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Abstract

In aggregative games, each player's payoff depends on her own actions and an aggregate of

the actions of all the players (for example, sum, product or some moment of the distribution of

actions). Many common games in industrial organization, political economy, public economics,

and macroeconomics can be cast as aggregative games. In most of these situations, the behavior

of the aggregate is of interest both directly and also indirectly because the comparative statics

of the actions of each player can be obtained as a function of the aggregate. In this paper, we

provide a general and tractable framework for comparative static results in aggregative games.

We focus on two classes of aggregative games: (1) aggregative of games with strategic substitutes

and (2) "nice" aggregative games, where payoff functions are continuous and concave in own

strategies. We provide simple sufficient conditions under which "positive shocks" to individual

players increase their own actions and have monotone effects on the aggregate. We show how

this framework can be applied to a variety of examples and how this enables more general and

stronger comparative static results than typically obtained in the literature.

"We would like to thank Roger Hartley, Jean-Francois Mertens, Alex Possajennikov, and Burkhard Schipper

for their helpful remarks and suggestions. Thanks also to seminar participants at the University of Copenhagen,

University of Manchester, and at the 2008 Midlands Game Theory Workshop in Birmingham. All remaining errors

are of course our responsibility.
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1 Introduction

In aggregative games, each player's payoff depends on her own actions and some aggregate of

all players' actions. For example, the Cournot model of oligopoly competition is an aggregative

game; each firm's profits depend on its own quantity and total quantity supplied to the market.

More generally, the aggregate could be any mapping from the players' action profile to a real

number. 1 Numerous games studied in the literature can be cast as aggregative games. These

include the majority of the models of competition (Cournot and Bertrand with or without product

differentiation), models of

(patent) races, models of contests and fighting, models of public good provision, models with

aggregate demand externalities, and so on. In many applied problems, the focus is naturally on

how the aggregate (e.g., total supply to the market, the price index, probability of innovation,

total public good provision) responds to changes in the environment. In addition, comparative

statics of individual actions can often be obtained as a function of the aggregate. 2

In this paper, we provide a simple general framework for comparative static analysis in aggrega-

tive games. Our approach is applicable to diverse environments that can be cast as aggregative

games and enables us to provide sufficient conditions for a rich set of comparative static results.

We present two sets of results. First, we focus on aggregative games with strategic substitutes.

In games with strategic substitutes, each player's payoff function is supermodular in her own

strategy and exhibits decreasing differences in her own strategy and the strategy vector of other

players. For aggregative games with strategic substitutes, we establish the following results:

1. Changes in parameters that only affect the aggregate (such as a shift in demand in the

Cournot game) always lead to an increase in the aggregate—in the sense that the smallest

and the largest elements of the set of equilibrium aggregates increase.

2. Entry of an additional player decreases the (appropriately-defined) aggregate of the existing

players.

3. A "positive" idiosyncratic shock, defined as a parameter change that increases the marginal

payoff of a single player, leads to an increase in that player's strategy and a decrease in the

other players' aggregate.

'We discuss games with multi-dimensional aggregates in Section 7.

2The fact that a game is aggregative does not imply that players ignore the impact of their strategies on

aggregates. When they do so, we say that the equilibrium is Walrasian Nash or that the play is Walrasian. Our
results are generalized to Walrasian Nash equilibria in Section 9. Because in this case there are more more limited

"game-theoretic" interactions, the analysis is more straightforward.



The comparative static results mentioned above are intuitive. But it is surprising that for

aggregative games, they hold at the same level of generality as the monotonicity results for

supermodular games (in particular, no quasi-concavity or convexity assumptions are needed).

Nevertheless, not all aggregative games exhibit strategic substitutes. The second set of results

we present focus on "nice" aggregative games, which are games with payoff functions that are

continuous, concave (or pseudo-concave) in own strategies, and sufficiently smooth (in particu-

lar, twice continuously differentiable). Many games analyzed in industrial organization, political

economy and other areas satisfy these conditions. An example is contest (or fighting) games,

where payoffs are determined by the effort levels of all players; contests typically exhibit neither

strategic substitutes nor complements. Another example is provided by games in which players

make voluntary contributions to the provision of a public good.

We prove parallel results for nice aggregative games under an additional technical assumption,

which we refer to as local solvability. Under this assumption, which ensures the local invertibility

of the "backward reply" mapping described further below, we establish a general monotonicity

theorem similar in spirit to the monotonicity results for supermodular games. This theorem

implies that a positive shock to (one or more of) the players leads to an increase in the smallest

and largest equilibrium values of the aggregate. We also prove that entry of an additional player

increases the aggregate and derive more extensive "individual comparative static" results.

An informal summary of our results from both aggregative games with strategic substitutes

and from nice aggregative games is that, under a variety of reasonable economic conditions,

comparative statics are "regular" (for example, a reduction marginal cost increases output and so

on). Nevertheless, it should be emphasized that there is no guarantee that such intuitive results

should hold generally. The next example illustrates how counterintuitive, "perverse," results can

arise in simple games, even in simple aggregative games.

Example 1 Consider three players i = 1,2,3 with payoff functions 7Tj(s) = —0.5s? + a,(l —

a'j)
_1

(X^7=H sj) s i + ft(l — &i)~
1
Si defined locally in a sufficiently large neighborhood of the equi-

librium found below. Assume that a\ > 1, 1 > a2 > 0, Q3 < 0, 0\ < 0, 2 > 0, Qi + a 2 + Q3 > 1,

01 + 02 +03<O, and Ql + a3 < 1.

This is an aggregative game since we can write the payoffs as a function of players' own

strategies and the aggregate Q = Ylj s
j

: ^k{suQ) = -O.5s^+a l (l-a l
)~ 1 (Q-s l )s l+0l {l-a l

)~ l
s i .

By strict concavity, best response functions in this game are: ri(s- t ) = aj(l — cti)~
1

(J2 1 jH
sj) +

0i(l — at)"
1

. Solving for the pure strategy Nash equilibrium (s* = ^(s^), i — 1,2,3) we obtain

s* = a t
Q* + 0i, where Q* = s{ + s$ + S3 = (0i + 2 + 03)~ 1

(l - ai — 02 - a3 ) is the equilibrium

aggregate. Now consider a (small) increase in a 2 . This is a "positive shock" to player 2: holding



opponents' strategies fixed, it increases player 2's marginal payoff and therefore "lifts" player

2's best response function, 3 dr2(s-2)/doi2 > 0. yet But this positive direct effect on player 2's

optimal strategy notwithstanding, an increase in ao leads to a decrease in player 2's strategy in

equilibrium:

9s*i „-, ,

dQ* ft + ft + ft , ft + 02 + 03 ^ n%-*- = Q + Q2T, = -, + CX2J- ro <

As can also be seen, the positive shock to player 2 leads to a decrease in the equilibrium aggregate:

dQ*
7r- <0 -

oa2

In summary, a parameter change that unambiguously increases the marginal payoff for a player,

which should, all else equal, lead to an increase in that player's strategy and the aggregate, in fact

leads to a decrease in the player's strategy in equilibrium as well as a decrease in the aggregate.

Part of the contribution of our paper is to provide minimal conditions to ensure that "perverse"

results, such as those described in the previous example, do not apply. In particular, such results

are ruled out in nice aggregative games by the local solvability assumption mentioned above. In

addition to providing minimal conditions for general comparative static results and significantly

weakening the conditions that are available in the literature (for example, for models of patent

races, contests, and public good provision), our approach is also useful because it highlights

the common features that ensure "regular" comparative static results. These results are made

possible by the alternative approach we use for deriving comparative static results (the more

familiar approaches in the literature rely on the implicit function theorem and lattice-theoretic

tools in the case of supermodular games).

Our approach can be explained as follows. Consider a general comparative static problem

written as

A • ds = —b-dt,

where dt G R is the change in some exogenous variable, ds G R^ designates the induced change

in the endogenous variables, A is an M x M matrix and b is an Af-dimensional vector. An

important question is to specify the conditions under which we can sign ds "robustly"—meaning

without specifying numerical values for the elements of the matrix A and vector b. Cast in

this generality, the conclusion is somewhat depressing: to obtain such results it is necessary to

ascertain the sign of the elements of A -1
. But even when A is symmetric negative definite, we

In other words, player 2's payoff function exhibits increasing differences in S2 and Q2 (Topkis (1978)). This is

an equivalent way of defining a "positive shock" when strategy sets are one-dimensional and payoff functions are



can do this only when one of the following two additional (and stringent) conditions hold: (i)

when A is a Metzler matrix, that is, it has non-negative off-diagonal elements, or (ii) when A is a

Morishima matrix, that is, it becomes a Metzler matrix when we reverse the sign of one or more

variables.
4 The only general case where these conditions are satisfied is provided by supermodular

games. Since many games that arise in applications are not supermodular, much of the applied

literature imposes additional parametric restrictions in the context of specific games to derive

comparative statics results. The discussion above highlights that many of these conclusions may

not be robust and in general there are no systematic investigations of when the specific conclusions

enjoy such robustness.

Our alternative approach is not to impose parametric restrictions, but to exploit the aggrega-

tive nature of the games in question and note that what is often of economic interest is not the

entire vector ds, but the behavior of the appropriate aggregate, or just one of its coordinates (the

latter corresponds to deriving robust results for a single player as opposed to all players). With

this perspective, robust and general comparative static results can be obtained under considerably

weaker conditions. Our contribution is to suggest this perspective and show how it can be made

operational.

Our paper is related to a number of different strands in the literature. Comparative static

results in most games are obtained using the implicit function theorem. The main exception is

for supermodular games (games with strategic complements). Topkis (1978, 1979), Milgrom and

Roberts (1990) and Vives (1990) provide a framework for deriving comparative static results in

such games. These methods do not extend beyond supermodular games.

More closely related to our work, and in many ways its precursor, is Corchon (1994). Corchon

(1994) provides comparative static results for aggregative games with strategic substitutes, but

only under fairly restrictive conditions, which, among other things, ensure uniqueness of equi-

libria. These conditions are typically not easy to check in many applied problems. In contrast,

we provide general comparative static results for aggregative games with strategic substitutes

without imposing any additional assumptions. We also provide parallel but stronger results for

nice aggregative games without strategic substitutes. Another similarity between our paper and

Corchon (1994) is that both make use of the so-called backward reply correspondence of Selten

(1970). In an aggregative game, the backward reply correspondence gives the (best response)

strategies of players that are compatible with a given value of the aggregate. 5 In a seminal paper,

4
See Bassett et al (1968) and Hale et al (1999).

The first systematic study of aggregative games (German: aggregierbaren Spiele) can be found in Selten (1970).

After defining aggregative games, Selten proceeds to define what he calls the Empassungsfunktion (Selten (1970),

p. 154), that is, the backward reply function of an individual player. As Selten proves, the backward reply

correspondence is single-valued (a function) provided that the player's best-response function has slope greater



Novshek (1985) used this correspondence to give the first general proof of the existence of pure-

strategy equilibria in the Cournot model without assuming quasi-concavity of payoff functions

(see also Kukushkin (1994)). Novshek's result has since been strengthened and generalized to a

larger class of aggregative games (e.g., Dubey et al. (2006) and Jensen (2007)) and our results on

games with strategic substitutes utilize Novshek (1985)'s construction in the proofs. 6 Our results

on "nice" aggregative games blend the backward reply approach with the equilibrium comparison

results reported in Milgrom and Roberts (1994) and Villas-Boas (1997).
7

The rest of the paper is organized as follows. Section 2 provides basic definitions. Section

3 presents a number of common examples, which can be cast as aggregative games. Section 4

provides the general comparative static results for aggregative games with strategic substitutes.

Section 5 generalizes and strengthens these results for "nice" aggregative games, which feature

payoffs that are continuous and (pseudo-)concave in own strategies. Section 6 shows how the

results from Sections 4 and 5 can be used to obtain general characterization results in various ap-

plications. Section 7 discusses how these results can be extended to games with multi-dimensional

aggregates and Section 8 provides additional generalizations of the results presented in Section 5.

Section 9 briefly discusses Walrasian Nash equilibria (cf. footnote 2). Section 10 concludes and

the Appendix contains the proofs omitted from the text.

2 Basic Definitions

In this section, we introduce some basic definitions.

Let r = (iri, Si,T) l€j denote a noncooperative game with a finite set of players 1 = {1,...,/},

and finite-dimensional strategy sets 5, C RN . In addition, T C RM is a set of exogenous pa-

rameters with typical element t € T. We will focus on how the set of equilibria of T changes in

response to changes in t.

Throughout the rest of the paper we assume that the joint strategy set

than —1. The assumptions imposed by Corchon (1994) imply that the slope of players' best-response functions lie

strictly between -1 and 0, so that the backward reply correspondence is both single-valued and decreasing. Neither

is necessarily the case in many common games and neither is imposed in this paper.
6 Novshek's explicit characterization of equilibria is similar to the characterization of equilibrium in supermodular

games that uses the fixed point theorem of Tarski (1955). Both of these enable the explicit study of the behavior

of "largest" and "smallest" fixed points in response to parameter changes. Tarski's result is used, for example, in

the proof of Theorem 6 in Milgrom and Roberts (1990).

More specifically, our proofs repeatedly use that the smallest and largest fixed points of a continuous function

from a subset of real numbers into itself will increase when the curve is "shifted up" (see Figure 1 of Villas-Boas

(1997) or Figure 2 of Milgrom and Roberts (1994)).



is compact (in the usual topology) and the payoff functions

TTj : S x T -> R

are upper semi-continuous for each i E X. Let

Ri{s-i, t) = arg max ^(s,, s_ 2 , £)
•s,e5,

denote the best response correspondence (with the standard notation S-i 6 S-i =
Yijjti Sj)- Given

the compactness and upper semi-continuity assumptions, the correspondence Ri is non-empty-

and compact-valued, and upper hemi-continuous.

We next define the notion of an aggregator.

Definition 1 (Aggregator) A mapping g : S —
» R^ (with K < N) is an aggregator if it is

continuous, increasing and separable across the players, i.e., if there exists a strictly increasing

function H : RK —
> R^" and increasing functions hi : St —> R^ (for each i£l) such that:

(1)

Throughout this paper K is referred to as the dimension of the aggregate. For most of the

analysis (in particular, until Section 7), we impose K = 1, but throughout there are no restrictions

on N. In particular, except Corollary 3 in Section 8, none of our results require N — 1 (one-

dimensional strategy sets). The requirement that g is increasing in s ensures that both g and

—g cannot be aggregators for the same game. Naturally, since we can change the order on

individual strategies (thus working with —s l instead of Sj for some i), this requirement is not very

restrictive. Common examples, such as the sum of strategies g(s) — X^?=i sj> satisfy the definition

(with hi(si) = Si and H(z) = z). Two other simple examples are g(s) — (ajSj 4- . .. + oms'n )

1^
,

S C RN , and g(s) = ^=1^, S C R^_+ where ay > (for each j) and > 0, which are,

respectively, a CES function and a Cobb-Douglas function. 8

Remark 1 (Differentiability and Aggregation) In the case of one-dimensional strategy sets,

Definition 1 is the standard definition of separability when g is strictly increasing (see, e.g.,

Gorman (1968)). It can be easily established that when g is twice continuously differentiable,

Ar = K = 1, and / > 3, it is separable if and only if the "marginal rate of transformation"

between any two players i and j is independent of the other players' actions; that is,

D s ,g(s)

DS3 g(s)
= hij(si, Sj) for all s 6 S (2)

8
In the first case /ii(s s ) = Q^sf (with Si > 0) and H(z) = z

l/a
. In the second hi(s t ) = a;log(s,) and H(z) =

exp(z) (again with Si > 0).



where h%j : Si x Sj —> ii is a function of Sj and Sj, but not of any s
q
with q ^ i,j. More generally,

when g is twice continuously differentiable, strictly increasing, and / > 3, it may be verified that

it satisfies Definition 3 if and only if there exist increasing functions fi : St x RK —> RN such that

for each player i 6l:

Ds,g(s) = fi{si,g{s)) for all s e S. (3)

When g is increasing (and not necessarily strictly increasing), as is the case in Definition 1,

(3) is still implied provided that g is also twice continuously differentiable. This observation will

play an important role in Section 5. Clearly, equation (3) also gives an alternative and often very

convenient way of verifying that a strictly increasing function g is an aggregator.

Definition 2 (Aggregative Game) The game Y = (tt,, 5.,,T),gi is aggregative if there exists

an aggregator g : S —> K^ and a reduced payoff function

K

for each player i such that

IL : Si x RK x T

Yli{si,g{s),t) = ni (si,s-it t)

.

