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1. OBSERVATION OF ION ACOUSTIC WAVES IN HIGHLY

IONIZED PLASMAS IN A MAGNETIC FIELD

This report gives preliminary data on the propagation of ion acoustic waves in highly

ionized plasmas in a magnetic field. Measurements have been made using interfero-
1

metric techniques in the PF 1 machine, and indicate that the waves are dispersionless

from well below to well above the ion-cyclotron frequency and obey the dispersion rela-

tion w/k = (yeTe+yiTi/M.i) The source of the damping usually accompanying the

wave is unknown, at the present time.

For the study of ion acoustic waves, the PF 1 is arranged with the modified Lisitano

structure near one end of the system. A floating grid is placed approximately 4 cm

Fig. VI-1. Synchronous detection scheme used in the study of
ion acoustic waves in PF 1.

This work
AT(30-1)-3980).

was supported by the U. S. Atomic Energy Commission (Contract

QPR No. 93



(VI. PLASMAS AND CONTROLLED NUCLEAR FUSION)

from the structure. The transmitting and receiving grids are mounted on movable rods

that pass through double O-ring seals at either end of the system. The receiving grid,

located farthest from the plasma-generating structure, is equipped with a motor drive to

provide uniform axial motion. The electronic equipment required for the launching and

detection of ion acoustic waves is shown in Fig. VI-1. The variable time delay is used

to adjust the phase of the transmitted signal so that the capacitive signal is 900 out of

phase with the signal in the other arm of the interferometer. The amplifier in the

receiver arm matches the plasma to the low-impedance crystal mixer. The output of

the synchronous detector is used to drive the y axis of a recorder whose x axis is pro-

portional to the receiver position. A typical trace for an Argon plasma is shown in

Fig. VI-2.

ARGON
FREQUENCY = 50 Kc/s
PRESSURE= 3 x 10-

5 
Torr

Fig. VI-2. Recorder trace of synchronous
detector output as a function of
receiver position.
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The dispersion relations shown in Fig. VI-3 were obtained from two sets of data.

The straight line is a plot of w/k = (T /Mi)1/2, where T = 4. 12 eV, as measured by

a Langmuir probe in the Argon plasma. Silk' s measurement of ion temperature in PF 2

indicates temperatures of ~0. 3 eV (see Sec. VI-C. 1). Although our data appear to indi-
-1

cate an increase in the phase velocity for kReal > 2 cm , the waves actually may be

dispersionless for the following reason. As can be seen in Fig. VI-2, the wavelength

of the wave tends to decrease with increasing distance from the transmitter, thereby

indicating an axial temperature gradient toward the plasma source. Because the ratio

of the imaginary to the real part of the wave vector is found to be essentially indepen-

dent of frequency, the waves of longer wavelength can be observed over a greater dis-

tance before they damp out. At the present time, the length of the rod in the sliding seals

puts an upper bound on the length of the measurement region. For wave vectors less
-1

than -2 cm-1 , useful data are obtainable over the entire region. The damping for larger

wave vectors reduces the length of the measuring region, thereby causing the average
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measured wavelengths to fail to take into account the lower temperatures farther from

the transmitter and leading to an apparent increase in the phase velocity. Future studies

include the use of an axially movable probe to measure longitudinal variations in either

density or electron temperature.

o ARGON

o HELIUM

PRESSURE - 3 x 10
- 5

ne -~430 KHzHer 43 KHz
2* - 43 KHzAr

o
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Fig. VI-3. Dispersion relations for Helium and Argon plasmas.

In order to verify these results, time-of-flight measurements have been made by

using the techniques of Alexeff and Jones.2 The results are in good agreement with

those obtained by using the interferometric system. The change in slope of the distance

vs time delay curve is also in at least qualitative agreement with the theory of a tem-

perature gradient.

The damping is found to be significant. Although preliminary data indicate that the

ratio of the imaginary part to the real part of the wave vector is approximately inde-

pendent of frequency for a given set of plasma parameters, additional calculations

indicate that neither ion nor electron Landau damping can account for the observed

damping, unless significant drifts exist in the plasma or the ion temperatures in PF 1

differ appreciably from those measured by Silk in PF 2 (see Sec. VI-C. 1). Values of

the damping ratio, k./k r , vary from 0. 12 to approximately 0. 05 in Argon, and have

been found to be typically 0. 05 to 0. 03 in Helium. The observed strong dependence of

the damping on the plasma parameters makes it difficult to draw any conclusion about

the dependence of damping on ion mass. We plan to monitor the plasma parameters
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more closely in the future, in an attempt to determine the functional dependence of the

damping distance on these parameters and to determine the damping mechanism.

L. P. Mix, Jr., L. Litzenberger, G. Bekefi
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2. NONLINEAR COUPLING OF THREE ION ACOUSTIC WAVES

Among the nonlinear effects that are possible in plasmas is the exchange of energy

among three or more waves, commonly known as mode coupling. In order for this

energy exchange to occur among, say, three waves with frequencies wl' w2, and w3 , and

with wave vectors k l , k 2 , k 3 , the following selection rules must be obeyed exactly (or

nearly exactly):

W1 = 
2  3  (1)

k = k Z + k 3 .  (2)

In order for the energy exchange to be observable in the laboratory, it is also necessary

that the distance over which appreciable energy exchange occurs, henceforth called the

interaction length L, be less than or of the order of the largest dimension of the plasma

that is available.

We have observed ion acoustic waves (see Sec. VI-A. 1) in the plasma described in

a previous report.1 These waves do not exhibit dispersion, at least at low enough fre-

quencies; hence, satisfaction of (1) automatically ensures satisfaction of (2) when the

wave vectors have the same direction. In order to determine the feasibility of studying

nonlinear coupling among three of these waves in our plasma, we calculated some inter-

action lengths on the basis of the moment equations, in a manner similar to that of

Sugihara. We present this calculation here; the results are encouraging.

We assume that there is no damping of the ion acoustic waves of interest,3 that the

frequencies of interest are much less than the ion plasma frequency, wpi, so that there

is quasi-neutrality at every instant of time ((V • E) = 0) and so that the instantaneous

electron and ion velocities are equal to one another at every instant. The parameters

of the wave-free plasma are assumed to be spatially and temporally independent.

Finally, we assume that there are no DC drifts and no DC electric fields in the plasma

and that the ions are "cold" so that there is no ion pressure.

The particle and momentum conservation equations (with source terms set equal to
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zero) for both the electron gas and the ion gas are employed. We assume that condi-

tions are such that the Lorentz force terms in the momentum-conservation equations

can be neglected. Each quantity in the equations is expanded in the normal manner in

terms of its DC component, denoted here by an upper-case letter, and its AC component,

denoted by a lower-case letter, except for the AC electric field which is denoted by E.

Instead, however, of retaining only terms of order one or zero in AC components as

in the linear theory, we now retain terms of second order also.

The following set of equations results, in which subscript e denotes electron, sub-

script i denotes ion, m is the electron mass, M is the ion mass, e is the charge of

the electron (e > 0), and terms nonlinear in AC components are kept on the right side

of the equation:

an
e,+ N .V* v =-V (n .v .) (3)

at e,iV e, - e, 1 e,1

av n
e e - 1 - - e

at + E+ mN Vp = -(v V) v e + 2 Vpe (4)
e Nm

e

av.
1 e-

E = -( i * V )v .  (5)
at M i 1

Eliminating the electric field between (4) and (5) and dropping terms that are less

by a factor m/M than other terms in the combined equation, we get

av. 1 n
i 1 - - e

at+ MN Vp = -(v V)v +  V p  (6)
MM e N2M e

e

Let us assume adiabatic pressure variations in the electron gas. The AC pressure

can be eliminated in favor of the AC density in (6) in this way, thereby yielding the

following equation

av i  Pe Y ne e Py(y-1) 2+ e Vn = -(* V)vi+ Vn V (n (7)
t N2M e iN3M e 2MN3

e e e

where y is the ratio of the specific heats for the electron gas.

The subscripts can be dropped in (7), because of some assumptions that we have

made. By assuming that P = NKBT, that is, that the ideal gas law holds for the wave-

free electron gas, defining

2 yKBT
Vs M (8)
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and taking the divergence, (7) becomes

a - 2 n V 2-y 2
at s N[( V)v 2 s (9)

a
Eliminating t V v between (9) and the time derivative of (3), and introducing the

normalized density

nt -n (10)

we arrive at the following equation:

2 2-yn' 2 2 2 2  (n'v). (11)at 2n - Vs = V [(vV)v] - 2 VV (n') t V -(n ).

Note that neglecting the nonlinear terms on the right side of (11) leads to the familiar

wave equation for ion acoustic waves with the phase velocity equal to .I-yKBT/M. The

nonlinear terms on the right side of (11) and (3) are the "sources" responsible for the

nonlinear wave interactions.

Instead of working with (11) we choose to work with (9), with the divergence oper-

ator removed, namely

av 2 2- 2 2
+ V Vn ' = -(v V)v + V2V(n') . (12)

at s 2 s

The next step is to insert the following expansions into (3) and (12):

n' = [C (t) exp(jC) + C (t) exp(-jY2 )] (13)

I=1, 2, 3

V1 j [B,(t) exp(j)+ B (t) exp(-jq )], (14)

s f=1, 2, 3

where

= ft - kfx. (15)

In other words, consider three plane ion acoustic waves (f=1, 2, 3) propagating colin-

early in the +x direction in the plasma and hence having their velocity vectors oriented

in the x direction. Recall that all damping mechanisms have been ignored; however,

the complex amplitudes of the waves will still vary slowly in time, because of the non-

linear terms in (3) and (12).

Let us invoke exact phase matching; that is, 1 =I 2 + 3 because selection rules (1)
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and (2) must be obeyed if the three ion acoustic waves are to exchange energy. We

drop all "nonresonant" terms, that is, terms whose 4 i dependence is neither exp(±ii 1),

exp(±ii 2), nor exp(±i4 3 ) from the equations obtained by inserting (13) and (14) into (3)

and (12) and by using 1 = K 2 + P3 . These "nonresonant" terms do not contribute to the

interaction of the three waves in question.

We assume that the AC quantities are large enough to warrant having kept second-

order terms in the moment equations but not too large, so that the linear dispersion rela-

tion w/k = Vs can still be expected to hold.

