

LIBRARY

OF THE

MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

Digitized by tine Internet Arciiive

in 2011 with funding from

Boston Library Consortium IVIember Libraries

http://www.arcliive.org/details/calculationofordOOIiall

working paper

department

of economics

The Calculation of Ordinary Least Squares

JUN 18 1968

by

R.E. Hall
DEWEY LIBRARY

Number 2 - August 17, 1967

massachusetts

institute of

technology

50 memorial drive

Cambridge, mass. 02139

The Calculation of Ordinary Least Squares

by

R.E. Hall
JUN 18 1968

DEWEY LIBRARY

Number 2 - August 17, 1967

Econometricks V/orking Paper # 2

R.E. Hall
August 17, 1967

THE CALCULA.TION OF ORDINARY LEAST SQUARES ESTIMATES

Although the great bulk of econometric estimates are made hy the

method of ordinary least squares, very few computer programs for the purpose use

algorithms which meet reasonable standards of computational accuracy. In an

illiminating study, (3), James Longley presents results he obtained from a variety

of regression programs for a typical econometric model. The only program which

gave acceptable results was that of the National Bureau of Standards; the algo-

rithm of their program appears in the present study as Algorithm III.

There is a widespread and tenacious misconception among eccnometricians

that the source of difficulty in ordinary least squares calculations lies in the

inversion of the matrix of sums of cross-products. Actually, however, the

inversion is almost never a source of trouble; furthermore, it has been shown

that for pC'Sitive definite matrices (cross product matrices are airways positive

definite) the simplest inversion algorithjn is also the best (see e.g., Wilkinsor[4]).

The principal trouble arises riot in inverting the cross-prodttcts

matrix, but, rather in forming it in the first place. If there is a high degree

of collinearity among the independent variables, the inverse matrix, end hence the

estimated coefficients, will be extremely sensitive to small changes in the

o^inal matrix of sums of cross-products. Even an exact inverse of a cross-products

matrix which is insufficiently precise will net be good enough. Tiie reader should

consult Wilkinson (4) for an example of a matrix in v;hich the effect on the inverse

of a change in one part in 10 in the original roatrix is 30 times greater than the

error introduced by a conventional inversion algorithjn.

2 -

One method for overcoming this difficulty which has substantial

merit is to carry enough digits in the calculation of the cross-products matrix

so that the errors in the estimates will be syTficiently small. In machines with

double-precision floating-point operations whose speed is close to that of the

corresponding single-precision operations, and with problems for which 60 or 70

binary digits is adequate, a fast, rough method such as Algorithm I, below, is

probably the optimal method. But where fast double-precision operations are not

available, or where 60 or 70 bits are not enough, other algorithms are necessary.

As we shall show, there is available a spectrum of least squares algorithms,

ranging from the fastest and least accxirate (Algorithm I) to the slowest and most

accTorate (Algorithjn IV). As far as is known, Algorithms II and IV have not pre-

viously appeared in the literature.

Algorithm I. Direct calculation.

This algorithm involves the straightforward calculation of the

algebraic formula for ordinary least squares;

(1) b - u'xyh'y

where X is the T x N matrix of right-hand variables, y is the T x 1 vector of

observed values, and b is the N x 1 vector of estimated coefficients.

The computational steps are

1. Form the lower triangle of X'X, the matrix of sums of

cross-products, using G2YMLT .

2. Invert X'X, using YINV.

3. Form X'y, using GGCMLT.

-4. Calculate b = (X'X)"'^X'y, using GG(3i£LT.

^
The matrix routines referred to here are described in (2).

Algorithm II. One-step orthogonalization.

This algorithm is a generalization of the classical method of

transforming the matrix of right-hand variables by subtracting the mean of each

variable from the variable before forming the matrix of sums of cross-products.

Before stating this method, we derive a formula which is the

basis not only for this algorithm but also for Algorithms III and IV. Suppose

S is a nonsingular matrix of order N. We define

(2) X = XS"^.

Now suppose we calculate the least squares regression coefficients for y and the

transfbrmed variables X:

(3) b = (X'X) ^'y

By substituting X = XS, the reader should be able to verify the following re-

lation between b and b:

(4) b = Cb , or

(5) b = S -b .

Furthermore, the inverse matrices are related by

(6) (X'X)"^ = (S"^) (X'X)"^(S"^)'

The point of these formulas is that by an astute choice of the matrix S, we can

deal with a new regression problem which demands much less accuracy in calcu-

lating the natrix of sums of cross-products. That is, we should choose S so

that the new variables X are much less collinear than the old variables X.

