve system speed,

we modify the system to process intensity images.

The reduction in performance resulting from using gray level images and 29 fea-

tures is shown in Figure 5-3. Taking a false positive rate of 10�4, whereas the full 1,326

color feature system achieves 90% accuracy, the 29 gray feature system achieves 50%

accuracy. While this is a signi�cant reduction in performance, this level of accuracy

may still be adequate for certain applications.

5.1.2 Focus of Attention

To further enhance the processing speed of the system, we can use a focus of attention

module that concentrates processing only on areas of an image that are likely to con-

tain people. This focus of attention can key o� of di�erent characteristics, including

motion, distance, local image complexity, shape, color, etc.
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Figure 5-3: ROC curves for people detection gray level and color, 1,326 and 29

features. While going from 1,326 color features to 29 gray level features results in

a signi�cant decrease in accuracy, the performance may still be adequate for some

applications.

5.1.3 Integration With The DaimlerChrysler Urban Tra�c

Assistant

To this end, we have integrated our people detection system with a stereo-based

obstacle detection system in collaboration with DaimlerChrysler AG. DaimlerChrysler

has obviously motivated interests in obstacle detection algorithms for automotive

applications, as a means to aid driving and, ultimately, to allow for autonomous

driving. One of the important requirements of the system is that it is able to deal

with both highway and urban scenes, the latter being much more complex than the

former.

The DaimlerChrysler Urban Tra�c Assistant (UTA) is a real-time vision system

for obstacle detection, recognition, and tracking [Franke and Kutbach, 1996, Franke

et al., 1997, Franke et al., 1998]. The car has a binocular stereo vision system (Figure

5-2) mounted on the rear-view mirror, a 200 MHz PowerPC 604 in the rear trunk,

and a at panel display between the driver and passenger seats on which system

processing and output is visualized. Figure 5-4 shows the view of the system inside the

car. UTA currently has several processing modules implemented including pedestrian

motion recognition, lane detection, car detection, sign detection, and an automatic

car following system.

Their system relies on 3D position and depth information using the stereo cameras.

To overcome the expensive correspondence problem, they have developed a feature

based approach to stereo analysis that runs at 25 Hz. The system clusters feature

points that correspond to the same object, thereby providing a rectangular bounding
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box around each obstacle in the scene.

Using this bounding box which closely outlines the shape of the obstacle, we

expand this area to provide a larger region of interest in which we will run our people

detection system. This is done to alleviate possible misalignments in the bounding box

provided by the stereo system. Furthermore, the stereo system provides an accurate

estimate of the distance to each object. Using this information we can constrain the

number of sizes at which we look for people to a small number, typically under three

scales.

Within these regions of interest, we use our 29 gray level feature system with the

reduced set method that lowers the number of support vectors to 29. In real-world

test sequences processed while driving through Esslingen/Stuttgart, Germany, we are

able to achieve rates of more than 10 Hz. DaimlerChrysler expects to soon upgrade

their onboard system to 400+ MHz computers, so further gains in speed will follow.

5.1.4 Future Work

The portion of the total system time that is spent in our people detection module is

15 ms per obstacle. An analysis of how much time is taken by each portion of the

people detection module shows that the smallest amount of time is being spent in the

SVM classi�cation. This bodes well for improving the performance. We should be

able to use a much richer set of features than the 29 that are currently used, perhaps

on the order of a few hundred features, without signi�cantly degrading the speed of

the system.

5.2 Focus of Attention Experiments

Our current metaphor for detection is one where we do a brute force search in the

entire image; this is clearly ine�cient. The integrated system presented in Section 5.1

showcases one method for focusing processing only on important areas of an images

which are, in this case, de�ned by the results of an obstacle detection system. In

this section, we present another version of our system that uses a focus of attention

module to direct the processing in only certain areas of the image.

To detect objects in cluttered scenes, the human visual system rapidly focuses

its attention to di�erent areas where there is compelling visual information that may

indicate the presence of an interesting object. The information that our system keys

o� of could include features such as intensity, color, and orientation discontinuities.

This type of model is developed in [Itti et al., 1998, Itti and Koch, 1999]. Their

system decomposes an input image into several feature maps, each of which key o� of

di�erent visual information. The visual features the method uses are intensity, color,

and orientation (via Gabor �lters). These feature maps are integrated into a single

saliency map where, at a given point in the image, the individual feature responses

are additively combined. The mechanism that changes the focus of attention from
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Figure 5-4: Looking out from UTA; processing results are shown on the at panel

display between the driver and passenger seats.

point to another is modeled as a dynamical neural network. The network outputs the

ordered salient locations in simulated time as (x; y) positions in the image.

As in the case of our DaimlerChrysler integration, we can use this information

to focus processing on only the important areas of an image. The saliency based

attention system does not provide information on the size of the salient regions, so

for our test, we de�ne a 150 � 60 region centered on each salient point in which we

try to �nd people { note that this is the maximum body size of people that we will

look for. Furthermore, we limit the number of regions processed to the top N salient

regions per image and test N = f5; 6; 7g.
The ROC curves for the system compared to the base system are shown in Figure

5-6. The performance of the versions using the focus of attention mechanism is slightly
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Figure 5-5: A sequence showing the single most salient location for each frame as

processed by the system of [Itti et al., 1998, Itti and Koch, 1999]. Our people detection

system can use this focus of attention module as a preprocessor to target speci�c areas

of an image.
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Figure 5-6: ROC curves for people detection comparing the base system to one that

preprocess an image by focusing attention on certain salient regions in the image.

worse than the base system. Fewer patterns are considered resulting in a signi�cantly

faster system, however. Also, the ROC curves seem to indicate that after the �rst 5

salient regions, considering more of these regions may not impact performance.

Integrating this saliency information in our detection framework is not a perfect

�t on account of the following:

� The center of the salient region is often not at the center of the person and

there is no scale information so, by default, a large area around the salient spot

is examined.

� While it usually �nds one of the people in the sequence as the most salient, the

other person may be the 8th or 9th most salient spot. This, combined with

the previous point, means that a large portion of the image still ends up being

examined

Irrespective of these issues, the integration of a focus of attention mechanism re-

sults in signi�cant improvement in processing time. Table 5.1 lists the percentage

of total patterns that are processed in the versions of our system using this focus of

attention module as compared to the base system that processes all regions. These

results indicate that approximately the same performance can be achieved while pro-

cessing only one third of the patterns.
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Percentage of patterns processed

Base 100.00%

FOA (top 7) 38.97%

FOA (top 6) 35.14%

FOA (top 5) 29.22%

Table 5.1: The percentage of total possible patterns that are examined by each version

of the system; the use of a focus of attention mechanism such as the one we consider

here can result in signi�cant increase in processing speed.
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Chapter 6

Integration Through Time

This thesis has focused mainly on the static detection problem but with the increasing

amount of video information available, it is of great interest to see how our system

could be applied to video sequences. The straightforward method of applying our

static system to video sequences is to analyze each frame as a static image. However,

this brute force technique ignores all dynamical information available, information

that could be quite useful for the purposes of detection. The brute force version will

be used as our benchmark in this chapter.