Equating the terms on the left side of (3) that are periodic in 1 to terms on the

right side that have the same period 1 = 42 + 3, and proceeding similarly for 2 and

J3, we get the following

equations:

1 dC

- dt +jC 1 -jB 1 =

dC1 2
1 dt + j C2 - jB 2 =
2 dt

dC 3

dt j C3 - jB 33 dt

set of equations and the complex

j[CZB 3+C3BZ]

3 1 BC1B3

J C1B2+C BI]

Equating proper terms in (12), we get

conjugates of these equations:

dB1 1
dt +jB 1 -j C11

1 dB
Sdt + jB 2 -jC 2
2

dB 3

03 dt + jB 3 - jC 3
3  

dt

Adding (16) and (19),

(k=1, 2, 3) to first order,

conjugates of these

(16)

(17)

(18)

the following set of equations and the complex

= j[B 2 B 3 -(2-y)C 2C 3 ]

= j B3Bl - ( 2- ) C 3 C 1

= j B 1 B - ( 2- ) C C2].

(19)

(20)

(21)

(17) and (20), (18) and (21), and realizing from (3) that Bg = Cp

we get a set of coupled equations that describe the time rate

of change of the normalized AC density amplitudes or of the normalized AC velocity

amplitudes. We are more interested, however, in the AC electric fields than in the

AC densities or the AC velocities; hence, we shall not write down these equations for

the C's and B's. Instead, if
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E = [ (t) exp(jq) + 6 (t) exp(-jY )], (22)
f=1, 2, 3

it is easy to get the following relation between &, and C, by neglecting nonlinear terms

in (5) and (6), eliminating 8vi./t between these two equations, and using the linearized

expression for p in terms of n coming from our assumption of adiabaticity:

C - e 1
, -j M (23)

Consequently,

= _e () &3(t) (24)

dt s 2 2 3
d e2+1

dt [ e 2 () 2 *1 (t 3 (t) (25)

These, then, are the equations describing the temporal variations of the complex ampli-

tudes of the electric fields of the three waves that are interacting. They are commonly

called the coupled-mode equations.

We can generalize (Z4), (25), and (26) by replacing the terms in square brackets with

the matrix elements V 1 2 3 , V 2 1 3 , and V 3 1 2 , respectively. That these generalized equa-

tions actually hold for the nonlinear coupling of any three plane, undamped waves prop-

agating colinearly in an infinite homogeneous medium has been shown on the basis of

quite general principles by Bloembergen4 among others. The matrix elements contain

all of the detailed physical characteristics of the plasma or other medium, information

about the relative polarization of the three waves, their frequencies and propagation con-

stants. The task of computing expressions for the matrix elements, which is essentially

the task that we have been undertaking for the special case of three ion acoustic waves,

is often one of considerable difficulty. Furthermore, if the waves are dispersive, often

it is not possible to satisfy selection rules (1) and (2), in which case three-wave coupling

cannot even take place. In that event, it might still be possible to couple four or more

waves.

It is wise at this point, before proceeding to solve (24), (25), and (26), to check that the

total time-averaged energy density of these three waves is conserved, as it should be, on
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account of the assumption of no damping. To do this we multiply (24) by a1 and the

complex conjugate of (24) by 1; we then add the two equations. We find we have an

equation for dt 2 . Proceeding in the same manner with (25) and (26), and using
lt w

W1, =W 2 + W3 , we find

lJ 1i2  212
2 2
1 2

16,312
2
3

constant in time.

We now calculate the total time-averaged energy density (U) for each wave from

4 0 8w

where KL is the linear dielectric coefficient.

much less than the ion plasma frequency wpi'
For an ion acoustic wave of frequency w

__ 1

KL 2 2'
SkLD

D

(29)

where LD is the electron Debye length.

we obtain

Performing the differentiation required by (28),

(30)

Hence the total time-averaged energy density for all three waves is

1 2
(UT) 4 Eo pi

-- 4 9 1
2

W1

+ 2
2

c2

(31)+ 23
2

3

Comparing (27) and (31), we see that energy is conserved.

Let us proceed to solve (24), (25), and (26). It is convenient to express each com-

plex electric field amplitude &6 (k= 1, 2, 3) as

S= A(t) exp[j ,(t) ] , (32)

where, Ag and B are real quantities. Inserting this into (24), (25), and (26), and
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separating the equations into equations for real and

separate equations for dA,/dt and d 4/dt (f= 1, 2, 3).

follow.

dA 1

dt

imaginary parts, we arrive at

The equations for the dA/dt

e y( + 1 
MVs 2 2 A A 3 cos 6 (33)

dA 2  e y+
dt MV})\2 /

dA y +1

dt MV--

2

) AIA 3 cos 6

w2
32)- A A cos 6,

(2)

6 = -1 - '2 - 43. (36)

Using (33) to replace A 2 A 3 in the equation for d41/dt, (34) to replace A3A l in the

equation for d 2 /dt, and (35) to replace AIA2 in the equation for d 3 /dt, we readily find

that

d6 d
dt = -(tan ) dt In (A 1 A 2 A 3 ) (37)

so that

A1A2A 3 sin 6 = constant in time = a. (38)

It is relatively easy to show from (30), (32), (33), (34), and (35) that

(U) (U2)
+ = constant in time (39)

(Ul> (U3(U + - constant in time 
(40)

1 3

(U 2) (U 3
- constant in time. (41)W2 W3

These relations are commonly referred to as the Manley-Rowe relations, well-known

in the theory of parametric amplifiers. We realize that these relations describe the

creation and destruction of quanta because (U )/wp is proportional to the number of

QPR No. 93
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quanta per unit volume in the 2t h wave (f=1, 2, 3). For example, (39) and (40) say that

when a quantum at frequency ul disappears, a quantum appears at each of the frequen-

cies w2 and w3.
From (38) we get

cos 6 = + 1- 2
A 2A 2A 3

S123

Using this in (33), (34), and (35), and using n. = A /j (f= 1, 2, 3) (42) to make a change

of variables in these equations, we arrive at the following equations:

dn Zd = +V n1 n 2 n 3  
2  (43)

dn

dt -V n1 n 2 n 3 - , (45)

where

V = M (y+1) --L2 3 (46)

2 V 1 2 3s

F = n 1 n 2 n 3 sin2 6 = constant in time. (47)

V has the same sign as cos 6.

We realize from the Manley-Rowe relations and the definition of n2 and of Ap that

nl(t) + n 2 (t) = n(0) + n 2 (0) = m a  (48)

nl (t) + n 3 (t) = nl(0) + n 3 (0) = mb (49)

n 2 (t) - n 3 (t) = n 2 (0) - n 3 (0) = mc. (50)

Therefore,

dn
dt V nl (nl-m a ) (nl-mb) - 2. (51)

But
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n 1 (nl-ma)(nl-mb) - p 2 = (nl-nla)(nl - n b)(nl - n l c ) , (52)

where nla, nIb, and n1c are the three roots of this third-order polynomial, nlc > nlb
nla > 0. Therefore

dn
Vdtdt (n1 -nla)(n 1 (53)

We integrate (53) from time to to time t and make another change of variables, namely4

n (t) - n Iy(t) =
lb la

Also, let

A= lb na

c- nla

The result is

(54)

(55)

Sy(t)
y(to )

dy

(l-y-)(1-A y

VV/n - n - (t-t ).1c la2 o (56)

If we now choose t so that
o

ynl(to) - nla
(t o )  nlb n = 0,

b la
(57)

the integral on the left side of (56) is the elliptic integral of the first kind with modulus

A. Hence

y(t) = sn y O(t) dy

y 2 2Y2)1(l-y )(1-A y)
c a 2 o) 1.

Using (48), (49), (50), (54), and (58), we get

nl(t) = nla + (nlb-nla) sn 2 [ N 1I - n 1a -); A]

n 2 (t) = nl(0) + n2(0) - na- (nlb-nla) sn 2  nc- n (t-to)
S 2 la lbla c la 2
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n3 (t) = n 1 (0) + n3 (0) - nla - (nlb-nla) sn2 LnIc - nla2 o);A . (61)

Equations 59-61 fully describe the interaction of the three ion acoustic waves in gen-

eral. Let us look at some cases of specific initial conditions and calculate some inter-

action lengths. We expect that an interaction time coming out of the theory discussed

above is related to the interaction length, L, that we seek simply by the phase velocity

V s of these waves, that is, L = (Vs)(Interaction Time).

CASE 1. n2(0) >> n3 (0) > n 1 (0) =0

Now r = 0, ma = n 2 (0), mb = n3 (0), and me = n 2 (0) - n 3 (0). Using ((52), we see that

nla = 0, nlb= n3 (0), and n 1 c =n 2 (0). Therefore, A << 1; and we are justified in neglecting
22

the A y term in the denominator of the integrand in (56), provided that y does not

become too large over the range of integration. We can integrate the resulting expres-

sion to get

± sin-1 y(t) = -(t-t o ) NnZ(0), (62)

recalling that to is chosen so that y(to) = 0. Because lyl < 1 always, we were justified

in dropping A y 2 . We realize from (57) that nl(t ) = na = 0, which tells us that to = 0.

Hence, using (54), we obtain

nl(t) = n3(0) sin2 (I n(0) t . (63)

We conclude that wave 1 grows from its value of zero at x = 0 to its maximum value

of n 3 (x=0) in an interaction length

MV
Z

s 1 1 1
L = r (64)

e y+1
123 2

Recall that

[A 2(t)]2 I 2(t) 2

n2(t) 3 3
2 W2

Therefore

KT y 2
L = B r. (65)

el 2(x=0) y + 1 -3
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By driving wave 2 sufficiently hard and by choosing w2 and w3 wisely, we believe

we shall be able to make L appreciably less than the length of the plasma at our dispo-

sal because the electron temperature, T, for this plasma is of the order of a few elec-

tron volts. Note that sinusoidal variations of energy densities with distance are expected

for this particular set of initial conditions; note also the dependence of the maximum of

n1 on n3(0) and the dependence of L on 1652 (x=O)l and on the frequencies. Comparison

between theory and experiment can be made on this level, once the interaction of the

waves is observed.

CASE 2. n1 (0) >> n2 (0) > n 3 (0) = 0

Now r = 0, ma = n 1 (0) + n2 (O), mb = n1 (0), and me = n 2 (0). Equation 52 tells us that

n = 0, nlb = n 1 (0), and n 1 c = n 1 (0) + nZ(0).

S nl1 (t) = nl(0) sn2 nl(0) + n 2 (0) (t-t); A (66)

n 3(t) = nl(0) 1 - sn 2  Nnl(0) + n2 (0) (t-to); A (67)

n3 (0) = 0 1 = snn2 n1(0 ) + n (0) to; A . (68)

It is the complete elliptic integral of the first kind that has sn = 1; that is,

I dy
sn[K(A)] = sn (_y2 )(l-AZy = i. (69)

Hence

t 1 K(A). (70)
o nl(0) + n2 (0) IV I

A' 1 - A 2  (On 2 (0) 1
n,(0 ) + nz(0 )

For this limit,

K(A) = Ine( ).