Algorithm II is based on the following assumptions about the

economic time series which enter X:

- A -

(i) The variables in X have the following decomposition:

X , . = a .d + u . . :

tj J t 'tj '

d, is a trend term common to all variables,

a. is a scale factor (with a = l), and
J

' 1 "

u . . is a disturbance, not necessarily random.
''J

(ii) The disturbance vectors are approximately orthogonal; i.e.,

lim ™ U'U is approximately diagonal, where U is the matrix
T->»«

of disturbances.

(iii) There is one variable, which we number 1, which is almost

purely trend (u,, is small relative to the other u's).

If these assumptions hold, there is a simple procedure which

makes X roxighly orthogonal. V/e let

(7) X^. = \^-\\i forj = 2,...,N andX^^ = X^^

where u. is an estimate of a..
J J

Then by assumption (ii), the columns of X are approximately

orthogonal, as we desired. Assumption (iii) implies that the estimates a. can

be obtained by ordinary least squares:

'T

(8) °=j " Y
^4l

t=l
^^

The transformation can then be written

(9)

,-1

1 -a -a^

it amoxints to replacing each variable by the residuals from the regression of

that variable on the first variable, if the first variable, X, > is taken to be

the constant vector,

X,

1

1

Algorithm II is the same as the classical method of subtracting means. The

generalization of the classical method presented here has two advantages: First,

if all of the variables of a problem in fact share the same trend, this algorithjn

is more accurate than the classical one. Second, and more Important, this method

can be used on equations which do not have constants. The classical method

cannot be used on such problems; as a result, computer programs based on it

which give satisfactory results for equation with constants may break down if

run on the same problem with the constant suppressed.

Summary of steps for Algorithm II:

1. Calculate the vector d and form X, using the special routine OKTHOG ,

2. Carry out all of the steps of Algorithm I to obtain b and (X'X)~ .

Special routines are described in the appendix.

6 -

3. Calculate b and (X'X)~ , using the special routine UNTRAN.

Algorithm III. Gram-Schmidt OrthonornBlization.

This method is tased on the Gram-SchiTiidt orthonornalization

-1 '"' -1
algorithm, which simultaneously calculates X and S from X so that X = XS and

(10) X'X = I

In this case the intermediate estimate b is given by the simple formula

(11) b = X'y .

The Gram-Schmidt process operates recursively on the columns of X,

replacing each column in turn by the residuals from the regression of that

column on all of the previously transformed columns. Each column is also norma-

lized so that it has unit sijm of sqijares. The upper-triangular matrix S is

formed simultaneously by applying the same transformation to the coliiinns of a

matrix which is initially set equal to the identity matrix.

Steps in Algorithm III:

** -1
1. Calculate X and S from X, using the special routine CMHOS.

2. Calculate b = X'y, using GGGf.a.T.

3. Calculate b = S Td, using TGatLT.

4. Calculate (X'X)"-"" as (S~^) (S"^)S using T2yMLT.

- 7 -

Algorithm IV. Two-pass orthonoriaalization.

This method is closely related to the method of Algorithm III;

however, it is somewhat more accurate and is about half again slower. Its

principal advantage is that it requires only two passes over the data matrix X,

while Algorithm III requires N passes. Thus Algorithm TV is particularly suited

to problems in which T is so large that X must reside in secondary storage.

The basic principal of Algorithm IV is that equations (2) to (5)

hold for any nonsingular natrix S, not Just for an orthonormalizing matrix.

Furthermore, the transformation

•^ -1
X = xs

can be carried out with fairly high accuracy. Thus even if S is only a poor

approximation to the true orthonormalizing matrix as long as it reduces the

collinearity in X this method will yield more accvirate results.

To calculate the matrix S in one pass through the data, we use the

following method: If A is a positive definite matrix, then Choleski's method

(see [2]) can be used to calculate an upper-triangular matrix S such that

(12) A = S'S

If A is taken to be the matrix of sums of cross-products, then we can find an

S such that

(13) X'X = S'S .

8 -

Then, theoretically,

(U) X'X = (S ^)'X'X(S"^)

'Done by aRTHON.

or the inverse of the matrix generated by Choleski's factorization method

orthonormalizes the matrix X. ~

Since the matrix X'X is generally formed inaccurately, the matrix

S will not, in fact, orthornormalize X. As we have indicated above, this is not

a problem in itself; we simply calculate b as (X'X) X'y instead of dropping

the calculation and inversion of X'X, as we did in Algorithm III.

Steps in Algorithm IV:

1. Form X'X, using G2"aiILT.

2. Calculate S, using YFACT.

3. Calculate S~^ , using TINV.

<4. Calculate X, using GTCMLT.

5. Calculate b, using the steps of Algorithm I.

6. Calculate b using TG(M.T.

7. Calculate (X'X)"^ using TG<MLT.

Table I presents a comparison of the speeds of the four algorithms.