(4)

Clearly, an aggregative game is fully summarized by the tuple ((11*, Si) tej,g, T).

Another key concept we will use is games with strategic substitutes.
9 We say that the payoff

function 7r,(s,, s_,-, t) exhibits decreasing differences in Sj and s- z if for all s\ > Sj, the "difference"

7Ti(s^, s_j, t) - 7Tj(sj,s_i,t) is a decreasing function in each of the coordinates of s_j G 5_ t
C

fl£iv(j-i)_ \\
rhen 7Ti }s twice differentiable, this will hold if and only if D^. s 7Tj(si,s_i, t) is a non-

positive matrix for all j ^ i. The payoff function m(si,s-i,t) is super-modular in s, if 7r 2 (s 2 V

Si, s-i,t) + 7Ti(sj A Sj, s-i, t) > 7r,(sj, s_;, t) + 7Ti(si, s_j, t) for all s z , Sj e Si (and s_ t G 5
1

-,, t G T).

Here Sj V s t (s t A s
? ) denotes the coordinatewise maximum (minimum) of the vectors s, and s t .

Naturally, this definition requires that s t V s r and s, A Sj are contained in S
t
whenever Sj, s, £5,.

i.e., Sj must be a lattice. When strategy sets are one-dimensional, supermodularity as well as the

lattice-structure of strategy sets are automatically satisfied, so only decreasing differences remains

to be checked. For multi-dimensional strategy sets, supermodularity holds for twice differentiable

payoff functions if and only if D^n
smiTi(si, S-i, t) > for all m ^ n (where s" and sj1 denote the

nth and mth components of of the strategy vector s r of player i).

9When a game does not feature strategic substitutes, we will impose additional conditions, and in particular,

we will focus on "nice games" that satisfy certain concavity and differentiability conditions. Since we do not make
use of these until Section 5, we do not introduce this concept until then.



Definition 3 (Strategic Substitutes) The game F = (7iv, Sj)iex is a game with strategic sub-

stitutes if strategy sets are lattices and each player's payoff Junction TTi(si,S-i,t) is supermodular

in Si and exhibits decreasing differences in s, and s_,.

Equivalently, we will also say that a game has (or features) strategic substitutes. A game that

is both aggregative and has strategic substitutes, is an aggregative game with strategic substitutes.

Notice that decreasing differences usually is straightforward to verify in aggregative games. In

fact, when the aggregator g is a symmetric function there will only be one condition to check for

each player. For instance, consider an aggregative game with linear aggregator g(s) = Y2J= i
s
j

and one-dimensional strategy sets, so that 11^ ( Sj, J2j=i sj' — 7ri( s ii 5 -ii *) ^ ni
*s sufficiently

smooth, then decreasing differences is equivalent to nonpositive cross-partials, i.e., D^ s tt{ =

Dj
2
n,' + D^Ri < 0. This immediately implies that if decreasing differences holds for some

opponent j, it must hold for all opponents.

Remark 2 (Strategic Substitutes and Decreasing Differences in s and Q) Unless players

take Q as given (as in Walrasian Nash equilibria in Section 9), there is no tight relationship between

strategic substitutes and the condition that Yli(si,Q) exhibits decreasing differences in Si and Q
(the latter may be thought of as "strategic substitutes in Si and the aggregate Q"). For example,

suppose that AT = 1, g(s) = ^q=i s^ ar>d assume that payoff functions are twice differentiable.

Then strategic substitutes requires that D^
s

I1j(sj, J2q=i
sq) = D^^-iisi, Q) + ^22^»(s*i Q) - ®

where Q = ]T\=i s q- Decreasing differences in s, and Q requires that Df2^i{si,Q) < 0. Clearly

neither condition implies the other. If .D^IMs^Q) < 0, then our strategic substitutes condition

is weaker and we can have D^2^U(si, Q) > in a game with strategic substitutes.

Finally, we define an equilibrium in the standard fashion.

Definition 4 (Equilibrium) Let ((U l ,Si) iei,g,T) be an aggregative game. Then s*(t) =

(si(£), . . . ,s*j(t)) is a (pure-strategy Nash) equilibrium if for each player i 6 X,

s*{t) £ argmaxni (s ! ,g(s J ,sl l
),t).

3 Examples of Aggregative Games

In this section, we present several games that have been widely studied in the literature. In each

case, we show how they can be cast as aggregative games. For now, we focus on games with one-

dimensional aggregates, returning to the those with multi-dimensional aggregates in Section 7.

Throughout this section, we drop dependence on the parameter vector t <E T to simplify notation.

8



3.1 Cournot Competition

As already mentioned in the Introduction, Cournot games are aggregative games. Consider the

following generalized-Cournot game. There are / firms, each choosing their quantity m € X{ c K+.

The market price faced by firm i is

Pi = Pi{qi,Q)

,

where

Q : Xi x ... x Xj.-> R+

is an index of aggregate quantity. We assume that Q is separable and strictly increasing in each

of its arguments (hence it is an aggregator). Firm i's profits are

n, (ft, Q) = iTi fe, q-i) = Pi (qi, Q) q%
- c

?; (qr ) ,

where q (qi) is an increasing function representing firm i's costs. It is clear that this is an

aggregative game.

The most familiar case is that of Cournot competition with homogeneous products, where

Q — Y^i=j qi anc^ Piilii Q) = P (Q)- In this case, provided that P is a nonincreasing and concave

function of Q, this is also a game with strategic substitutes (as defined in Definition 3). Indeed,

for q\ > qi, it is straightforward to verify that

m {& q-i) - n [qu q-i) = P{Q + q[- qi) q[ - q (<?0 - P (Q) <?, + c, (q t )

is decreasing in qj for each j j^ i.

It is also straightforward to add a technology choice to this model. This extension is interesting,

among other things, for the analysis of technological investments in oligopolistic industries. In

particular, suppose that the cost function of each firm is Cj (qi, a,i) for some measure of technological

investment a t € A,. In addition, there is a cost of technological investment given by C, (a,). In

this case, we have

U l (ql ,a l ,Q) = m (ql ,q- l ,a l ,a- i )
= Pl (q l ,Q)ql

- Ci(qi,a,i) - C, (a t )

.

We return to an analysis of this model in Section 6.

3.2 Bertrand Competition

Similarly, models of Bertrand competition with differentiated products typically correspond to

aggregative games. In such models, firms choose their prices, pz £ A', C R+. Suppose that firm i

is able to sell quantity qx given by

qi = Qi (Pi,P)

,



where

P : Xi x ..... x Xi -> K+

is a price index (and again P is separable and strictly increasing in each of its arguments). Firm

i profits are given by

7i"t {Pi, P-i) = n t (pi, P) = piQi (pi, P) - a (Qi (pi, P))

.

Clearly, this is again an aggregative game. Perhaps the most commonly studied case is the

constant elasticity of demand (Dixit-Stiglitz) model of monopolistic competition, where

cr-l

/
1

\

P

and a corresponds to the elasticity of substitution between products in the representative con-

sumers' utility function, while Qi(pi,P) = mp~aPa ~ l

, with m > 0, corresponds to the total

spending of the representative consumer. The reduced payoff function of firm i can then be

written as

IT fa, P) = mpl-op*- 1 - Cl (mp-°P°- 1

) .

3.3 Patent Races

The following model of patent races due to Loury (1979) highlights how various different models of

innovation can be cast as aggregative games. Suppose that / firms are competing for an innovation

and the value of the innovation to firm i is Vl > 0. The model is in continuous time, and each

firm chooses a constant R&D intensity at every date, denoted by s,. Firm i generates a flow rate

of innovation of hi (sj) as a result of this R&D. The cost of R&D is c; (s,). Both h x and Ci are

increasing functions. The first firm to innovate receives the prize. All firms discount the future

at the rate R > 0. It can be shown that firm i's expected profits can be written as

/ Vi-h {Si) • exp - Ir + ]T h,{ Sj
)
It) dt- Cl (s

It is straightforward to verify that this is an aggregative game with the aggregator given by

3.4 Models of Contests and Fighting

Loury's model, of patent races described in the previous subsection is a special case of models

of contests and fighting, for example, as developed by Tullock (1980) and Dixit (1987). These

10



models often arise in the context of political economy models or in the analysis of conflict and

wars.

Suppose that / players exert effort or invest in their guns or armies in order to win a contest

or fight. Again denoting the strategy (corresponding to effort or guns) by Si, player i's payoff can

be written as

TTi (Si,S-i) = Vi -. r- - Ct [Si)
,

* + ff(£j=iM*j))

where again c,. : 5, —> R+ is the cost function, hi,,.,, hi, and H are strictly increasing functions,

and R > 0. The aggregator in this case is

g(s) = H l^h^)

and reduced payoff functions can be written as

^(Si, Q) = ITi (Si, S_j) = Vi — ' - Ci(si).
it + (4

It is also useful to note that neither the model of the patent race discussed in the previous

subsection nor the more general contest models discussed here are games of strategic substitutes

(or complements). For example, suppose that h's and H are given by the identity function, so

that Q — X^7=i sj- Then, it can be verified that player i will respond to an increase in opponents'

strategies by increasing the strategy (strategic complements) if S{ > R + 5Z 7
jjSj, while she will

decrease her strategy (strategic substitutes) if S{ < R+ J2j^i sj'

3.5 Private Provision of Public Goods

Consider the public good provision model of Bergstrom et al. (1986). There are / individuals, each

making a voluntary contribution to the provision of a unique public good. Individual i maximizes

her utility function

U, I Ci^Sj + s

subject to the budget constraint Cj + ps t
= m,. Here m t > is income, c, private consumption.

and s z is agent i's contribution to the public good, so that 5Z,=i sj +s is total amount of the public

good provided. The exogenous variable s > can be thought of as the baseline (pre-existing)

level of the public good that will be supplied without any contributions.

Substituting for c,, it is easily seen that this is an aggregative game with reduced payoff

function given by

IT Is^^s^m^p,^] =u, m t -psu ^2sj 4
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The conditions under which this will also be a game with strategic substitutes are discussed in

Section 6.

3.6 Models with Externalities

Many models in macroeconomics, environmental economics, search theory, team theory, and other

areas feature externalities from some average of the actions of others.
10 Most generally, in these

problems the payoff of player i can be written as 7Tj (su g (s)) for some aggregator g (s). Naturally,

these games are aggregative. While some such games are also supermodular (for example, when

Si and g (s) are "complements"), this is generally not the case. For example, we can think of

a situation in which s t corresponds to research effort. Over a certain range, research by others

increases the knowledge available to all researchers, so that strategies are complements. However,

over a certain other range, various researchers might be competing against each other, so that

strategies become substitutes. It is also possible that there might be different types of researchers,

such that some of them are "imitators," who benefit from aggregate research, g (s), while others

are "innovators," who are, directly or indirectly, harmed by an increase in g(s).

4 Aggregative Games with Strategic Substitutes

We first present comparative static results for aggregative games with strategic substitutes (de-

fined in Section 2).
11 Recall that strategy sets are not one-dimensional, but throughout this

section we assume that the aggregate is one-dimensional (i.e., in terms of Definition 1, K = 1 and

N is arbitrary). In addition, recall also from Section 2 that throughout payoff functions are upper

semi-continuous and strategy sets are compact—but no quasi-concavity or convexity conditions

are imposed. The main result of this section is that "regular" comparative statics can be obtained

in such games under no additional assumptions. We begin by noting the following:

Theorem 1 (Existence) Let T be an aggregative game with strategic substitutes. Then T has a

Nash equilibrium (i.e., it has at least one pure-strategy Nash equilibrium).

Proof. See Jensen (2007).

10
See, for example. Diamond (1982) for an early example in the context of search externalities and Cooper and

John (1988) for a discussion of a range of macroeconomic models with such externalities.
u Note that instead of Definition 3 (superrnodularity and decreasing differences), we could equivalently work with

quasi-supermodularity and the duai single-crossing property of Milgrom and Shannon (1994). In fact our results

will be valid under any set of assumptions that ensure that best-response correspondences are decreasing in the

strong set order (e.g., Topkis (1998)). Quasi-supermodularity and dual single-crossing are ordinal conditions and

so hold independently of any strictly increasing transformations of the payoff functions. In particular, a payoff

function 7ri(s,,S-,, t) satisfies the dual single-crossing property in s, and S-i if for all s^ > s, and s'_, < s_,, (i)

7ri(s'i,s- t ) > m(si,S-i) =*• 7r,(s^, s'_,) > 7rj(si,s'_i), and (ii) m(s'i,s-i) > ir,(Ji. s -i) =*• 7rt(Si,s_ 1 )
> Wi(si,sLi).

12



Pure-strategy equilibria are not necessarily unique. In general there will be a (compact) set

E(t) C S of equilibria for each parameter t e T. When there are multiple equilibria, we focus

on the equilibria with the smallest and largest aggregates. The smallest and largest equilibrium

aggregates are defined as

QM) = min g(s). (5)
seE(t)

Q*{i) = max g{s), and (6)
se£(()

The following theorem establishes certain important properties of the smallest and largest

aggregates, which will be used in the subsequent results.

Theorem 2 (Smallest and Largest Aggregates) For all t £ T, Q*(t) and Q*(t) are well

defined (i.e., smallest and largest equilibrium aggregates exist). Furthermore the function Q r :

T —
» K is lower semi-continuous, the function Q* : T —

> R is upper semi-continuous, and thus

when there is a unique equilibrium aggregate for all t, Q*{t) — Q*(t) is continuous on T.

Proof. See Section 11.1.

Our first substantive result, presented next, addresses the situation where an exogenous pa-

rameter teTCK "hits the aggregator," meaning that it only affects the function g. This result

is both of substantive interest and also enables us to prove the subsequent characterization results

(in Theorems 4 and 5). More formally, we refer to parameter t as a shock to the aggregator (or

aggregate) when we can write Hi(.Si,G(g (s) , t)) = ni(s,t) all i, where g : S —
» R designates the

aggregator, and G(g(s),t) is continuous, increasing, and separable in s and t (see Definition 1 for

the relevant definition of separability). The simplest case would be when the aggregator is linear,

so that n, (si, t + £j=1 .sj) = 7Ti(.s, t) with G(g (s) ,t) = t + £J=1 8j and g (s) = EJ=i *j- Ex-

amples of shocks to the aggregator include a shift in the inverse demand function in the Cournot

model (Section 3.1), a change in the discount factor R in a patent race (Section 3.3), or a change

in the baseline provision level of the public good s in the public good provision model (Section

3.5).

Notice that when t is a shock to the aggregator and t is increased, the marginal payoff of

each player decreases (provided that marginal payoffs are defined).
12 Hence we would intuitively

expect an increasing shock to the aggregator to lead to a decrease in the aggregate. The next

theorem shows that this is indeed the case.

12By strategic substitutes, agent i's marginal payoff must be decreasing in opponents' strategies and hence, since

G is increasing in s and t, an increase in t must lead to a decrease in marginal payoff.
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Theorem 3 (Shocks to the Aggregator) Consider a shock t G T C RM to the aggregator

in an aggregative game with strategic substitutes. Then an increase in t leads to a decrease in

the smallest and largest equilibrium aggregates, i.e., the functions Q*(t) and Q*(t) are (globally)

decreasing in t.

Proof. See Section 11.2.

Though the result in Theorem 3 is intuitive, we have already seen in Example 1 in the Intro-

duction that such results need not hold in simple games, even in simple aggregative games. In

Section 6.3 we present an example of a game with strategic substitutes where a shock leads to a

counter-intuitive equilibrium change in the aggregate.

The proof of the theorem exploits the constructive proof of existence of Novshek (1985) (suit-

ably generalized to fit the present framework). This approach provides an explicit description of

the largest (and smallest) equilibrium aggregate, allowing us to determine the direction of any

change resulting from a shock to the aggregate. We should also add that this approach to com-

parative statics results is, to the best of our knowledge, new. A major advantage of this approach

is that it provides global results that are valid independently of any differentiability and convexity

assumptions.