Hence
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t 2 I n(0) + n2 (0) (71)
SIn 4 (71)

0 /nl (0) + n2(0) V e n2(0)

Recall that n 1 (t o ) = nIa = 0; hence, to is the time it takes for the energy in wave 1 to

go from its initial value to zero. Consequently, we may interpret to as the interaction

time; and

KBT 2 -y 1 n(0)
BL In 4 n (0) (72)

elel(x=0) y L+ 1 o e n2(0)

Again, results are encouraging. It is interesting to note that L - o0 as n 2 (0) - 0.

Hence it appears that there can be no interaction among waves 1, 2, and 3 when wave 1

is externally excited, unless there is some initial energy in wave 2, either from the

thermal spectrum or by externally exciting this wave also.

CASE 3. n 2 (0) >> n(0) > n 3 (0) = 0.

Now r = O, ma = n (0) + nZ(0), m b = n (0), and mc = n (0). Equation 52 tells us that

nla = 0, nlb = n1(0), and n 1 c = n 1 (0) + n 2 (0). Therefore, A << 1; and we may drop the

A y term in the denominator of (56) under the assumption that y does not become too

large in the region of integration. Consequently,

-1 V
Ssin ' y(t) = nl ( 0 ) + n 2 (0) Y (t-to). (73)

We recall that t is chosen so that y(t o ) = 0. We see that I yl <1 always, so dropping

A y is justified. Therefore

n l (t) = n (0) sin L-nl(0) + nZ(0) -I- (t-to (74)

KBT 2 __2

L B 2. (75)
e I e 2(x=O) +

Again, the results are encouraging.

We plan to investigate the nonlinear coupling of three ion acoustic waves, once we

have completed the examination of these waves in the linear regime.

L. N. Litzenberger, G. Bekefi
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3. RELATION BETWEEN MOVING STRIATIONS AND

ION ACOUSTIC WAVES

Introduction

When an experimenter runs a glow discharge in one of the noble gases, he often
1

observes self-excited moving or standing striations of large amplitude. The charac-

teristics of these striations change with gas species, current, pressure, and tube size.

At lower pressures, it is sometimes possible to obtain a uniform positive column in

which low-amplitude striations can be excited by external means. In most theories of

striations it is necessary to take into account that the wave has associated with its pas-
2

sage down the tube a time and spatially varying ionization frequency. Most of these

theories have been formulated to account for high-pressure behavior (pressures of the

order of 1 Torr), and so they might be inapplicable at low pressure.

On the other hand, ion acoustic waves are predicted by simple theory to occur in

uniform homogeneous plasmas. The behavior of these waves is much like that of sound

waves in neutral gases. They have a constant phase velocity, and they are purely lon-

gitudinal waves. At low pressures, these waves have often been observed, by either

externally exciting them or observing them as self-excited waves when they are in an

unstable regime. Considerable theoretical and experimental work has been done on

these waves, and they are believed to be fairly well understood. 3 ' 4

It has been speculated that these waves might have some connection with each other,

and indeed ion acoustic theory has sometimes been used to predict some of the proper-

ties of striations successfully. 5 This report will present an analytical theory that pre-

dicts the behavior of both kinds of waves, reducing in appropriate limits to the simple

theories of ion acoustic and ionization waves. In order to treat the problem analytically,

certain simplifications have been made which in reality are not justified. The qualita-

tive behavior of the two waves is not affected, however, and the theory gives a clear

picture of the relation between the waves.

First, the equations of motion for the ions will be derived. Then the electron
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equations will be discussed. Finally, the dispersion relation for the waves will be dis-

cussed and a comparison will be made with experiment. The assumptions are made

throughout to try to model the positive column of a low-pressure glow discharge.

Equations of Motion for the Ions

Assume that the ions have a Maxwellian velocity distribution and that the moment

equations can be used to describe their behavior. Then the conservation of particles

and conservation of mementum equations are

aN
-t + div (NV) = R (1)

dV
MNdt = qNE - grad p - MNV+V - MVR, (2)

where R is the rate at which particles are created per sec per cm 3 . Equation 2 has a

momentum transfer term, because of this creation term, since it assumes that the

particles are created from neutral gas atoms which have zero drift velocity.

Assume that R = Z.N, where Z. = ionization frequency, and N = electron (and ion)
1 1

density. In this derivation I make the assumption that the electron and ion densities

are approximately equal everywhere, with only a negligible difference between them

giving rise to the time-variant electric field that exists in the plasma. Now let N, V,

E, and Z have steady-state and time-variant parts of the form X = X + xei(k z - t) . Also,

neglect the grad p term in the momentum equations, since it is a small term for the

relatively low-temperature ions. The z axis is along the axis of the tube, with z

increasing from anode to cathode. The steady-state equations become

qE
V = (3)

M(v ++Z i ) .

1 a
r ar (rNV ) = ZiN. (4)r r r 1

Equation 3 simply gives the drift velocity in the DC field. Equation 4 states that the

creation rate must equal the loss rate as a result of radial transport to the walls

(recombination can be neglected for sufficiently low density).

After linearizing the time-dependent equations, they become

-i(w-kV) n + ikNv = z.N (5)
1

-iMN(w-kV)v = qNe - MN(v++Zi)v - MNVzi, (6)
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where v, n, e, and zi are the time-varying components of the axial ion drift velocity,

density, electric field, and ionization frequency, respectively. Here use has also been
made of (3) and (4). Let w' = w - kV, and eliminate v from (5) and (6).

-i' + ikqE e + ikV ..N E + z(7)
M(-iw'+v +Zi) (-i'+Z i

Equation 7 gives a relationship between the three variables n, e, and z.. To get a dis-1
persion relation, it is necessary to examine the electron equations, which will be done

eventually.

The derivation of (7) has proceeded along more or less standard lines, with the
addition of the z i term. If we set zi = 0, and assume Z. < v+, we obtain

ikqEn e-i' -- e- = 0. (8)M(-i '+v+)

This is the usual ion equation of motion which is obtained in the derivations of ion acous-
tic waves at low frequencies (w << w pi, the ion plasma frequency).

If we assume w' and Z.i v+, then

n e ikV-i' - + ikV- = 1 + z.. (9)

Equation 9 corresponds to Pekarek's equations of ion motion in his theory of striations. 2

Neglecting w' relative to v+ corresponds to neglecting the ion inertia term in the
momentum equation. When this is done, we have gone from a wave type of equation (as
for ion acoustic waves at low pressure) to a diffusion type of equation (as used by

Pekarek for striations at high pressures).

The electron equations turn out to be independent of w. Therefore, since w' appears
twice in (7) and (8), but only once in (9), the last equation will only have one root w(k),
while the other equations will have 2 roots. For (8), these roots are the two ion acous-

tic modes propagating in opposite directions. In Eq. 7, one root will be very close to
one of the ion-acoustic mode solutions of Eq. 8. The other root will be significantly
modified by the right-hand side of (7), going to the other ion acoustic mode for large
values of k and to striationlike behavior for small k.

Equations of Motion for the Electrons

For the electrons, I shall make the assumption that they have a Maxwellian

velocity distribution and can be adequately described by moment equations. This
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has been shown previously to be incorrect, so the results obtained in this theory will

be qualitatively correct at best. On account of the relatively low frequency of the waves

and the high collision frequency of the electrons, both w and Z. may be neglected rela-

tive to the collision frequency, v_. Then the conservation equations corresponding to

(5) and (6) for the ions are

ikV n + ikNv = 0 (10)

imNkV v = -qNe - mNv v - ikTn. (11)

qE
Since V - , Eqs. 10 and 11 give

e i kT - n

2 T
Since V < -,

- m

e kTN' (12)

Equation 12 is one of the two equations relating n, e, and z. that is needed to obtain
1

a dispersion relation. Now, for small-amplitude waves, assume that

z. = Z.6T (13)
1 1

is valid, where

Zi aT

o

with 6T the time-variant part of the electron temperature, and T o the electron equili-

brium temperature. A relationship has been derived relating the axial electric field

to the electron temperature which, after being linearized, is 2

8(6T)

8z = a 1 (6T) - ble, (14)

where

16T *
a 2 k + T aT

31qE2 oT
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S16T kb= L ob + 3~ rqEj q.

Here, k is the electron mean-free path, and k is the fractional electron energy loss

per electron-neutral collision. Combining (13) and (14) gives

Z'bi1
i = a - ik e. (15)

Dispersion Relation

Combining (7), (12), and (15) gives the dispersion relation

-' kV + -kV

1 + ik() 1 ' +v++Zi
qE + v v+ +

It can be shown that for the experimental regime

define

3 T
w Z'T.

S Z i 0

Then define the two dimensionless variables

ft = o'/W s

=k o

Zib E

(a I -ik)
(16)

3
under consideration b -- q. Now1 2

Then (16) can be written

-f' V +

SL 1 - i s f, L
5

-v

if' + +
S

(17)i  I 1

Z. alL - i '
Z-s

T
where L = 0

qE
In order to proceed further, we must put in realistic values for the quantities

appearing in (17). The plasma under consideration for this special discussion is an

Argon plasma, in a low-pressure glow discharge. I find experimentally that

E = 1 V/cm T = 6. 5 eV,
o
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and therefore

L = 6. 5 cm.

* 2m -5
Assume k = 2. 8X 10

other quantities, we obtain

.08
S -P- cm-TorrP

Now, keeping the pressure dependence explicit in the

for 6-eV electrons in A,

and therefore

a 90 P2
1 mcm Torr 2

3
b 3- q.

Under the assumption that T is independent of P,0

2 X 10
4

i1 eV-sec'

and therefore

5 -1- 1- 3 X 10 sec - .
s

Here the value of Z i has been chosen to fit theory with experiment. The computation

of Z' is fraught with uncertainties, especially at low pressures, since the electrons are

not Maxwellian. This is a degree of freedom in the theory which can probably be elim-

inated by careful computation. Work on this problem is in progress.

For Argon,

.3X 108 P
+ sec-Torr

760 cmV E z760 cm - Torr+ P sec

for E = 1 V/cm.

