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Abstract

We present an algorithm that uses multiple cues to recover shading and reflectance intrinsic images
from a single image. Using both color information and a classifier trained to recognize gray-scale
patterns, each image derivative is classified as being caused by shading or a change in the surface’s
reflectance. Generalized Belief Propagation is then used to propagate information from areas where
the correct classification is clear to areas where it is ambiguous. We also show results on real images.
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1 Introduction

Human beings possess the remarkable ability to interpret the causes of intensity variations in an im-
age. The ability to differentiate the effects of shading and reflectance changes is important because,
while they are both present in almost any real image, many tasks require the ability to consider the
two separately. If the goal is to recover the geometry of an object, then it would be useful to have
an image containing the illumination of every point in the image. Likewise, segmentation would be
simpler given an image with only the reflectance at each point in the scene. Images containing only
the illumination or depth of every point are known as intrinsic images [1] because they contain only
one intrinsic characteristic of the scene being viewed.

Recovering intrinsic images is difficult because it is essentially an ill-posed problem. For any
image, there are an unlimited number of possible surfaces that, combined with the right reflectance
pattern, will create the input image. Therefore, we must rely on prior knowledge of the statistics of
surfaces in the world to find the most likely set of intrinsic images that correspond to the scene. In
this work, we are interested in two intrinsic images, the shading and reflectance image.

Most prior algorithms for finding shading and reflectance images can be broadly classified as
generative or discriminative approaches. The generative approaches create possible surfaces and
reflectance patterns that explain the image, then use a model to choose the most likely surface.
Previous generative approaches include modeling worlds of painted polyhedra [11] or constructing
surfaces from patches taken out of a training set [3]. In contrast, discriminative approaches attempt
to differentiate between changes in the image caused by shading and those caused by a reflectance
change. Early algorithms, such as Retinex [8], were based on simple assumptions, such as the
assumption that the gradients along reflectance changes have much larger magnitudes than those
caused by shading. That assumption does not hold for many real images, so recent algorithms have
used more complex statistics to separate shading and reflectance. Bell and Freeman [2] trained
a classifier to use local image information to classify steerable pyramid coefficients as being due
to shading or reflectance. Using steerable pyramid coefficients allowed the algorithm to classify
edges at multiple orientations and scales. However, the steerable pyramid decomposition has a
low-frequency residual component that cannot be classified. Without classifying the low-frequency
residual, only band-pass filtered copies of the shading and reflectance images can be recovered. In
addition, low-frequency coefficients may not have a natural classification.

In a different direction, Weiss [13] proposed using multiple images where the reflectance is
constant, but the illumination changes. This approach was able to create full frequency images, but
required multiple input images of a fixed scene.

In this work, we present a system which uses multiple cues to recover full-frequency shading
and reflectance intrinsic images from a single image. Our approach is discriminative, using both a
classifier based on color information in the image and a classifier trained to recognize local image
patterns to distinguish derivatives caused by reflectance changes from derivatives caused by shading.
We also address the problem of ambiguous local evidence by using a Markov Random Field to
propagate the classifications of those areas where the evidence is clear to those where it is not.
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2 Separating Shading and Reflectance

Our algorithm separates shading from reflectance by classifying each image derivative as being
caused by shading or a reflectance change. We assume that the input image, I(x, y), can be ex-
pressed as the product of the shading image, S(x, y), and the reflectance image, R(x, y). Consider-
ing the images in the log domain, the derivatives of the input image are the sum of the derivatives of
the shading and reflectance images. It is unlikely that significant shading boundaries and reflectance
edges occur at the same point, thus we make the simplifying assumption that every image derivative
is either caused by shading or reflectance. This reduces the problem of specifying the shading and
reflectance derivatives to that of binary classification of the image’s x and y derivatives.