In our extensions of the system to handle the time domain, we will not drastically

alter the core technology used in the static version. Rather, we will either slightly

modify it or will augment it with various modules that use the static detection system

in di�erent ways. In this manner, each of the techniques we present in this chapter

can be seen as more general means of converting a static detection system into one

with improved processing capabilities for video sequences.

Our �rst system is a pure pattern classi�cation approach to dynamical object

detection. Here, we seek to circumvent the need for 1) the extensive engineering that

is quite typical in current dynamical detection systems, and 2) assuming particular

underlying dynamics. We will modify our base static detection approach to represent

dynamic information by extending the static representation into the time domain.

With this new representation, the system will be able to learn limited dynamics of

people, with or without motion. The system will learn what a person looks like

and what constitutes valid dynamics over short time sequences, without the need for

explicit models of either shape or dynamics.

The second system to take advantage of dynamical information is a rule based

module that integrates information through time as an approximation to a Kalman

�lter. Kalman �ltering theory assumes an underlying linear dynamical model and,

given measurements of the location of a person in one image, yields a prediction of

the location of the person in the next image and the uncertainty in this prediction.

Our heuristic smooths the information in an image sequence over time by taking

advantage of this fundamental a priori knowledge that a person in one image will

appear in a similar position in the next image. We can smooth the results through

time by automatically eliminating false positives, or detections that do not persevere

over small subsequences.
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Figure 6-1: Example image sequences that are used to train the pure pattern classi-

�cation version of our dynamic detection system.

The third system we will develop uses a new approach to propagating general,

multi-modal densities through time, based on the so called Condensation technique
[Isard and Blake, 1998]. This technique has a signi�cant advantage over the Kalman

�lter, namely, that it is not constrained to model a single Gaussian density but can

e�ectively model arbitrarily complex densities. Condensation is also able to gracefully

handle changes in scene structure, i.e. objects entering or exiting the scene, whereas,

if we were to use a Kalman �lter, we would have to run our detection system every

few frames and initialize a new Kalman �lter on any newly detected objects.

6.1 Pure Pattern Classi�cation Approach

In this section, our goal is to develop a detection system for video sequences that

makes as few assumptions as possible. We do not want to develop an explicit model

of the shape of people or outwardly model their possible motions in any way. Instead

of a dynamical model, we will use very high dimensional feature vectors to describe

patterns through time. These will be used to train a support vector machine classi�er,
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which we expect will implicitly model certain dynamics.

We would like a technique that implicitly generates a model of both the shape

and valid dynamical characteristics of people at the same time from a set of training

data. This should be accomplished without assuming that human motion can be

approximated by a linear Kalman �lter or that it can be described by a hidden Markov

model or any other dynamical model. The only assumption we will make is that �ve

consecutive frames of an image sequence contain characteristic information regarding

the dynamics of how people appear in video sequences. From a set of training data,

the system will learn exactly what constitutes a person and how people typically

appear in these short time sequences.

Instead of using a single 128 � 64 pattern from one image as a training example,

our new approach takes the 128 � 64 patterns at a �xed location in �ve consecutive

frames, computes the 1,326 features for each of these patterns, and concatenates them

into a single 6,630 dimensional feature vector for use in the support vector training.

We use images t�4; t�3; t�2; t�1; t where the person is aligned in the center of the

image at t. Figure 6-1 shows several example sequences from the training set. The

full training set is composed of 1,379 positive examples and 3,822 negative examples.

The extension to detecting people in new images is straightforward; for each can-

didate pattern in a new image, we concatenate the wavelet features computed for

that pattern to the wavelet features computed at that location in the previous four

frames. The full feature vector is subsequently classi�ed by the SVM.

We emphasize that it is the implicit ability of the support vector machine clas-

si�cation technique to handle small sets of data that sparsely populate a very high-

dimensional feature space that allows us to tackle this problem.

In developing this type of representation, we expect that the following dynamical

information will be evident in the training data and therefore encapsulated in the

classi�er:

� people usually display smooth motion or are stationary

� people do not spontaneously appear or disappear from one frame to another

� camera motion is usually smooth or stationary

One of the primary bene�ts derived from this technique is that it extends this

rich feature set into the time dimension and should be able to detect people at high

accuracy, while eliminating transient false positives that would normally appear when

using the static detection system.

This is purely a data-driven pattern classi�cation approach to dynamical detec-

tion. We compare this approach to the static detection system, trained with the

individual images corresponding to frame t in each of the sequences, so there are

1,379 positive and 3,822 negative 1,326 dimensional feature vectors as training for

the static detection system. Both the static and dynamic systems are tested on the
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Figure 6-2: ROC curves for the static and pure pattern classi�cation detection sys-

tems. The detection rate is plotted against the false positive rate, measured on a

logarithmic scale. The false positive rate is de�ned as the number of false detections

per inspected window.

same out-of-sample sequence. Figure 6-2 shows the ROC curves for the two systems.

From the ROC curves, we see that the system that has incorporated dynamical in-

formation performs signi�cantly worse than the static system at most points on the

ROC curve. If we look at our training data, we see that right to left moving people

are signi�cantly underrepresented, but the people in the test sequence are moving

from left to right. The bias in the training data that is not reected in the test data

may be causing this worse performance.

Regardless, this experiment illustrated that the dynamic system is capable of

doing classi�cation in a 6,630 dimensional space with only 5,201 training examples.

It is important to note that our features are not the 3D wavelets in space and

time. What we have done is taken a set of 2D wavelet features spread through time

and used these to develop our model. One extension of our system that would be

interesting to pursue is to use 3D wavelets as features. Such a system would learn

the dynamics as a set of displacements and therefore may generalize better.

6.2 Unimodal Density Tracking

This section describes the extension to the static system that incorporates a Kalman

�lter-like heuristic to track and predict detections in video sequences using unimodal

Gaussian densities.
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6.2.1 Kalman Filter

Kalman �lters are recursive algorithms that provide optimal estimates of a system's

parameters by incorporating a linear system model prediction with actual measure-

ments. The basic Kalman �lter emerged from classical optimal estimation theory and

has been heavily used in many �elds. For background and derivations of the Kalman

�lter see [Maybeck, 1982].

