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A. PHARYNGEAL CONSONANTS

In English all of the consonants are produced with a constriction in the oral cavity

between the velum and the lips. When the constriction is located at various places within

this cavity, a series of consonants with well-defined acoustic attributes is produced.1

There are some languages for which additional consonant categories are obtained by

constricting the vocal tract in the pharyngeal and uvular regions between the velum and

the glottis. The purpose of this study is to examine the acoustic properties of such pha-

ryngeal and uvular consonants in one language (Arabic) and to show that there are well-

defined quantal categories that exist when a vocal-tract constriction is made in this

region.

We examine, first, the acoustic effects of creating a relatively narrow constriction

at some point along the pharyngeal portion of the vocal tract. In order to obtain a rough

idea of the natural frequencies of the vocal tract for this situation, let us assume the

vocal-tract shape shown in Fig. X- 1. The cross-sectional area in front of the constric-

tion is uniform, and equal to 3 cm, and the area of the portion of the vocal tract behind

the constriction is 1 cm. The constriction is 1 cm long, and the over-all length of the

tube is 17 cm. The position and cross-sectional area of the constriction can be adjusted.

The frequencies of the four lowest resonances of the configuration on Fig. X-1 are

shown in Fig. X-2. The abscissa is the constriction position and the parameter is the

cross-sectional area of the constriction. These natural frequencies were calculated by

using a computer program developed by W. L. Henke, whose cooperation in obtaining

these data is gratefully acknowledged.

When the constriction is at the extreme glottal end of the tract, such that it consti-

tutes the first centimeter of the length of the tube, then the resonances are approxi-

mately those of the front 16 cm of the tube, and correspond approximately to odd
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multiples of a quarter-wavelength. The resonant frequencies are modified only slightly

by the presence of the constriction. As the constriction is moved to a more anterior

position, the natural frequency that represents a resonance of the acoustic mass of the

constriction and the acoustic compliance behind the constriction begins to play an impor-

tant role. This resonant frequency depends very much on the size of the constriction,

as well as on its position.

1 cm

Fig. X- 1

S2 Idealized model of the vocal-tract area function used
for study of pharyngeal consonants. The over-all
length of the tube is 17 cm. The glottis is at the left-

d hand end.

I cm

2

Thus, for example, for a constriction size of 0. 05 cm , this resonance is sufficiently

low in frequency to be the first formant for d > 5 cm. In the limit, when the constric-

tion size is small and d becomes large, this first-formant frequency approaches

zero. This resonance is the second formant for d in the range 1-2 cm, and is

probably the third formant when d is ~0. 5 cm. Coupling between the various res-

onances makes it difficult to identify the source of any one of the resonances when

two resonant frequencies are close together.

For d = 7 cm, the third and fourth resonances are approximately equal (the X/2

resonance of the back cavity and the 3X/4 resonance of the front cavity). For this

condition, F 3 is maximally high and F 4 is maximally low. In the range from d =

3 cm to d = 7 cm, F 1 and F 2 are close together, at least for constriction sizes

that are not too small (0. 05-0. 2 cm 2). For this condition, the Helmholz resonance

of the back cavity and constriction is approximately equal to the X/4 resonance of

the front section of the tube. When this condition occurs, F l is rather high, and F 2

is low, and for a given constriction size F l and F 2 are not very sensitive to changes

in constriction position.

Although the curves shown in Fig. X-2 were obtained with a rather idealized vocal-

tract shape, it is to be expected that the same general trends in the formant fre-

quencies would be observed for more realistic shapes of the front and back cavities

and for the constriction. In practice, of course, these area functions for the con-

sonantal configuration are influenced by the vowel that is adjacent to the consonant.

The range of constriction positions between d = 3 cm and d = 7 cm is the region

appropriate for the generation of pharyngeal consonants. One important feature of
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such consonants would appear to be a high F1 and a low F 2 . The first formant is not,

of course, high when there is complete closure at the constriction (as with a pharyngeal

stop consonant), but except for a brief interval after release (which is presumably tra-

versed very rapidly) the constriction size would be in a range that produces a high Fl'
For a more constricted configuration, F l tends to be lower for d = 7 than for d = 3 cm.