Labelling each x and y derivative produces estimates of the derivatives of the shading and re-
flectance images. Each derivative represents a set of linear constraints on the image and using both
derivative images results in an over-constrained system. We recover each intrinsic image from its
derivatives by using the method introduced by Weiss in [13] to find the pseudo-inverse of the over-
constrained system of derivatives. If fx and fy are the filters used to compute the x and y derivatives
and Fx and Fy are the estimated derivatives of shading image, then the shading image, S(x, y) is:

S(x, y) = g ? [(fx(−x,−y) ? Fx) + (fy(−x,−y) ? Fy)] (1)

where ? is convolution, f(−x,−y) is a reversed copy of f(x, y), and g is the solution of

g ? [(fx(−x,−y) ? fx(x, y)) + (fy(−x,−y) ? fx(x, y))] = δ (2)

The reflectance image is found in the same fashion. One nice property of this technique is that
the computation can be done using the FFT, making it more computationally efficient.

3 Classifying Derivatives

With an architecture for recovering intrinsic images, the next step is to create the classifiers to sep-
arate the underlying processes in the image. Our system uses two classifiers, one which uses color
information to separate shading and reflectance derivatives and a classifier for gray-scale images.

3.1 Using Color Information

Our system takes advantage of the property that changes in color between pixels indicate a re-
flectance change [10]. When surfaces are diffuse, any changes in a color image due to shading
should affect all three color channels proportionally. Assume two adjacent pixels in the image have
values c1 and c2, where c1 and c2 are RGB triplets. If the change between the two pixels is caused
by shading, then c2 = αc1 for some scalar α. Intuitively, shading should only cause the intensity
of surface’s color to change, not the chromaticity.
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(a) Original Image (b) Shading Image (c) Reflectance Image

Figure 1: Example. Computed using Color Detector. To facilitate printing, the intrinsic images
have been computed from a gray-scale version of the image. The color information is used solely
for classifying derivatives in the gray-scale copy of the image.

To measure the likelihood that a color change is caused by a reflectance change, we treat each
RGB triplet as a vector and normalize them to create ĉ1 and ĉ2. We then use the angle between
ĉ1 and ĉ2 to find reflectance changes. When the change is caused by shading, (ĉ1 · ĉ2) equals
1. If (ĉ1 · ĉ2) is below a threshold, then the derivative associated with the two colors is classified
as a reflectance derivative. Using only the color information, this approach is similar to that used
in [6]. The primary difference is that our system classifies the vertical and horizontal derivatives
independently.

Figure 1 shows an example of the results produced by the algorithm. The classifier marked all
of the reflectance areas correctly and the text is cleanly removed from the bottle. This example also
demonstrates the high quality reconstructions that can be obtained by classifying derivatives.

3.2 Using Gray-Scale Information

While color information is useful, the assumptions of the color-based classifier will not always hold.
In addition, the statistics of surfaces and illumination often provide enough information to separate
shading and reflectance from gray-scale information alone. In this section, we describe how to
classify image derivatives using color information.

The basic feature of our classifier is the absolute value of the response of a linear filter. We refer
to a feature computed in this manner as a non-linear filter. The output of a non-linear, F , given an
input patch Ip is

F = |Ip ? w| (3)

where ? is convolution and w is a linear filter. The filter, w is the same size as the image patch,
I , and we only consider the response at the center of Ip. This makes the feature a function from a
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(a) Original Image (b) Shading Image (c) Reflectance Image

Figure 2: Results obtained using the gray-scale classifier.

patch of image data to a scalar response. This feature could also be viewed as the absolute value of
the dot product of Ip and w.

We chose to use the responses of linear filters as the basis for our feature, in part, because they
have been used successfully for characterizing [9] and synthesizing [7] images of textured surfaces.
Another advantage of using linear filters is that once specific filters are chosen as features for the
classifier, it should be relatively simple to interpret what image patterns the feature is responding
to. Using the absolute value of the filter response is necessary because we are only interested in the
magnitude of the response, not the sign. Changing an edge from a dark to light transition into a light
to dark transition should not change its classification.