The goal of the Kalman �lter algorithm is to, at time tk�1, estimate or predict the

state of the process one time step in the future, tk, based on the underlying dynamics

of the model captured in the state transition matrix, and then, upon receiving the

sensory measurements at the next time step tk, correct the prediction to yield the

optimal estimate (in a linear sense) of the state at time tk. In the context of tracking

and prediction in computer vision, Kalman �lters have been widely used ([Broida and

Chellappa, 1986, Dickmanns and Graefe, 1988, Deriche and Faugeras, 1990, Harris,

1992]). In a Kalman �lter tracking situation, a Kalman �lter is typically initialized

over each object of interest. Over time, the Gaussian density function that is over

each object shifts, spreads, and peaks depending on the reinforcement it receives from

the measurement model.

6.2.2 Poor Man's Kalman (PMK)

As a zeroth order approximation to Kalman prediction and tracking for our person

detection/tracking task, we approximate a Kalman �lter by using a simple rule-based

heuristic, called the Poor Man's Kalman (PMK).

Our heuristic smooths the information in an image sequence over time by taking

advantage of the fundamental a priori knowledge that a person in one image will

appear in a similar position in the next image. We smooth the results through time

by automatically eliminating false positives, detections that do not persevere over a

small subsequence.

The rule is extremely simple and assumes we are looking at sequences of 3 con-

secutive frames (k � 1, k, k + 1):

If a pattern is labeled as a person in fewer than n

2
times

in an n-frame subsequence, then we expect that this

pattern is a false positive since true detections

persevere through time, so eliminate that detection.

If a pattern is labeled as a person less than n

2
times in any n-frame subsequence,

than we relabel that pattern as a non-person, thereby eliminating that presumed false

positive. For our tests, we use n = 3. Since the people and camera may be moving,

we allow some tolerance in the overlap of patterns. For a given tolerance level t and

assuming a pattern that has been rescaled to the base 128�64 size (containing people
of size 96 � 32), we allow a 32t pixel tolerance in the x positions of the top-left and

bottom-right locations and a 96t pixel tolerance in the y positions. The tolerances we
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tt-1t-2

original

PMK

Figure 6-3: An illustration of how the Poor Man's Kalman heuristic would eliminate

a detection that only appears at a certain location for one frame in a three frame sub-

sequence. The top �gures indicate the raw hypothesized detections. After processing

using the PMK technique, the detection that does not persist is eliminated from the

�nal output.

test are t = f0:1; 0:2; 0:3g. The e�ect that this technique has is illustrated in Figure

6-3.

Note that a rule as simple as this will fail when there are large motions of either

the camera or people. This problem could be solved by, instead of just looking at a

single location in consecutive images, trying to predict linear motion in local regions.

We will not address this problem, however.

To compare this system against the static version and facilitate comparisons with

the other time integration approaches, we train on the 1,379 positive and 3,822 neg-

ative subsequences (t � 4; t � 3; t � 2; t � 1; t) used to train the pure pattern clas-

si�cation approach. For a fair comparison with the other techniques that are more

directly based on static detection, we train a static detection SVM with the 1,379

positive and 3,822 negative individual images corresponding to frame t in each of the

subsequences. The resulting ROC curve for our PMK technique is shown in Figure

6-4. The ROC curve shows that, while at higher thresholds PMK is the same as or

slightly outperformed by the static system, at lower thresholds PMK performs better.

The reason behind this is due to the fact that when the core detection is strict, people

patterns that lie close to the decision boundary may not be correctly classi�ed. This

could yield a subsequence where a person appears and then disappears, exactly the
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Figure 6-4: ROC curves for the static and Poor Man's Kalman detection systems.

The numbers associated with each PMK curve indicates the tolerance for persevering

detections.

conditions under which the PMK technique dictates the removal of the detection,

which, in this case, is a correct person and not a false positive.

6.3 Multimodal Density Tracking

Kalman �ltering has been used extensively to track objects in video sequences through

time. The key assumption of the Kalman �lter is that the state density is Gaussian.

This means that a Kalman �lter can only track a single object through time. One

straightforward way of achieving multi-object tracking with Kalman �lters is to in-

stantiate a Kalman �lter for each object that is being tracked. Though this would

certainly work (as is shown in our PMK experiments), this strategy is not as appealing

as a single uni�ed framework that could track multiple objects. Such an algorithm,

called Condensation, has been proposed by [Isard and Blake, 1998].

6.3.1 Condensation

The two components of Condensation are a model of the state dynamics and a

measurement model. We denote the time history of the density function as Xt =

fxt;xt�1;xt�2; : : : ;x1g and the time history of the measurement output as Zt =

fzt; zt�1; zt�2; : : : ; z1g. We assume that the state dynamics can be modeled as a

�rst order Markov chain,

P (xtjXt�1) = P (xtjxt�1) (6:1)
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The measurement component of the condensation model assumes that observa-

tions zt are mutually independent and independent of the state dynamics. The obser-

vation process is therefore P (zjx). It is important to note that no other assumptions

are being made about the observation process, so in the general case it could be

multimodal.

The prediction or propagation of the densities to the next time step is done by

applying Bayes rule using, as the prior for the current step, the posterior state density

that has been transformed by one step of the underlying dynamical model:

P (xtjZt) = ktP (ztjxt)P (xtjZt�1) (6:2)

where

P (xtjZt�1) =
Z
xt�1

P (xtjxt�1)P (xt�1jZt�1)dxt�1 (6:3)

and kt is a normalization constant. In our case, x indicates the position and scale of

a person in the image and z is the support vector machine output at given positions

and scales.

The main problem here is to somehow estimate and rebalance the multimodal

state density through time as we obtain new measurements. Isard and Blake, 1998,

propose a factored sampling algorithm to e�ciently estimate these densities. They

�rst sample points from the prior and apply the dynamical model to these points.

The new points are then weighted in proportion to the measured features, i.e. in

proportion to P (zjx). This weighted point set serves as an e�cient approximation to

the posterior P (xjz). Since we are concerned with accuracy in detection and tracking

and not as concerned with e�ciency, we will use a formulation of the Condensation

algorithm that does not rely on a factored sampling approach to provide estimates

of the state densities. Our version represents the density and takes measurements at

each point in space.