0 2 4 6 8 10

DISTANCE d FROM GLOTTIS TO CONSTRICTION (cm)

Fig. X-2. Four lowest natural frequencies of the vocal-tract shape of
Fig. X- 1 as a function of the length, d, of the back cavity.
The parameter is the cross-sectional area of the constric-

2
tion in cm . The dashed line corresponds to a constriction

area of 0. 1 cm2

Depending upon the specific location of the constriction in the range d = 3-7 cm, the

properties of a pharyngeal consonant other than the F l and F 2 positions may differ

appreciably. Consider, for example, the curves in Fig. X-2 corresponding to constric-
2

tion sizes of 0. 05 and 0. 1 cm . For d = 3-4 cm, F 3 is considerably lower than it

is for d = 7 cm, and also F 2 may be slightly lower. The third formant is a front-cavity
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resonance for this more posterior constriction position, and F2 tends to be a resonance

of the back cavity. Thus, when frication noise is generated in the vicinity of the constric-

tion, the front cavity and hence the third formant is strongly excited, but there is little

excitation of the second formant. The opposite situation exists when the constriction is

at the more anterior position, corresponding to d = 7 cm in Fig. X-2. Here F 2 is a

front-cavity resonance, and this resonance is certainly excited by frication noise at the

constriction. Furthermore, F 3 is relatively high for this constriction, and may be

rather close to F 4 . Thus there is a wide space between F 2 and F 3 for a consonant with

a constriction at the more anterior position - at approximately d = 7 cm in Fig. X-2.

When the constriction is in a still more anterior location, around d = 11 cm in

Fig. X-2, the second and third formants are close together, and Fl is relatively low.
2

This is the general region associated with velar consonants.

In summary, then, a chart like that shown in Fig. X-2 predicts that there is a class

of consonants, with a constriction well back in the vocal tract, having the distinctive

property that F is high and is relatively close to F 2 . This property distinguishes the

pharyngeal consonants from consonants with a more anterior constriction position, all

of which are characterized by a low-frequency first formant. The chart further pre-

dicts that there are two subclasses within the class of pharyngeal consonants: a more

posterior one with a low F 3 , which is the lowest formant that is excited by noise in the

case of a fricative, and a more anterior one with a high F 3 , which is characterized by

excitation of F, when there is frication noise at the constriction. The more posterior

of these two constriction positions is usually called a pharyngeal consonant, and the

more anterior one is a uvular consonant.

In order to verify the predictions derived from Fig. X-2, recordings of a

number of consonant-vowel syllables produced by several speakers of Arabic were

obtained. The syllables consisted of each of the pharyngeal, uvular and glottal

stop, fricative and sonorant consonants followed by the vowels [i], [a], and [u].

The usual phonetic classification of the Arabic consonants produced in this region

of the vocal tract is shown in Table X-1, and the phonetic symbols of the Inter-

national Phonetic Association are shown in each case. Wide-band spectrograms

Table X-1. Phonetic classification of several Arabic consonants.

Stop Fricative

voiced voiceless voiced voiceless

glottal ? h

pharyngeal f

uvular q x
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of all of these syllables were made, using the expanded frequency scale that

encompasses the range 0-3500 Hz. Examples of the spectrograms for one of

the informants, who speaks a Lebanese dialect, are displayed in Fig. X-3. Other

speakers show similar general characteristics, with some variation depending on

the dialect.

The two voiceless fricative consonants, which are shown in the upper row of

Fig. X-3a, display precisely the attributes predictable from Fig. X-2. The fricative

[H] is the more posterior one, and shows strong excitation of F 3 , and weak or nonexis-

tent excitation of F 2 . Furthermore, F 3 is relatively low for the consonant [f ] (for

example, F 3 = 2000 Hz in the fricative preceding [a]). In contrast, F2 is strongly

excited by noise for the more anterior fricative [x], and F 3 is somewhat higher (~2300 Hz

for the fricative preceding /a/). For this utterance, F 3 and F 4 appear to be rather close

together in the consonant.