Substituting these numbers back

we obtain

into (17) and keeping the P dependence explicit,

Kl2 l4 KlK4 K2 KlK2S1 f' - 1 + 2K + iKH f' + + H1 i ;H = 0.P I P P P
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Fig. VI-4. Two solutions to the dispersion relation: (a) Real part of f vs .
(b) Imaginary part of f vs . is assumed to be real. Also shown
is the dispersion relation for simple ion acoustic waves (Z'=0) and
the dispersion relation for simple striations (w<< v+).
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Here

1 +i(H 2( + iK2 P

1  s .75X 10 "

P v+ P

K 2  +E  .52 X 10 - 3

P wL P
s

K3P2 = alL = 585 P 2

K Z -3
4 _ i 3. 9X10

P w P
s

with P in Torr. Equation 18 has been solved for f' vs C, and then the transformation to
the laboratory frame has been made to give f vs ,. Figure VI-4 shows the two roots for

P = 0. 005 Torr; is assumed real, and the real and imaginary parts of f are plotted.

Root 2 is the ion acoustic mode that propagates from anode to cathode. For this wave,

wreal = + V k, thereby giving the usual velocity for an ion acoustic wave in a

drifting medium.

In the region where T is greater than approximately 7, the behavior of the other root

is like that of the ion acoustic wave in the other direction, with

real [ M k.

For small values of C, the wave follows the dispersion relation predicted by Pekarek's

theory, which says that if k >> al, el= --- or 1f =
real kL r

The imaginary parts of roots 1 and 2, shown in Fig. VI-4b, go to the simple stri-

ation and ion acoustic theory limits for small. For 6 large, they are modified,

because of coupling between the two modes. Note that this theory predicts Im f > 0 for

root 1, which implies growth in time. In fact, this is not observed. Theory and exper-

iment agree qualitatively, however, because the region 0. 5 < < 3, where Im f is a

maximum, is the region in which relatively undamped waves can be excited experimen-

tally.

Summary

A theory has been presented that shows that ion acoustic waves and striations
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can be derived from a single theory. The agreement between theory and experiment is

only qualitative, however, because of the approximation of using moment equations for

the electrons. A more detailed analysis with the Boltzmann equation used to describe

the electron motion is in progress.

D. W. Swain
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4. NONLINEAR INSTABILITIES IN MULTICOMPONENT PLASMAS

During the past quarter, we have been investigating the nonlinear stability of thermal

plasma coexisting with a low density of energetic electrons. If a weak magnetic field is

present, electron plasma waves are linearly unstable, but the growth rates are very

small. Since such a plasma obviously has a great deal of free energy, it seems rea-

sonab]e to assume that the plasma is also nonlinearly unstable. We find this to be the

case. Two plasma waves at (w, k), (w', k') can interact with an energetic particle having

velocity v, as long as

w ± w' - (k'k')z v - no = 0. (1)

For such an interaction, the nonlinear growth rate of each wave may be calculated.

If the negative sign is chosen above, one wave grows and the other damps, while if the

positive sign is chosen, both waves either grow or damp. To find the total nonlinear

growth rate for a wave at w, one must sum the growth rate for each interaction over all

waves with which the wave at w can interact, over all perpendicular particle velocities,

over all cyclotron harmonics, and over plus and minus w'.
The details of the calculation will be given elsewhere. The final result, however,

is that both waves tend to grow, and that the nonlinear growth rate may dominate the

linear growth rate for very small wave energies. For example, for typical parameters

of the solar corona at 10 solar radii, no - 104/cm3, B = 10- 2 G. If for the energetic
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particles, we choose -- n and E = 3 keV, the energy density of energetic particlesn 100
o

will be approximately one-tenth of the magnetic energy density. Then the linear growth

rates are typically y 104 pe, and the nonlinear growth rates dominate when

E
wave 10-5

Ehot particles

W. M. Manheimer
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5. COLLISIONAL CYCLOTRON INSTABILITY IN A

XENON PLASMA

Introduction

Some preliminary results obtained on a study of the collisional cyclotronic instabil-

ity in a weakly ionized plasma of a xenon glow arc discharge are reported here. Twiss1

and Bekefi, Hirshfield, and Brownz have studied theoretically the linear theory of the

collisional cyclotron instability and have shown that (as in a maser) there are two cri-

teria for its appearance.

1. A nonthermal distribution f of the electron velocity v with an overpopulation of

energetic electrons

8f(v)
->0
a8v

in some range of electron velocities.

2. A higher lifetime, or a smaller probability of spontaneous emission (v), for

the upper velocities

a [vrw(v)] < 0

in the same range of electron velocities as in criterion 1.

The anomalous radiation that is the result of this instability has been widely inves-

tigated experimentally by Tanaka, Mitani, and Coccoli,3 Bekefi,4 and Coccoli.5 On a

certain number of points the experimental results agree fairly well with the theory.4' 6

The radiation, 20 dB above the thermal noise, is observed only in the vicinity of
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electron-cyclotron frequency, and for gases with pronounced Ramsauer effects, such

as Xe, Kr, and Ar; the width of the anomalous cyclotron radiation peak is much less

than the frequency of electron-atom elastic collisions; the radiation is detected only in

the cathode part of the investigated discharge tube where an electron velocity distribu-

tion is expected with a peak in the range of velocity in which the collision cross section

is rapidly increasing. Some points are still unexplained, however.

1. As has been reported, 7' 8, 9 the emission appears in pulses that are related in

phase to a low-frequency oscillation that is present in the tube. A problem that arises

is the determination of the nature of this low-frequency oscillation and its influence on

the different parameters of the plasma and on the radiation. In resolving this problem,

we hope to give an explanation of the fast saturation of the experimentally observed

amplificationl0 (or negative absorption).

2. Although this instability has been theoretically investigated in the case of a

tenuous medium (no collective effects), the observations I l were made for a broad range
of electron densities, where the plasma frequency w- is of the same order as the cyclo-

tron frequency wB. The problem is to understand the influence of the density on the

propagation of the anomalous radiation and to investigate the different modes in which

collective effects can appear.

3. Except in cases for which probes are used, the methods used to pick up the

radiation (cavity or waveguide) do not permit good localization of the source of the

radiation and accurate determination of its polarization.

For these reasons, we have adopted the experimental design described here.

Experimental Design

In order to be able to act upon and control the electron velocity distribution function

in the cathode region of the discharge, a ring electrode (in this report called a "grid")

is placed between the positive column and the negative glow of a Xenon plasma tube

(Fig. VI-5). Under our experimental conditions, the discharge has the characteristics

of a low-voltage arc (the potential drop Vd in the tube is =10 V and is almost constant

for discharge currents in the range 50 mA <I d < 600 mA) with random anodic sheath

fluctuations, AV ~ 1V. To have accurate measurements of the location and polarization

of the radiation, we monitor it through a small circumferential coupling gap (of variable

width from 0 to 1 cm) in the internal cylinder of a coaxial cavity that fits around the

tube. The cavity mode used is the TE 0 1 1 (resonant frequency fo = 5. 5 GHz), having only

an azimuthal electric field corresponding to the polarization of the extraordinary wave

in the plasma. Furthermore, the radiation can be picked up by a strip line (as shown

in Fig. VI-5) consisting of two metal curved strips around the tube. Also, visible light

emanating from the circumferential gap is received through a light pipe. The block

diagram of the entire experimental design is shown in Fig. VI-6.

QPR No. 93



ANODE
(FLAT SURFACE
4=20 mm
MOLYBDENUM)

COAXIAL CAVITY
(LENGTH= 82mm
INTERNAL
DIAMETER io=30mm
EXTERNAL
DIAMETER e4=90mm)

OXIDE-COATED CATHODE
INDIRECTLY HEATED

PIPE

CABLES

PLSMA TUBE TUNGSTEN
PLASMA TUBE mm SLOT ROUND GRID

CAVITY (WIRE DIAMETER=0.75 mm)
0=25mm KNOB (GRID DIAMETER= 21 mm)

Xe PRESSURE= I Torr)

Fig. VI-5. Experimental apparatus.



(VI. PLASMAS AND CONTROLLED NUCLEAR FUSION)

Fig. VI-6. Diagram of the experiment.

Experimental Results and Discussion

a. Measurements of ne and Te in the Case of Equilibrium (No Voltage

Applied to the Ring and No Magnetic Field)

The coaxial cavity is also used to obtain an estimate of the electron density and

temperature as a function of current. The determination of density was made with the

maximum opening of the gap (1 cm) and can be only approximated, because of the

difficulty in determining the configuration of the field inside the plasma. The first-

order relation between the shift, Af, and the plasma frequency

Af 1 1 p
f 2 2o +Vm I dV

can be only approximate because it is difficult to know the field Eo (r) exactly. Experi-

mentally, the determination of small frequency shifts (only a few MHz because of a

small loading of the cavity by the plasma) leads to large errors. Indeed, for small

density (Id < 100 mA) the frequency shift of the coaxial cavity was calibrated by compar-

ison with that of a different cylindrical cavity (in the TM020 mode, fo = 4420). Under

the assumption of a collision-limited diffusion leading to the radial distribution of

electron density n = no (J 2. 4r/R), where no is the axial density, and R the tube radius,

the results are in fair agreement with the simple formula giving the current density
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J = n e E, where E is the mean field in the tube, and ji the electron mobility. The

density n is nearly constant along the tube and shows a linear dependence upon the
11 -3

current I from 1.5 to 9.5 X 1011 e-cm for 50-500 mA. These results correspond to

a plasma frequency w = gB for the experimental conditions described here.

The determination of temperature by measurements of power emitted by the cavity-

plasma system requires measurement of the VSWR of this system according to the

formulal3

aS/a
cTR - T = ac (T -T ).

This gives the difference between the plasma radiation temperature T R and the room

temperature T as a function of the VSWR, o, of the plasma cavity system termination

(the indexes 1 and 2 meaning the plasma "off" or "on") and I l2, the power reflection

coefficient with the plasma on. The parameters a and a are the absorption of attenu-
s c

ators in front of the noise standard and the plasma when balance between the two is

achieved. In the same range of current as discussed above, the radiation temperature

varies from 1.4 X 10 4 °K to 1.7 X 10 4 °K.

b. Location of the Anomalous Radiation

To localize the source of the radiation, the size of the cavity gap opening on the

plasma tube is reduced to 1 mm. While passing through the resonance by varying the

magnetic field, the output power of the comparison radiometer is displayed on the

y trace of the x-y recorder, with the x trace related to the position along the tube. The

envelope of such data is shown in Fig. VI-7, which shows that the anomalous radiation

is emitted only in that part of the discharge where the plasma parameters are strongly

modified.