Our version of this density propagation approach is as follows. Using the posterior

density from the previous image in the sequence, we directly transfer this density to

be the prior for the current image. This imposes an assumption of a trivial under-

lying dynamical model for people, P (xt) = P (xt�1). We run our person detection

system over the current image and reinforce or inhibit the density in the locations

where the support vector machine output is high and low respectively. Formally, we

use estimates of the density P (zjx), the probability relating support vector machine

outputs to con�dence that there is a person at the location, that have been generated

from a set of training data.

The result of this processing is that for each frame we have a posterior density

reecting the likelihood of the presence or absence of people at each location. To

accomplish actual detection, we threshold these densities.

The derivation of the density in Equation 6.2 is summarized here:
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P (xtjZt) = P (xtjzt;Zt�1) (6.4)

=
P (ztjxt;Zt�1)P (xtjZt�1)

P (ztjZt�1)
(by Bayes Rule) (6.5)

=
P (ztjxt;Zt�1)P (xtjZt�1)

P (zt)
(by independence of zi) (6.6)

=
P (ztjxt)P (xtjZt�1)

P (zt)

(since xt already en-

capsulates all infor-

mation about Zt�1)

(6.7)

= ktP (ztjxt)P (xtjZt�1)

(since P (xtjZt) is a

distribution that in-

tegrates to 1, we can

normalize by kt)

(6.8)

Furthermore, we are assuming a trivial dynamical model in which the prediction

of a person's position in the next frame is simply the location in the current frame.

This means:

P (xtjZt�1) = P (xt�1jZt�1) (6:9)

so:

P (xtjZt) = ktP (ztjxt)P (xt�1jZt�1) (6:10)

The e�ect of this type of processing is illustrated in Figure 6-5 where the density

is visualized in two dimensions. Unlike [Isard and Blake, 1998] who in e�ect obtain

measurements from a �xed number of locations in the image, we obtain and measure

candidate \features" at every point in the new image.

Since we are assuming a trivial dynamical model, the only quantity in Equation

6.10 that is of any real interest is the measurement process P (ztjxt). This function will
propagate the density based on the output of the support vector machine classi�er

at each location. The problem here is that the SVM output is in the form of the

distance of the pattern from the separating hyperplane and not a probability on x.

The next section addresses this issue.

6.3.2 Estimating P (zjx)

In words, the measurement process P (ztjxt) denotes the probability of a certain SVM
output conditional on the distribution of x, the people at each location. We base our

measurement process on the SVM output at each location. This value is a distance

from the hyperplane that separates the people from the non-people. Assuming we

have already estimated P (zjx), at each location in the image we take the output of
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Figure 6-5: An illustration of Condensation in action. The posterior density from

t � 1 is used as the prior a time t. This prior is then acted on by the e�ect of the

SVM measurements at time t; strong SVM output z reinforces the prior and shifts

the density. The result of this propagation is the rightmost density, the posterior for

time t.

the SVM and compute this likelihood. To counter the e�ects of possibly non-smooth

SVM outputs in our results, we average P (zjx) over local regions.
One of the key assumptions is that the output of the SVM peaks over a person and

then relatively smoothly decays as we move away from the pattern both in (x; y) and

in scale. Figure 6-6 shows that the support vector machine raw output does indeed

decay fairly smoothly. We have not developed our system to be shift invariant but in

fact there is a small amount of shift invariance that the system seems to learn from

the training set, possibly due to small misalignments in the data.

To transform this raw distance value into a distribution conditional on x, we use

a set of out-of-sample images that have been manually annotated with the locations

of the people x(i). At each location in the image x(j), we obtain the SVM output

for that pattern z(j). This gives us a version of the density that reects distances to

people, i.e. P (z(j)jd(x(i);x(j))).
When running over a new image, we use this as follows. Having computed the

SVM output for a given pattern, we can compute P (z(i)jx) by smoothing over a local

neighborhood indexed as AN (jAN j = N) by:

P (z(i)jx) = 1

N

X
j�AN

P

�
z

(j)jd(x(i);x(j))
�

(6:11)

98



This gives us the likelihood that serves to reinforce the prior in areas where there are

people.

As our function d(a;b), we need to use a measure that takes into account the

di�erences in both position and scale between a and b. We use:

d(a;b) = (atlx � btl
x ) + (atly � btl

y ) + (abrx � bbr
x ) + (abry � bbr

y ) (6:12)

where the superscripts tl and br indicate top-left and bottom-right coordinates respec-

tively and the subscripts x and y denote the x and y components of the coordinates.

This is a very simple measure that �ts our criteria of encapsulating di�erences in both

distance and scale. Other more complex measures of distance could be used but we

�nd that this one works e�ectively.

The motivation for the Condensation algorithm is to propagate densities through

time, not identify distinct locations where an object lies. In other words, the goal

is to track densities, not to do pure pattern classi�cation. This leads to a problem

when applying it to a detection task in dealing with objects with unequal probability

masses.

If there are two people in the scene and each is detected \equally well" (same

number of detections with the same strength) by the underlying support vector ma-

chine, then the Condensation framework will assign equally strong probability masses

to the two people. However, it is extremely unlikely that all the people in the scene

will be detected with equal strength. This leads the Condensation algorithm to as-

sign probability masses of varying size to di�erent people. In turn, this means that

thresholding the densities to localize the objects of interest may miss weaker peaks

in the density.

Our solution to this is to �rst do a hill climbing search in the density to �nd

the distinct peaks. Then, we individually threshold the peaks by specifying that a

constant mass around each peak indicates a detection, which amounts to labeling the

closest points to each peak as a detection. Figure 6-7 illustrates this concept.

6.3.3 Results

We train and test the system in the same manner as the other time integration sys-

tems. The performance of the Condensation-based approach as compared to the static

system is shown in Figure 6-8. The curves show that the Condensation-based tech-

nique signi�cantly outperforms the static version in the \low false positive" portion

of the ROC curve. This is not a surprising result, since the e�ect of false positives

are magni�ed by our taking a constant volume as the detected patterns. When there

are few false positives, the detected patterns are more likely to be people and these

detections will persevere on account of the propagation of the density.
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6.4 Discussion of Time Integration Techniques

It is of interest to compare the di�erent time integration techniques and discuss their

relative merits and drawbacks.

6.4.1 Pattern Classi�cation Approach

The multiframe pattern classi�cation approach is the one most directly related to

the core static system and is the system that makes the least number of assumptions

about dynamical models. Here, we assume that any of the dynamics are captured in

the �ve frame subsequences. The SVM learning engine is able to learn in the 6,630

dimensional input space and is able to generalize quite well as seen in the ROC curve.