The voiced fricative consonants, shown if Fig. X-3b, demonstrate even more clearly

the contrast between the lower F 3 for the posterior (pharyngeal) version and the higher

F 3 for the anterior (uvular) one. Furthermore, the posterior consonant appears to have

a higher F l - a fact that is evident for the simple model used to construct Fig. X-2 when

the constriction is narrow (0. 05 cm 2).

The stop consonant in this language is apparently produced with a constriction at the

more anterior, or uvular, position, since the stop release is characterized by strong

excitation of F 2 (first row of Fig. X-3a). Furthermore, F 3 remains relatively high at

the onset of this consonant.

The /h/ and the glottal stop /?/, which are shown in the second row of Fig. X-3a,

differ from the pharyngeals in that there are no formant transitions at the vowel onsets.

In the case of [h], there is weak noise excitation of the formants, but this is much

weaker than the frication noise excitation of F 2 or F 3 for the pharyngeal and uvular fric-

atives. The glottal stop has no burst of energy corresponding to onset of excitation for

a particular formant, as in the uvular stop.

In the spectrograms of the voiced fricative consonants in Fig. X-3b it is difficult

to see good evidence of frication noise. The principal vocal-tract excitation is clearly

at the glottis, and it might be argued that these consonants are sonorants rather than

fricatives. Further examination of the acoustic data reveals, however, that the state

of the larynx during the production of the voiced uvular and pharyngeal fricatives is not

the same as in the following vowel, thereby suggesting that these consonants do not have

the normal laryngeal excitation that is characteristic of sonorants.

The extent of the change in the glottal source for these consonants is shown by the

sampled spectra displayed in Fig. X-4. These spectra were obtained from a 36-channel

bank of simple-tuned filters (see Flanagan). The spectra were sampled at instants of

time marked by the arrows on the spectrograms in Fig. X-3b.
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In the case of the pharyngeal consonant, the sampled spectra again show the high

first formant in the consonant interval. During the transition into the vowel there is a

slight downward shift in F 2 , and an increase in over-all intensity which amounts to

approximately 6 dB at low frequencies from spectrum sample a to sample b. The

increase in spectrum amplitude is greater at high frequencies (~12 dB) than at low fre-

quencies, thereby indicating that the glottal spectrum is richer in high frequencies for

the vowel than for the consonant. Thus the individual glottal pulses are probably

smoother and less peaked during the consonantal interval. Such a vibration pattern

would be expected if the glottis were spread slightly for the consonant, which would give

rise to a glottal resistance to air flow that is lower than in a normal vowel. There is

evidence that a laryngeal adjustment is typical of voiced fricatives, i. e. , a voiced fric-

ative has increased airflow and spread glottal vibrations (see Halle and Stevens4). The

same situation may be true to a lesser extent in sonorants.

It may be argued that the increase in amplitude of the glottal output that occurs as

the articulation shifts from a pharyngeal consonant to a vowel is an essential gesture if

the syllable is to have an intensity peak in the vowel. For sonorant and other voiced

consonants generated with a more anterior constriction position, (such as [w] and [y]),

the reduced intensity of the consonant relative to an adjacent vowel is an automatic con-

sequence of the lowered F 1 in the consonant. It is not necessary to postulate a reduced

glottal output for these consonants in order to explain the reduced acoustic intensity

(although such a reduced output may, in fact, occur).

Spectra sampled in a voiced uvular consonant and in the following vowel are also

shown in Fig. X-4. The instants at which spectra are sampled are indicated in the spec-

trogram of [8a] in Fig. X-3b. Again there is a substantial increase in intensity as the

transition from the constricted consonantal configuration to the vowel configuration is

made. As we have noted, the uvular consonant tends to have a lower first-formant fre-

quency than the pharyngeal one. There is a slight upward transition of F l between the

consonant and the vowel in this example.

