

LIBRARY

OF THE

MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

Digitized by the Internet Archive

in 2011 with funding from

Boston Library Consortium Member Libraries

http://www.archive.org/details/matrixoperationsOOhall

working paper

department

of economics

Matrix Operations in Econometrics

by

R.E. Hall

Number 1 - July 20, 1967

MASS. INST. TECH.

JUN 18 1968

DEWEY LIBRARY

massachusetts

institute of

technology

50 memorial drive

Cambridge, mass. 02139

Matrix Operations in Econometrics

by

R.E. Hall

Number 1 - July 20, 1967

MASS. INST. TECH.

JUN 18 1968

DEWEY LIBRARY

Econometricks Working Paper # 2

Dewey

I OCT 22 1975'

' 7
.-:

:

-. '
'-

*

OENEKAl. BOOKBINDING CO.

380HY 061 5539
75 i- EB
QUALITY CONTROL MARK

R.E. Hall
July 20, 1967

MATRIX OPERATIONS IN ECONOMETRICS*

This paper presents a unified summary of the matrix operations which occur

frequently in econometrics, and describes in detail the implementation of these

operations on a digital computer.

We begin with a discussion of methods for storing matrices. This problem

arises beceuse of the essentially linear nature of a computer's memory which

makes it necessary to store two-dimensional arrays as one-dimensional vectors.

For general matrices (those with no restrictions on their elements, as distin-

guished from triangular, symmetric, or diagonal matrices), an obvious method

is available for reduction to vector form: we simply stack the columns one after

another. From the two-dimensional matrix A. ., we generate the vector A# , with
1J K

i, j, and k related by the identity k = (j - l)m+ i, where m is the number of

rows in A. . . This is the method of matrix storage adopted bv the authors of

FORTRAN, and is now fairly standard.

Most operations in econometrics, however, involve triangular or symmetric

matrices, for which the method of storage described for general matrices is

wasteful of storage, sines space is allocated to elements known to be zero (in

the case of triangular matrices) or known to be equal to other elements (in

the case of symmetric matrices). To avoid this waste, some form of compact storage

is usually adopted for triangular matrices, and then only one triangle of symmetric

matrices is stored. For example, the authors of IBM's Scientific Subroutine

Package (2) use the following identity:

This is a preliminary version of an appendix to R.E. Hall, Single Equation
Methods in Econometrics.

^3 33 Of,

- 2 -

While this method uses storage perfectly efficiently, it does so at a large

cost in computational efficiency. Evaluation of the SSP formula requires four

arithmetic operations each time an element of A. . is referenced. More importantly,

there is no simple way to step through the elements of a particular row of a

triangular matrix in sequence. In the case of a general matrix, the elements of

a row are evenly spaced at intervals of m elements. Computationally efficient

routines for operations on general matrices take advantage of this property to

obtain a speed advantage of at least 100 per cent over routines which recompute

k from i and j at each step.

We will now describe a storage method which retains the computational advan-

tage of the general storage method while approaching the storage efficiency of

the compact triangular method. This new method is based on the observation that

the gaps which are left if an upper triangular matrix is stored as a general

matrix are exactly the right size to hold a lower triangular matrix of the same

size. That is, (n + l)n elements of storage will exactly accommodate a lower

triangular matrix of order n starting at the first element and an upper trian-

gular matrix of order n starting at the n+lst element. If upper and lower

triangular matrices always appear in pairs this scheme will be perfectly efficient

in its use of storage

.

In econometrics, it appears that if the convention is adopted of storing

triangular matrices as upper triangles and of storing only the lower triangles of

symmetric matrices, fairly high storage efficiency can be attained, since fre-

quently these two kinds of matrices appear in pairs. This convention is assumed

in- the following discussion.

A surprisingly large fraction of the matrix operations required in econometrics

can be described in terms of repeated applications of the elementary operation

of forming an inner product [the inner product, p, of two vectors of length

n, x. and y. is defined as11 n

p = Z x
i
yi

i=i

and is often written p = x'y or p =* (x,y).].This is, of course, obviously trae for

matrix multiplication; it is less well-known that it is true for matrix inversion.

- 3 -

The knowledge that inner product calculations are at the heart of almost all of

the operations can be used to great advantage in writing programs to implement the

operations . In the system to be described, a basic inner product routine has

been carefully coded in the assembly languages of the various machines it is in-

tended to be used on; all the other routines are written in a form of FORTRAN

acceptable to all of the machines. The resulting system is only a few per cent

slower than a system written fully in assembly language and yet it involved only

small fraction of the programming effort. The only serious drawback of this

method is the relatively large amount of storage consumed by the kind of code

generated by FCRTRAN compilers.