The main problem with our particular version is that the training data seems to be

heavily biased to left moving people.

At run time, this system is quite expensive. The core classi�cation step for 1

window uses 5ns multiplications where n is the number of features in a single window

and s is the number of support vectors. For an average image size of 240 � 360 with

approximately 30,000 windows, this leads to 150; 000ns multiplications per image

with 1 access per pattern.

6.4.2 Poor Man's Kalman Heuristic

The PMK heuristic approximation to a Kalman �lter is the simplest addition to the

core static approach to take advantage of information over time. This module assumes

no underlying dynamics but takes advantage of the fact that the video sequences we

typically use are at a high enough rate that people do not exhibit signi�cant changes in

position and scale from one frame to another. In fact, this is why our simple distance

measure, essentially using the L1 norm in position and scale, works e�ectively. In

domains where the assumption of smooth motion is not valid, this approach would

not work. Cases like these are better served by an approach that is able to more

directly capture direction and velocity in the model.

The run time complexity of this system is ns multiplications per window with 1

access per pattern, assuming the proper data structures. In all, there are 30; 000ns

multiplications per image for the core SVM computation.

6.4.3 Condensation-Based Approach

The Condensation-based extension to the static system is the most elegant, but in-

volves signi�cantly more development and changes to the system. One of the main

issues is the estimation of the likelihood, P (zjx), which is non-trivial. In our case,

this likelihood can be estimated from a set of data.

At run time, the Condensation-based approach is quite a bit more complex than

the other techniques. For classi�cation, each pattern needs ns multiplications with
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an additional 1 multiplication for propagating the prior (here, too, there are O(10)

additions per window since to compute the likelihood we average over a small neigh-

borhood) and 1 division to normalize the density. This, combined with the necessary

peak �nding step, means O(10) visits per pattern. Though more complex than the

other approaches, Condensation seems to be the method of choice due to its exibil-

ity in modeling multimodal densities. In addition to the computational complexity,

another minor drawback is that the framework is developed for tracking and not pure

detection; our peak �nding heuristic is one simple way to circumvent this.
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Figure 6-6: The top image is the original and the bottom images are the color coded

raw support vector machine outputs from the image when processed for four di�erent

scales of people. The output of the SVM peaks over the people patterns and decays

smoothly as we shift the location and scale of the pattern.
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Figure 6-7: Global thresholding may miss a peak due to unequally weighted portions

of the density. To correct for this, we do a hill climbing search to �nd the distinct

peaks and then locally threshold the portions of the density around the peaks.
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Figure 6-8: ROC curves for the static and Condensation-based detection systems.

The numbers associated with the Condensation curves are the number of points that

the algorithm uses at the peaks of the density.
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Chapter 7

Conclusion

This thesis has presented a general trainable framework for object detection in static

images that is successfully applied to face, people, and car detection in static images.

Along with some extensions to video sequences, we have investigated di�erent rep-

resentations, a component-based approach, and implemented a real-time version of

the system that is running in a DaimlerChrysler experimental vehicle. The system is

robust, portable, and can be made e�cient. While we have not pushed this system

to be the \best" detection system in a particular domain, though this certainly may

be possible, we have shown its applicability to a wide range of object classes. We feel

that in practical uses of this system, the proper architecture should combine a focus

of attention module with our static detection system. We have presented preliminary

results here as well.

Future work around this system should focus on the following:

� component-based techniques: In the component-based system we present, the

parts and geometries are manually speci�ed. An important next step is to

develop a method for automatically selecting the components from a large set

of possible components.

� time integration: This thesis has presented some promising �rst steps in aug-

menting the core static detection system with di�erent modules that take ad-

vantage of dynamical information. These techniques and others should be in-

vestigated further and extended. One interesting direction would be to develop

a system that used wavelets in space and time.

� representations: One of the big leaps we have taken in this thesis is our choice of

representation, Haar wavelets. While we have shown that this wavelet represen-

tation achieves excellent results when compared to other representations, there

are many possible other feature sets that could be used. Subsequent research

in this area is imperative.

� support vector machines: Though support vector machines are well-founded in

statistics and heavily studied these days, there are a couple of open questions

whose solutions would bene�t our work as well. First, how can we quickly train
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support vector machines with very large data sets? Second, are there ways of

using support vector machines to do feature selection in a principled manner?

We present one idea here, but this is largely a heuristic �rst step.
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Appendix A

Wavelets

A.1 The Haar Wavelet

Wavelets provide a natural mathematical structure for describing our patterns; a

more detailed treatment can be found in [Mallat, 1989]. These vector spaces form

the foundations of the concept of a multiresolution analysis. We formalize the notion

of a multiresolution analysis as the sequence of approximating subspaces V 0 � V 1 �
V

2 � : : : V
j � V

j+1
: : :; the vector space V j+1 can describe �ner details than the

space V j , but every element of V j is also an element of V j+1. A multiresolution

analysis also postulates that a function approximated in V
j is characterized as its

orthogonal projection on the vector space V j.

As a basis for the vector space V j, we use the scaling functions,

�

j
i =
p
2j�(2jx� i); i = 0; : : : ; 2j � 1; (A:1)

where, for our case of the Haar wavelet,

�(x) =

(
1 for 0 � x < 1

0 otherwise

(A:2)

Next we de�ne the vector spaceW j that is the orthogonal complement of two con-

secutive approximating subspaces, V j+1 = V
j
L
W

j. The W j are known as wavelet

subspaces and can be interpreted as the subspace of \details" in increasing re�ne-

ments. The wavelet space W j is spanned by a basis of functions,

 

j
i =
p
2j (2jx� i); i = 0; : : : ; 2j ; (A:3)

where for Haar wavelets,

 (x) =

8><
>:

1 for 0 � x <
1
2

�1 for
1
2
� x < 1

0 otherwise

(A:4)

The sum of the wavelet functions form an orthonormal basis for L2(R). It can be

shown (under the standard conditions of multiresolution analysis) that all the scaling
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functions can be generated from dilations and translations of one scaling function.