The properties of the voiceless fricative consonants are shown in the form of sampled

spectra in Fig. X-5. Each part of the figure displays a spectrum sampled in the voice-

less consonantal interval and a spectrum sampled in the vowel approximately 30 msec

after onset of voicing. For the pharyngeal consonant, the predominance of the third

formant in the voiceless interval is quite evident. The major spectral peak in the uvular

consonant corresponds to the second formant. It should be noted that all of the spectra

shown in Figs. X-4 and X-5 were obtained with a rising frequency characteristic of

6 dB/octave in the analyzer preceding the filters. If this characteristic is taken into

account, the data of Fig. X-5 suggest that the intensity of the uvular [x] is somewhat

greater than that of its pharyngeal counterpart, at least in these examples.

These observations with regard to the pharyngeal and uvular consonants provide
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support for a view that the acoustic attributes associated with the various articulatory

configurations and maneuvers that are found in speech are basically discrete or quantal. 2

That is, there are particular ranges of articulatory activity that give rise to acoustic

outputs with well-defined attributes. These attributes are relatively insensitive to per-

turbations of the articulation within these ranges, thereby suggesting that the selection

of these particular articulations for use in language imposes less severe restrictions

on the precision with which the articulations must be effected.

In the case of the pharyngeal region of the vocal tract, it would appear that there are

two well-defined places of articulation with distinctive acoustic properties. While these

acoustic properties appear to be relatively insensitive to at least small perturbations

in place of articulation, they may be somewhat sensitive to the degree of vocal-tract

constriction, but this point needs further study.

D. H. Klatt, K. N. Stevens
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B. PROSODIC FEATURES AND CHILDREN'S LANGUAGE

PRODUCTION

1. Problem

It has been observed that there is a period in the child's acquisition of language

during which he primarily produces one-word utterances, although, at this same stage,

he may also be producing babbled utterances exceeding 3 or 4 syllables in length and,

on occasion, 2-word utterances. The communicative function of this period of language

acquisition can be and has been viewed as (i) to name objects and events, and (ii) to

express a whole sentence with a single word. Those holding the latter view have called

this period the holophrastic stage.1 There is very little evidence to corroborate either

view. An utterance such as "moo" could be interpreted as the child's name for milk,

since he uses it consistently in the presence of milk or as a sentence either demanding
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milk or making a statement about the fact that it is milk or asking a question about the

milk.

It has been hypothesized that the prosodic features of the utterance (intonation and

stress) can be an indication of whether these single words are names or sentences. If

all such utterances terminate in the falling fundamental frequency contour of a declara-

tive statement, then there is evidence that such utterances are names. If prosodic fea-

tures are used generatively with these words to indicate different meanings, then there

is some evidence that such utterances are used as sentences. Thus, depending on the

prosodic features of the utterance, the utterance "moo. ." could be the declarative state-

ment "(That's) milk."; the utterance "moo?" could be the question "(Is that) milk?" or

"(May I have) milk?"; and the utterance "moo!" could be the imperative "(I want) milk!"

or "(Give me) milk!"

There are alternative speculations about the structure of the language used during

this period. Prosodic features might be used imitatively, that is, without any under-

lying syntactic structure, but merely as a repetition of adult utterances. It has been

stated that infants imitate the intonation of their mother's utterances during the babbling

period3 and, therefore, this is certainly a possibility. It is also possible that certain

words are always produced with the same intonational and stress contour (for example,

"No!" always being produced as an emphatic). This would be an indication that prosodic

features are not being used generatively to indicate differing syntactic structure, but

are only some other phonological aspects of a particular word.

The study undertaken here was a preliminary attempt to resolve some of the ques-

tions concerning the structure of the language used during this period of language devel-

opment by an analysis of the prosodic features of a child's utterances during this period.

2. Procedure

The recorded utterances of a child at the stage at which he was producing primarily

one-word utterances (age 18-20 months) were examined, and a series of utterances that

were repetitions of the same word were isolated and re-recorded. These series con-

sisted of the words "no," "door," "touch," and "up," and two series of names, one with

and one without possessive markers (for example, "daddy" and "daddy's" and "Jeanie"

and "Jeanie's"). None of these utterances were immediate repetitions of the mother's

utterances but, rather, were introduced by the child into the conversation.