Theorem 3 also allows us to derive a general result on the effect of "entry", i.e., enables a

comparison of equilibria when an extra player is added to the game. The entrant, player 7+1

when the original game has I players, is (by definition) assigned the "inaction" strategy minS/+ i

before entry (e.g., when Sj+\ = [0, s], inaction corresponds to "zero", sj+ \ = 0; for instance,

zero production or zero contribution to the provision of a public good). Define the aggregator as

g(s) = g(si, . . . ,sj, sj+ i). Then we have a well-defined aggregative game both before and after

entry; before entry there are I players and sj+i is just a constant, after entry this is an I + 1

player aggregative game in the usual sense. As elsewhere, here increasing means "either strictly

increasing or constant". Thus the entrant may choose "inaction" (zero production in the Cournot

model, say) and thus the equilibrium after entry may remain the same. 13

Theorem 4 (Entry) In an aggregative game with strategic substitutes, entry of an additional

player will lead to a decrease in the smallest and largest aggregates of the existing players in

equilibrium (and a strict decrease if the aggregator g is strictly increasing and the entrant does

not choose inaction after entry).

Proof. This result follows from Theorem 3 by observing that the entry of an additional player

corresponds to an increasing shock to the aggregate of the existing players. In particular, let

13To strengthen the results to "strictly increasing," one could impose additional boundary conditions.
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g(s\, . .
.

, sj,si+i) be the aggregator where 7+1 is the entrant. Since g is separable, we necessarily

have g(s\, . .

.

, sj, s/+i) = H(g(s\, . .
.

, sj), s/+i) where H and g satisfy the above requirements for

a shock to the aggregate (see, for example, Vind and Grodal (2003)).

Note that Theorem 4 only shows that the aggregates of the existing players decrease. 14
It is

intuitive to expect that the aggregate inclusive of the entrant should increase. Nevertheless, this

is not true without imposing further assumptions (see Remark 9 in the proof of Theorem 3 for a

detailed description of when entry will decrease the aggregate). In the next section, we will show

that, under additional assumptions, entry can also be shown to increase the overall aggregate (see

Theorem 8).

The next theorem presents our most powerful results for games with strategic substitutes.

These can be viewed as the strategic substitutes counterparts of the monotonicity results that are

well-known for supermodular games. One difference, however, is that with strategic substitutes,

the results apply only when shocks are idiosyncratic, i.e., to shocks t{ that affect only a single

player, i £ I. More formally, a change in U is an idiosyncratic shock to player i if payoff functions

can be written as

n(s,ti) = Ui(si,g(s),ti), and

7Tj(s,ij) = Uj(sj,g(s)) for all j jt i.

Let us also introduce the notion of a positive shock.

Definition 5 (Positive Shock) Consider the payoff function in = ni(si,s-i,ti). Then an in-

crease in ti is a positive shock ifni exhibits increasing differences in Sj and t.

It is straightforward to verify that Definition 5 gives the correct notion of "positive shock";

Ki exhibits increasing differences if only if player i's "marginal payoff', 7r;(s£, s_i, t) - 7r,;(s,, s_j, t)

for s'i > Si, is increasing in t. Moreover, as is well known, when -n^ is sufficiently smooth, it

will exhibit increasing differences in s, and t if and only if the cross-partial is nonnegative, i.e.,

Dg
t
ir > for all s and t. The single-crossing property may replace increasing differences in

the previous definition without changing any of our results. We also define smallest and largest

equilibrium strategies for player i analogously to the smallest and largest equilibrium aggregates.

Theorem 5 (Idiosyncratic Shocks) Let ti be a positive idiosyncratic shock to player i. Then

an increase in ti leads to an increase in the smallest and largest equilibrium strategies for player

14
This is the reason why we do not explicitly write Q'(t) and Q»(t). Instead, we could have defined Q*(t) =

max( si S( ) 6 b(() j(si s;) and Q,(t) = min (si si)eB(t) 9{si, ,si), and the statement would be for Q'{t)

and Q.(t). But this additional notation is not necessary for the statement or the proof of the theorem.
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i, and to a decrease in the associated aggregates of the remaining players (which are, respectively,

the largest and smallest such aggregates).

Proof. See Section 11.3.

A simple corollary to Theorem 5 also characterizes the effects of a positive shock on payoffs.

Corollary 1 (Payoff Effects) Assume in addition to the conditions of Theorem 5 that all payoff

functions are decreasing [respectively, increasing] in opponents ' strategies and that player i 's payoff

function is increasing [respectively, decreasing] in the idiosyncratic shock tj. Then an increase in

ti increases [respectively, decreases] player i 's payoff in equilibrium and decrease [respectively,

increases] the payoff of at least one other player.

Proof. For player i, 7Ti(s^, g(s'), t') < ni(s'
i
,g(s'

i
,s'[_

i
,t") < 7Ti(s",g(s"),t"). Since the strategy of

some player j (for j ^ i) decreases, we must have ^2k-tj hk{s'k ) < Hfc^i ^fc( sl-)-
Consequently,

TT
5
{s'^g{s")) < Tr^, g{s';,s'_

3
)) < ir^gW). m

5 Nice Aggregative Games

We now extend the framework of the previous section to aggregative games without strategic

substitutes. For this purpose, we focus on "nice" games where payoff functions are differentiable

and concave (or pseudo-concave) in own strategies.
15 We also impose an additional local solvability

condition. As in the previous section, we focus on games where the aggregator is real valued (i.e.,

K = 1 in terms of Definition 1).

The following definition introduces the notion of "nice" aggregative games formally. Although

we include a boundary condition as part of this definition, when strategy sets are one-dimensional

this can be replaced by a weaker "regularity" condition (see Definition 8).

Definition 6 (Nice Aggregative Games) An aggregative game T is said to be a nice aggrega-

tive game if the aggregator g is twice continuously differentiable, each strategy set is compact and

convex, and every payoff function ni is twice continuously differentiable, and pseudo-concave in

the player's own strategies. Furthermore, we have that whenever Si £ dS% (with dSz denoting the

boundary of the strategy set Si) and (v — Si)
TDSl iXi(s, t) < for all v £ Si, then DSi nz (s, t) = 0.

That is, the first- order conditions D St ni(s, t) = are required to hold whenever a boundary strategy

for player i is a (local) best response.

15Weinstein and Yildiz (2008) use a similar definition of a "nice game," except that they also impose one-

dimensional strategies and concavity (rather than pseudo-concavity).
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Remark 3 (Pseudo- concavity) Recall that a differentiable function iTi is pseudo-concave (Man-

gasarian (1965)) in S* if for all Si, s'
t
£ Sl :

{s'i
- S l )

TDSt
TTl {s i .S- l ,t) < => 7Tj(s-,S_j,t) < 7rj(Sj,S_i,i).

Naturally, any concave function is pseudo-concave. Pseudo-concavity implies that the first-order

conditions DSi nl (s,t) = are sufficient for s t to maximize 7Tj given s_i and L That first-order

conditions are sufficient for a maximum is what we use in the proofs. Pseudo-concavity is not a

necessary condition for this to hold. For example, if TV = 1 and DSi iTi(s, t) = => D^
s .7Tj(s, t) < 0,

it is easy to see that the first-order condition will be sufficient for a maximum (and in fact, that

the maximum will be unique). Quasi-concavity (or even strict quasi-concavity) does not imply

the sufficiency of first-order conditions for a maximum in general.

Remark 4 (Inada-Type Boundary Conditions) Note also that the boundary condition in

Definition 6 does not rule out best responses on the boundary of a player's strategy set, dSi-

Instead, it simply requires first-order conditions to be satisfied whenever a local best response

is on the boundary. Consequently, this boundary condition is weaker than the standard "Inada-

type" conditions ensuring that best responses always lie in the interior of strategy sets (since when

best responses never lie on the boundary, first-order conditions vacuously hold for best responses

on the boundary). 16

As is well-known, the concavity or pseudo-concavity conditions ensure that best response

correspondences are convex valued (they are also upper hemi-continuous as mentioned at the

beginning of Section 2). The existence of a pure-strategy Nash equilibrium therefore follows by

Kakutani's fixed point theorem. 17 For the record, we note this result in the following theorem

(proof omitted).

Theorem 6 (Existence) Suppose that T is a nice aggregative game. Then T has a (pure-

strategy) Nash equilibrium.

16However, all boundary conditions cannot be dispensed with. To see this, consider an iV-dimensional game,

TV > 1 (with each player having TV-dimensional strategy sets) without any interior best responses. The boundary

of this Ar-dimensional game can then be mapped bijectively into an N - 1-dimensional game. But since first-order

conditions never have to hold in the TV-dimensional game, the local solvability condition below (Definition 7) would

never have to hold. In effect, the A' — 1-dimensional "reduction" is therefore unrestricted and consequently, no

general results can be derived for such a game.
17Without convex best response correspondences, a Nash equilibrium may fail to exist in an aggregative game

(unless the game also features strategic substitutes or complements). See Jensen (2007). Example 5 for an example

of an aggregative game where a pure-strategy Nash equilibrium fails to exist even though strategy sets are one-

dimensional, convex, and there are only two players.
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A nice aggregative game does not necessarily have a unique equilibrium. Similarly, the local

solvability condition introduced below does not guarantee uniqueness. We therefore deal with the

possible multiplicity of equilibria as in the previous section and study the behavior of the smallest

and largest equilibrium aggregates, Q,(t) and Q*(t). Theorem 2 from the previous section still

applies and the smallest and largest equilibrium aggregates continue to exist and are, respectively,

lower and upper semi-continuous, in t.

We next introduce the local solvability condition, which will play a central role in our anal-

ysis in this section. Let us simplify notation by defining D\Yli(si,Q,t) = JDSiIL,(sj,Q, i) and

DoU-iisi, Q, t) = DQUi(si, Q, t). Using the fact that g is a twice continuously differentiate aggre-

gator, the marginal payoff for player i can be expressed as:

D^is^t) = D 1n i (s ll g(s),t) + D 2n i (s l ,g{s),t)fl {s l ,g{s)). (7)

Where fi{si,g{s)) = DSi g(s) (cf. Remark 1).

Equation (7) shows that the marginal payoff is a function of the player's own strategy S{ and

the aggregate g{s). Let us also define a function ^, : SixRxT —> RN that makes this dependence

explicit:

9i(8i, Q, t) = DiUiisi, Q, t) + D2Ik{si,Q, t)fi{Si , Q). (8)

Note that this function contains the same information as (7), though it also enables us to

separate the direct and indirect effects of s t (the first one corresponding to a change in ^ holding

Q constant). Naturally,

<&i(sh Q) = 0^ [DSi TTi{s, = and g(s) = Q].

Differentiating $! l with respect to s, yields an N x N matrix DSt ^i(s l ,Q,t) e RNxN . The

determinant of this matrix is denoted by \DSi $>i(si,Q,t)\ G E. If strategy sets are one-dimensional,

\DSi ^i(si, Q, 0| = DMsi,Q,t)eR.

We now introduce a key concept for the study of comparative statics of nice games.

Definition 7 (Local Solvability) Player i G I is said to satisfy the local solvability condition

if \D3 .^i(si, Q,t)\^0 whenever * t (s,, Q,t)=0 (for Sl G Sit Q G {g(s) : s G S}).

The local solvability condition requires that the determinant of DSt^ is nonzero on the sub-

space where \Pj = 0. The term refers to the fact that if this determinant were equal to zero, there

would not be a unique solution to a set of equations of the form Z?Si 5'
l

• a = b (again defined on

the subspace where $, = 0), where a and b are TV-dimensional vectors. This type of equation
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arises when constructing the backward reply correspondences for the purposes of comparative

static analysis. This discussion also motivates the term "local solvability condition"

.

We may now also state a weaker boundary condition that can replace, when N = 1, the one

in Definition 6.

Definition 8 (Regularity) For N = 1 we say that ^i is regular if, for any t G T, there does

not exist a Q e X such that DSi ^ l (s l , Q, t) > for all s, e {s, : * l (s l , Q, t) = 0}.

Given the relationship between ^i and DSi iXi in (8), DSi ^i > on the subspace where VE', =

can be viewed as "perverse". The regularity conditions in Definition 8 rules out such perverse

cases and is straightforward to check.

Remark 5 (Ordinality) It also useful to note that local solvability condition is ordinal: it is

independent of the choice of the coordinate system and holds for any strictly increasing transfor-

mation of the aggregator. Firstly, local solvability holds for the payoff function 7Tj(s, t) if and only

if it holds for $(7r,(s, t)) where $ : M —
> K is any strictly increasing and twice continuously differ-

entiable function, with derivative denoted by $' (where differentiability is needed here to ensure

that the transformed payoff function is also twice continuously differentiable). In particular, for

all s- and Q'
, we have that

$i(4Q', t) = & $'(n,-( Si) Q, t))Vi{Si , Q, t) = 0.

Ordinality of the local solvability condition follows if |DBi ^(Sj, Q')\ ^ implies

\D s,[&{Il i {s'i ,Q
,

,t))V i {s'i ,Q',t)]\ + 0. This is true since, when *,(^,Q',i) = 0,

|^[$'(IIi (a'f) Q
/

1 t))*i(5i,Q
,

,t)]|==,*'(IIiW,g',t))l^
i
*i(s{ )

Q')|.

Secondly, the local solvability condition is also independent of the coordinate system. In

particular, we can replace each strategy vector s, by transformed variable vector s %
= ,

4>l {si)

where ipi : RN —> R is a diffeomorphism for each i. The payoff function of player i then becomes

'Ki( 1P^
1
{si)i4'Zl{s-i)it), where ipz} =

{'<l'7

1

)j^i- It can be verified that 7r, satisfies the local

solvability condition in s (in the original variables) if and only if the same condition is satisfied

for any such (smooth) change of variables. In particular, local solvability in the new coordinate

system requires

Z^- 1^)*^- 1 ^)^) = =» \DSi \Dip;
l(^ l (v-

1
(s l )-Q)}\ ± 0.

Since Dxp-'
1
(s l )^ l

(^'l

{s l ), Q) = <=> *,• (i>~
1

(.§,), Q) = {Dip;
1 ^) is a full rank matrix), we

have that
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This establishes the desired result.

That local solvability is independent of any strictly increasing transformation of the aggregator

implies that instead of the aggregator g(s) we may use any aggregator g(s) = f{g{s)) where

/ : E —> R is a strictly increasing and differentiable function. To see this simply note that

Ui{si,g{s)) = Ui{siJ- l
{g{s))) where g{s) = f(g(s)). Denoting the new aggregate by Q = g(s),

it is clear that $i(si,Q) = $i(si,Q). Evidently then \DSi ^i(si,Q)\ = |Z?Sl * l (s l , Q)\ and the

conclusion follows.

Remark 6 (Weaker Conditions) Some version of the local solvability condition cannot be

dispensed with. Example 1 in the Introduction shows the possibility of perverse comparative

statics when the local solvability condition does not hold (see also Section 6.3). Nevertheless,

the results presented in this section continue to hold under weaker conditions. In particular, the

following generalization would be sufficient, though the condition in Definition 7 is easier to state

and verify. The alternative condition is as follows: when &i[si,Q, t) = 0, there should be open

neighborhoods J\fs ,
and A4q of Sj and Q, respectively, and a continuous map fy : AAq —» J\fSi

such that for each Q e Mq, b l {Q) is the unique solution to
<

i' l (.Si 1
Q,t) = in J\fSi . This implies

that that the first-order condition $i(si,Q, t) = admits a local solution in Si as a function of

Q. Naturally, in view of the implicit function theorem, this weaker condition follows from our

local solvability condition in Definition 7. Other alternatives to the local solvability condition are

discussed in Section 8.

We next introduce the appropriate notion of positive shocks for nice games. This generalizes

the notion of a positive shock introduced in Definition 5. Because the aggregator is separable it

can be written as g(s) = H (Xw=i ^j( sj) )
where hi : Si —* M. and H : M. —* M (cf. Definition 1).

It is clear that the term hi(si) fully "captures" agent i's effect on the aggregate. Intuitively, our

generalized definition of a positive shock requires that an increase in the exogenous variable leads

to an increase in the term hi(si) and thus increases the aggregate given everyone else's strategies.

In comparison, our previous definition, Definition 5, made the stronger requirement that a player's

(smallest and largest) strategy should increase with the exogenous variable.

Definition 9 (Positive Shocks) A change in the parameter vector t is a positive shock to

player i if the largest and smallest selections from this player's "composite" best responds corre-

spondence /if(Ri(s_,, t)) are increasing in t. That is, consider t < t! 6 T and let hi o r
t (s-i, t) and

hi o r .(s-j, t) be the maximal and minimal elements of ^^(/^(s-i, t)) C R. Then t is a positive

shock to player i if and only if hi ori (s- l ,t) < h l
or

i (s- l ,t') and h x
o rj(s-j, t) < hj o rj(s_,;, t')

for all s_, G 5_j.
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Note that if a player i's strategy set is a lattice, his payoff function is supermodular in si,

and exhibits increasing differences in s; and t, then the shock will be positive. But in general, a

positive shock need not satisfy these "supermodularity" conditions. For example, a shock t is a

positive shock for a player when it does not affect the player's payoff function (regardless of any

lattice or supermodularity conditions).