In naming the routines of this system, we have adopted the following method:

the first one, two, or three letters of the name give the matrix type (G for

general, T for upper triangular, and Y for symmetric stored as a lower triangle);

the last few letters are an abbreviation of the name of the operation (MLT for

multiplication, INV for inversion, CVAL for characteristic values and FACT for

factorization). Further, if the digit 2 appears after a Y,G, or T, it indicates

that the same matrix is involved twice, as for example in T2YMLT which forms

the symmetric matrix TT 1 from a triangular matrix T.

We will now describe the algorithms, computational methods, and calling

sequences for the routines which were in existence at the time of this writing.

1. INPROD
n

This routine calculates the inner product £ x.y. of the two vectors x and y.

i=l

Provision is made for allowing x or y to be a row of a matrix. All versions use

extended precision in accumulating the inner product, truncating to regular

length before returning (see Wilkinson, [3]).

Calling sequence: CALL INPROD(N, JSA, JSB,A,B,P).

N Number of elements entering inner product.

JSA Skip parameter for vector A. Every JSAth element is used; thus if JSA

is 1, A could be a column, while if JSA is m, A could be a row of a

matrix with m rows.

JSB Skip parameter for vector B.

- 4 -

A First vector.

B Second vector.

P Inner product.

Most FORTRAN compilers permit subvectors of larger vectors to be defined

implicitly by using a subscript in the GALL statement (The unfortunate ex-

ception to this is the MADTRAN-MAD compiler on the MIT CTSS system). For example,

if we wished to calculate the inner product of the third row of the 4X4
matrix C and the second column of the 4X4- matrix D, we would write

CALL INPR0D[4,4,1,C(3),D(5),P]

The user should study this example until he is sure he understands it before

using this routine

.

2. GGGMLT

This routine calculates the general matrix C as the matrix product AB of the

two general matrices A and B. The matrix product is defined as

C
ij

=
^ AnAj ;

k=l

that is, the element in the ith row and jth column of C is the inner product

of the ith row of A and the jth column of B.

Calling sequence: CALL (X<3VILT(IFTRAN,NR0WA,NC0LB,N,A,B,C)

IFTRAN If this parameter is zero, the regular product C = AB is calculated

.

If it is one, A is (logically) transposed before the multiplication,

and C = A'B is calculated. A and B remain unchanged in either case.

NROWA Number of rows in matrix A. If IFTRAN is 1, this is the number of

rows after transposition.

NCOLB Number of columns in B.

N Number of columns in A. Also must be equal to the number of rows in B.

A Input matrix with NROWA rows and N columns.

B Input matrix with N rows and NCOLB columns.

C Output matrix with NROWA rows and NCOLB columns.

- 5 -

Note that vectors are perfectly good general matrices with either one row or

one column; no inefficiency results from using GGGMLT on vectors. Note also that

the matrix C must be distinct from A and B, although A and B may be the same

matrix.

3. G2YMLT

This routine forms the symmetric matrix X'X from the general matrix X; its

main use in econometrics is to form the matrix of sums of cross-products.

Calling sequence: CALL G2YMLT(NRCWX, NCOLX, X,Y)

NRCWX Number of rows in X.

NCOLX Number of columns in X.

X Input matrix.

Y Output matrix, stored in lower triangle only. Upper triangle is

left unchanged. Y has NCOLX rows and NCOLX columns.

4. GTGMLT

This routine forms the general matrix C as the product AB of the general

matrix A and the upper triangular matrix B. It differs from GGGMLT only in that

the elements of B below the diagonal do not enter the calculation.

Calling sequence: CALL GTGMLT(NROWA,N,A,B,C)

NROV/A Number of rows in A.

N Number of columns in A. Also equal to the number of rows and columns

of B.

A General matrix with NROV/A rows and N columns.

B Triangular input matrix.

C Output matrix with NROWA rows and N columns

.

The columns of C are formed in reverse order so that A and C may be the same

matrix. The main use of this routine in econometrics is in applying an orthonorma-

lizing transform to a matrix of raw data

.

- 6 -

5 . T2YMLT

This routine forms the symmetric matrix C = AA ' from the upper triangular

matrix k.

Calling sequence: CALL T2YMLT(N,A,C)

N Number of rows and columns in A and C.

A Upper triangular input matrix.

C Lower triangular output matrix.

A and C may interlace each other in the manner described in the introduction;

for example , if D has N (N + l) locations and an upper triangular matrix has

its first element at D(N+l),

CALL T2YMLT[N,D(N+1),D(1)]

will form the symmetric product matrix correctly, starting at the first element

of D.

6. TGGMLT

This routine forms the general matrix C as the product C = AB or alternatively

C = BA', where A is an upper triangular matrix and B is a general matrix.

Calling sequence: CALL TGGMLT(IFTRAN, N,NB,A,B,C)

IFTRAN If IFTRAN is 0, C = AB is formed.

If IFTRAN is 1, C = BA ' is formed.

N Number of rows and columns in A. Also equal to number of rows in

B if IFTRAN is 0, or number of columns in B if IFTRAN is 1.

NB If IFTRAN is 0, NB is the number of columns in B. If IFTRAN is 1,

NB is the number of rows in B.