Two listeners attempted to classify the isolated utterances as declaratives, ques-

tions, and emphatics. According to the listeners, each series contained the three types

of classification, except for the name series without possessive markers which had no

emphatics. There was 8 1% agreement between the two listeners on the categorizations

of the utterances. Spectrograms were made of the utterances and it was observed that,
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although there were individual variations within each category, a general characteristic

of each type of utterance could be found. Declarative utterances terminated with a falling

fundamental frequency contour, questions terminated with a rising fundamental frequency

contour, and emphatics had a sharp rise and then fell in fundamental frequency contour

during the utterance. Figure X-6 contains spectrograms of the utterance "door" (/do a/)

as (a) a statement, (b) a question, and (c) an emphatic according to the classification of

both listeners. Table X-2 presents measurements of the spectrograms.

Table X-2. Measurements of spectrograms of the utterance "door."

Fundamental Frequency

Type Total Length Beginning Peak End

(a) Statement . 60 sec 350 426 213

(b) Question . 53 sec 382 560 560

(c) Emphatic . 72 sec 455 1010 255

Measurements of the total set of spectrograms are now being carried out to deter-

mine if the pattern observed for each type of utterance is indeed consistent and to deter-

mine how well these patterns correlate with perceptual categorizations. Analyses of

the utterances produced by two other children during this period of development is

planned to determine how consistent this performance is across children. In addition,

analyses of mothers' responses to these types of utterances will be carried out to see

if these responses contain evidence that some differentiation of the utterances, in accor-

dance with their acoustic and perceptual classifications, is being made by mothers.

Although the data are extremely limited there appear to be indications that the child's

single word utterances are not simply names of objects and events and that the child uses

prosodic features generatively to create sentence types rather than merely imitating pro-

sodic features or including these features as part of the speech sound composition of a

particular word.

Paula Menyuk, Nancy Bernholtz
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C. VOWEL IDENTIFICATION AND DISCRIMINATION

IN ISOLATION vs WORD CONTEXT

1. Introduction

Previous experiments in phoneme perception have been concerned with identification

and discrimination along a synthetic speech continuum whose end points sound like two

particular phonemes. An example will serve to describe the main results of these
1

experiments. In a recent study Stevens and co-workers examined, in part, perception

along a speech continuum from /de/ to /ge/ by varying the starting location of the

second-formant center frequency in approximately 7 equal frequency steps. If the first

stimulus sounded like /de/, and the seventh stimulus sounded like /ge/, how were

intermediate stimuli perceived? The observed effect was quantal, in that only two

distinct categories of sounds (/de/ and /gs /) could be heard over the whole continuum,

and the change from hearing /de / to hearing /ge / occurred over a range of only one or

two stimuli. This effect is known as the phoneme boundary, and can be measured by

examining the extent to which two stimuli from the same category are confused with each

other, compared with two stimuli drawn from different categories.

Specifically, by measuring at each region of the continuum some "index of confusion"

between two adjacent stimuli in that region, a function can be obtained. A sketch of this

function is shown in Fig. X-7a for the /de -ge/ example. If a larger index corresponds

to a lesser degree of confusion between the adjacent stimuli involved, then this figure

z

z /d / -/g /
0

0
x

z

2 4 6 2 4 6

STIMULUS STIMULUS

(a) (b)

Fig. X-7. Index of confusion vs adjacent stimulus pair. A sketch for two
situations: (a) /de -gs/ continuum; (b) /i- / continuum.

shows the presence of a phoneme boundary: A small amount of confusion occurs between

stimuli 3 and 4, compared with confusion between, for example, stimuli 1 and 2, or

stimuli 6 and 7.

Similar experiments were performed 1 using isolated vowel stimuli (/i/ to /E/ for
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example), and the phoneme boundary effect was much less apparent, if apparent

at all, as shown in Fig. X-7b. The difference in these two results can be explained
if we compare the two sets of stimuli. For the consonants, stimulus formant fre-

quencies are changing rapidly with time as they approach a steady state for the

following vowel; for the isolated vowels, the formant frequencies are already in a

steady state.