Our first result in this section characterizes the comparative statics of the aggregate and

strengthens Theorem 3 from the previous section. In particular, in contrast to Theorem 3, this

results applies whether or not the shock hits the aggregate, and it also applies whether or not the

shock hits one, two, or all of the players.

Theorem 7 (Aggregate Comparative Statics) Consider a nice aggregative game where each

player's payoff function satisfies the local solvability condition. Then a positive shock t E T leads

to an increase in the smallest and largest equilibrium aggregates, i.e., the functions Q*(t) and

Q*(t) are (globally) increasing in t.

The result remains valid without any boundary conditions on payoff functions when N = 1

and \l/j is regular.

Proof. See Section 11.4

Our next result extends Theorem 4 in the previous section. In particular, it strengthens

Theorem 4 to a statement for the overall aggregates (after the entry of the new additional player

instead of the aggregates of the strategies of existing players). Let us define £ Si to stand for

"inaction". As in the previous section, the convention is that / + 1th player takes this action

before entry.

Theorem 8 (Entry) Let Q*(I) and Q*{I) denote the smallest and largest equilibrium aggregates

in a game with I £ N players that satisfies the conditions of Theorem 7 and where St
C R^\

6S, for all i G I. Then for any I £ N, Q»(7) < Q,(I + 1) and Q*(I) < Q*{I + 1), i.e.,

entry increases the smallest and largest aggregates in equilibrium. Moreover, if the aggregator

g is strictly increasing and the entrant chooses a non-zero strategy following entry, the above

inequalities are strict.

Proof. See Section 11.5.

Finally, our third result strengthens Theorem 5 from the previous section and characterizes

the comparative statics of individual strategies. It is useful to note Theorem 9 is the first (and

only) result among those presented in this and the previous section that uses the implicit function
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theorem. As such it is a purely local result and also requires that the equilibrium strategy studied

is interior.

Theorem 9 (Individual Comparative Statics) Let the conditions of Theorem 7 be satisfied

and consider player i's equilibrium strategy s*(t) associated with the smallest (or largest) equilib-

rium aggregate at some equilibrium s* = s*(t) given t £ T. Assume that the equilibrium s* lies in

the interior of S and that t is a positive shock. Then the following results hold.

• s*(t) is (coordinatewise) locally increasing in t provided that

-[zV^OCO-Or 1*^**.^*).*) > o

• Suppose that the shock t does not directly affect player i (i.e., iTi — m(s)). Then the sign

of each element of the vector Dt s*(t) is equal to the sign of each element of the vector

-[DSi '$>i(s*,g(s*))}~
1
DQ'fyi(s*,g(s*)). In particular, s*(t) will be (coordinatewise) locally

decreasing in t whenever:

Proof. By the implicit function theorem, we have

Ds.%(Si , Q, t)dSi = -DQ$i{si, Q, t)dQ - D2
Sittti(si, Q, t)dt.

The results follow from this observation and the fact that Q increases with t (where Q is either

the smallest or largest equilibrium aggregate).

6 Applying the Theorems

In this section, we return to some of the examples presented in Section 3 and show how the results

of the last two sections can be applied to obtain sharp comparative static results. We first discuss

private provision of public goods and contests, and then turn to a game of technology choices in

an oligopolistic setting, which also illustrates how these results can be applied when strategies are

multi-dimensional.

6.1 Private Provision of Public Goods

In Bergstrom et al. (1986)'s public good provision model described in Section 3.5, agent i's reduced

utility function was given by:
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n, Si, '^Sj,m,p,s = ut m,i - psi, y^ Sj + s

As mentioned in Section 3.5, the aggregator is here simply g(s) = ^2j=i sj- When s* = (s*)i€j

is an equilibrium, we refer to g{s*) = J2i=i s
i

as the aggregate equilibrium provision. Let us

simplify the exposition and notation here by assuming that Ui is smooth and that strategy sets

are intervals of the type Si — [0, s,] C R. The private good will be normal if and only if the

following condition holds for all s 6 5:

- pD\2ux I m %
- ps^ \] sj + s 1 + D\2 Ui m-i - ps lt }] Sj; + s

J

< 0. (9)

\ ^
=i / V i=i

' /

Notice also that the left-hand side of (9) is equal to Z?^
s

11^. Therefore, whenever the private

good is normal, payoff functions exhibit decreasing differences and this is a game with strategic

substitutes (cf. Definition 3). The following result therefore follows directly from the results in

Section 4 (proof omitted):

Proposition 1 Consider the public good provision game presented in Section 3.5 and assume that

the private good is normal. Then there exists a (pure-strategy) Nash equilibrium. Furthermore:

1. An increase in s leads to a decrease in the smallest and largest aggregate equilibrium provi-

sions.

2. The entry of an additional agent leads to a decrease in the smallest and largest aggregate

equilibrium provisions by existing agents.

3. A positive shock to agent i will lead to an increase in that agent's smallest and largest equi-

librium provisions and to a decrease in the associated aggregate provisions of the remaining

I — I players.

Proposition 1 holds under the assumption that the private good is normal and exploits the

results from Section 4. Alternatively, we can use the results from Section 5 when the public good

is (strictly) normal. This is illustrated next. Suppose that the payoff function is pseudo-concave

(which was not assumed for Proposition 1). Then the public good will be (strictly) normal if and

only if

Ds^iist^) = p
2 Diiu l (m l -psu Q) - pD2\ul(m l

- psu Q) < (10)
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for all s 6 5\ 18 Moreover, whenever (10) holds, an increase in m,i (or a decrease in p) constitutes

a positive shock, i.e., D^.m Ili > and Z)^ II,- < 0, respectively (cf. Definition 9). The next

proposition then follows from Theorems 7-9 (proof omitted). 19

Proposition 2 Consider the public good provision game presented in Section 3.5 and assume that

the public good is (strictly) normal, that payofffunctions are pseudo-concave in own strategies and

that strategy sets are convex. Then there exists a (pure-strategy) Nash equilibrium. Furthermore:

1. Any positive shock to one or more of the agents (e.g., a decrease in p, or increases in one or

more income levels, mi,... ,mj) leads to an increase in the smallest and largest aggregate

equilibrium provisions.

2. The smallest and largest aggregate equilibrium provisions are increasing in the number of

agents.

3. The changes in 1 and 2 above are associated with an increase in the provision of agent i if

the private good is inferior for this agent, and with a decrease in agent i 's provision if the

private good is normal and the shock does not directly affect the agent.

It is also useful to note that Proposition 2 could be obtained even under weaker conditions by

using Corollary 3 presented in Section 8 below. In particular, it can be verified that if the public

good is normal (condition (10) holding as weak inequality) and payoff functions are quasi-concave

(rather than pseudo-concave), the conditions of this corollary are satisfied and Proposition 2

remains valid. We used Theorems 7-9 here since Corollary 3 is not introduced until Section 8.

6.2 Models of Contests and Fighting

Recall that the payoff function of a participant in a contest can be written as

TT, (Sj, S_,) = Vx j
1—- r- - Ci (Si) , (11)

fl + ff(Ej=iM«i)

where Sj denotes agent i's effort, hi : K_|_ —> R+ for each i 6 T and H : M.+ —> M.+ . As mentioned in

Section 3.4, contests generally feature neither strategic substitutes nor complements. Therefore,

the results in Section 4 do no apply, nor do any of the well-known results on supermodular games

mentioned in the Introduction. In this case, the most obvious strategy for deriving comparative

18The equivalence between (strict) normality of the public good and (10) follows since dsi(m,,p, 53, =« Sj)/dm =

a{pDl2 u, -p2
£>iju,).

1 Note in particular that (strict) normality implies local solvability as well as regularity so the statements in

Proposition 2 are valid without any boundary conditions on payoff functions.
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static results is to use the implicit function theorem. This is indeed what most of the literature

does. Nevertheless, the implicit function theorem also runs into difficulties unless we make ad-

ditional, strong assumptions. For this reason, previous treatments have restricted attention to

special cases of the above formulation. For example, Tullock (1980) studied two-player contests,

while Loury (1979) focused on symmetric contests with (ad hoc) stability conditions. More re-

cently, Nti (1997) provided comparative statics results in the (symmetric) Loury model of patent

races, assuming that H = id (the identity function), hi — h for all i and concave, and linear costs.

Using the results of Section 5, we can establish considerably more general and robust results on

contests and fighting games.

These results are provided in the following proposition (and also generalize the existence result

of Szidarovszky and Okuguchi (1997)).

Proposition 3 Consider the contest games introduced in Section 3.4 and suppose that H is

convex, hi and Ci are strictly increasing, and that the following condition holds:

Then there exists a (pure-strategy) Nash equilibrium. Furthermore:

1. The smallest and largest aggregate equilibrium efforts are increasing in any positive shock

(e.g., a decrease in R or an increase in V% for one or more players).

2. Entry of an additional player increases the aggregate equilibrium effort.

3. There exists a function n : R -^>M such that the changes in parts 1 or 2 above are associated

with an increase in the effort of player i g T and the corresponding equilibrium aggregate

Q* provided that i is "dominant" in the sense that hi (s*) > n (Q*). Conversely, if i is "not

dominant", i.e., h % (s*) < n {Q*), then the changes in parts 1 and 2 decrease player i 's effort

provided that the shock does not affect this player directly (e.g., corresponding to a decrease

in another player's costs).

Proof. See Section 11.6

This proposition can also be extended to the case in which H is not convex. Convexity of

H ensures that the first-order condition DSi irl (si,S- l ) = is sufficient for a maximum, but it is

not necessary for this conclusion. Observe also that the conditions of Proposition 3 are satisfied

if H is the identity function, q is convex, and /i t is concave." Szidarovszky and Okuguchi

°The proof of Proposition 3 shows that the function rj in part 3 is given by
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(1997) prove that these conditions imply uniqueness of equilibrium provided that R = in (ll).
21

Such uniqueness is not necessary or assumed in Proposition 3. In addition, Proposition 3 also

covers important cases where hi is not concave. For example; Hirshleifer (1989) proposes the logit

specification of the contest success function, with H = id (the identity function), and hi(si) = e
fc,s '

(ki > 0), and studies the special case where ki = k for all i under additional assumptions. In

this case, h'[ (si) //iJ(sj) = ki- So if, in addition, costs are also exponential, cz {si) = e liSl
, the

conclusions of Proposition 3 continue to apply provided that ki <U-

6.3 Technology Choice in Oligopoly

As a final application, we consider an important class of games in which oligopoly producers make

technology choices (as well as setting output). These games were mentioned briefly in Section 3.1.

Our treatment here will also illustrate how our results with one-dimensional aggregates can be

applied when strategy sets are multi-dimensional and also clarifies how "perverse" comparative

statics may arise in such games and how it can be ruled out.

Consider a Cournot model with / heterogeneous firms. Let q = (qi, ...,qj)be the output vector

and a = (ai,...,a/) the the technology vector. Let us define Q — Yjjs=iQj as aggregate output.

Profit of firm i is

IL {qi, at, Q) = tt, (<?, a) = qtP (Q) - a {qi,a t )
- Ct (a,)

where P is the (decreasing) inverse market demand, c, is the cost of firm i is a function of its

n(Q
m

)

2H'(H- 1

(Q-)) H"{H' l

(Q~))

(R + Q<) H'(H-HQ'))

Therefore, when, for example, H = h, = id (the identity function), and R = 0, we have n(Q") = Q" /2, and so

player i is "dominant" if and only if s" > Q*/2. In the standard interpretation of a contest, this means that

she is dominant when her probability of winning the prize is greater than 1/2—i.e., when she is a favorite in the

terminology of Dixit (1987). However, this favorite-to-win interpretation does not necessarily apply for more general

games covered by Proposition 3. We therefore use the term "dominant" rather than "favorite".
21 More recently, Comes and Hartley (2005) have proposed a very nice and simply proof of this result based on

what they refer as "share functions". Although Cornes and Hartley do not consider comparative statics, their "share

function" approach could be used to establish results similar to the results in Proposition 3 under these stronger

assumptions if, in addition, one also imposed that R = in (11). R = amounts to assuming no discounting in

patent races and "no wastage" in contests, and is thus quite restrictive.

When R > 0, the "share function" approach cannot be used to derive robust comparative statics. The reason

for this is that the "share function" approach uses the fact that this function is decreasing everywhere, whereas

when R > 0, it may be increasing. To see this, apply the implicit function theorem to the condition $/(si,Q) =
imposing h t {s,) = Si for all i. Rewrite this in terms of "shares", z, = Si/Q, so that [-V, — (R + Q)

2
c"]dzi =

[VRQ- 2 + (R + Qfc" + c[ Q~ 2 {2(R + Q)Q - (R + Q)
2
)]dQ. The coefficient of dz, is clearly negative. When

R = 0, the coefficient of dQ on the right-hand-side is unambigiously positive, hence dz,/dQ < 0, i.e., agent i's

share function is strictly decreasing. But in general, this may fail when R > is allowed. In particular, the term

c
'i

'
Q~ 2

{2{R + Q)Q - {R + Q)
2

) will be positive if and only if Q > R. Clearly, nothing prevents c\ from being

sufficiently large for this term to dominate so that the share function becomes increasing when Q < R.
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quantity and technology choices, and Ci is the cost of technology adoption. Assume that P, a

and Ci (for each i) are twice differentiable, P is strictly decreasing decreasing (P' (Q) < for all

Q), Ci is convex, and dot {qi,a,i) /dqt da,i < (for each z), so that greater technology investments

reduce the marginal cost of production for each firm.

The first-order necessary conditions for profit maximization are

dlXi v'in\ , Din\ dci{qi,ai)— = P{Q)ql + P(Q) =0
dqt oqi

dju _ dci(qi,a,i) dCi(a,i) _
da,i da,i dai

Naturally, we also require the second-order conditions to be satisfied, which here amount to

D\ ,7T 7;
being negative semi-definite. Let us now consider the effect of a decline in the cost

of technology investment by one of the firms (i.e., a shift in Cz ), which clearly corresponds to

a positive shock. The results from Section 5 suggest that we should check the local solvability

condition. In particular, consider the matrix

D *-( p '

{Q) -w ~&V (q,,o t
)^i-

\ d2
c , dl

c a2C
\ dq l da l ~da[ daf

for each i. When Cj (qi,a,i) is convex, the matrix

_ ®2c
} _ d2

Ci

dq; dq tda x

_ d 2
c, _ S2

c,

dq l da i 9a 2

is negative semi-definite. Since P' (Q) < and d2
Ci/daf < 0, this is sufficient to guarantee that

|-D\&i| < 0. Therefore, whenever each Cj (g,, a z ) is convex, the local solvability condition is satisfied.

Hence, a decline in the cost of technology investments for one of the firms will necessarily increase

total output. Similarly, the effects of an increase in demand on output and technology choices

can be determined robustly.

Now, the oligopoly-technology game will be a game with strategic substitutes provided merely

that d2
Ci(ql ,a,i)/dql dai < 0.

22 So when technological development lowers the marginal cost of

producing more input, which of course is perfectly reasonable to assume, the results from Section

4 apply whether or not the local solvability condition is satisfied (and whether or not payoff

functions are pseudo-concave in own strategies, etc.). In particular, an equilibrium will exist, and

any positive shock to an individual player will lead to an increase in that player's equilibrium

strategies (q*,a*) and a decrease in the aggregate of the opponents' strategies 53,-_y 9? (note here

22
This condition ensures that payoff functions are supermodular in own strategies. It is easy to check that payoff

functions also exhibit decreasing differences in own and opponents' strategies.
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that the aggregator is one-dimensional, i.e., g(s) = IZjQj' so tne statement on the aggregate

of the opponents' strategies concerns only quantities). The effect of shocks to the aggregate is

determined also (Theorem 3) and so are the effect of entry (Theorem 4) and the impact on payoffs

(Corollary 1).

We next provide a specific example with strategic substitutes where the local solvability condi-

tion is violated. As will become clear, this leads to "perverse" comparative statics conclusions in

the sense that the conclusion of Theorem 7 is violated. Concretely, a positive shock to a player will

be seen to imply a decrease in the aggregate. But we repeat that the above mentioned conclusions

on, for example, individual shocks' effect on individual strategies remain valid.