In the first column we give a rough formula for the number of multiplications

required — an equal number of additions is also required. The formulas were ob-

tained by dropping all terms which did not involve either T or the highest power

of N. Greater accuracy would be spurious since actual relative timings will depend

- 9 -

on the particular machine and program in use. In the second column we give the

limits as T becomes large of the speeds of Algorithms II, III, and IV relative

to Algorithm. I. Finally in column 3 we give the relative speeds for the typical

case N = 7 and T = 70.

Table I

Algorithm General Formula lira T oo, N = 7

relative to I. T = 70

I 2ld + ™ + E"^ 1 1-0
2 2

II TO^ + 3TN + ^ N + 2

2 2 N + 6 .71

III TN^ + TO + N-^ - .59

3 2

IV X^ + TN + ^' 7 .40

2 6 3

Appendix. FORTRAN subroutines to implement the algorithms.

1. REGCLI, REGCL2, REGCL3, and REGCU.

These routine calculate ordinary least squares estimates using

Algoiihms I, II, III, and IV respectively. They all have the same calling

sequence:

CAUL REGCLI (NOB, NOIN,NOVAR,Y,Z,X,YFIT;V,S,D) '

.

NOB Numher of observations.

NOIN Number of instrumental variables. If NOIN = 0, ordinarily

least squares estimates are claculated. Algorithms for

instrumental estimates are described in a separate paper.

NOVAR Number of right-hand \^riables.

Y Left-hand variable. Length - NOB.

Z Matrix of right-hand variables. Length = NOB NOVAR.

X Matrix of instrumental variables; must appear in calling

sequence even if NOIN=0. Length = NOB NOIN.

YFIT Returns fitted values; also used for intermediate results in

instrumental estimates. Length = max(NOB,NOIN NOB).

V Contains inverse of cross-products matrix on return. Uded

for intermediate results. Length = max(NOYAR 2, NOIN [NOIN+l]).

S Inverse of S-matrix. Length = NOVAR 2, upper triangle only.

D Estimated coefficients. Used for intermediate results.

Length = max(NOVAR,NOIN).

QR-fflOG

This routine carries out the one-step orthogonalization described

under Algorithm II.

Calling sequence: CALL ORTHOG(NOVAR,NOB,X,S)

NOVAR Numher of variables,

NOB Number of observations.

X-

X Data matrix to be transformed. Length = NOVAR NOB.

S First row of transformation matrix. Length = NOVAR.

3. UNTRAN,

This routine calculates b and V from b, V, and S~ for Algorithm II,

Calling sequence: CALL UNTRAN(NOVAR,B,V,S).

B Vector of estimates to be transformed. Length = NOVAR.

V Inverse of the cross-products matrix to be transformed.

Both upper and lower triangles are transformed. Length

= NOVAR 2.

Other arguments are the same as for QRTHOG.

4. CRTHOS.

This routine carries out the Gram-Schmidt orthonormalization using

the method presented by Davis and Rabino-witz in (l), with the modification that

the normalization of each coliomn is carried out as a separate step after the

orthogonalization. This modification has been found to be crucially important.

Calling sequence: GALL CiRfflOS(NOVAR,NOB,X,V,S)

NOVAR Number of variables.

NOB Number of observations.

X Data matrix to be transformed. Length = NOVAR NOB.

V Vector of length NOVAR used for intermediate results.

S Upper triangular matrix of the transformation

(i.e., S in the notation of this paper); Length = NOVAR 2,

QRTHON.

This routine calls G2mLT, YFACT, and TINV to carry out the data

transformation of Algorithm IV.

Calling sequence: GALL QRIHON(NOVAR^NOB,X,V,Sj.

All of the arguments are the same as for QRTHOS. except that V is

a lower triangular matrix which may interlace S; that is, GALL ORTKQN (NOVAR,

N0B,X,V,V[N0VAR+1]) is usually the way that it is used.

Date Dui

"JL 20 'If

SEPQSTf

AUG 4 '>H

AUG 2 ? 198$

Lib -2 6-67

'[

MIT LIBRAR ES

TDfiD DD3 TSfi 771

Toa

MIT LIBRARIES

1

D DD3 TE7 .51

1

ini

Mr

] C

LIBRARIES

D3 TSfl 3 .M

Wn LIBRARIES

3 TDflD DD3 TSfi 714
MIT LIBRARIES

3 TDflD DD3 TSfl tE3
MIT LIBRARIES

3 TDflD 0D3 TSfl 7b3
MIT LIBRARIES

3 TDflD DD3 TE7 bT3
MIT LIBRARIES

3 TOAD DD3 T5fi fl3T
MIT UBRARIES DUPL

3 TDfiD DD3 TE7 bbT
MIT LIBRARIES

11 III mill I mil III !ii P! |ii|ii iiiiii

!
3 TDflD D

1.1 .

3 =^27 b77

1^