If this difference in stimuli is the reason for a presence of the phoneme boundary in

one case but not the other, then would such a boundary be present for vowels in conso-
nantal or word context? The dynamic nature of vowel formant transitions caused by sur-

2
rounding consonants would seem to imply the presence of a phoneme boundary, and

indeed, observations by Stevens 3 support this view. The present study answers the ques-

tion quantitatively for the particular vowel pair /0 -e / in isolation vs the word context
bottle-battle (written phonetically as /b ad a l-bae d al/).

Two different methods were used by the author to measure the degree of confusion
in a particular stimulus region, the chief method being the use of a standard Absolute
Identification (A. I.) paradigm. If there are n stimuli along a given continuum, sub-

jects are allowed to use one of n responses (a number from 1 to n). The

resulting Stimulus-Response confusion matrix contains enough information so that
the degree of confusion between any two stimuli can be measured by examining

the distribution of responses for these two stimuli. In this case, the index of con-

fusion is d'.4 A plot of d' against adjacent stimulus pair is defined as an identifi-
cation function for this A. I. experiment.

Another method of measuring confusions involves discrimination ability in a partic-

ular stimulus region independent of that ability in other regions. In other words, this
method tests a subject's ability to discriminate between two sounds in one particular

stimulus region during one complete experiment. The discrimination index can be mea-

sured by examining the information in the 2 x 2 Stimulus-Response matrix from a Two-

Interval Two-Alternative Forced-Choice (2AFC) paradigm (the index obtained is d', just
as in the A. I. paradigm). The d' values for several stimulus regions can be collected

on one graph to form a discrimination function (d' vs stimulus region) for a given con-

tinuum. A comparison of data from an A. I. paradigm and a corresponding ZAFC test

will be described.

A summary of the basic experiments in this study follows.

1. Using A. I., measure the identification function for the /bad 9 1-baeda 1/ con-

tinuum.

2. Using A. I., measure the identification function for the isolated vowel continuum

/a - Ge/ and compare with the results of Experiment No. 1.

3. Using 2AFC, measure an approximate discrimination function for the /bod al-

baedgl/ continuum and compare with the results of Experiment No. 1.
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2. Procedure: Absolute Identification

Spectrograms of the end points of the two vowel continua (/ba.d9l-b3edal/ and

/o- ae/) are shown in Fig. X-8. Two durations of the same isolated vowel stimuli were

used,5 one set lasting approximately 150 msec (approximately the duration of the vowel

in word context), and another set lasting 250 msec. Thus, three A. I. experiments were

performed corresponding to 3 stimulus continua: (i) /badal-baedal/; (ii) short duration

/a- ae/; and (iii) long duration /C- ae/. By using a synthesis-by-rule computer program

to generate the stimuli, 6 8 stimuli were selected along each continuum so that adjacent

stimuli corresponded to equal logarithmic increments of the second-formant center fre-

quency, that is,

Af2 /f 2 = constant for any two adjacent stimuli.

For stimulus 1 (bLdal or ca), f 2 = 1000 Hz; for stimulus 8 (baedel or ae), f2 = 1426 Hz.

In each experiment, 3 subjects were presented with a random sequence of stimuli -

one per trial - in an A. I. format, and were asked to identify the stimulus they heard by

a number, one through eight. The stimuli were played from a tape recorder and presented

binaurally through headphones in a quiet listening room. The responses were recorded

automatically by having the subjects pressing one of eight buttons on a response box.

Feedback was given by flashing the correct number on a row of lights located in the front

of the listening booth. The entire experiment was automated, each trial lasting approx-

imately 5 1/2 sec, with feedback given during the last 2 1/2 sec of the trial. Subjects

could make a response any time during the initial 5 sec of each trial.

Eight runs of 64 trials each were presented to each subject during an experimental

session (so that each stimulus was heard 64 times), and the responses from these

8 x 64 stimuli were analyzed from the resulting Stimulus-Response confusion matrix.