45°-line

Figure 1: Backward reply correspondences Figure 2: A decrease in marginal costs for the

(dashed). Aggregate backward reply correspon- second firm leads to a decrease in aggregate out-

dence (solid). put from Q' to Q"

.

Suppose that there are only two firms and P (Q) = K — Q for some constant K > 0. Suppose

also that firm l's costs are given by Q.5qf(ai — aj) + Ci(aj) for some differentiable, strictly

increasing and strictly convex function C\. This implies that its payoff function is

7Tf(g,a) = \K-Q)qi - 0.5g?(ai - oi) -Ci(oi).

The first-order conditions for firm 1 can be written as,

K — Q — qi — q-\ (a\ — a{) = 0, and 0.5(75" = Cl( a ])-

Since C\ is strictly increasing, {C[)~ l
is well-defined. {C[)~ l

is strictly increasing since C\ is

strictly convex (and conversely, when (CJ)
_1

is strictly increasing, C\ must be strictly convex). Let

us define G\{z) = (Cj)
_1

(0.52
2

) which will also be strictly increasing. Choosing G\ is equivalent
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to choosing C\. Let

Gi(qi) = — Jig? +7i 9i + 0i>

where 71, <5i > 0, and (3\ < 2, so that the best responds choice of quantity for firm 1 becomes the

solution to the following cubic equation:

K - Q + (/3i
- 1 - qi) 9 i

- 6iqf + liq\ = 0. (12)

Figure 1 plots q\ as a function of Q for a particular choice of parameters (the dashes "inverse-5"

shaped curve). The second dashed curve (the negatively sloped line) shows the same relationship

for firm 2 (92 as a function of Q). Concretely, firm 2's cost function is assumed to take the form:

[»2 + 0.5/3292 ~~ 72(a2)^
2

] + #2&2- This yields a simple linear relationship between Q and </2 :

= K — Q - iiiqi- The solid line in the figure is the aggregate backward reply correspondence

which shows q\ + 172 as & function of Q (the sum of the two dashed curves). 23

A Cournot equilibrium is given by the solid curve's intersection with the 45°-line in Figure

1. Figure 2 depicts the same aggregate backward reply correspondence as in Figure 1 (solid),

together with a similarly constructed aggregate backward reply correspondence (dashed). The

only difference between the two's parameter values is that for the dashed curve fa is lower.
24

Naturally, a reduction in fa corresponds to a reduction in the marginal cost of firm 2. The

figure shows that such a decrease in marginal costs reduces aggregate output Q. It can also be

verified for the parameters here, the two firms' payoff/profit functions are strictly concave (even

though the cost function of firm 1 is not convex). This example thus illustrates that even in

"nice" aggregative games with strategic substitutes, the local solvability condition is critical for

the conclusion of Theorem 7: Unless the shock hits the aggregate {e.g., an increase in K) so that

Theorem 3 applies, a positive shock may lead to a decrease in the equilibrium aggregate when

the local solvability condition does not hold.

7 Multidimensional Aggregates

We have so far focused on aggregative games with one-dimensional aggregates, i.e., games where

g : S —> E. Many important examples, including the Bertrand game with homogeneous products

discussed in Section 3, require more than a one-dimensional aggregate, g : S —
> RM , M > 1.

Another game with multi-dimensional aggregates is the technology choice game considered in

23The specific set of parameter values yielding the configuration in Figure 1 are: K = 4, /?i — 1 — ot\ = —4.4,

71 = 2.5, <5i = 0.4, and 02 = 40. Note that given these parameter values G\ will be strictly increasing (C\ will be

strictly convex) whenever q\ < 3.125. It is also straightforward to verify that any perturbation of these parameters

leads to the same comparative static results, so that this perverse comparative static is "robust"

.

24
Concretely, 62 = 10 for the dashed curve and 02 = 40 for the solid curve.
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Section 6.3 when technology costs also depend on some aggregate of the technology choices of

other firms, e.g., Cx
— Ct (a*, A) for some aggregate of technology choices A.

In this section, we discuss how some of our results can be extended to this case. To simplify

the exposition we focus on the case where the aggregator takes the form g(s) = Ylj=i sj-
25

^n

this case, naturally, g : S —> RN , hence M = N. We continue to assume that there are I

players and we denote the set of players by 1. In addition, we assume that the game is both

"nice" (Definition 6) and also exhibits strategic substitutes. Then, proceeding as in Section 5, we

define D\Tl l (s l ,Q,t) = DSi JJi(si, Q, t) and Z^II^Si, Q, t) = DQUi(si,Q,t). The marginal payoff

for player i can again then be expressed as:

£ s ,7rt (s, t) = DiU, Si , ]T sj, t + D2Ui sh J2 »j. l
(
13

)

Now denoting the vector of aggregates by Q = X^ 7 =i
sj^ we again define:

%(su Q, t) = Dinifa Q, t) + D2Ik(si, Q, t). (14)

Parallel with the local solvability condition (Definition 7 in Section 5), we will place certain key

restrictions on the ^, functions. These restrictions, together with our focus on nice games with

strategic substitutes, are collected in the following assumption.

Assumption 1 The game F is an aggregative nice game (Definition 6) and in addition, for each

player i, we have:

• (Strategic Substitutes) Si is a compact lattice, and iXi{si, s_j, t) is super-modular in s, and

exhibits decreasing differences in Si and s
3 (for all j ^ i).

• (Strong Local Solvability) Every real eigenvalue of DSi ^i \Si,Y^, 1= \ sj^) i-s negative.

Remark 7 (Strong Local Solvability) That every real eigenvalue of D Si ^/i [si,Y2, = i
sj<t) ^s

negative implies that its determinant is non-zero (this is because DSi $i must have non-negative off-

diagonal elements, see the proof of Theorem 11 for further details). Consequently, local solvability

(Definition 7) is implied by strong local solvability.

Assumption 1 is straightforward to verify because of the following two relationships linking

the usual second-order matrices of 7T, and the gradient of the ^i functions:

25
All of the following results remain valid if we assume instead that g(s) = ((^(sj, . .

.
, s}), . . . ,g

N
(sj', . . . .sf))

with each function g
n
separable. See the beginning of the proof of Theorem 7 for details on how one can transform

such a game into a game with a linear aggregator.

30



DiiS .TTi (s, = DiiSj Hi Si ,^ s
fc , i = Z?^ Si,^ s fcl « for all j ± i, and (15)

Since by (15), Dq^i = D^
iS lit for all j / i, decreasing differences (strategic substitutes)

requires simply that DqYI t (s,, 53;= i
sj'0 *s a non-positive matrix. Next we can sum the two

matrices DSi ^ l and Dq <^ 1 in order to obtain Dg. s .nt
(cf. (15)). Supermodularity holds if and

only if the matrix D^ s TIj has non-negative off-diagonal entries. Finally, strong local solvability

requires that the real eigenvalues of DSi 'i/ l are negative. When DSi
}

i> l is symmetric (which is

often the case in practice), this is the same as £>
Sl ^; being a negative definite matrix. Note also

that concavity of payoff functions in own strategies is implied by Assumption 1 (see the proof of

Theorem 11). Thus, in games with multi-dimensional aggregates the verification of strong local

solvability "replaces" the very similar task of verifying that the Hessian is negative definite. The

concavity implications of Assumption 1 also mean that when this assumption holds, the existence

of a pure-strategy Nash equilibrium follows immediately by Brouwer's fixed point theorem. This

is noted in the following theorem (proof omitted):

Theorem 10 (Existence) Suppose that T satisfies Assumption 1. Then Y has a (pure-strategy)

Nash equilibrium.

We next define the backward reply function of player i again using the first-order conditions:

Si = bi(Q,t) <=> $i(si,<5) = 0. Assumption 1 simplifies matters here by ensuring that each Q
leads to a unique backward reply function (rather than a correspondence), ^(Q.t) 26 For any

given vector of aggregates Q, the gradient of b-i(Q) is also well-defined and is given by:

DQbi(Q,t) = -[DSiVi (bi{Q,t),Q,t)]-
1DQ $i(bi (Q,t),Q 1

t),

and thus
/

DQ b(Q,t) = ^DQ b
]
(Q,t).

3=1

26
Fixing Q, it is clear that the gradient of \Pi(-, Q), DSl 9i(si, Q) (which is a N x TV matrix), is non-singular at any

stationary point. In particular, from strong local solvability, the determinant of DSl 'i/ t (s,,Q) never changes sign and

never equals zero. This immediately implies that there exists a unique critical point (e.g., from the Poincare-Hopf

theorem; Milnor (1965)).
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Let us also recall that an M-matrix is a matrix with positive real eigenvalues and non-positive

off-diagonal entries.
27 We are then ready to state the following multi-dimensional version of

Theorems 3 and 7.

Theorem 11 (Shocks to the Aggregates) Suppose that V satisfies Assumption 1. Let tgTC
M.
N

be a shock to the aggregate, that is, let TTi(s, t) = Hi ( Sj, t.+ J2j=i s
j ) for °^ * e -E, and assume

that the matrix I — [Dq6(Q + t)]~ exists and is non-singular. Then:

• (Sufficency) If the matrixl- [DQb(Q + t)]~
i

is an M -matrix (for allQ andt), an increase

in t £ T leads to a decrease in each component of the equilibrium aggregate vector.

• (Necessity) Conversely, let Q(t') be an equilibrium aggregate given some vector of parame-

ters t' £ T that hits the aggregate. Then if I— [DQb(Q(t') + t')}~
1

is not an M-matrix, there

exists t" > t' such that at least one component of the equilibrium aggregate vector increases

when t is raised from t' to t"

.

Proof. See Section 11.7.

In what follows, we will use the sufficiency part of Theorem 11 to present direct parallels to

the other theorems presented in Section 4. Nevertheless, the necessity part of this theorem is also

noteworthy, perhaps even surprising.

Given Theorem 11, the proofs of the next three theorems closely follow the proofs of the

analogous theorems for the one-dimensional case and are thus are omitted. 28 For the next theorem,

suppose that the default inaction strategy of the entrant now is a vector of zeroes (or, more

generally, the least element in the entrant's strategy set).

Theorem 12 (Entry) Suppose that T satisfies Assumption 1 and the sufficiency conditions in

Theorem 11. Then entry of an additional player leads to a decrease in the aggregates of the

existing players. In addition, at least one of the aggregates of all players must increase with entry,

and strictly so unless the entrant chooses inaction.

Theorem 13 (Idiosyncratic Shocks) Suppose that T satisfies Assumption 1 and the sufficiency

conditions in Theorem 11. Then a positive idiosyncratic shock to player i E T leads to an increase

27
Recall that an M-matrix and an inverse M-matrix are also P-matrices [i.e., all of their principal minors are

positive). Moreover, if a matrix has a non-positive off-diagonal, it is an M-matrix if and only if it is also a P-matrix.
28The only new feature is the second statement of the entry theorem (that at least one of the aggregates must

increase upon entry). This is a direct consequence of the fact that the backward reply function of the existing

players, b, is decreasing (this is proved as part of Theorem 11). Indeed, let Q
b be the vector of aggregates before

entry, Q
a
the aggregates after entry, and s/+i > be the strategy chosen by the entrant. Since b is decreasing,

Q
a < Q

b
implies: < Q

b - Q
a = b{Q b

) - b(Q a
)
- si+\ < --si+i which in turn implies si+i = Q

b - Q
a = 0.
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in this player's equilibrium strategy and to a decrease in the associated aggregates of the existing

players.

Remark 8 (Sufficient Conditions for Two-Dimensional Aggregates) When N = 2 (g :

S —> R 2
), the sufficient conditions are particularly easy to verify. In particular, I— [Z?q&(Q + £)]

_1

exists and is a non-singular M-matrix when — [Dq6(Q + t)\~
l

is a non-singular M-matrix. This

is generally the case (regardless of N), since the real eigenvalues of [I — [Z?q6(Q + r)]
_1

] are equal

to (Ai + 1), . .
. , (Am + 1), where Ai, . .

.
, Am > are the real eigenvalues of — [Dqb(Q + t)]~ l

.

In this two-dimensional case, -[Dq6(Q + f)]"
1

is a non-singular M-matrix if and only if the

determinant of Dqo(Q + t) is positive. To see this first note that since DQb(Q + t) is a non-

positive matrix, its trace is non-positive. So when the determinant is positive, both eigenvalues

must be negative (when they are real; if they are not real, then there is nothing to check because

the definition of an M-matrix above requires only that the real eigenvalues be positive). It then

follows that — [JDq6(Q + t)\~
l

is a matrix with non-positive off-diagonal elements and positive

(real) eigenvalues, and thus it is a non-singular M-matrix.

Now since Dqb(Q + t) = Ylj=i ^Q^jiQ + 0> a sufficient condition for Dqb(Q + t) to have a

positive determinant is that each of the matrices DQbl (Q+t), i = 1, ... ,1 is quasi-negative definite

(xTDQbi(Q + t)x < for all x ^ 0). This is because the sum of quasi-negative definite matrices

is quasi-negative definite, and a 2 x 2 quasi-negative definite matrix has a positive determinant.

The next corollary exploits this observation.

Corollary 2 (Symmetric Games with Two-Dimensional Aggregates) Suppose that T

satisfies Assumption 1 and N = 2. Consider a shock to the aggregate. Then if the matrix

Dq^ 1 (s 1 , ^2 ,=i sj + t) has a positive determinant for all s £ S and t G T, a positive shock to

the aggregates will lead to a decrease in both of the aggregates in any symmetric equilibrium. In

addition, the results in Theorems 12-13 continue to hold when the existing players choose identical

strategies before and after entry (Theorem 12), and the players that are not affected by the shock

choose identical strategies before and after the arrival of the idiosyncratic shock (Theorem IS).

Proof. The aggregate in a symmetric equilibrium is given by Q = Ib l (Q + t) where i 6 lis

any of the (identical) players. From Theorem 11, a positive shock to the aggregate decreases the

aggregate if only if [I - [DQb(Q + i)]
_1

is a non-singular A/-matrix. From Remark 8, we only need

to verify that -[DQ b(Q + t)]~
l = -[DQ bz (Q + 01

-1
/ 1 is a non-singular M-matrix. When N = 2,

this holds if and only if the determinant of DQbi(Q+ t) is positive. This is the case when Dq <
S> 1 has

a positive determinant, because Ds^i has a positive determinant and Dbi = —\DSi
'$>

1
}~ 1 Dq';1! 1

.
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8 Nice Games without Differentiability

In this section, we extend the results for nice games presented in Section 5. Recall that the main

assumption of Section 5, local solvability, presupposes that payoff functions and the aggregator

are twice continuously differentiable. In this section, we show that robust comparative statics can

be derived without differentiability as long as a non-differentiable version of the local solvability

condition is imposed. We limit attention to the case of one-dimensional strategy sets (hence the

aggregate must be one-dimensional also). Recall that an aggregator always has a representation

of the form g(s) = H (]Ci=i hj(sj)), where H and h\,

.

.
.

, hi are strictly increasing functions.

Therefore, for any Q in the range of g, we have Q = g(s) <=> s, = h~ l H~ 1

(Q) - J2j& ^j( sj)

Intuitively, this means that if we know the aggregate Q and the strategies of / - 1 players, we

also know the strategy of the last player. Let us also define Gi(Q, y) = h~ l [H~ 1

(Q) - y). Recall

from Milgrom and Shannon (1994) that a function f{Q,y) satisfies the single-crossing property

in (Q, y) if, for all Q' > Q and y' > y, we have

f(Q',y) > (>) f(Q,y) = f(Q\y') > (>) f(Q,y')-

The main result in this section, presented next, shows that an appropriately-chosen single-

crossing property can replace the local solvability condition (Definition 7) and thus extends our

results to nice games without differentiability.

Theorem 14 (Comparative Statics for Nice Games without Differentiability) Consider

an aggregative game with one-dimensional convex, compact strategy sets, a separable aggregator,

payoff functions that are upper semi- continuous and quasi-concave in own strategies. Suppose

that n t (G t (Q, y), Q, t) (for each i 6 T) satisfies the single-crossing property in (Q,y). Then the

conclusions of Theorems 7 and 8 continue to hold. Moreover, provided that payoff functions are

twice differentiable and the equilibrium is interior, the conclusions of Theorem. 9 also hold.

Proof. See Section 11.8.

Notice that differentiability is needed in Theorem 9 in order to even state this theorem's main

conclusions. Clearly, the more interesting part of Theorem 14 concerns Theorems 7-8.

The next corollary uses the insights of Theorem 14 to provide another useful and simple

alternative to the local solvability condition for nice games.