The same results are obtained in the cathode region with the strip line. Neverthe-

less, in the last case we pick up along the whole positive column radiation of lesser

amplitude that shows a stationary wave pattern and is in phase with the oscillation of the

light emitted from the cathode region (and not with the light emitted in the positive

column). We deduce from this observation that the strip line picks up a wave, excited

by the collisional instability near the cathode, which propagates along the tube.

c. Spectrum and Variation in Time of the Collisional Instability

Apart from a difference in the width of the spectrum, the radiation picked up by the

strip line and by the cavity have the same behavior when placed in the cathode region at

the point of maximum intensity. Data on the intensity of the high-frequency radiation
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as a function of B and variation in time compared with the oscillation are reported in

Fig. VI-8. The principal features are the following.

1. An extremely small width corresponding at the lower limit to that imposed by

the nonuniformity of the magnetic field and the bandwidth of the IF amplifier (2 MHz).

2. A variation in time of the radiation with a definite phase relation to the low-

frequency oscillation. The two are in phase.

3. For a constant anode current of 200 mA, with increasing grid potential V G and

grid current I G , three different regimes may be seen

V F = -4v < V G < +2 V, O < IG < 110 mA, (1)

characterized by random and low-amplitude low-frequency oscillations corresponding

to the fluctuations in the positive column. No anomalous radiation is emitted.

+2v < V G < +11 V, 110 < IG < 160 mA, (2)

with continuous increase in the low-frequency oscillation corresponding to an increase

in the high-frequency anomalous cyclotron radiation.

V G  = +11 V, 160 < IG < 210 mA. (3)
max

(We are limited in this range of current by a turbulent state that appears when we draw

too much current (I G > 210 mA) in the cathode region.) The amplitude of the low-

frequency oscillation is constant, and the frequency increases continuously. The high-

frequency radiation amplitude remains stationary and decreases when turbulence

appears.

4. With increasing current the negative glow is displaced slightly in the cathode-

grid direction.

Tanaka and Takayamall have reported the same interdependence of the intensity of

high-frequency radiation, and the amplitude and frequency of low-frequency oscillation

with changing current. Nevertheless, under their experimental conditions, the over-all

current dependence of these quantities is the inverse of that reported here. For example,

in their case the amplitude of low-frequency oscillation decreased with increasing dis-

charge current. At this time, no valid explanation for the phenomena has been found.

Conclusion and Program for Further Research

This preliminary experiment seems to show that it is difficult to act independently

on the velocity distribution function without modifying the plasma parameters (electron

density, plasma potential) and the stability. With fast pulsed techniques, however, we
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hope to study the anomalous radiation in the absence of the oscillations present in the

steady-state discharge. Under the experimental conditions described here, it is diffi-

cult to find a coherent model for the creation of the peak in f(v). Further experiments

will be made in order to confirm the existence of the peak in f(v), which is required by

the linear theory of collisional instability.

C. Oddou
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6. INSTABILITIES DRIVEN BY HOT ELECTRONS IN A

MAGNETIC MIRROR

Introduction

Our previous reports have been concerned with the experimental study of a high-

frequency instability present in our mirror-confined hot-electron plasma. This study

has revealed that the frequency of the instability is essentially equal to that of a reso-
1

nance of the microwave cavity in which the plasma is generated. In this experiment

the static magnetic field is highly nonuniform over the extent of the plasma.2 It is

observed, however, that the occurrence of the instability requires that the instability
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frequency be close to the local electron-cyclotron frequency in the region where the elec-

tric field of the resonant mode is strongest.3 Thus the instability does appear to arise

from a coupling between the electric field and the cyclotron motion of the electrons.

This motion is not, however, the simple helical path of an electron in a uniform field,

but rather the more complicated trajectory of a charged particle confined in a mirror

magnetic field. Two important aspects of this motion are that first, a given electron is

only instantaneously resonant with the wave frequency as it passes through the location

with the proper cyclotron frequency and second, since the electron is confined by the

magnetic field, it will periodically pass through this location. Both of these aspects,

along with the experimental observation that the presence of the cavity greatly affects

the characteristics of the instability, cast doubt on our original plan to identify the insta-

bility with that of existing infinite plasma theories. 4

A formal method for including the effect of the cavity has been previously presented

by Bers. 5 In this report we present a simple model that attempts to account for the

effects that the complicated particle trajectories that are due to the nonuniform magnetic

field introduce into the interaction between the plasma and the RF electric field.

Theoretical Model and Its Motivation

At the time of the instability it is observed experimentally that the plasma is so

tenuous that the resonant frequency of the plasma-cavity system is only slightly changed

from that of the empty cavity. This would indicate that the majority of the RF energy

resides in the electromagnetic fields rather than in the plasma medium and that these

fields are only slightly altered from their empty cavity form. Thus the main effect

arising from the presence of the electrons is their absorption (or generation) of power

from the RF electric field of the high-Q cavity mode. Perturbation theory would then

predict that the frequency of the mode (assumed to have an e j Wt time dependence) would

become complex, with the imaginary part of the frequency (assumed small) satisfying

the relation

2Wo (W) = (PM +(PW (1)

where (W) is the time average energy stored in the fields, (PM) the time-average

power dissipated in the medium, and ( PW) the power dissipated in the cavity walls. In

the following calculations we are concerned with the determination of ( PM), with parti-

cular interest in those conditions predicting growth of the RF fields (( PM) + ( PW)' and

hence w. less than zero).
1

The system that we consider is shown in Fig. VI-9. The static axial magnetic field

is assumed to vary with z according to the expression

B = B + z . (2)
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x

E

z
B(z)

Fig. VI-9. Geometry for the interaction of electrons with an RF electric
field and a static nonuniform magnetic field.

Only electrons whose guiding centers are on the z axis will be considered, although off-

axis electrons could be included approximately by interpreting z as the dimension along

a field line. The RF electric field is taken to be uniform in the x direction, and indepen-

dent of the z coordinate, while the RF magnetic fields are ignored. These assumptions

greatly simplify the calculations, but still reflect the salient features of the exper-

imental observations. To a high degree of approximation, the measured axial magnetic

field is parabolic. The observed instability radiation appears in the TE 2 3 1 cylindrical

cavity mode which exhibits an electric field purely transverse to the z axis. Transverse

variation in the amplitude of this field should be unimportant for electrons whose Larmor

orbit is sufficiently small. Likewise, the cosine variation of the electric field along the

axis of the cavity should be unimportant for electrons that do not move too far from the

midplane of the cavity. Neglect of the RF magnetic fields appears justified, as long as

the velocity of the electrons is small compared with the velocity of light, so that the

resulting forces are small in comparison with those of the electric field.

Theo ry

We begin with the linearized Vlasov equation, which predicts that the first-order

distribution function for the electrons is given by

t af
f (r, v, t) = E dt', (3)

fl v t)  m 1 - 100 av

where E 1 is the first-order electric field, and fo is the unperturbed electron velocity

distribution which must satisfy the zero-order Vlasov equation. The prime indicates

that the integral is to be evaluated along the unperturbed orbits of the electrons. We

take the electric field to be of the form

E = E ej tT,
1 o x
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where Eo is a constant, and w is assumed to have a small negative imaginary part. (We

have also considered the case of a circularly polarized field; the results are very

similar to those quoted below.)

For the zero-order orbits we take the solution of the equation of motion of an elec-

tron in the parabolic magnetic field, subject to the adiabatic approximation. This solu-

tion, for an electron which at time t' = t is located at z' = z with a velocity perpendicular

to the magnetic field of vi(cos 'ix + sin y) = vi(cos Oi + sin i ), is

z' = Z cos cos - om(t-t') (4)

2 1/2

v 1 + cosos s- (t-t') (5)
1 /2 2 z )

z 2

S= c(t-t') + co o in 2 cos- z - (t-t') - sin 2 os-1 (6)
4L w o o

m

vll0 L
where L is the scale length of the magnetic field (see Eq. 2), z - is the axial

reflection point for an electron whose midplane velocity components along and across

the magnetic field are, respectively, v 1 1 0 and v 0 ,' m =L is the "mirror" frequency

of the electron, co is the midplane cyclotron frequency eB /m, and w = co1 + z 2
2L

is a quantity that may be interpreted physically as the average of the cyclotron frequen-

cies along the orbit of the electron. The zero-order electron distribution function can

be expressed as an arbitrary function of the constants of the motion (E = 10 +v1 0
mv 0

and the magnetic moment 4 -2B ' an adiabatic invariant), subject to the constraint
o

that it represents confined electrons. Defining T = t - t' and evaluating the integral of

Eq. 3 along the unperturbed orbits, we find

f (e E dT, (7)m 1 v/

where

(El af = E e j(tT) W cos [O-Nsin 2-W T+Nsin2(-rm )], (8)El 2v-W o -c m
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with

2w Z
N co 0

N= 4CO
4gw

= cos ( z (10)

(2e)1/2 1 /2

[0 + 2m N cos 2( - mT)]1/2

af
o

a + (2/e)1/2 mjl /2

S[1 + 2 N cos 2(- m T)]1/2 afoc m m aE

It should be remembered that on the T integration z, , and z are constants.

the substitution

y = 2(- mT ) ,

using the identity

00

e±jA sin y = e±jny J (A),

n= -oo

and, subject to the approximation that for W,

2w N
m

c

we find

f =- E e j t I
1 m o

oo - Jn(N)

n=-oo

1/2 1/2 f

-4L 8R

e j(-N sin 2 +2na)

L + c + 2nwm
c m

(2)1/2 m /21/ 2 /2

2 c

Se-j( -N sin +2nt)Zn
w- w - 2nw

c m
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(11)

Making

(12)

2
z

o 1
2 22L z

(13)

(14)

where

afo0E
aE

(15)

(16)
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The approximation, which allows us to neglect the T variation of W, requires that we

consider only electrons whose maximum penetration into the mirror is small compared

with the "doubling" distance of the magnetic field. In essence, the approximation reflects

the fact that for these electrons we can neglect the small variation in the magnitude of

its transverse velocity as it travels along its orbit (see Eq. 8). A similar term appearing

in the phase of the transverse velocity (Eq. 6) may not be neglected, since accumulated

phase differences for small changes in z /L2 may be quite large.

We are interested in obtaining the time-average power absorbed by the electrons in

the presence of the electric field. This power per unit transverse area is given by

1 Re S + z

(P ) = - Re +max dz E e J ,
M 2 o x

-z
max

where z is the location of the mirror peak, and
max

Jx= -e vI cosm fl d 3 Y

(17)

(18)

is the x component of the first-order current density induced by the electric field.