Similarly, all the wavelet functions are dilations and translations of the mother wavelet

function. Figure 2-5a shows the scaling and wavelet functions. The approximation of

some function f(x) in the space V j is found to be:

Ajf =
X
k2Z

�j;kz }| {
< f(u); �

j
k(u) >�

j
k(x) (A:5)

and, similarly, the projection of f(x) on W j is:

Djf =
X
k2Z

j;kz }| {
< f(u);  j

k(u) > 
j
k(x) (A:6)

The structure of the approximating and wavelet subspaces leads to an e�cient

cascade algorithm for the computation of the scaling coe�cients, �j;k, and the wavelet

coe�cients, j;k:

�j;k =
X
n2Z

hn�2k�j+1;n (A.7)

j;k =
X
n2Z

gn�2k�j+1;n (A.8)

where fhig and fgig are the �lter coe�cients corresponding to the scaling and

wavelet functions. Using this construction, the approximation of a function f(x) in

the space V j is:

Ajf =
X
n2Z

�j;k

p
2j�(2jx� k) (A:9)

Similarly, the approximation of f(x) in the space W j is:

Djf =
X
n2Z

j;k

p
2j (2jx� k) (A:10)

Since we use the Haar wavelet, the corresponding �lters are: h = f: : : ; 0; 1
2
;
1
2
; 0; 0; : : :g

and g = f: : : ; 0;�1
2
;
1
2
; 0; 0; : : :g The scaling coe�cients are simply the averages of

pairs of adjacent coe�cients in the coarser level while the wavelet coe�cients are the

di�erences.

It is important to observe that the discrete wavelet transform (DWT) performs

downsampling or decimation of the coe�cients at the �ner scales since the �lters h

and g are moved in a step size of 2 for each increment of k.
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A.2 2-Dimensional Wavelet Transform

The natural extension of wavelets to 2D signals is obtained by taking the tensor

product of two 1D wavelet transforms. The result is the three types of wavelet

basis functions shown in Figure 2-5. The �rst type of wavelet is the tensor product

of a wavelet by a scaling function,  (x; y) =  (x) 
 �(y); this wavelet encodes a

di�erence in the average intensity along a vertical border and we will refer to its

value as a vertical coe�cient. Similarly, a tensor product of a scaling function by a

wavelet,  (x; y) = �(x)
 (y), is a horizontal coe�cient, and a wavelet by a wavelet,
 (x; y) =  (x)
  (y), is a diagonal coe�cient since this wavelet responds strongly

to diagonal boundaries.

Since the wavelets that the standard transform generates have irregular support,

we use the non-standard 2D DWT where, at a given scale, the transform is applied

to each dimension sequentially before proceeding to the next scale (Stollnitz et al.,

1994[Stollnitz et al., 1994]). The results are Haar wavelets with square support at all

scales, shown in Figure 2-5b.

A.3 Quadruple Density Transform

For the 1D Haar transform, the distance between two neighboring wavelets at level

n (with support of size 2n) is 2n. To obtain a denser set of basis functions that

provide better spatial resolution, we need a set of redundant basis functions, or an

overcomplete dictionary, where the distance between the wavelets at scale n is 1
4
2n

(Figure 2-5c). The straightforward approach of shifting the signal and recomputing

the DWT will not generate the desired dense sampling. Instead, this can be achieved

by modifying the DWT. To generate wavelets with double density, where wavelets

of level n are located every 1
2
2n pixels, we simply do not downsample in Equation

A.8. To generate the quadruple density dictionary, �rst, we do not downsample in

Equation A.7, giving us double density scaling coe�cients. Next, we calculate double

density wavelet coe�cients on the two sets of scaling coe�cients | even and odd

| separately. By interleaving the results of the two transforms we get quadruple

density wavelet coe�cients. For the next scale (n+ 1), we keep only the even scaling

coe�cients of the previous level and repeat the quadruple transform on this set only;

the odd scaling coe�cients are dropped o�. Since only the even coe�cients are carried

along at all the scales, we avoid an \explosion" in the number of coe�cients, yet obtain

a dense and uniform sampling of the wavelet coe�cients at all the scales. As with the

regular DWT, the time complexity is O(n) in the number of pixels n. The extension

of the quadruple density transform to 2D is straightforward.
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Appendix B

Support Vector Machines

The second key component of our system is the use of a trainable pattern classi�er

that learns to di�erentiate between patterns in our object class and all other patterns.

In general terms, these supervised learning techniques rely on having a set of labeled

example patterns from which they derive an implicit model of the domain of interest.

The particular learning engine we use is a support vector machine (SVM) classi�er.

The support vector machine algorithm is a technique to train classi�ers that is

well-founded in statistical learning theory [Vapnik, 1995, Burges, 1998, Vapnik, 1998].

Here, we provide some of the mathematical and practical aspects of support vector

machines that are relevant to our work.

B.1 Theory and Mathematics

For a given learning task, we have a set of ` N -dimensional labeled training examples:

(x1; y1); (x2; y2); : : : ; (x`; y`) xi 2 RN
; yi 2 f�1;+1g (B:1)

where the examples have been generated from some unknown pdf, P (x; y). We would

like the system to learn a decision function fa : x ! y that minimizes the expected

risk,

R(�) =
Z
jf�(x)� yjdP (x; y) (B:2)

In most cases, we will not know P (x; y); we simply see the data points that the

distribution has generated. Thus, direct minimization of Equation B.2 is not possible.

What we are able to directly minimize is the empirical risk, the actual error over the

training set,

Remp(�) =
1

`

X̀
i=1

jf�(xi)� yij (B:3)

This is exactly the functional that many training techniques for classi�ers mini-

mize, but can lead to over�tting the training data and poor generalization. For these

reasons, we introduce the theory of uniform convergence in probability:
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R(�) � Remp(�) + �

 
h

`

;

�log(�)
`

!
(B:4)

with probability 1 � �. Here, R(�) is the expected risk; Remp(�) is the empirical

risk; ` is the number of training examples; h is the VC dimension of the classi�er

that is being used; and �(�) is the VC con�dence of the classi�er. Intuitively, what

this means is that the uniform deviation between the expected risk and empirical risk

decreases with larger amounts of training data ` and increases with the VC dimension

h. This leads us directly to the principle of structural risk minimization, where we

can minimize both the actual error over the training set and the complexity of the

classi�er at the same time; this will bound the generalization error as in Equation

B.4. It is exactly this technique that support vector machines approximate.

In the simple case of �nding the optimal linear hyperplane (w; b) that separates

two separable classes, this problem is equivalent to solving:

minimize 1
2
k w k2

w; b
(B:5)

subject to the constraints:

yi(w � xi + b) � 1 i = 1 : : : ` (B:6)

Typically, the dual formulation of this quadratic programming problem is solved,

leading to a decision surface of the form:

f(x) = �

 X̀
i=1

�iyi(x � xi) + b

!
(B:7)

where �i are Lagrange variables.

