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Abstract 
 
Parallel shared-memory machines with hundreds or thousands of processor-
memory nodes have been built; in the future we will see machines with 
millions or even billions of nodes.  Associated with such large systems is a 
new set of design challenges.  Many problems must be addressed by an 
architecture in order for it to be successful; of these, we focus on three in 
particular.  First, a scalable memory system is required.  Second, the net-
work messaging protocol must be fault-tolerant.  Third, the overheads of 
thread creation, thread management and synchronization must be extremely 
low. 

This thesis presents the complete system design for Hamal, a shared-
memory architecture which addresses these concerns and is directly scal-
able to one million nodes.  Virtual memory and distributed objects are im-
plemented in a manner that requires neither inter-node synchronization nor 
the storage of globally coherent translations at each node.  We develop a 
lightweight fault-tolerant messaging protocol that guarantees message de-
livery and idempotence across a discarding network.  A number of hard-
ware mechanisms provide efficient support for massive multithreading and 
fine-grained synchronization. 

Experiments are conducted in simulation, using a trace-driven network 
simulator to investigate the messaging protocol and a cycle-accurate simu-
lator to evaluate the Hamal architecture.  We determine implementation 
parameters for the messaging protocol which optimize performance.  A 
discarding network is easier to design and can be clocked at a higher rate, 
and we find that with this protocol its performance can approach that of a 
non-discarding network.  Our simulations of Hamal demonstrate the effec-
tiveness of its thread management and synchronization primitives.  In par-
ticular, we find register-based synchronization to be an extremely efficient 
mechanism which can be used to implement a software barrier with a la-
tency of only 523 cycles on a 512 node machine. 
 
Thesis Supervisor: Thomas F. Knight, Jr. 
Title: Senior Research Scientist 
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Chapter 1   

Introduction 

The last thing one knows when writing a book is what to put first. 

– Blaise Pascal (1623-1662), “Pensées” 

Over the years there has been an enormous amount of hardware research in 
parallel computation.  It is a testament to the difficulty of the problem that 
despite the large number of wildly varying architectures which have been 
designed and evaluated, there are few agreed-upon techniques for construct-
ing a good machine.  Even basic questions such as whether or not remote 
data should be cached remain unanswered.  This is in marked contrast to the 
situation in the scalar world, where many well-known hardware mecha-
nisms are consistently used to improve performance (e.g. caches, branch 
prediction, speculative execution, out of order execution, superscalar issue, 
register renaming, etc.). 

The primary reason that designing a parallel architecture is so difficult 
is that the parameters which define a “good” machine are extremely appli-
cation-dependent.  A simple physical simulation is ideal for a SIMD ma-
chine with a high processor to memory ratio and a fast 3D grid network, but 
will make poor utilization of silicon resources in a Beowulf cluster and will 
suffer due to increased communication latencies and reduced bandwidth.  
Conversely, a parallel database application will perform extremely well on 
the latter machine but will probably not even run on the former.  Thus, it is 
important for the designer of a parallel machine to choose his or her battles 
early in the design process by identifying the target application space in 
advance. 

There is an obvious tradeoff involved in choosing an application space.  
The smaller the space, the easier it is to match the hardware resources to 
those required by user programs, resulting in faster and more efficient pro-
gram execution.  Hardware design can also be simplified by omitting fea-
tures which are unnecessary for the target applications.  For example, the 
Blue Gene architecture [IBM01], which is being designed specifically to 
fold proteins, does not support virtual memory [Denneau00].  On the other 
hand, machines with a restricted set of supported applications are less use-
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ful and not as interesting to end users.  As a result, they are not cost effec-
tive because they are unlikely to be produced in volume.  Since not every-
one has $100 million to spend on a fast computer, there is a need for com-
modity general-purpose parallel machines. 