Noting that the volume element of velocity space can be written

d v = vlddvidv 11 = ( B -1/2
2m (E-B -L) d dEdi,
2m

(19)

where B is given by Eq. 2, we find, after performing the integration and again using

the identity of Eq. 13, that

2 e t 21/2B 00

Jx(z) _ e E 0x m o e 2m 0

E/B
dE max

E/B max

-1/2

d c e o ao 20)

(E 1/2 (m - 84 +_E
B L c

I' =-

n=-oo
J(N) Jp (N) j 2(n-1)

f=-_0 c m

e-j2(n-f)

(A-w - 2nw
c m

In terms of the integration variables, we have

- co E
c 2 B O
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(ZBo)/Z 1/2

m (23)

N= L (E/B o-1)
N = o(24)

(B)/2 1/2

m

os= COSI 1/2 (25)

The limits of integration on [. reflect the fact that the electrons under consideration

must indeed be those confined by the magnetic mirror. In particular, at a given location

within the magnetic field (as implied by the dependence of B upon z), an electron with

energy E must have at least the minimum magnetic moment, or else its reflection point

would exceed the mirror peaks. Likewise, the electron cannot have a 1 greater than

the maximum value, or else it would have been reflected at some smaller value of the

magnetic field and thus could not contribute to the current density at z.

In its present form the calculation of Jx(z) is quite difficult, principally because of

the complicated dependence of upon E and i, coupled with the awkward limits of inte-

gration. This difficulty can be eliminated if it is realized that we are not interested in

Jx(z) directly, but rather in an integral of it over z as displayed in the expression for

the power dissipation. Thus we choose to replace the independent set of variables z, E,

fi with the set g, z , . Noting that

dzdEdL = - B B 1/2 1/2 dzodid, (26)

we can write the power dissipation in the limit of vanishingly small imaginary part of

the frequency as

1(eE 2 2 1/2 1/2 Re z 2Tr B3/2z 03/2
M oi 1/2 Re d max dz dP ()- LBo 0 Yo -1/2

c

f zo 8f
0 0 0

(27)

where now
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f (ii, E) = f ,B I + - (28)o o 0 L/

z

B = B + - cos (29)
S 2

Z
1 co o

N 4 (30)
mL

mL (31)

z

c co 2L 2

Note that in this expression (27) only B and the exponentials in I' are functions of 5.

In order to perform the integration over we again make the approximation that

2/L2 << 1 so that B may be assumed constant and equal to its midplane value. The

resulting expression for the power dissipation is

_P_) _0 maz 3/2f oz o af 1= Im d4 max dz

B3/2 o 0 0 o 44 z 0

() i o o2

co

X J (N) 1 1 (33)w+ w + 2nw - w - 2nw
n= -oo c m c m

where, to be consistent, we have also made the small z /L approximation for w ,

except in the resonant denominators where small changes in z /L are important.

In order to proceed further, we now limit the form of the zero-order distribution

functions to those whose midplane (z= 0) distribution can be expressed as

fm v 10 = noFi(v 0 F 1 1  1 0  (34)

where the distribution is normalized so that its integral over all midplane velocities

equals the midplane density of electrons, no . It is easy to show that the zero-order

distribution for such a midplane expression then becomes
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(2B F\ ZB i z>
fo ( , Zo) = n F_\ F 11  LZ (35)

It must also be realized that in any particular situation the zero-order distribution must

be such that it does not violate our basic assumption that the electrons are not allowed

to penetrate too deeply into the mirror. Limiting ourselves to such distributions, we

are free to extend the upper limit on the z 0 integration to infinity, realizing that the

distribution function will preclude the existence of many electrons beyond z = L. With

these considerations, the integral over z may be performed in the limit of a vanish-

ingly small negative Wi to yield the result

2 = dl 3/2 {FI J F-1 nn n

o w

+ yn J(Nn) F , n) -1 (Yn)]}' (36)

where

2(w-2nw -w )
+ m co (37)

co

-2 (L+ 2nw +w )
- m co (38)

Yn = (38)
co

1/2
m L (39)
m L

N 1 co (40)
n 4 

(40)
m

and i- 1 (x) is the unit step function defined by

+1 x >0

[I-(x) = 0 x < 0 (41)

+1/2 x = 0.
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2In this expression, the dummy variable Tr can be identified physically to equal v1 0,
2

where vi0 is the magnitude of the transverse velocity at the midplane, and wpo
/2

e n is the midplane plasma frequency.

Equation 36 is the desired result of our calculations. It represents the time-average

power supplied by a uniform transverse RF electric field to the electrons along a partic-

ular flux tube in a parabolic magnetic mirror.

From the derivation, it is clear that the only electrons that contribute to this dissi-

pation are those that are "resonant," in the sense that

+ - W - 2nw = 0. (42)
c m

It is also clear from (36) that, for z << L, the contribution from these resonant electrons

af af
is stabilizing (dissipation) if < 0, and is destabilizing when 0> 0.

We are, at present, studying this equation to determine the frequency ranges and

distribution functions for which the electrons make a net destabilizing contribution.

C. E. Speck, R. J. Briggs
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1. OPTICAL MEASUREMENTS OF ION TEMPERATURE IN A

COLLISIONLESS MICROWAVE-GENERATED PLASMA

Introduction

This report presents the results of measurements of the ion temperature in a col-

lisionless Argon plasma generated by microwaves at the electron-cyclotron frequency.

For the experiments described in this report the electron density varies from

2. 5 X 1011/cm3 to 3 X 1012/cm 3 , and the electron temperature is in the range 5-15 eV.

The plasma is excited by means of a coupling structure located in a nearly uniform

field between two magnetic mirrors. The plasma apparatus has been described in pre-

vious reports., 2 The ion temperature is determined from measurements of the Doppler

breadth of the 4610 A Argon ion emission line by using a pressure-scanned Fabry-Perot

interferometer. '

The ion temperature has been measured as a function of the externally controlled

plasma conditions, such as pressure, magnetic field, and microwave power input.

Observations have been made both transverse and parallel to the applied magnetic field.

The data presented in the following paragraphs show that the ion temperature is approx-

imately 0. 2-0. 3 eV independent of external conditions. The parallel ion temperature

is roughly equal to the transverse temperature.

Experimental Results

The transverse ion temperature data are shown in Figs. VI-10 through VI-13. The

measurements were made with the plasma viewed from the side as described pre-
3

viously. The horizontal dashed line in each figure represents the average data. The

error brackets indicate the effect of the uncertainty in the instrumental broadening only.

When a more complete error analysis is performed true error brackets will be com-

puted, including additional sources of uncertainty such as electronic noise. Meanwhile,

This work was supported by the U. S. Atomic Energy Commission (Contract
AT(30-1)-3980).
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we plan to reduce the uncertainty in the instrument breadth by using a better calibra-

tion source.

Figure VI-10 indicates that the ion temperature is approximately 0.38 eV as the uni-

form magnetic field is varied approximately 4%. Outside this range the plasma is extin-

guished. The field at the midplane of the apparatus is approximately 1100 G at 23 A.

Figure VI-10 also shows that the ion temperature does not change appreciably when a

grid is introduced into the plasma. The grid is a 90% transmitting tungsten mesh disk

of slightly greater diameter than the plasma. It is located 8 cm from the output of the

plasma generating structure and is between the structure and the observation region. It

can be moved completely out of the plasma column. Normally, the grid is allowed to

float. Applying a 120 V peak-to-peak 0-20 kHz noise signal to the grid had no effect on

the ion temperature, as shown in the figure.

Figure VI-11 indicates that the ion temperature is approximately 0. 22 eV indepen-

dent of the RF power between 26 W and 54 W. These results were obtained with the

grid floating in the plasma.

Figure VI-12 shows the ion temperature to be roughly 0. 31 eV independent of the

mirror magnetic field. At a mirror current of 65 A the peak mirror field is approxi-

mately 1. 8 kG. As the mirror current was reduced the uniform field was increased

slightly (~4%) to maintain cyclotron resonance at the plasma-generating structure. These

data were taken before the grid was installed. It is interesting to note that Langmuir

probe measurements show that the electron density decreases by only a factor of two

as the mirror field is reduced to zero.

In Fig. VI-13 the ion temperature is seen to be approximately 0. 29 eV independent

of pressure from 3.4 X 10-5 Torr to 9. 6 X 10-5 Torr. The measurements were made

before the installation of the grid.

The reproducibility of the data is somewhat unsatisfactory. There is some random

scatter, as can be seen especially in Fig. VI-10. More perplexing are apparently sys-

tematic variations from one set of data to another. The average of all data shown in

these figures is 0. 32 eV, but all of the data in Fig. VI-11, for example, are consistently

close to 0. 22 eV, while the data in Fig. VI-10 are similarly clustered around 0. 4 eV.

On the other hand, Fig. VI-13 shows a case in which fairly good day-to-day repeata-

bility was obtained. The reason for the imperfect reproducibility is not known. At

present, the best statement that can be made to characterize the data is that the trans-

verse ion temperature is 0. 3 ± 0. 1 eV independent of RF power, magnetic field, and

pressure.

The longitudinal ion temperature data are shown in Figs. VI-14 through VI-16. To

make these measurements, an optical mirror system was arranged so that the inter-

ferometer views the plasma column along its axis, through a window in the end of the

cylindrical vacuum chamber far from the plasma-generating structure. A quarter-wave
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plate and polarizer are used to exclude one of the two groups of circularly polarized

Zeeman o- components of the line. The splitting within the group of components trans-

mitted to the interferometer is negligible compared with the line breadth.

INCREASING FREQUENCY

Fig. VI-17. Typical interferometer output trace-transverse view. RF power,
54 W; mirror current, 65. 31 A; uniform field current, 22. 95 A;

pressure, 3. 5 X 10- 5 Torr.

As before, the dashed line in each figure represents the average data, and the error

brackets indicate the effect of the uncertainty in instrument breadth. All measurements

were made with the grid floating in the plasma.

Figure VI-14 shows that the longitudinal ion temperature is 0. 16 eV independent of

RF power. Figure VI-15 shows that the ion temperature does not change as the mirror

magnet current goes from 0 to 67. 5 A. Figure VI-16 indicates no variation in tempera-

ture with pressure between 2 X 10-5 Torr and 1 X 10-4 Torr. It is observed that the

parallel ion temperature, like the transverse temperature, is independent of the exter-

nal plasma conditions. The two temperatures are roughly equal.

A point of difference between the longitudinal and transverse measurements can be

seen by comparing Figs. VI-17 and VI-18 which show typical measured line shapes

observed in the transverse and parallel directions. In the transverse view the profile

of the line is somewhat asymmetric: the low-frequency wing is brighter than the high-

frequency wing. The direction of this effect is not changed by reversing the mag-

netic field. In the longtitudinal view the asymmetry is not seen. It is generally

greatest in transverse measurements, which indicate higher than average tempera-

tures. These observations suggest that when the plasma is viewed from the side,
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INCREASING FREQUENCY -

Fig. VI-18. Typical interferometer output trace-longitudinal view. RF power,
44 W; mirror current, 66. 26 W; uniform field current, 23. 92 A,-5
pressure, 4.5 X 10-5 Torr.

nonthermal transverse motion has the effect of increasing the width of a line to slightly

more than its purely thermal width. This possibility is consistent with the fact that a

slightly lower temperature was measured in the longitudinal than in the transverse direc-

tion. It is evident that such an effect cannot be large compared with the thermal motion,
however, because the transverse and parallel temperatures are nearly equal.