The distribution of responses for each adjacent pair of stimuli was compared to obtain

several estimates of an "identification index" for this stimulus pair. (The identification

index was d'.) The index estimates for each stimulus pair in the matrix were combined

with corresponding estimates obtained from other experimental sessions in order to

obtain a sample mean and standard deviation for the identification index of each adjacent

stimulus pair. Each subject was exposed to 4 experimental sessions using the same

stimulus set, the data from the last three sessions being used to obtain the averaged

results. Examination of results from each session showed that the first session usually

gave sufficient time for the subjects to learn the task.

3. Procedure: 2AFC Discrimination

A subsidiary 2AFC discrimination experiment was performed, with the /bad ael-

baedol/ continuum used. In order to produce significant response errors, the two
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Spectrograms of synthetic speech stimuli.
(a) First and eighth stimuli for the /badal-baedal/ experiment.
(b) First and eighth stimuli for the 150-msec /L - ae/ experiment.
(c) First and eighth stimuli for the 250-msec /a -ae/ experiment.
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stimuli taken from each region of the /badal-baedal/ continuum were such that the ratio

Aff2 /f 2 was approximately one-third of the value used in the A. I. test. Discrimination

at 3 selected regions in the continuum was examined (corresponding to regions about

stimulus 2, 7, and a region halfway between stimuli 4 and 5 in the A. I. paradigm).

In this subsidiary experiment, subjects heard the two stimuli per trial (with the two

stimuli separated by approximately 100 msec), and were asked to press one of two but-

tons to indicate which stimulus sounded more like "battle." Each subject was immedi-

ately informed by one of two feedback lights on his response box whether his decision

was right or wrong. During each experimental session, only one stimulus region was

tested. Eight runs of 100 trials/run were given during the session. An estimate of the

discrimination index (d') for each set of 100 trials was obtained for each subject. In

order to ignore some of the effects of training and fatigue, only the three best estimates

(corresponding to the three highest scores in d') were used to obtain a sample mean and

standard deviation for each subject for each stimulus region.

4. Results

The results of the A. I. experiments were plotted as d' ± Ys(d') against adjacent

stimulus pair, where d' indicates the indentification index estimate for the stimulus pair
J 7{j, j + 1 }, and a- s(dl) is the sample standard deviation for that estimate. Figure X-9

shows three such graphs for the three experiments, the subjects being D. G. and R. S.

(the author). The third subject produced results that were similar in some respects. 8

Three main conclusions can be drawn from Fig. X-9.

1. There is a noticeable difference in the A. I. response between long-duration

/a - ae / and short-duration /a - ae / vowels, in that (a) identification is much better along

the long-duration vowel continuum; and (b) the short-duration vowels are more charac-

terized by a significant peak in identification in the center of the continuum.

2. The A. I. response to the short-duration isolated vowels is very similar to the

word context vowels /badal-baedal/; that is, there is a noticeable central peak in iden-

tification for the word context vowels whose height is the same as in the isolated case.

3. Using the method of averaging noted above, we found that the average standard

deviation in d' was a- s(d!) = 0. 3 units. To a first approximation, this value was indepen-

dent of both the value of d'. and the subject.

The results of the ZAFC experiment were plotted as d ± a- s(d!) against stimulus
J 5]

region, where d' represents the discrimination index for the jth stimulus region. Fig-

ure X- 10 shows graphs obtained for subjects D. G., J. B., and R. S. The main conclu-

sion drawn from comparison of Figs. X-9 and X-10 is the following.