A Upper triangular input matrix.

B General input matrix.

C General output matrix, same number of rows and columns as B.

B and C may be the same matrix.

- 7

7. VGVMLT

This routine calculates the vector C as the product of the vector A and the

general matrix B. It is intended to be used in eases where GGGMLT is inappropriate

because the elements of A are not adjacent; it therefore includes a skip para-

meter for A

.

Calling sequence: CALL VGVMLT(NCOLB,N,JSA,A>B,C)

NCOLB Number of columns in B.

N Number of elements in A, C, and the number of rows in 3.

JSA Skip parameter for A . See the description of the arguments for

INPROD, above.

A Vector of length N.

B General matrix.

C Output vector; must be distinct from A.

8. TINV

This outline calculates the inverse of a triangular matrix. The method is

based on the following identity, which can easily be verfied by the reader;

U
11

u
12

U
22

-1

'11 - U
ll

U
12
U
22

U
22

U, , and IL
?
are square submatrices from the diagonal of the upper triangular

matrix U; U, „ is the remaining rectangular matrix. To invert the n x n upper

triangular matrix A, we let U = A ., where A . is the submatrix of A consisting of
J J

the first j rows and the first j columns, for j = 2 } ...,n . Then at each step,

U, , is the matrix left by the last step; U„. is taken as the single element A
,

and U,„ is a column vector of length j-1. The new column of U is calculated by

the matrix multiplication indicated in the identity above. The process is started

off by setting A equal to its reciprocal and then is continued for j~2, . . . ,xi,

leaving A '

in place of A

.

Calling sequence: CALL TINV(N,A)

N Number of rows and columns in A

A Matrix to be inverted. Lower triangle is not disturbed.

9. YFACT

This routine calculates the upper triangular matrix S such that A = SS%

where A is a positive definite symmetric matrix stored as a lower triangle.

The method is usually attributed to Chcleski and is described in Faddeeva (l),

pp. 81-85 , to which the reader is referred for a derivation of the method. It

can be summarized as follows:

:.. = (A..
11 v ii

i-1
- Z
k=l
i-1

s
2

.)^2
Kl '

A. .
- Z
k=l ki kj

ij

S..
ii

for j> i.

This routine is used in the calculation of the inverse of a symmetric matrix

and is also used to calculate the matrix which is used to orthonormalze a data

matrix.

Calling sequence: CALL YFACT(N,A,S)

N Number of rows and columns in A and S.

A Symmetric input matrix, stored as a lower triangle.

S Upper triangular output matrix.

A and S may interlace each other as described under T2YMLT. The input matrix A

must be positive definite; if it is not, YFACT will attempt to take the square

root of a negative number, a fatal error in most systems.

- 9 -

10. YINV

This routine inverts a symmetric positive definite matrix which is stored as

a lower triangle. From the input matrix A, the upper triangular matrix S such

that A = SS' is calculated by calling YFACT. Then S is inverted in place by

S'

1
calling TINV. Finally A is formed as (S~)'S~ , using T2YMLT. The reader

should verify that the result is truly A

Calling sequence: CALL YINV(N,A,S)

N Number of rows and columns in A and S.

A Symmetric matrix stored as a lower triangle to be inverted in place.

S Upper triangular matrix in which the intermediate matrix is stored.

S may interlace A

.

A must be positive definite, since YFACT is used.

11. YXFND

This routine copies the lower triangle of a symmetric matrix into the upper

triangle of the same matrix, thus forming a general matrix. It is used in pre-

paration for matrix multiplication and other operations for which special

routines for symmetric matrices are not provided.

Calling sequence: CALL YXFND(N,A)

N Number of rows and columns in A

.

A Matrix which is expanded.

Date Die

IJie^jsfc^.

JUL 20 '|f
SEP 8 7$"

AUG 4 >8

_, tON 1 *
^"

jvrt^S
3'85

AUG 2 3 198!

Lib-26-67

MIT LIBRARIES

3 TDflD DD3 TSfl 771
MIT LIBRARIES

3 TDflD DD3 TE7 b51
MIT LIBRARIES

3 TDflD DD3 TSS bbM
MIT LIBRARIES

3 TOAD DD3 TSfi 714
MIT LIBRARIES

3 TDflD DD3 TSfl bE3
MIT LIBRARIES

3 TOAD DD3 TSfl 7b3
MIT LIBRARIES

3 TDflD DD3 =127 b c]3

MIT LIBRARIES

3 TDflD DD3 TSfl fl3
c

!

MIT LIBRARIES DUPl

3 IDflD DD3 T27 bb"!
MIT LIBRARIES

3 TDflD DD3 =127 b77

f.T C^ LQ.

m:

HI 4mm Td

m®

&?,

:ir :t&? f>.
:

f :

.

* :-,
'
fih:~)',''>',

:-.^-.,>r-J<:
'

:• -.;>,^'m;
'.'<• '.;'