Plans for Further Work

Plans for the future include further study of the cause of the line asymmetry that

was seen in the transverse observations. It is also necessary to improve the repeata-

bility of the data. These two problems may be interrelated, since asymmetry and higher

than average temperatures are associated. A distinct task involves comparison of wave-
lengths in transverse observations. The objective is to detect streaming motion along
the axis of the plasma. Work on this measurement is now under way.

J. K. Silk
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1. HAZARDS OF TRITIUM FROM CONTROLLED FUSION

There has been some discussion1, 2 about the hazards that are likely to be enjoyed

by the general public as tritium is inadvertently released, if power were generated by

controlled fusion.

It has been concluded on qualitative bases that no great danger exists,2 but the argu-

ment can be put more quantitatively. Suppose that all of the world's power - of every

kind - were produced by nuclear fusion, and that the power level were the maximum per-

missible without warming the world unduly. That rate is approximately 1022 J/yr,

approximately 1% of the total solar radiation incident on the earth. The fusion reaction

D(T, n) a yields 17. 6 MeV, and the companion tritium-breeding reaction Li (n, T) a yields

4. 8 MeV. Thus the total energy released is 22. 4 MeV/fusion, and we find that 2. 8 X

1033 tritons/year must be bred. If all of these tritons were permitted to decay nor-

mally, there would be produced 2. 4 X 1015 Ci/yr, and the steady-state inventory would
16

be 4. 3 X 10 Ci world-wide.

Now refer to Jacobs, 3 who traces what happens to tritium that is released to the

environment; he finds that 108 Ci of tritium would give a world-wide dose rate of
-6

10- 6 rem/year. According to the National Commission for Radiation Protection, the

permissible dose level for the public should not exceed 0. 5 rem/year from all causes.

Because tritium cannot be allowed to make up the entire dose (but with these assump-

tions, what other substantial radiation source would there be?), the steady-state

environmental inventory must be kept well below 5 x 1013 Ci.

All of this seems to suggest that the accepted fractional release of generated tritium
-3

should be kept well below 10-3. In fact, because most of the fuel would be recycled

through a fusion reactor and the burn-up per pass might be 0. 1, an even more stringent

requirement of well below 10-4 fractional loss per pass might be imagined. At present,

nearly all of the tritium present in used fission fuel elements is released to the

This work was supported by the U. S. Atomic Energy Commission (Contract
AT(30-1)-3980).
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environment, when the fuel is reprocessed. 3

In fact, things do not look bad. Tritium from fission is released, at present,

because it is a very minor product (atom yield z 10-4/fission) and causes no trouble. In

fission fuel element reprocessing, the released activity fraction is, at present, =10- 6

or less. Also, the assumed conditions are the most extreme that could ever exist, and

could not be realized for several hundred years, even if fusion should become fully

feasible today. Thus, that amount of time would be available for us in which to set

up moderately good housekeeping of tritium. Under the more credible assumption

of 1020 J/yr world-wide (half the rresent total power rate) a loss of well below

10-2/cycle would suffice. Any such high rate would be technologically preposterous.

Note that these fractions refer to tritium actually released to the environment, not

just stored more or less irrecoverably in surcharged components. The scheme pro-

posed by Fraas 4 for recovering tritium from a fusion reactor blanket lends itself

to very low environmental loss; possibly, a similar scheme can be applied to the main

plasma exhaust.

D. J. Rose
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2. PULSED FUSION DEVICES: WALL HEATING

Ribe has proposed1 a pulsed fusion device with a 10-cm vacuum wall radius R and
c

a maximum B field of 200 kG. The vacuum wall is the magnetic-field-producing coil

and withstands the stress produced thereby. The plasma has a temperature of 15 keV,

and a radius of half the wall radius. The burning time TT is 3/8 the field period T,

and a cooling mechanism operates between pulses.

In the present study we investigate the maximum surface temperature after each

pulse in such a wall. The heating mechanisms considered are Bremsstrahlung, neu-

tron, and electrical heating. During the burning time, the Bremsstrahlung power

is deposited in a thin surface layer (approximately 2 mm). From the slab model
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for a square pulse of Bremsstrahlung radiation of duration t, the temperature profile

caused by Bremsstrahlung is given by

r2C

1. 83 X 10 B R Kt 4K t r
c v v

TB(r,t) = 2 e - r erfc
2 C

V
v

where

K = thermal conductivity of the wall in W/cm °C

VC = heat capacity per unit volume of the wall in J/cm3 . C.

Since the neutron energy is deposited uniformly in the wall during the burning time, the

neutron heating contribution to the temperature profile is

TN(r, t) = 9. 15 X 1019 B4 RcNc Et/Cv,

where

N = number density of wall atoms
c

a-E = mean cross section times energy deposited in the wall.

The electrical power is approximated by a constant power deposition with a spatial dis-
-Zr/E

tribution of e , where 6 E is the electrical skin depth for a sine pulse in the mag-

netic field at the operating temperature Top. The temperature profile resulting from

electrical heating is then given by

-5 -2r/6E
8.34 X 10 571/2 B2t e2r/E

TE(r, t) =
CvT /2 6E

Since the resistivity r is temperature-dependent, the electrical heating contribution to

the temperature profile is found by an iterative procedure. Thus the maximum wall

temperature during a pulse is given by

T TB(0 , T ) + T(0, T TN(,) + T E 0, TT + To.

Heating caused by synchrotron radiation is one thousandth that of Bremsstrahlung radia-

tion and negligible in this device, since T e is so low. Heating caused by gamma-ray

backscattering is still to be considered.
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A coil of copper-zirconium (0. 15% zirconium) with a TZM backing to withstand the

magnetic pressure has been considered. Since its electrical properties are approxi-

mately the same as those of copper,2 the coil is treated as having the same heat-transfer

properties as copper. The stress condition on the TZM with a safety factor of 2 and an

operating temperature of 800 0 K determines the magnetic field. The maximum wall tem-

peratures for this coil appear in Fig. VI-19 for various fractional burn-ups fb which
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Fig. VI-19. Copper-zirconium coil.

determine T . Approximately 70% of the rise over the ambient value comes from

Bremsstrahlung, 10% from direct neutron scattering, and 20% from electric heating.

The number of Bohm times needed to achieve TT is shown, as well as the usable power

obtainable from this device during one pulse,

3E WE
P 8 PT + (E-1) T

where

P = thermonuclear power

E = efficiency of converting to usable power = 0. 4
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WE = electrical energy deposited in the coil.

Note that the pumping power for the coolant has not been included. The copper-

zirconium coil is not feasible, except possibly in a large machine with low power

output.

Two other coils under consideration are niobium-zirconium (1% zirconium) and

TZM (0. 5% titanium, 0. 1% zirconium, 99. 4% molybdenum). The comparison of these

coils with that of copper-zirconium for fb = 0. 09 is shown in Fig. VI-20. Niobium-

zirconium is not feasible, because of loss of strength at these temperatures. The TZM

MELTING POINT OF TZM

2500

MELTING POINT OF Nb-Zr

2000

Nb-Zr
1500

TZM

Cu - Zr
1000 MELTING POINT OF Cu-Zr

I I 1 I I
20 30 40 50 60

Rc (cm)

Fig. VI-20. Comparison of the niobium-zirconium, TZM,
and copper-zirconium coils.

coil, despite its higher electrical heating, is the best of the three coils considered.

Further work is to be done on investigating operation at lower magnetic field; also

to be studied is whether tritium can be regenerated in these systems. We expect that

successful tritium breeding will require thinner coils than those considered in this

report. This will lead to devices requiring less field and producing less power.

G. L. Flint
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3. EFFECT OF LOW FUEL BURN-UP IN PROPOSED

DEUTERIUM-TRITIUM FUSION REACTORS

A computer study of conditions expected inside a deuterium-tritium (D-T) fusion
1

reactor is being extended to include the case of very low fractional fuel burn-up, and

preliminary results have been obtained.

10
4

10
3

10

I

I(

Fig. VI-21. Results.

10
- 3  

10-2
FRACTIONAL BURN-UP fb

In summary, the model is as follows: From Rose,' we use a proposed

energy balance in the plasma. D and T ions are injected with energy Vi, for which

power Wsi is required. Inside the plasma, they have energies U i in a presumed

Maxwellian distribution at temperature T. and density n.. Ions are confined with a mean

lifetime T i and carry off power WLi as they leave. Similar things can happen to elec-

trons, for which the symbols Wse, Ve, Te, and WLe apply. Furthermore, electrons

can lose energy via Bremsstrahlung (Wx) and modified synchrotron radiation (Wc).

Inside the plasma, D and T ions fuse, and two-tenths of the fusion power WDT appears

with the energetic helium nuclei (a particles, or a's) formed in the nuclear reaction.

The a density, na, is small, but the energy, Ua, is high and hence the a pressure,
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Pa, is substantial. The a's cool in the plasma by dynamical friction on both electrons

and ions; their energy distribution is not Maxwellian. By assumption, the a's are also

confined for a time Ti. Finally, electrons and ions can interchange energy (Wei).

Part of the D-T and electron heating in the plasma comes through heat transfer from

the a's (Wia and Wea ); in a practical fusion reactor, this is necessary, so that the power

inputs Wse and (especially) Wsi can be kept acceptably low.
se s

If the plasma confinement time T i is long enough, the heating problem is minimal:

a fair fraction of the fuel (a fraction fb for later reference) has time to react, and there

is enough a energy available to heat the input D-T fuel. More than that, the a's are

confined long enough to deposit their energy in the plasma before escaping. Detailed

equations for the energy balance have been given by Rose ; solutions of them

show that if fb is approximately 0. 04 or more, the a's deposit all of their energy

in the plasma, even when plasma parameters T e and T. are relatively unfavorable for

doing so.