Corollary 3 Consider a nice aggregative game with linear aggregator g(s) = y\ Sj, one-dimensional

strategy sets (i.e., N — 1), and assume that for each player i:

DSi $?i(si,Q) <Q for all Si andQ (17)
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Then the conclusions of Theorems 7, 8, and 9 continue to hold.

Proof. Since g is linear, Gi(Q,y) = Q — y and ilj(G ;(Q , y) , Q , t) = U L (Q — y,Q,t) (for each

i e 1). The condition D
5i
*,(s l , Q) < is equivalent to -D s,*j = -D^TU - D^II, > for all s,

and Q. This is in turn equivalent to IT^Q - y,Q,t) exhibiting increasing differences in Q and y.

Since increasing differences implies the single-crossing property, the results follow from Theorem

14.

Note that Condition (17) in Corollary 3 requires that Ds^i(si,Q) < for all Si and Q. By

contrast, the local solvability condition requires DSi ^i(si,Q) ^ 0, but only when s, and Q are

such that $i(si,Q) = 0. Thus neither condition generalizes the other. If (17) holds with strict

inequality throughout, i.e., D^^^Sj, Q) < for all s, and Q, then local solvability would be

implied, though the weak inequality makes this condition easier to check and apply in a variety

of examples (recall the discussion in Section 6.1).
29

9 Walrasian Play

When the aggregate Q results from the "average" of the strategies of a large number of players,

it may plausible to presume that each player i e T will ignore the effect of its strategy on

the aggregate. In this case, each player ?' e 1 will maximize the reduced payoff function II, =

n i (.s l , Q, t) with respect to Si taking Q as given. This is the behavior assumed in standard general

equilibrium theory with a finite (but large) number of households. With analogy, we refer to the

situation in aggregative games where players ignore their impact on aggregates as Walrasian play

and the associated Nash equilibrium as a Walrasian Nash Equilibrium.^ For such games, our

results can be strengthened (and the proofs in fact become more straightforward). Here we briefly

outline the main results in this case, focusing on one-dimensional aggregates {i.e., K = 1).

Definition 10 (Walrasian Nash Equilibrium) Consider an aggregative game Y = ((IT, Sl ) iej, g, T).

The strategy profde s*(t) = (s\(t), . . . ,s*j(t)) is called a (pure-strategy) Walrasian Nash equilib-

rium given t <£ T if holding Q(t.) = g(s*{t)) fixed, we have for each player i = !,...,! that,

s*i(t) e IU{Q,t) = arg max 11,(5,, Q(0,0 • (18)
steS,

29
It can also be noted that (17) with strict inequality makes up "half of what Corchon (1994) calls the "strong

concavity" condition. The other "half of Corchon's strong concavity condition requires payoff functions to exhibit

strictly decreasing differences in own and opponents' strategies. This is not assumed in our analysis.
30Such "aggregate-taking" behavior has been studied extensively within evolutionary game theory, see for example

Vega-Redondo (1997), Possajennikov (2003), and Schipper (2004).

35



Notice that under Walrasian play, a player's best responses i^(Q,f) will depend on the ag-

gregate Q and the exogenous variables t. An increase in Ms a positive shock for player i if the

smallest and largest selections from Ri{Q, t) are both increasing in t. The game features strategic

substitutes if each Si is a lattice, 11^ is supermodular in Si, and exhibits decreasing differences in

Si and Q. When N = 1 and Hi is twice continuously differentiable, a sufficient condition for t

to be a positive shock is that D^.
t
Hi(si, Q, t) > (for all Q and t), and a sufficient condition for

strategic substitutes is that D^.QlLi(si,Q,t) < (for all Q and t).

As in previous sections, we maintain the compactness and upper semi-continuity assumptions.

Also, since as before, there may be multiple equilibria, we continue to focus on the smallest and

largest equilibrium aggregates Q*{t) and Q*{t) (cf. equations (6) and (5) in Section 4).

Theorem 15 (Comparative Statics for Walrasian Nash Equilibria) Consider an aggrega-

tive r and assume that the (reduced) payoff function IIj(sj, Q,t) is quasi-concave in S{ G Si for

each i El. Then a Walrasian Nash equilibrium exists. Moreover, we have that:

1. Theorems 7, 8, and 9 hold for Walrasian Nash equilibria. In particular, a positive shock to

one or more of the agents will lead to an increase in the smallest and largest equilibrium

aggregates, and entry increases the smallest and largest equilibrium aggregates. In addition,

suppose that payoff functions are smooth and the equilibrium is interior. Then for each

i £ I, s*(t) is locally coordinatewise increasing in a positive shock t provided that:

-[p^iiiWW, Q(t)\ t)]-
lLiQni(8W), Q(t), t) > o,

and if Hi = Hi(si,Q) (i.e., the shock does not directly affect player i), then the sign each

element of the vector Dts*(t) is equal to the sign of each element of the vector

-{Dl Si
Ui (S*(t),Q(t)T

1D2
SiQUi (S*(t),Q(t)).

2. IfT features strategic substitutes, then Theorems 3, 4> and 5 continue to hold for Walrasian

Nash equilibria.

Proof. (Sketch) For part 1, simply define Z(Q,t) = {g{s) G K : s, € Ri(Q,t) for all ?}. In

view of our compactness and upper semi-co'ntinuity assumptions, Z (Q, t) is a convex-valued,

upper hemi-continuous correspondence. Then we can proceed as in the proof of Theorem 7 but

using Z (Q,t) instead of the function q. Figure 10 in the Appendix makes it clear that the general

argument remains valid if instead of the function q, we use a convex-valued correspondence. Given

this result, the proofs of Theorems 8, and 9 apply with minimal modifications.
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For part 2, note that a shock to the aggregate is a negative shock (by decreasing differences

in s, and Q), hence it leads to a decrease in the smallest and largest aggregates by the conclusion

from part 1. The conclusions of Theorems 4 and 5 are established by straightforward modifications

of the original proofs.

A noteworthy implication of Theorem 15 is that all our results for nice aggregate games con-

tinue hold for a Walrasian Nash equilibria without imposing local solvability or differentiability

and boundary conditions (only quasi-concavity is imposed to ensure that best response corre-

spondences are convex-valued). This highlights that the challenge in deriving robust comparative

static results in aggregative games lies in limiting the magnitude of the effect of own strategies

on the aggregate. It should also be noted that part 2 of the theorem is false if payoff functions

are not assumed to be quasi-concave, though the results do hold if the game instead features

strict strategic substitutes (i.e., if strictly decreasing differences is assumed instead of decreasing

differences in Definition 3).
31 The proof of Theorem 15 also shows that any separability assump-

tions on the aggregator g are unnecessary: the conclusions hold provided that g is an increasing

function (without further restrictions).

10 Conclusion

This paper presented robust comparative static results for aggregative games and showed how

these results can bo applied in several diverse settings. In aggregative games, each player's payoff

depends on her own actions and on an aggregate of the actions of all players (for example,

sum, product or some moment of the distribution of actions). Many common games in industrial

organization, political economy, public economics, and macroeconomics can be cast as aggregative

games. Our results focused on the effects of changes in various parameters on the aggregates of

the game. In most of these situations the behavior of the aggregate is of interest both directly

and also indirectly, because the comparative statics of the actions of each player can be obtained

as a function of the aggregate. For example, in the context of a Cournot model, our results

characterize the behavior of aggregate output, and given the response of the aggregate to a shock,

one can then characterize the response of the output of each firm in the industry.

We focused on two classes of aggregative games: (1) aggregative of games with strategic

substitutes and (2) "nice" aggregative games, where payoff functions are twice continuously dif-

ferentiable, and (pseudo-)concave in own strategies. For example, for aggregative games with

strategic substitutes, we showed that:

31 However, an equilibrium is not guaranteed to exist in this case because of lack of quasi-concavity. To apply the

result mentioned in the text one must thus first (directly) establish the existence of an equilibrium.
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1. Changes in parameters that only affect the aggregate always lead to an increase in the

aggregate (in the sense that the smallest and the largest elements of the set of equilibrium

aggregates increase).

2. Entry of an additional player decreases the (appropriately-defined) aggregate of the strate-

gies of existing players.

3. A "positive" idiosyncratic shock, defined as a parameter change that increases the marginal

payoff of a single player, leads to an increase in that player's strategy and a decrease in the

aggregate of other players' strategies.

We provided parallel, and somewhat stronger, results for nice games under a local solvability

condition (and showed that such results do not necessarily apply without this local solvability

condition).

The framework developed in this paper can be applied to a variety of settings to obtain

"robust" comparative static results that hold without specific parametric assumptions. In such

applications, our approach often allows considerable strengthening of existing results and also

clarifies the role of various assumptions used in previous analyses. We illustrated how these results

can be applied and yield sharp results using several examples, including public good provision

games, contests, and oligopoly games with technology choice.

Our results on games with multi-dimensional aggregates (Section 7) are only a first step in this

direction and our approach in this paper can be used to obtain additional characterization results

for such games. We leave a more systematic study of games with multi-dimensional aggregates

to future work. We also conjecture that the results presented in this paper can be generalized to

games with infinitely many players and with infinite-dimensional strategy sets. In particular, with

the appropriate definition of a general aggregator for a game with infinitely many players (e.g.,

along the lines of the separability definitions in Vind and Grodal (2003), Ch. 12-13), our main

results and in fact even our proofs remain valid in this case. Similarly, with the appropriate local

solvability condition in infinite dimension, all of our results also appear to generalize to games with

infinite-dimensional strategy sets. The extension of these results to infinite-dimensional games is

another area for future work.

38



11 Appendix: Proofs

11.1 Proof of Theorem 2

For each player i, define the correspondence GrfA,] : T —> 2
s

by,

Gr[Ri](t) = {seS-. Sl e Ri(s-U t)} ,teT

This correspondence is upper hemi-continuous and has a closed graph: if s™ G Rl (s
r
^l

,t
m

)

for a convergent sequence (s
m

,t
m

)
—

> (s,t), then by the fact that R^ itself has a closed graph.

Si £ Ri(s-i, t). Moreover, E(t) = DiGr[/i']. The correspondence E : T —
> 2

s
is thus given by the

intersection of a finite number of upper hemi-continuous correspondences, and so is itself upper

hemi-continuous. In particular, E has compact values {E(t) C 5, where 5 is compact). Therefore,

the existence of the smallest and largest equilibrium aggregates, Q*{t) and Q*{t), follows from

the continuity of g and from Weierstrass' theorem. Upper semi-continuity of Q* : T —
> R follows

directly from the fact that g is upper semi-continuous and E is upper hemi-continuous (see

Ausubel and Deneckere (1993), Theorem 1). Lower semi-continuity of Q* follows by the same
argument since Q*(t) = — maxs€E^ —g(s) and g is also lower semi-continuous. Finally, when

the equilibrium aggregate is unique for all t, Q*(t) = Q*{t) and so is both upper and lower

semi-continuous and thus continuous in t on T.

11.2 Proof of Theorem 3

Recall that 7Tj(s, t) = IT(si, G(g (s) , t)) all i, where g : S —> R is separable in s and G(g (s) , t) is

separable in (s,t). This implies that,

G(g(s),t) = H

where g (s) = M (X^gz ^ (
s i)) ls the aggregator of Definition 1, and M is a strictly increasing

function. Moreover, recall that best response correspondence Ri (s_j, t) is upper hemi-continuous

for each i 6 J. Let h l (Sl ) be the image of the strategy set 5j under /i t (•) and define the "reduced"

best response correspondence R^ I hx{t) + ]Ci
r# hjisj) )

= ^( s -?i f°r eacn *• We can then define

the following upper hemi-continuous (possibly empty-valued) correspondence:

Bt (Q, t) = [i] G hi(Si) : r? e hi o Ri(hT {t) + Q-77)}

for each plaver i. Let
/

Z(Q,t) = Y^B: (Qj)
j=i

be the aggregate backward reply correspondence associated with the aggregate Q — Yli hj(sj).

Clearly, the "true" aggregate g (s) = M I J3 hj(sj) ) is monotonically increasing in the aggregate

Q = ^2j hj(sj). Therefore, we may without loss of generality focus on J2j ^-j( sj) instead of g(s)

in the following.

Let q(Q, t) G Z(Q, f) be the aggregate "Novshek-selection" shown as the thick segments in the

figure below.
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Figure 3: Constructing the aggregate "Novshek-selection"

A sketch of how this selection is constructed follows.
32 The first step is to pick Qmax > 0,

such that q < Qmax for all q 6 Z(Qmax ,t). To ensure that such a "point below the diagonal"

exists, we can extend each of the correspondences hi o R^ along the lines of Kukushkin (1994) (see

p. 24, 1.18-20). The details of this procedure need to be modified as follows. Let Di denote the

subset of R upon which h %
o R4 is defined, i.e., write 7 G Dj if and only if hi 0/^(7) ^ 0. Since

hi o Ri is upper hemi-continuous, D{ is closed. It is also a bounded set since R4 C 5, and each

5j is compact. Consequently, D t has a maximum, which we denoted by di. Then extend hi o R^

from A to A U {di,Q
max

] by taking fo o Rd (d) = _L
( all a! G (a(

2 ,Q
mo:r

]. Here 1, can be any

small enough element (for each player iel) such that Y^i -Li < Qmax , J-i < min /i, o Rt (di), and
Qmax _ j_ i g

^^QTTiaij^ Defining the aggregate backward reply correspondence Z as above, it is

clear that Z(Qmax , t) = £ t
± t < Qmax .

Next let D C (-00, Q""1
*] denote the subset of R, where Z(-, t) is defined, i.e., those Q < Qmax

for which Bi(Q, t) 7^ 0, all i, The set D is compact by the same argument as in the previous

paragraph. Now, abusing notation slightly, let us denote a closed "interval" in D by [Q
1

,Qmax ].

That is, \Q',Q
max

]
= D n {Q : Q 1 < Q < Qmax }. Given such an interval [Q',Q

max
], we say

that a function q : [Q\ Qmax ]
x {t} —

> R is a maximal decreasing selection (from Z) if for all

Q G [Q', gmaa:
], the following are true: (i) q(Q, t) > Z for all Z G Z(Q, t) (c 2

R
); (ii) q{Q, t) < Q;

and (iii) the backward reply selections bi(Q,t) G Bi(Q,t) associated with q (i.e., backward by
selections satisfying q(Q, t) = V bj(Q, t) all Q) are all decreasing in Q on \Q'

, Qmax ]
(i.e., Q" > Q'

=>bi(Q",t)<bi(Q',t)).
Denote by ft. C 2R the set of all "intervals" \Q'

, Qmax \ upon which a maximal decreasing

selection exists. Notice that {Q
max

} G fi so f2 is not empty. f7 is ordered by inclusion since for

any two elements u>',w" in Q, w" = [<?", Qmai ]
C [Q',QmQ:r ]

= a/ «=> Q" < Q'. A chain in SI is a

totally ordered subset (under inclusion). It follows directly from the upper hemi-continuity of the

backward reply correspondences that any such chain with an upper bound has a supremum in fl

(i.e., O contains an "interval" that contains each "interval" in the chain). Zorn's Lemma therefore

implies that Q. contains a maximal element, i.e., there exists an interval [Q
mm

,

Q

max
] G f2 that is

not (properly) contained in any other "interval" from fl.

The "Novshek-selection" is the maximal decreasing selection described above and defined on
the interval [Q

min
,Q

max
]. See the figure.

The main step in proving the existence of equilibrium consists in showing that Qmm is an
equilibrium aggregate (it is easy to see that if Qmin

is an equilibrium aggregate, then the associated

backward replies form an equilibrium). Since we have q(Q
min

, t) < Qmin by construction, this

can be proved by showing that q(Q
min

,t) < Qmin cannot happen. This step is completed by
showing that if q(Q

min
, t) < Qmin holds, then q can be further extended "to the left" (and the

32The construction here is slightly different from the original one in Novshek (1985), but the basic intuition is

the same. Aside from being somewhat briefer, the present way of constructing the "Novshek-selection" does not

suffer from the "countability problem" in Novshek's proof pointed out by Kukushkin (1994), since we use Zorn's

Lemma for the selection.
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extension will satisfy (i)-(iii) above). This would violate the conclusion of Zorn's Lemma that
jQnnn^ Qmaxj

js maximal, thus leading to a contradiction. The details of this step are identical to

those in Novshek (1985) and are omitted.