The non-linear filters are used to classify derivatives with a classifier similar to that used by
Tieu and Viola in [12]. This classifier uses the AdaBoost [4] algorithm to combine a set of weak
classifiers into a single strong classifier. In our implementation, each weak classifier is a threshold
test on the output of one non-linear filter. The linear filter in each weak classifier are chosen greedily.
At each iteration, the learning algorithm chooses the linear filter that best classifies the training set
from a set of oriented first and second derivative of Gaussian filters.

The training set consists of a mix of images of rendered fractal surfaces and images of shaded
ellipses placed randomly in the image. Examples of reflectance changes were created using images
of random lines and images of random ellipse painted onto the image. Examples can be seen in
Figure 3. In the training set, the illumination is always coming from the right side of the image.
When evaluating test images, the classifier will assume that the test image is also lit from the right.

Figure 2 shows the results of the gray-scale classifier. The grafitti paint and the rock surface
are separated into reflectance and shading images, respectively. Some shading changes in the upper
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Figure 3: Example images from the training set. The first two are examples of reflectance changes
and the last three are examples of shading

right corner of the image have been mistakenly classified as reflectance changes, likely due to the
shading training set not containing strong ridges such as those in the image.

The examples shown are computed without taking the log of the input image before processing
it. The input images are uncalibrated and ordinary photographic tonescale is very similar to a log
transformation. Errors from not taking log of the input image first would cause one intrinsic image
to modulate the local brightness of the other. However, this does not occur in the results.

4 Propagating Evidence

While the classifier works well, there are still areas in the image where the local information is
ambiguous. An example of this is shown in Figure 4. Locally, the center of the mouth area is
similar in appearance to the side of an ellipse that points away from a light source. This causes the
derivatives around the mouth to be classified with low certainty. However, the corners of the mouth
can be classified as being caused by a reflectance change with little ambiguity. A mechanism is
needed to propagate information from the corners of the mouth, where the classification is clear,
into areas where the local evidence is ambiguous. This will allow areas where the classification is
clear to disambiguate those areas where it is not. Intuitively, we want points on the same contour to
share the same classification.

In order to propagate evidence, we treat each derivative as a node in a Markov Random Field
with two possible states, indicating whether the derivative is caused by shading or caused by a
reflectance change. Setting the compatibility functions between nodes correctly will force nodes
along the same contour to have the same classification.

4.1 Model for the Potential Functions

The compatibility functions in the MRF are set to only constrain whether two neighboring nodes
must have the same value or not. Each potential function,ψ(xi, xj) has two possible values, one
when xi = xj and one when xi 6= xj . Each ψ(·) should be set to have a high compatibility when
xi = xj and both xi and xj are along a contour. This dependence on the image can be expressed by
defining the compatibility function ψ0(I) as the compatibility when the two nodes have a different
value and ψ1(I) to be the compatibility when the nodes have the same value. Each ψ has been
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(a) (b) (c)

Figure 4: An example where propagation is needed. (a) The original image (b) Vertical derivatives
where the certainty of the classification from shape information is greater than 60% are marked in
white. Notice how the center of the mouth is ambiguous. (c) The certainty after information has
been propagated. The remaining black points are still ambiguous after propagation because they are
not on an image contour.

written as a function of the input image, I because the strength of the compatibility is dependent
upon whether there is a contour in the image near the location of ψ.

To simplify learning the potential functions, ψ1(I) is set to 1 − ψ0(I) with ψ0(I) constrained
to be between 0 and 1. This constraint is fulfilled by specifying that ψ0(I) = g(z(I)), where g(·) is
the logistic function and z(I) corresponds to how necessary it is for two neighboring nodes to have
the same value.

4.2 Learning the Potential Functions

In order to learn z(I) we choose a set of image features that reflect our heuristics about how objects
should be grouped. In this work, we used two local image features, the magnitude of the image and
the difference in orientation between the gradient and the orientation of the graph edge. Using these
measures reflect our heuristic that derivatives along contours should have the same value.

The difference in orientation between a horizontal graph edge and image contour, φ̂, is found
from the orientation of the image gradient, φ. Assuming that −π/2 ≤ φ ≤ π/2, the angle between
a horizontal edge and the image gradient,φ̂, is φ̂ = |φ|. For vertical edges, φ̂ = |φ| − π/2.