To extend this to the more general case of linearly non-separable data, we add in

slack variables � and a cost C that penalizes misclassi�cations:

minimize 1
2
k w k2 +C

�P`
i=1 �i

�k
w; b

(B:8)

subject to the constraints:

yi(w � xi + b) � 1 � �i i = 1 : : : `

�i � 0 i = 1 : : : `
(B:9)

Linear hyperplanes are a fairly restrictive set of decision surfaces, so ultimately we

would like to use nonlinear decision surfaces. In this case, support vector machines

work by projecting the input data into a higher dimensional feature space and �nding

the optimal linear separating hyperplane in this space. The data is mapped according

to some function �, as:
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x! �(x) = (�1(x); �2(x); : : : ; �n(x)) (B:10)

This leads to decision surfaces of the form:

f(x) = �

 X̀
i=1

�iyi(�(x) � �(xi)) + b

!
(B:11)

A more compact representation is possible by introducing the nonlinear kernel

function K:

K(x;y) = �(x) � �(y) (B:12)

With this formulation, we obtain decision surfaces of the form:

f(x) = �

 X̀
i=1

�iyiK(x;xi) + b

!
(B:13)

One of the important characteristics of the solution is that there are typically

only a small number of nonzero �i. The separating hyperplane is therefore a linear

combination of a small set of data points, called support vectors. Removing the

non-support vectors and training again would yield exactly the same solution.

Using the SVM formulation, the classi�cation rule for a pattern x using a poly-

nomial of degree two, the classi�er we use in our detection system, is as follows:

f(x) = �

 
NsX
i=1

�iyi(x � xi + 1)2 + b

!
(B:14)

where Ns is the number of support vectors.

This controlling of both the training set error and the classi�er's complexity has

allowed support vector machines to be successfully applied to very high dimensional

learning tasks; [Joachims, 1997] presents results on SVMs applied to a 10,000 dimen-

sional text categorization problem and [Osuna et al., 1997b] show a 283 dimensional

face detection system.

B.2 Practical Aspects

The SVM package we use is that of Osuna et al., 1997 described in [Osuna et al., 1997a,

Osuna et al., 1997b] that uses the MINOS quadratic programming solver [Murtagh

and Saunders, 1995]. To train a support vector machine, we �rst need a set of training

data. The process by which we gathered our training set is described in Section 2.2.

We transform each training image into a feature vector of Haar wavelet coe�cients

as in Section 2.3.2. The data is then ready to be used for training.

In the SVM framework, there are essentially only 2 tunable parameters: the type

of classi�er (e.g. linear, polynomial, etc.) and C, the penalty for misclassi�cations.
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Most of our experiments are run using a polynomial of degree 2 as in Equation B.14.

In penalizing misclassi�cations, we use Cpos = 100 for the positive examples and

Cneg = 10 for the negative examples to reect the relative importance of having a low

false negative rate: false negatives are penalized 10 times more than false positives.

Training time with the above settings is under 2 hours for our detection systems

on either an SGI Reality Engine or a 450MHz PC running Linux. The output of the

SVM training is a binary �le containing the data for the decision surface: �i, xi, yi,

for data points i that have non-zero �i, and b. This data �le is subsequently used by

the detection system.
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Appendix C

Raw Wavelet Data

Here we present the raw wavelet responses, averaged over the set of 1,848 people

images and presented in their proper spatial location. The meaningful coe�cients are

those with values much larger or smaller than 1. Average values close to 1 indicate

neither the presence nor the absence of an intensity di�erence in the average, i.e.

these are inconsistent features.
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0.4 0.5 0.6 1.0 1.3 1.0 0.7 1.0 1.3 1.0 0.6 0.5 0.4

0.4 0.4 0.5 0.7 1.0 0.8 0.6 0.8 1.0 0.7 0.5 0.4 0.4

0.3 0.3 0.4 0.5 0.7 0.6 0.4 0.6 0.7 0.5 0.4 0.3 0.3

0.2 0.2 0.3 0.3 0.4 0.4 0.3 0.4 0.4 0.3 0.3 0.2 0.2

Table C.1: Vertical 16 � 16 wavelets.
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0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

0.8 0.8 0.8 0.8 0.9 1.0 1.0 1.0 0.9 0.8 0.8 0.8 0.8

0.8 0.8 0.8 0.9 1.2 1.5 1.6 1.5 1.2 0.9 0.8 0.8 0.8

0.8 0.8 0.8 1.0 1.2 1.5 1.7 1.5 1.2 1.0 0.8 0.8 0.8

0.9 0.8 0.9 0.9 1.0 1.2 1.2 1.2 1.0 0.9 0.9 0.8 0.9

0.9 0.9 1.0 1.2 1.3 1.6 1.6 1.6 1.3 1.2 1.0 0.9 0.9

1.0 1.0 1.3 1.6 1.9 2.1 2.2 2.1 1.9 1.6 1.3 1.0 1.0

1.0 1.1 1.4 1.5 1.6 1.6 1.6 1.6 1.6 1.5 1.4 1.1 1.0

1.1 1.2 1.2 1.1 1.1 1.0 1.0 1.0 1.1 1.1 1.2 1.2 1.1

1.1 1.1 1.0 0.9 0.8 0.8 0.8 0.8 0.8 0.9 1.0 1.1 1.1

1.0 1.0 0.9 0.8 0.7 0.6 0.6 0.6 0.7 0.8 0.9 1.0 1.0

1.0 1.0 0.9 0.8 0.7 0.6 0.6 0.6 0.7 0.8 0.9 1.0 1.0

1.0 1.0 0.9 0.8 0.8 0.7 0.7 0.7 0.8 0.8 0.9 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.1 1.1 1.1 1.2 1.2 1.3 1.2 1.2 1.1 1.1 1.1 1.0

1.0 1.1 1.2 1.2 1.3 1.4 1.4 1.4 1.3 1.2 1.2 1.1 1.0

0.9 1.0 1.1 1.2 1.3 1.3 1.4 1.3 1.3 1.2 1.1 1.0 0.9

0.9 1.0 1.1 1.1 1.1 1.2 1.2 1.2 1.1 1.1 1.1 1.0 0.9

0.9 0.9 1.0 0.9 0.9 1.0 1.0 1.0 0.9 0.9 1.0 0.9 0.9

0.9 0.9 0.9 0.8 0.8 0.9 0.9 0.9 0.8 0.8 0.9 0.9 0.9

0.9 0.9 0.9 0.8 0.8 0.9 0.9 0.9 0.8 0.8 0.9 0.9 0.9

0.9 0.9 0.9 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.9 0.9 0.9

0.9 0.9 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.9 0.9

0.9 0.9 0.9 0.8 0.9 0.9 0.9 0.9 0.9 0.8 0.9 0.9 0.9

0.9 0.9 0.9 0.9 0.9 1.0 1.1 1.0 0.9 0.9 0.9 0.9 0.9

0.8 0.9 0.9 0.9 1.0 1.2 1.3 1.2 1.0 0.9 0.9 0.9 0.8

0.9 1.0 1.0 1.0 1.1 1.3 1.4 1.3 1.1 1.0 1.0 1.0 0.9

0.8 0.8 0.9 1.0 1.1 1.3 1.4 1.3 1.1 1.0 0.9 0.8 0.8

0.7 0.7 0.8 0.9 1.0 1.1 1.2 1.1 1.0 0.9 0.8 0.7 0.7

Table C.2: Horizontal 16 � 16 wavelets.