Note that since hx is an increasing function, q{Q, t) will be locally decreasing in Q if and only

if it is locally decreasing in t (the effect of an increase in t or Q enter qualitatively in the same way
in the definition of Bi, and so the effect of an increase on q must be of the same sign). Figures

4-7 illustrate the situation for t' < t" . The fact that the direction of the effect of a change in Q
and t is the same accounts for the arrows drawn. In particular, any increasing segment will be

shifted up and any decreasing segment will be shifted down because the shock hits the aggregate

(this feature does not necessarily hold for other types of shocks).

Z(QJ) ("
(

Q

Z(Q,t) rf

Qrj,WO.'

1 x„^
^ ^*Sls**«fcw

"^e
Figure 4: Case I Figure 5: Case II

Figure 6: Case III Figure 7: Case IV

There are four cases: Either the equilibrium aggregate varies continuously with t, and q is

decreasing (Case I) or increasing (Case II). Otherwise, the equilibrium aggregate "jumps" when t

is increased (Cases III and IV). [The figures depict the situations where the equilibrium aggregate

jumps from Q' to Q"
. This is associated with an increase in t. If instead t decreases, case III

reduces to Case I and Case IV reduces to Case II.]

Importantly, if the equilibrium aggregate jumps, it necessarily jumps down (and so is decreas-

ing in t). The reason is that an increase in t will always correspond to the graph of q being shifted

to "the left'
-

(that is another way of saying that any increasing segment will be shifted up, and
any decreasing segment shifted down). Hence no new equilibrium above the original largest one

can appear, the jump has to be to a lower equilibrium. See the figures. We now consider Cases I

and II in turn.

Case I: In this case we have Q < Q such that q(Q, t) — Q > and q(Q, t) — Q < 0, and such that

the new equilibrium aggregate Q" lies in the interval [Q, Q\. Since q is decreasing in t, it trivially

follows that Q" < Q'. Note that this observation does not depend on continuity of q in Q, but

merely on the fact that a new equilibrium aggregate Q" exists and lies in the neighborhood of Q'

where q is decreasing (in other words, it depends on the fact that the aggregate does not "jump").
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Figure 8: Slope below 1 is impossible: Q' be-

ing largest equilibrium aggregate violates that

q{Q, t) is decreasing in Q.

Figure 9: The "Novshek selection"

leading to the smallest equilibrium ag-

gregate.

Case II: As in Case I, we have Q" £ [Q. Q]. When q is (locally) increasing, we must have Q < Q
such that Q — q(Q, t) > and Q - q{Q, t) < 0. Intuitively, this means that the slope of q is greater

than 1 as illustrated in Figure 5. Indeed imagine that for the largest Nash equilibrium Q', there

exists Q° > Q' such that Q° — q(Q°,t) < (this means intuitively that the slope is below unity,

see Figure 8). Then since q(Q°,t) > Q° > Q', no decreasing Novshek type selection could have

reached Q' and there would consequently have to be a larger Nash equilibrium Q*
. This yields a

contradiction.

We now argue that Q" < Q'
. As in the previous case, we prove this without explicit use

of continuity (the proof is straightforward if continuity is used directly as seen in Figure 7). In

particular, let us establish the stronger statement that hf{t) + Q is decreasing in t (since hx{t)

is increasing in t, this implies that Q must be decreasing in t). First define C = hr(t) + Q,
and consider the function f(C,t) = C - hT (t) - q{C - hT {t),t). Let C = h T {t) + Q and C =

hT {t) + Q. By what was just shown, f(C, t) = Q- q{Q, t) > and f{C, t) = Q - q{Q, t) < 0.

Since Bt (C — h.T{t),t) is independent of t (t cancels out in the definition of the backward reply

correspondence), q(C — h-T(t),t) must be constant in t, i.e., q(C — hr{t),t) = q{C) for some
function q which is increasing (since we are in Case II). So / is decreasing in t and Q, and we
conclude that in equilibrium f(C*(t),t) = 0, C*{t) = hx(t) + Q*{t) is decreasing in t.

Remark 9 The fact that the term hx(t) + Q is decreasing in t implies that, in this case, when
there is entry of an additional player, the aggregate of all of the agents (including the entrant)

decreases. To see this, compare with the proof of Theorem 5 and use that the aggregate of interest

is XZj M-Sj) + ^/+i(-s/+i) (
in other words, take hT {t) = hj+i(si+i)).

Combining the observations made so far shows that the largest equilibrium aggregate is de-

creasing in t as claimed in the theorem. None of the previous conclusions depend on continuity

of q in Q, and it is straightforward to verify that the same conclusions hold regardless of whether

Q lies in a convex interval (strategy sets could be discrete, say).
33 The statement for the smallest

See Kukushkin (1994) for the details of how the backward reply selection is constructed in such non-convex

cases.
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equilibrium aggregate can be shown by an analogous argument. In particular, instead of con-

sidering the selection q{Q, t) one begins with Q sufficiently low and studies the backward reply

correspondence above the 45° line, now choosing for every Q the smallest best response (Figure

9). This completes the proof of Theorem 3.

11.3 Proof of Theorem 5

Let R4 denote the "reduced" backward reply correspondence defined by R (J2j-nhj(sj),t) =

J^(s_j,i) for each i. To simplify notation, let us set i = 1 (assume that the idiosyncratic shock

hits the first player, in particular then R, is independent of t — t\ for all i ^ 1). Any pure-

strategy Nash equilibrium will also be a fixed point of the set-valued equilibrium problem: si S

j?i ( 53j =^i ^j'( sj)> 'i ) arid hi(si) G hi o Ri I Ylj^i h( sj)) for z = 2, . .
. , /. Consider the last I — 1

inclusions, rewritten as

hiis^ehioRi Vftjfo) + M*i) fori = 2,...,/. (19)

For given s\ £ Si, Theorem 3 implies that there exist a smallest and largest scalars y*(si) and
y*{s\) and solutions to the I — 1 inclusions in (19) which y*( s i)

= Ylj^i^j( sj,*) an<^ V*{s i) —

Yljdki hj{s*,), respectively. In addition, y*, y*
: S\ —> K are decreasing functions.

Now combining y* and y" that solve (19) in the sense described, with s% £ Ri ( 53i^i hj{sj), t\
J

and replacing s\ with sj = — si, we obtain a system with two inclusions:

Si e -Ri(y,ti)

and

ye {y*(-Si),2/*(-si)}.

This system is ascending in (sj, y) in the sense of Topkis (1998), hence its smallest and largest fixed

points are decreasing in t\ (since the system is descending in t\ in the sense of Topkis). Therefore,

the smallest and largest equilibrium strategies for player 1 are increasing in ii, while the associated

aggregate of the remaining players y is decreasing in t. That the smallest and largest strategies

for player 1 do in fact correspond to the smallest and largest strategies in the original game is

straightforward to verify: Clearly, y*(si) and y*(s\) are the smallest and largest aggregates of the

remaining players (across all strategy profiles compatible with an equilibrium given sj), and since

R\ is descending in y, the corresponding equilibrium values of s\ are, respectively, the largest and
the smallest.

Finally, it follows by construction that the corresponding aggregates of the remaining players

must be the smallest and largest for the original game. This completes the proof of the theorem.

11.4 Proof of Theorem 7

We begin by noting that there is no loss of generality in using the aggregator g{s) = J2i ^i(si) m
the following, and assuming that minSiSst

/^(sj = for all i. To see why, recall that the local

solvability condition is independent of any strictly increasing transformation of the aggregator

(Remark 5). If the original aggregator is g(s) = H(
ĵi hi(si)) we can therefore use the transfor-

mation f{z) = H~ l
{z) - Si minfi6Si M s ») t0 get tne new aggregator g(s) = f{g{s)) =X)iMst).

where hi(si) = hi(s z )
— minSi6 s, hi(si). Clearly, min^gs, hi(si) — for all i so this new aggregator

has all the desired properties.
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Let Ri : S_j x T —
> Si be the best response correspondence of player i and Ri the reduced best

response correspondence defined by Ri(J2j^i^j( sj)^) — Ri{s-i,t). Define ^(^-^ hj(sj), t) =

^t ° ^idZi=4t ^j( sj'))0> anc^ write 77i G Bi(Q,t) whenever 77; 6 fj(Q - r)i, t). It is clear that if

r)i 6 Bi(Q,t) then there exists Sj G i^i(Q — h t (si),t) with
7ft
= hi(si). So Q is an equilibrium

aggregate given i 6 T if and only if Q G Z(Q,t) = Y2 i
B l (Q,t) (the correspondence Z is the

aggregate backward reply correspondence already studied in the proof of Theorem 3).

JXQ.0-Q

Figure 10: Q*{t) is the largest equilibrium aggregate given t G T.

The main idea in the proof of Theorem 7 is to study the behavior of the smallest and a largest

selections from Z, denoted below by q{Q,t) and q(Q,t), respectively. Take the largest selection

q(Q,t), and consider q(Q,t) — Q as a function of Q (Figure 10). Any intersection with the first

axis corresponds to an equilibrium aggregate since there q(Q, t) = Q and so Q G Z(Q, t). Since q

is the largest selection from Z, the largest such intersection corresponds to the largest equilibrium

aggregate Q*(t) as defined in (6). The desired result follows if we show that the equilibrium takes

the form depicted in Figure 10 and in addition that q and q are increasing in t. Indeed if this

is the case, it is clear that any increase in t will increase Q*[t). The same conclusion applies to

Q*{t), the smallest intersection in an analogous figure, except with q(Q, t) — Q on the vertical

axis rather than q(Q, t) — Q. This is the conclusion of the theorem. The general features of q

that ensured his conclusion are as follows. First, we must show that q is in fact well-defined on

a compact interval in Q (for all t G T), below denoted [#,Q]. This step is non-trivial and is the

most difficult part of the proof. Second, we must show that q(Q, t) is continuous in Q. Third, we
must show that q(Q,t) — Q "begins above the first axis and ends below it", i.e., we must show

that q(0,t) > and q(Q,t) < Q. Finally, we must prove that q is increasing in t. In order to

prove these claims, it turns out to be very convenient to introduce an index concept.

f,(Q-r\i) (solid),

T;(Q+A-ri,) (dashed) ./'

Figure 11: 77- G B Z (Q) if and only if the graph of fi(Q — r/,,) intersects the diagonal at 77'.

Consider (Q, 77^) with 77^ G Bi(Q). We say that the index of such [Q,r]i) is equal to -1 (+1) if

and only if ft {Q — z) — z is strictly decreasing (strictly increasing) in z on (r/i — e) U (77, + e), e >
(on the two one-sided open neighborhoods of 77,). If the index is not equal to either —1 or +1, it

is set equal to 0. These indices are well-defined whether or not r% is single-valued at Q —
r\i since
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the local solvability condition implies that fi can be multivalued only at isolated points. 34

Figure 11 illustrates the situation including the indices just defined. For Q given, 77, G B t (Q)
if and only if the graph of ft (Q - •) meets the diagonal. The dashed curve illustrates an important

feature of B{\ When the aggregate is changed from Q to Q + A, A > say, this corresponds

exactly to a parallel right transformation of fi(Q — -)'s graph, i.e., every point on the curve in

the figure is moved to derive by exactly an amount A > 0. This simple observation has several

important consequences, (i) First, if any two points on the graph of Bx lie on a 45° line, then the

whole interval between these two points must lie on the graph of Bi. In particular, if rji G Bi(Q)
and T]i + A G B t (Q + A), then rh + S G B^Q + 5) for all 6 g [0, A], (ii) Second, if r?< E B^Q')
and the index of (77^, Q') is not zero, there exists a continuous function /, : (Q' — e, Q' + e) —» 5t

such that fi(Q) G B% {Q) and fi(Q') = ?],' In the following we shall refer to such a function as

a continuous selection through (jf^Q
1

). This extension procedure can be repeated as long as the

index does not become equal to zero at any point or the boundary of 5,; is "hit" by the extension.

Indeed, imagine that fy : (Q' — e,Q' + e) —> Si is the continuous selection from before. By the

upper hemi-continuity of S, (which follows straight from upper hemi-continuity of B4) and the

continuity of fi follows that fi can be extended to the boundary points, /, : \Q' - e, Q' + e] —> Si

in such a way that it is still true that fi{Q) G B{(Q) for all Q. As long as the index is non-zero

on these boundary points, we can then take each of these as our starting point and start over in

order to get a continuous selection /, : \Q' — e', Q' + e'j —> 5t where e' > e. An important thing to

note about such a continuous selection that extends from an initial point [rn,Q) is that the index

never changes along the selection: If the index of (rji, Q) is —1 (+1), the index of (fi{Q), Q)) is

— 1 (+1) for all Q at which the continuous selection is defined, (iii) Thirdly, because fl (Q) >
for all Q > 0, the curve in Figure 11 always begins at rji = at or above the diagonal. Hence it

follows from the mean value theorem that if n'
i
G Bi(Q') for some Q' > 0, there will exist some

Vi e Bt {Q) for all Q > Q'
. In other words: If Bi{Q') ^ for Q' > then B{ {Q) # for all Q > Q'

[When Q is raised to Q' the point (r/^Q') is shifted "to the right" and so will lie below the 45°

line/diagonal. By continuity the curve must therefore intersect the diagonal in order to get from

r)i = where it is above the diagonal to n^ where it is below it], (iv) Also from the fact that

fi{Q) ^ f°r all Q > follows that the index of the first intersection in the curve (corresponding

to the smallest element in Bl (Q)) will be equal to either —1 or whenever fi{Q) > 0. The case

where fl {Q) = is special and is considered in a footnote. 35
(v) Finally, imagine that for some

Q', n\ = max Bi(Q') (the largest elements in Bi{Q) C K+ ), and consider a continuous selection fi

through (rji, Q'). Again because the graph of fi is shifted to the right when Q is raised, it is easy

to verify from the figure that for all Q > Q' where fi is defined, fl {Q) = max B{(Q).

We are now ready to establish an important lemma.

Lemma 1 For each player i £l there exists a finite number of continuous functions 6
ti i , . .

.
, bi Mi

each defined on [0j, Q] where 0i = minSiest
f,(0) and Q = max{^ hi(s r ) G R+ : s G 5} and taking

values in K+ , such that for every Q G [0, Q], Bi(Q) = UmL 1
6j i7T[ ((5) (in particular Bt (Q) = for

Q < 8j). In addition, for m ^ m' G {1, . .

.
, Mi} it cannot happen that bltTn (Q) = bljn i{Q) for any

Q with biim (Q) > min^gs, hi(s,).

Proof. By construction Qx G Bl (9l ). We are first going to show that Bt{Q) — for all Q < 6
t

.

Clearly, for Q < Qz there cannot exist rji G Bl (Q) with n, > Q (indeed for such rji and Q we would

34
Precisely, if f,(Z) is not single-valued at Z. it must be single-valued on a sufficiently small neighborhood

of Z. This is a consequence of local solvability because this condition implies that for Q fixed, any solution to

t/i G fi(Q — r],) must be locally unique. Indeed, 17, € f t (Q - 7/,) <=> [//, = h,(si) k ^i{s t ,Q) = 0] and s, is locally

uniquely determined as a function of Q when \Ds^i\ ^ (see, e.g., Milnor (1965), p. 8).
35When ft (Q) = it is possible that the curve intersects the diagonal at (r]t ,fi(Q — 77,)) = (0,0) and "stays

above" the diagonal for all r;, > in a neighborhood of 0. If we extend our index definition above to boundary

points in the natural way, this intersection would have index +1 (the natural way to extend to a boundary point is

to require that the original index definition holds on a suitably restricted one-sided neighborhood).
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have to have Sj G Ri(Q - rji) where Q - rji < 0. But Ri is only defined on JZj^i hj(Sj) Q R+).