The question under present study is: What happens when fb is too small for the a's

to be thermalized? This question is most important for proposed open-ended fusion

systems, for which high ion temperature, Ti, is necessary for any reasonable confine-

ment, and the energy cost of ion injection is correspondingly high. Table VI-1 shows

some self-consistent plasma conditions calculated for typical open-ended systems. In

every case, ions are injected at V i = 100 keV, electrons are injected with zero energy

(Ve = 0), the ion and electron confinement times are the same (Ti = Te), and a (pre-

sumably) intermediate assumption is made about the escape of synchrotron radiation

from the optically thick plasma. Besides symbols already defined, the table lists:

nTi., an alternative measure of burn-up efficiency

v = (a confinement time)/(a thermalization time) (O8/c, see Rosel

Uae = energy/fusion delivered to electrons

Uai = energy/fusion delivered to ions

Q = (fusion energy)/(injection energy).

The trends are visible in Fig. VI-21, where the principal results are shown. At

the left side of the figure, for negligibly small burn-up, each fusion event delivers only

about 200 eV to the ions; even worse, the ion throughput is so large that each is heated

only a few millivolts. Nevertheless, T. = 66. 7 keV, and 3Ti/2 = 100 keV almost exactly,

maintained by the injection energy (actually, the ions will not thermalize at such low

burn-up, but we ignore that here). In marked contrast, U = 130 keV, and electronsae
are heated to 1 keV by the a's. The thing to note on the left side of Fig. VI-21 is that

when Te and fb are low, what little a heating of plasma there is goes to electrons.
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Table VI-1. Parameters of hypothetical open-ended fusion system with low burn-up.

Case 1 2 3 4 5 6 7 8

fb 9 X 10-6 6 X 10 3 X 10 0. 013 0. 016 0. 030 0. 034 0. 05

nT. 2X 1016 1.2X 10 1 8  7X 101 8  2. 8X 101 9  3.4X 10 1 9  6.5X 10 1 9  7.5X 10 1 9  1 x 1020
1

(- 3
(m-3
sec)

-3 -
v 9 X 10 7.8 X 10 - 2  0. 22 0.47 0. 53 0. 76 0.83 >1

T 1. 0 5. 0 10.0 18. 0 20 28 30 36
e

(keV)

U 132 675 1256 1705 1750 1776 1760 1649
ae

(keV)

T. 65.67 61. 8 58.1 57.0 57. 6 63. 7 66.3 80.6
1

(keV)

U . 0.19 12. 7 81 343 436 920 1083 1846
al

(keV)

Q 8X 10 - 4 0.05 0.26 1. 1 1.4 2.6 3.0 4.4



0o

STable VI-2. Parameters of hypothetical open-ended fusion system with
by an exponential lifetime distribution.

a' s thermalizing

Case 1 2 3 4 5 6 7 8 10 11

fb 9 X 10 - 6  6X 10 - 4  3 X 10 - 3  .014 .018 .036 .042 .066 .095 .126 .154

nT. 2 X 1016 1. 2X 1018 7. 3 X 1018 3.X 1019 3.8X 1019 7.8X 10 1 9 9.2 X10 19 1. 5 X 10 2. 2X 102 0 3. 1 X 10 4. 1 X 10
1

(- 3
(m-3
sec)

v 9X 10 - 3  7.8X 10-  .22 .52 .59 .91 1.0 1.41 1.97 2.7 3.5

T 1.0 5.0 10. 0 18.0 20.0 28.0 30.0 36.0 40.0 42.0 43.0
e

(keV)

U 130 617 1073 1367 1382 1364 1350 1313 1305 1317 1333
ae

(keV)

T. 65.67 61.8 58.0 56.5 57.1 62.6 64.7 74.0 84.5 93.0 99.1
1

(keV)

U 0.20 13.5 96 405 493 843 930 1211 1443 1600 1707
ai

(keV)

Q 8 X 10 - 4 .05 .3 1.2 1.5 3.2 3.7 5.8 8.5 11.0 13.6
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As fb rises to the range 10- 2 - 0- , Uai rises, but not enough to raise T i appreciably.

In fact, Ti decreases slightly to 57 keV because the longer confinement time allows

ions to lose more energy to the cool electrons.

As fb rises above 0.02, there is a sharp change toward the operating conditions
envisaged in an open-ended fusion system. U saturates as T approaches 30 keV;

ae e
the ions are heated substantially, and the a's have time to thermalize completely

in the plasma. This is the region at the right side of Fig. VI-21, and is the region
previously explored in detail.1

Other calculations were made, using an alternative assumption that a lifetimes have
an exponential distribution, instead of one lifetime for all a's. Using an exponential

lifetime Ti, we obtained results to compare to calculations made under the one-
-5 -3lifetime assumption (see Table VI-2). In regions of low fb, 10-5-10, the results

are approximately equal to those of the other calculation. This gives some assur-

ance of the insensitivity of the results, at least to some modest changes in the

model, in regions of low burn-up. In regions of intermediate fb' 10-310 , Te and
T i are approximately the same as before, but Uai is slightly higher and Uae is

lower than before. This occurs because there are some a's in the exponential dis-

tribution that thermalize completely, thereby giving a higher fraction of total energy
delivered to the ions and a smaller fraction to the electrons than occurs at incom-

plete thermalization. Also, (Uai + Uae) is smaller than before, since some a's will
be lost quickly before much of their energy has been thermalized.-2

At higher fb, greater than 10 , there are significant changes in the results. Te,
Ti, U e, and Uai drop below the values from the other assumption. This is because

some a's escape before complete thermalization, whereas in the other assumption

complete thermalization occurs at an fb of slightly less than 0. 05. Finally, at very
high burn-up, the a's approach nearly complete thermalization, but T and T. are

e 1
still lowered because some a's escape with energy, and also on account of intense

synchrotron radiation.

F. Marcus, D. J. Rose
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4. STABILITY OF A RELATIVISTIC ELECTRON LAYER

In a previous report, we developed a model for the study of the stability of a rela-
tivistic electron ring guided by a uniform external magnetic field. In the present report,
we shall derive from this model the dispersion relation for the negative-mass modes.
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Previous work on the negative-mass instability 2 ' 3 has been based on the assumption that

the electron ring has an infinitesimal thickness. Our model enables us to extend the

study to a finite beam. For simplicity, we take the electron density to be uniform

between r = r 1 and r = r 2 (see Fig. VI-22). The differential equation for E inside the

beam is then

d
dr

r d KPc d
S d (rE6)-&KE + -c d(rE6) + E = 0.

2 2 dr Wr - fpc dr 9

In Eq. 1, K = P=/wLo, where 0p is the electron plasma frequency, Lo is the relativistic

gyro frequency, and p = v/c. Note that K is constant for a uniform density profile, since

METALLIC CYLINDER

RELATIVISTIC ELECTRONBEAM

VI-22. The model. A

density no(r),

layer of relativistic electrons, with

is guided by a magnetic field B (r).0

it is independent of the (radially dependent) relativistic mass.

In the limit of a sharp beam edge, we must allow for surface currents and charges

in the boundary conditions. The value of the surface current K 0 can be readily deter-

mined from the expression for the volume current with a general profile, since pa 2

becomes a delta function in the limit of a sharp beam edge. We have
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2
Wpl

K 0 (r) = j~~l rlEl

and (2)

2
Wp2

K (r 2) = Jo-2 r 2 E 2 "

Here (and henceforth, unless otherwise stated), we have used subscripts 1 and 2 to

denote values at r 1 and r 2, respectively. We shall incorporate the effects of the vacuum

region outside the beam by suitably defined wave admittances b , where

H z(r=r 2)

b =
+ jWEor

2 E 0 (r=r2)
(3)

-H z(r=r 1
b =

jwoor 2 E 0 (r=r 1

The admittances b+ and b_ depend only on the geometry of the container, and their values

have been tabulated by Briggs and Neil for various dimensions. From Eqs. 2 and 3

and the continuity of E., we can write the boundary conditions at rl and r 2 as

2

2 2 dr (rE 0 ) - KE] b 1 j Ci

Sr 2 1 1
2

c

and

2

r 2  dr (rE 0 ) - KE = -r2Eb2  + w (5)

2 2 r2 2
2

c

Here we have represented Hz in terms of E 0 through Maxwell' s equation.

The dispersion relation follows when the general solution of Eq. 1 is used in the

boundary conditions above. Since Eq. 1 has no closed-form solution, we have considered

the series solution to that equation. For a moderately thin beam, we should expect that

only a few terms would provide a useful approximation.

Inspection of the differential equation reveals the fact that there are two regular sin-

c fpe
gularities in the region of interest, namely at r = r - and at r = r - . Since ra a s i a

QPR No. 93 128



(VI. PLASMAS AND CONTROLLED NUCLEAR FUSION)

and rs are regular singularities, solution of the form

oo

An ( r - r a s n+ p

n=0

exists. We have proved that p = 0, 1 + f when the solution is expanded about rs, and
Yo

p = 0, 2 about ra. Therefore r s is a branch point, and ra may be a logarithmic singu-

larity. The obvious question then arises whether the series solution expanded about one

of the singularities will converge at the other, and hence at the boundaries. To answer

this question, we must examine the solution about each of these singularities. We have

shown that r - is indeed an "apparent singularity" by the methods provided by Ince. 4
a W

In other words, the solution to (1) expanded about ra is analytic at that point. Therefore

the solution expanded about rs, the real singularity, converges at ra, and hence at the

boundaries rl and r 2. A series solution of the form

n+
00 00 2

> rE= A(rw-fpc) + Bn(r-kpc) (6)

n=0 n=O

has been obtained. This series is not rapidly convergent, however, for a relativistic
2

beam with y >> 1. The dispersion relation obtained by taking the first three terms of

the series solution provides us with a formidable amount of algebra but little informa-

tion.

To obtain a dispersion relation for a relativistic beam with less complication, we set

p = 1 and take ra = r . In so doing, undoubtedly the solution in the immediate vicinity

of the singularities will be drastically changed; however, as long as

ra-rs << r 2 r T 7, (7)
2y o

the solutions at the boundaries should closely represent the actual solution with p = 1.

With P = 1 and

= rE (8)

r
= - (9)

Eq. 1 can be written
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d 2 d -(r+2e1+221 2 ) + Ki(Ti+f)(Ti+2)

T + .T +
dns2 a ( r+)(n + 2 )

The solution about T = 0 is given by

[2 l+3jK 3 4
1(7) = A n 3 n + ( )

2fK( +2+ + 2 ) + 2 (rN+2f)2

2
h +) fl 11(T+2j)

=0.

22 log 3+ B[-K Ti log n+ 1+Krl+O(i ,r 3 log T)].

(10)

(11)

With (11) substituted in (4) and (5), we obtain the following dispersion relation

(b+ b_) + K 1 1K2
rl2 2.l

log + K 2 + O(rl, log TI) = 0.
ill

Y. Y. Lau, R. J. Briggs
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