0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

0.7 0.7 0.7 0.8 0.9 1.0 0.9 1.0 0.9 0.8 0.7 0.7 0.7

0.7 0.7 0.8 1.0 1.4 1.6 1.4 1.6 1.4 1.0 0.8 0.7 0.7

0.7 0.7 0.8 1.1 1.5 1.7 1.5 1.7 1.5 1.1 0.8 0.7 0.7

0.8 0.8 0.8 1.0 1.3 1.4 1.3 1.4 1.3 1.0 0.8 0.8 0.8

0.8 0.8 1.0 1.4 1.6 1.7 1.5 1.7 1.6 1.4 1.0 0.8 0.8

0.8 1.0 1.6 1.9 1.8 1.9 1.6 1.9 1.8 1.9 1.6 1.0 0.8

0.9 1.2 1.7 1.6 1.7 1.6 1.2 1.6 1.7 1.6 1.7 1.2 0.9

0.9 1.3 1.4 1.5 1.5 1.1 0.9 1.1 1.5 1.5 1.4 1.3 0.9

0.9 1.2 1.3 1.3 1.1 0.8 0.7 0.8 1.1 1.3 1.3 1.2 0.9

0.9 1.1 1.2 1.1 0.9 0.7 0.6 0.7 0.9 1.1 1.2 1.1 0.9

0.9 1.1 1.2 1.1 1.0 0.7 0.6 0.7 1.0 1.1 1.2 1.1 0.9

0.9 1.1 1.2 1.2 1.1 0.8 0.6 0.8 1.1 1.2 1.2 1.1 0.9

0.8 1.1 1.2 1.3 1.2 0.9 0.7 0.9 1.2 1.3 1.2 1.1 0.8

0.8 1.1 1.3 1.5 1.4 0.9 0.8 0.9 1.4 1.5 1.3 1.1 0.8

0.8 1.1 1.3 1.6 1.5 1.0 0.8 1.0 1.5 1.6 1.3 1.1 0.8

0.8 1.0 1.2 1.5 1.4 1.0 0.9 1.0 1.4 1.5 1.2 1.0 0.8

0.7 0.8 1.1 1.3 1.3 1.0 0.9 1.0 1.3 1.3 1.1 0.8 0.7

0.6 0.7 0.9 1.1 1.2 1.1 0.8 1.1 1.2 1.1 0.9 0.7 0.6

0.5 0.6 0.8 1.0 1.2 1.0 0.8 1.0 1.2 1.0 0.8 0.6 0.5

0.6 0.7 0.8 1.1 1.2 1.0 0.8 1.0 1.2 1.1 0.8 0.7 0.6

0.6 0.6 0.8 1.1 1.1 1.0 0.8 1.0 1.1 1.1 0.8 0.6 0.6

0.6 0.7 0.9 1.1 1.1 1.0 0.8 1.0 1.1 1.1 0.9 0.7 0.6

0.6 0.7 0.9 1.1 1.1 1.0 0.9 1.0 1.1 1.1 0.9 0.7 0.6

0.6 0.7 0.8 1.1 1.2 1.0 0.9 1.0 1.2 1.1 0.8 0.7 0.6

0.6 0.6 0.8 1.0 1.2 1.1 1.0 1.1 1.2 1.0 0.8 0.6 0.6

0.6 0.6 0.7 1.0 1.3 1.2 1.0 1.2 1.3 1.0 0.7 0.6 0.6

0.5 0.5 0.6 0.9 1.1 1.0 0.8 1.0 1.1 0.9 0.6 0.5 0.5

0.3 0.3 0.4 0.6 0.7 0.7 0.6 0.7 0.7 0.6 0.4 0.3 0.3

Table C.3: Diagonal 16 � 16 wavelets.
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0.7 0.7 0.6 0.7 0.7

0.8 0.9 0.6 0.9 0.8

1.0 1.1 0.6 1.1 1.0

1.3 1.2 0.6 1.2 1.3

1.6 1.3 0.5 1.3 1.6

1.6 1.3 0.5 1.3 1.6

1.5 1.3 0.5 1.3 1.5

1.3 1.4 0.5 1.4 1.3

1.3 1.4 0.5 1.4 1.3

1.1 1.3 0.5 1.3 1.1

0.9 1.2 0.4 1.2 0.9

0.7 1.0 0.4 1.0 0.7

0.5 0.7 0.3 0.7 0.5

Table C.4: Vertical 32 � 32 wavelets.

0.9 1.1 1.1 1.1 0.9

1.0 1.2 1.3 1.2 1.0

1.2 1.5 1.7 1.5 1.2

1.0 1.1 1.3 1.1 1.0

0.8 0.7 0.8 0.7 0.8

0.8 0.8 0.8 0.8 0.8

1.0 1.1 1.3 1.1 1.0

1.1 1.2 1.4 1.2 1.1

0.9 1.0 1.1 1.0 0.9

0.8 0.8 0.9 0.8 0.8

0.8 0.8 0.8 0.8 0.8

0.8 0.9 1.0 0.9 0.8

0.9 1.0 1.1 1.0 0.9

Table C.5: Horizontal 32 � 32 wavelets.

0.9 1.2 0.9 1.2 0.9

1.1 1.2 0.8 1.2 1.1

1.5 1.3 0.9 1.3 1.5

1.3 1.1 0.7 1.1 1.3

1.0 0.9 0.6 0.9 1.0

1.0 1.0 0.6 1.0 1.0

1.2 1.3 0.7 1.3 1.2

1.2 1.3 0.7 1.3 1.2

0.9 1.1 0.6 1.1 0.9

0.8 1.1 0.6 1.1 0.8

0.8 1.0 0.6 1.0 0.8

0.8 1.0 0.5 1.0 0.8

0.8 1.1 0.5 1.1 0.8

Table C.6: Diagonal 32 � 32 wavelets.
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