4. There is a noticeable difference in the shape of the d' vs stimulus pair function

for the word context vowels, depending on whether the A. I. test (over the whole
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ABSOLUTE IDENTIFICATION

/badaI-baedal /
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Fig. X-9. d ± s (d) vs
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adjacent stimulus pair. Summary of three absolute

experiments. (a) Subject D. G. (b) Subject R. S.
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2AFC DISCRIMINATION

/badal-baedal/

300 TRIALS/REGION

d' 1.0

0.6

0.2

2 4 6 8 2 4 6 8 2 4 6 8

(a) (b) (c)

STIMULUS REGION

Fig. X-10. d' + 0-s(d) vs stimulus region. Summary of the two-alternative

forced-choice experiments using /bodal-baedal/ stimuli. Aver-
age data of the three best 100 trial runs for each stimulus region.
(a) Subject D. G. (b) Subject J. B. (c) Subject R. S.

continuum) or the 2AFC test at specific points on the continuum is used. While both low

and high numbered stimulus pairs produced low d' scores (with respect to center pairs)

in the A. I. test, the ZAFC test produced lower d' scores only in the high stimulus region

(corresponding to /baedel/).

5. Discussion of A. I. Results

The name "phoneme boundary," used by other investigators to denote the presence

of a sharp peak in identification between two phoneme regions, seems appropriate. The

presence of a phoneme boundary, then, indicates the tendency of a subject to categorize

a given continuum in two parts: the narrower and higher the peak, the more pronounced

the categorization. Thus, one can re-explain the major result of these experiments in

the following generalization: The shorter the duration of a vowel, the more it is per-

ceived categorially. Whether a vowel of short duration is produced in isolation or in

word context, the listener is more likely to perceive the vowel in terms of binary fea-

tures than with slowly spoken vowels. Of course, a vowel spoken rapidly in isolation

is very unnatural, so that in fact this same generalization has been hypothesized by other

observers only in contrasting long-duration isolated vowels with vowels in word or
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consonantal context. For example, Stevens3 found phoneme boundaries to be much more

pronounced when subjects were exposed to vowels in word context (bil-bIl-b1l) than

when exposed to the same vowels in long-duration isolation (i-I-6).

6. Identification vs Discrimination

Experiments by other investigators to measure the presence of phoneme boundaries

(for both vowels and consonants) have followed a noticeably different methodology than

the author's, the most striking difference being that other investigators have used a

Roving Standard, Roving Increment ABX test to measure extent of pairwise differen-

tiation of stimuli. 9 Subjects were required to match the third stimulus in a triad

with either of the first two members, and it was argued that this ABX test mea-

sured, on a relative scale, the ability of subjects to make pairwise discrimina-

tion on any basis whatsoever. The index of "discrimination" was the percentage

of times that a correct assignment was made as a function of stimulus pair for

a given stimulus pair separation.

If, in fact, discrimination was being measured and the phoneme boundary was still

observed, then the author would have a difficult time explaining the difference between

the A. I. and 2AFC results of this experiment. There is strong reason, however, to

believe that the complexity of this kind of ABX test made it give results very similar

to an A. I. experiment. The roving standard and roving increment aspects of this exper-

iment were obstacles in keeping a subject from directly comparing X with A and B, and

these factors necessarily required a subject to keep the entire continuum in his

mind in order to successfully perform the task. Because of the roving stimuli,

short-term memory is very much involved.10 And because of short-term memory,

the results of Wickelgren11 are important: that these speech sounds are probably

first stored as a sequence of distinctive phonetic features. Thus, a label is

probably attached to each member of the triad before any comparison can be

made.

It can therefore be argued that discrimination was not being adequately measured in

the ABX test, and that the 2AFC results of the author are a better indication of the

effects of using speech stimuli in a discrimination test.12 The difference between results

of the A. I. and 2AFC tests (see Observation 4 in Results) might thus be interpreted as

being due to a "memory noise," 13 which, in turn, is probably due to linguistic experi-

ence. That is, the author has assumed that, unlike the A. I. test, the 2AFC test was so

designed that to interpret the stimuli as speech would have had little effect on perfor-

mance: the two stimuli were so close together as to sound, effectively, like identical

phonemic sequences.

Why then did discrimination results show poor performance only in the /beedal/
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region? While these results are difficult to explain in terms of the use of speech stimuli,

a close look at the detailed changes in the physical stimuli as they affect the hearing

mechanism have provided one possible explanation.14

R. M. Sachs
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1 J

n
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