If Q < 6i and rji G Bj(Q), we must therefore have rji < Q (we cannot have equality because then

9i would not be the minimum of fj(0)). So assume, ad absurdum that rji < Q. Let Sj be such

that Si G ^i(Q —
?7i) (in particular then

7ft
= hi(si)). Unless Sj is on the boundary of Sj, we

have $i(si, Q) = since first-order conditions are necessary for an interior solution. By the local

solvability condition therefore \DSi ^i(si,Q)\ ^ which implies that there exists a "downwards"

continuous selection through (rji,Q), fi (Q — e,Q] —* Si. At (fi(Q - e),Q - e) we again have

(unless fi(Q) = hi(si) where Sj is a boundary point and $>i(si,Q) = does not hold) that the

local solvability condition applies and so we can extend further downwards. This process continues

until we reach a point Q' < Q such that any Sj G Si with fi(Q') = hi(.Si) is a boundary point of

S{. If the index of (6i, 9i) is equal to +1, we can begin the above selection procedure from (0j, 9i)

and will, as mentioned, eventually reach a boundary point in the above sense. But when this

selection first "hits" the boundary ^i(si,Q) = still holds (^ is continuous), and so from the

local solvability condition follows that the index is (still) +1. Because of (i) above, this selection

is the maximal selection: There will be no rji G B t (Q) with rji > fi(Q) for any Q where fi is

defined. 36 If the index of (9i,9t )
is either or — 1, we can either still construct a continuous

downwards selection through (#j, 9% ) as the one above (precisely this happens in the index is and

the graph of fj(0j - •) intersects the diagonal from below), or else we can begin at (rji, Q) (where

as before Q < rji) and construct a similar maximal extension. Precisely this happens either if the

index of (8i, 9{) is —1 or if the index is and the graph of ft (9i — ) intersects the diagonal from

above. In either case the index of the downward selection through (rji,Q) must be +1 so this

leads to a situation that is entirely symmetric with the previous one.

In sum, at Q' there is exactly one solution to the equation $?i(si,Q') = and here hi(si) =
fi(Q')- And the index of (fi(Q'),Q') is equal to +1. Since fi(Q) > for any Q > 0, this implies

that a selection from Bt ,
different from fi, exists on [Q',Q' + e], e > (recall from (iv) above

that the index of the smallest selection from Bi is — 1 unless possibly if fj(0) = 0. But fj(0) =
cannot happen unless 9X

= in which case the claim that Bt (Q) = for Q < Bi is vacuous).

This selection is of course locally non-decreasing (possibly constant). Importantly, it necessarily

has index equal to —1. But then two selections with different indices "meet" at Q'. This can
never happen if ^i(si,Q') = and z' = h l (s l )

hence we have arrived at a contradiction if payoff

functions are assumed to satisfy the first-order conditions at any best response for the players. If

not, we have a contradiction with regularity which specifically says that there does not exist an
aggregate such as Q' above where all backward replies' indices are positive.

We conclude that Bi(Q) — for Q < 8i which is what we set out to do. Along the way, we
also ended up concluding that the index of (9i,9i) cannot be +1, nor can it be if the graph

of fi(9i — •) intersects the diagonal from below. In either case, this implies that we can find a

continuous upwards selection through (8i, Bi). This selection has index —1 whenever ft (Q) is such

that fi(Q) = hi(si) where s^ is in the interior of 5, (in fact, it is sufficient that the first order

conditions hold, so this is always true in the multidimensional case and also in the one-dimensional

case unless fi(Q) is horizontal, in which case the statements below become trivial). Furthermore,

since this selection is maximal at 9i it remains the maximal selection from Bi for all Q > 9l

(this follows from (v) above). Finally, the selection will actually exist on all of [9 t , Q] because the

index is equal to —1 throughout (see also (iii) above). In term of the lemma's statement, we have

therefore found our first function bi
t
i : [6i, Q] —> M.+ , namely the maximal selection from B% that

intersects at (9i,9{).

Even under the local solvability condition, we cannot conclude that this is the only selection

36Imagine such a larger element in B, did exist, ^ 6 B,(Q). This would imply that the whole 45° segment between

{rn,Q) and the intersection of the graph of /t with the 45° line through (fj,,Q) would lie in B l 's graph. But this

is a contradiction because at the point where the 45° segment intersects with the graph of /,, local solvability

would be violated (local solvability implies, in particular, local uniqueness of selections, see footnote 34 for a similar

argument)

.
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from B{. Local solvability does, however, imply that the number of selections must be finite

(or else they would not be locally isolated which is a fact we have used several times above).

In addition, local solvability rules out that any selection has index when $i(sj, Q) = for s,

with fi(Q) = hi(si). Hence the indices must be alternating in sign when ordered in the natural

way (the greatest selection above has index — 1, the next selection below it has index +1, etc.,

until the least selection which always has index —1). Also from local solvability follows that two

selection cannot intersect each other (except possibly at the "lower boundary" and not at all

when TV > 1). If they did intersect, i.e., if for any two selections m jt m! € {1, . .
.

, M{\ we had

bi,m{Q) = bi,m>(Q) for any Q with &t,m (Q) > mmSi£ g. /ii(sj), these selection would either have to

be equal everywhere (and so there is only one!), or else they would at some point deviate from

each other and at that point local uniqueness of selections (explained several times above) would

be violated.

What remains to be shown now is only that all selections are defined on [#,, Q]. This has

already been shown to be the case for the greatest selection b
lt \. That it is also true for the other

selections follows from a similar argument recalling that the indices must be alternating and that

the index of the least selection is —1. The details are omitted.

Let M.i = {I,..., Mi} where Mi is the number of functions of the previous lemma. Now
making the dependence on t explicit, we define

q(Q,t)= max VXm.tQ.O-
{mi,...,mj)eMi x...xMi —

i

Clearly q(Q, t) is only defined on [9, Q] where 9 = max, 9% . It is also clear that q takes values

in the interval [0, Q\. Prom now on we focus on q, which will prove the statement of Theorem
7 for the largest equilibrium aggregate. For the smallest aggregate one considers instead q(Q, t)

defined as above replacing max with min and proceeds as below with the obvious modifications.

The following lemma will essentially finish the proof of the theorem by establishing all of the

claims mentioned in our outline of the proof above.

Lemma 2 The function q : [6, Q] x T —
> [0, Q] is continuous in Q on [0,Q], increasing in t on

T, and satisfies q{9) > 6 (of course we also have q(Q, t) < Q).

Proof. Continuity of q in Q follows directly from the definition of q and lemma 1. Let m'{i)

denote the index of the selection that solves (11.4) for player i e I. In the notation of the proof

of Lemma 1, m'(i) must in fact be equal to 1 for every player (the greatest selection). For this

greatest selection, it was shown in the proof of the Lemma that bl j(9j, t) = 9,. It follows that

q{@> — Si °i^(9, t) > 6;',i(#, t) = 9 where i' is any player for which 6, = 9. This proves the last

claim of the Lemma. Finally, we show that q is increasing in t. For any Q, 77, = bim'^(Q, t) if and

only if ?7j is the largest solution to the fixed point problem: £, £ ?i{Q~ £i, t). By assumption, t is a

positive shock in the sense that the smallest and largest selections of fi{Q — £,, t) = h l
oR

l{Q-^l , t)

are increasing in t (for all fixed Q and £j). Moreover, the smallest (respectively, the largest)

selection from an upper hemi-continuous correspondence with range R is lower semi-continuous

(respectively, upper semi-continuous). 37 In particular, the least selection is "lower semi-continuous

from above" and the greatest selection is "upper semi-continuous from below" . Hence any upper
hemi-continuous and convex valued correspondence with values in R satisfies the conditions of

37
Let F : X —» 2

R be such a correspondence, and /. and /* the smallest and largest selections, i.e., f"(x) =
max^f^jz and f,(x) = -[dieocj6 .f(i)z]. Since the value function of a maximization problem is upper semi-

continuous when the objective function is continuous and the constraint correspondence is upper hemi-continuous,

it follows that /* is upper semi-continuous and moreover f.(x) = maXjj-p^j z is upper semi-continuous, thus

implying that /, = -/. is lower semi-continuous.
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Corollary 2 in Milgrom and Roberts (1994). We therefore conclude that bimi^(Q,t) is increasing

in t (and likewise that the smallest fixed point of & € fi(Q — &,£) is increasing in t which one

uses to prove the theorem's statement for the smallest aggregate). Clearly then, q(Q,t) is also

increasing in t.

As was mentioned above, when the continuous function q(Q, t) (where t is fixed) is shifted

everywhere up because t is increased, the largest solution of the equation Q = q(Q, t) must
increase (and for the smallest aggregate the same conclusion applies to the smallest solution of

q(Q, i) = Q). This completes the proof of the theorem.

11.5 Proof of Theorem 8

The statement is proved only for the smallest equilibrium aggregate (the proof for the largest

aggregate is similar). Let bmi be the least backward reply map as described in the proof of

Theorem 7. Let us define t{I+\) = sj+1 6 K+ (i.e., as equal to the entrant's equilibrium strategy)

and t(I) = 0. Then Q,(I) and Q»(I + 1) are the least solutions to, Q(I) = g(b{Q{I)),t(I)) and
Q(I + 1) = g(b(Q(I + 1)), t(I + 1)), respectively. Since g is increasing in t and t(I) < t(I + 1),

this is a positive shock to the aggregate backward reply map. That Q*(I) < Q*(I + 1) must hold

then follows by the same arguments as in the proof of Theorem 7. Clearly, Q*(I) = Q»(I + 1)

cannot hold unless t(I) = t(I + 1) since g is strictly increasing.

11.6 Proof of Proposition 3

We begin by verifying the local solvability condition in the contest game of Proposition 3. Direct

calculations yield

Vi(si,Q) = Vi
h\(Si ) H' (H-^Q)) hfadhi

R + Q (R + QY
c

'i i
si)

and

£>s,*» =
h'(si)

Vi

R + Q [R + Q?
H'{H-\Q))(h[(s t )f

(R + QY

Therefore, when $j(s„Q) = 0, we have

£>.,,*<
h'ASr)

A l ^M-Vi
(R + Q)

2

Dividing both sides by c[(si) > 0, we conclude that .D^^ < 0, and thus the local solvability

condition is satisfied and each 3^ is regular.

It is also straightforward to verify that ct
— ct

oh~ is a convex function under our hypotheses.

Next, consider the payoff function of player' i after the change of coordinates s,; h-» Zi = hi(si)
-l

(for i G J): 7Ti(z) = ViZi R + H(1l,j=i zj)\ ~ Ci{zi)- If DZi TTi(z) = is sufficient to ensure

that Zi is a global maximum, then the original first-order condition are also sufficient for a global

maximum. In particular, DZi fii(z) = implies that D2
2 Tti(z) < 0. Hence any interior extremum

is a strict maximum, from which follows that there is at most one extremum, necessarily a global
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maximum (it is possible that this maximum is on the boundary, though in this case it continues

to be unique; see also Remark 3).

Now, parts 1 and 2 the proposition follow directly from Theorems 7 and 8. Part 3 follows

from Theorem 9 by noting that the condition for s*(t) to be locally increasing in a positive shock

- [DMalgis'lfJl^DQViifilgWt) > 0. (20)

Since, as shown above, DSi ^i(s*,g(s*),t) < 0, (20) holds if and only if Dq*j(s*,Q*, t) > where
Q* = g(s*). For the same reason, the condition for s*(t) to be decreasing in t when t does not

directly affect player i (the second statement of part 3), is satisfied is and only if Dq^/^s*, Q*) < 0.

Since,

(R + Q*)2

(20) will hold if and only if

(R + Q *\3 [R + Q *\2

where

vm =

h(s*) > V (Q*),

2H'(H-\Q*)) H"(H- }

(Q*))

(R + Q*) H'{H- l
(Q*))

This shows that player i will increase its effort if it is "dominant" as defined in the proposition. If

instead hi(s*) < n(Q*), i.e., if the player is not "dominant", Dq^^s^Q*} < and by Theorem
9 follows that if the player is not affected by the shock, she will decrease her effort in equilibrium.

11.7 Proof of Theorem 1

1

We begin with a technical lemma:

Lemma 3 Suppose Assumption 1 holds. Then:

(i) DSt ^i (sj, 53-=1 Sj,£) exists and all of its elements are non-positive; and

(ii) D 2
s Hi I Si, Yjj=i sji *) *s ^e^aiiue definite.

Proof. For a matrix A with non-negative off-diagonal entries the following four statements are

equivalent (see Berman and Plemmons (1994), pages 135-136): (1) all eigenvalues of A have

negative real parts; (2) all real eigenvalues of A are negative; (3) there exists a vector x E IR++
such that Ax E K^_; (4) A -1

exists and all of its elements are non-positive.

It is clear from (16) that if D^
s

II, has non-negative off-diagonal entries and Dq^, is non-

positive, then DSl ^ t must have non-negative off-diagonal entries. By assumption, all real eigenval-

ues of

Ds^j (sj, ]Cj=i sj>t) are negative, hence (4) holds verifying the first claim of the lemma. For

the second claim, we use that (3) holds for DSt $„ and let x E 1R++ be such that DSi ^i x E

K^_. Clearly DQ^i x E M.^ because Dq^i is non-positive. Hence from (16) follows that

Dlsflr £j=i^* X E tN But then (since D 2
. s IT has non-negative off-diagonal elements)
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all of its eigenvalues have negative real parts, and being symmetric it is therefore negative definite.

Next note that since Dcjb = —[DSi

'

<i>i]~
1
DQ'$>i, part (i) of Lemma 3 implies that the backward

reply function b is decreasing in Q (since Dq^/^ is a non-positive matrix in view of the fact that

the payoff function exhibits decreasing differences).

Finally, to establish the main result, differentiate Q = b(Q + t) to obtain:

dQ = DQ b{Q + t)dQ + DQ b{Q + t)dt.

Since Dqb(Q + t) is non-singular, this is equivalent to

[[DQb(Q + 1)}-
1 - X\dQ = dt.

The sufficiency part of the theorem will follow if we can show that dt > => dQ < 0. By the

previous equation, this is equivalent to: [[Dq6(Q + i)]
_1 - I]dQ > =>• dQ < 0. An alternative

(but again equivalent) way of writing this is,

[I - [DQ b(Q + t)]~
l ]dQ > =*> dQ > . (21)

The statement in (21) is very well known in matrix algebra: a matrix A such that Ax > => x >
is called a monotone matrix (Berman and Plemmons (1994)). A well known result from matrix

algebra tells us that a matrix is monotone if and only if it is a non-singular A<f-matrix (Berman
and Plemmons (1994), page 137). Since [I - \Dqb(Q + t)}'

1

}
is non-singular by assumption, it is

a non-singular M-matrix when it is an M-matrix (as assumed in the theorem). Hence, it will be

monotone and so any small increase in t (in one or more coordinates) will lead to a decrease in

each of Q's coordinates.

As for the theorem's necessity statement, assume that [I— [DQb(Q + t)]~
i

]
is not an Af-matrix.

By the result just used, this is the same as saying that [I — [DqbiQ + t)]~ ] is not monotone,

which implies that dQ £ and [I - [DQb(Q + t)]-
l ]dQ < for at least one vector dQ e RN .

We cannot have [I — [DQb(Q + t)]~
l ]dQ = since I — [Dqb(Q + t)]"

1
is non-singular; hence

[I - [DQb(Q + t)]~^]dQ < for some such vector dQ ^ 0. Now we simply pick t" - t' = dt =
— [I— [DQb(Q+ t)]~^]dQ > and the associated change in the aggregate dQ will then be increasing

in at least one coordinate/component, which is the statement of the theorem.

11.8 Proof of Theorem 14

We begin with Theorem 7. To simplify the notation in the proof, let us focus on the case with

a linear aggregator, g(s) — 5Zi=i sj (the general case is proved by the exact same argument, the

only difference is that it becomes very notation-heavy). Then, for each i, Gi(Q : y) = Q — y. Define

Mi(y, t) = argmaxQ^j, Ui(Q -y,Q). Clearly, Mt {y, t) - {y} = FLj,(y, t), where Rt is the "reduced"

best response correspondence (i.e., best response as a function of the sum of the opponents'

strategies). Hence, we can write Mi(Q — Si,t) — {Q} = Ri{Q — s,,t) — {s^}. Given single-

crossing, M{(y,t) is ascending in y {e.g., Milgrom and Shannon (1994), Theorem 4). Therefore,

B^(Q — Si,t) - {.Si} must be descending in s
t . Moreover, R^(Q — &i,t) - {s

t } is convex-valued.

Let Bi{Q, t) = { Sl eSi-.Sifz Ri{Q - su t)}. Bl {Q, t) £ since: z £ Ri(Q - ± t ,t) => z - U >

(where _Lj = min5t ), while z <E Ri{Q - Tj, t) => z - T t < 0.
38

It may be verified that Bt (Q, t) is

38Here it is necessary to extend Rt by denning i?,(z) = {R,(0)} when z < 0, where we have here taken ±j =
for all j so that the least value Q can assume is 0. It is clear that with this extension Ri(Q - s,) — {si} is (still)

descending and now always passes through 0. Importantly, the extensions (one for each agent), do not introduce

any new fixed points for B = J2, Bj: Given Q, if s, e Ri(Q - Si), then either Q - Si > or Q < Si e FU(Q — s t ).

But if Sj > Q for just one i, we cannot have J\ s
3
= Q.
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