To find the values of z(·) we maximize the probability of a set training examples over the
parameters of z(·). The probability of each training sample is

P =
1

Z

∏

(i,j)|xi 6=xj

ψ0(I)
∏

(i,j)|xi=xj

ψ1(I) (4)

where all (i, j) are the indices of neighboring nodes in the MRF and Z is a normalization
constant.
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(a) Original Image (b) Shading Image (c) Reflectance Image

Figure 5: The pillow from Figure 4. This is found by combining the local evidence from the color
and gray-scale classifiers, then using Generalized Belief Propagation to propagate local evidence.

The function relating the image features to ψ, z(·), is set to be a linear function and are found
by maximizing equation 4 over a set of training images similar to those used to train the local
classifier. In order to simplify the training process, we approximate the true probability of each
MRF by assuming that Z is constant. Doing so leads to the following value of z(·):

z(φ̂, |∇I|) = −1.2 × φ̂+ 1.62 × |∇I| + 2.3 (5)
where |∇I| is magnitude of the image gradient and both φ̂ and |∇I| have been normalized to

be between 0 and 1. These measures break down in areas with a weak gradient, so we set z(·) to 0.5
for regions of the image with a gradient magnitude less than 0.05.

Larger values of z(·) correspond to a belief that the derivatives connected by the edge should
have the same value, while negative values signify that the derivatives should have a different value.
The values in equation 5 correspond with our expected results; two derivatives are constrained to
have the same value when they are along an edge in the image that has a similar orientation to the
edge in the MRF connecting the two nodes.

4.3 Inferring the Correct Labelling

Once the compatibility functions have been learned, the label of each derivative can be inferred.
The local evidence for each node in the MRF is obtained from the results of the color classifier and
from the gray-scale classifier by assuming that the two are statistically independent. It is necessary
to use the color information because propagation cannot help in areas where the gray-scale classifier
misses an edge altogether. In Figure 5, the cheek patches on the pillow, which are pink in the color
image, are missed by the gray-scale classifier, but caught by the color classifier. For the results
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(a) Original Image (b) Shading Image (c) Reflectance Image

Figure 6: Example generated by combining color and gray-scale information, along with using
propagation.

shown, we used the results of the AdaBoost classifier to classify the gray-scale images and used the
method suggested by Friedman et al. to obtain the probability of the labels [5].

We used the Generalized Belief Propagation algorithm [14] to infer the best label of each node
in the MRF because ordinary Belief Propagation performed poorly in areas with both weak local
evidence and strong compatibility constraints. The results of using color, gray-scale information,
and propagation can be seen in Figure 5. The ripples on the pillow are correctly identified as
being caused by shading, while the face is correctly identified as having been painted on. Figure
6 contains a second example. The algorithm correctly identifies the change in reflectance between
the sweatshirt and the jersey and correctly identifies the folds in the clothing as being caused by
shading. There are some small shading artifacts in the reflectance image, especially around the
sleeves of the sweatshirt, presumably caused by particular shapes not present in the training set. All
of the examples were computed using ten non-linear filters as input for the AdaBoost gray-scale
classifier.

5 Discussion

We have presented a system that is able to use multiple cues to produce shading and reflectance
intrinsic images from a single image. This method is also able to produce satisfying results for real
images. The most computationally intense steps for recovering the shading and reflectance images
are computing the local evidence, which takes about six minutes on a 700MHz Pentium for a 256
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× 256 image, and running the Generalized Belief Propagation algorithm. Belief propagation was
used on both the x and y derivative images and took around 6 minutes to run 200 iterations on each
image. The pseudo-inverse process took under 5 seconds.

The primary limitation of this method lies in the classifiers. For each type of surface, the clas-
sifiers must incorporate knowledge about the structure of the surface and how it appears when
illuminated. The present classifiers operate at a single spatial scale, however the MRF framework
allows the integration of information from multiple scales.
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