The term “general-purpose” is broad and can be further subdivided into 
three categories.  A machine is general-purpose at the application level if it 
supports arbitrary applications via a restricted programming methodology; 
examples include Blue Gene [IBM01] and the J-Machine ([Dally92], 
[Dally98]).  A machine is general-purpose at the language level if it sup-
ports arbitrary programming paradigms in a restricted run-time environ-
ment; examples include the RAW machine [Waingold97] and Smart 
Memories [Mai00].  Finally, a machine is general-purpose at the environ-
ment level if it supports arbitrary management of computation, including 
resource sharing between mutually non-trusting applications.  This category 
represents the majority of parallel machines, such as Alewife [Agarwal95], 
Tera [Alverson90], The M-Machine ([Dally94b], [Fillo95]), DASH [Le-
noski92], FLASH [Kuskin94], and Active Pages [Oskin98].  Note that each 
of these categories is not necessarily a sub-category of the next.  For exam-
ple, Active Pages are general-purpose at the environment level [Oskin99a], 
but not at the application level as only programs which exhibit regular, 
large-scale, fine-grained parallelism can benefit from the augmented mem-
ory pages. 

The overall goal of this thesis is to investigate design principles for 
scalable parallel architectures which are general-purpose at the application, 
language and environment levels.  Such architectures are inevitably less 
efficient than restricted-purpose hardware for any given application, but 
may still provide better performance at a fixed price due to the fact that they 
are more cost-effective.  Focusing on general-purpose architectures, while 
difficult, is appealing from a research perspective as it forces one to con-
sider mechanisms which support computation in a broad sense. 

1.1 Designing for the Future 

Parallel shared-memory machines with hundreds or thousands of processor-
memory nodes have been built (e.g. [Dally98],  [Laudon97], [Ander-
son97]); in the future we will see machines with millions [IBM01] and 
eventually billions of nodes.  Associated with such large systems is a new 
set of design challenges; fundamental architectural changes are required to 
construct a machine with so many nodes and to efficiently support the re-
sulting number of threads.  Three problems in particular must be addressed.  
First, the memory system must be extremely scalable.  In particular, it 
should be possible to both allocate and physically locate distributed objects 
without storing global information at each node.  Second, the network mes-
saging protocol must be fault-tolerant.  With millions of discrete network 
components it becomes extremely difficult to prevent electrical or mechani-
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cal failures from corrupting packets, regardless of the fault-tolerant routing 
strategy that is used.  Instead, the focus will shift to end-to-end messaging 
protocols that ensure packet delivery across an unreliable network.  Finally, 
the hardware must provide support for efficient thread management.  Fine-
grained parallelism is required to effectively utilize millions of nodes.  The 
overheads of thread creation, context switching and synchronization should 
therefore be extremely low. 

At the same time, new fabrication processes that allow CMOS logic 
and DRAM to be placed on the same die open the door for novel hardware 
mechanisms and a tighter coupling between processors and memory.  The 
simplest application of this technology is to augment existing processor 
architectures with low-latency high-bandwidth memory [Patterson97].  A 
more exciting approach is to augment DRAM with small amounts of logic 
to extend its capabilities and/or perform simple computation directly at the 
memory.  Several research projects have investigated various ways in which 
this can be done (e.g. [Oskin98], [Margolus00], [Mai00], [Gokhale95]).  
However, none of the proposed architectures are general-purpose at both 
the application and the environment level, due to restrictions placed on the 
application space and/or the need to associate a significant amount of appli-
cation-specific state with large portions of physical memory. 

Massive parallelism and RAM integration are central to the success of 
future parallel architectures.  In this thesis we will explore these issues in 
the context of general-purpose computation. 

1.2 The Hamal Parallel Computer 

The primary vehicle of our presentation will be the complete system design 
of a shared memory machine: The Hamal1 Parallel Computer.  Hamal inte-
grates many new and existing architectural ideas with the specific goal of 
providing a massively scalable and easily programmable platform.  The 
principal tool used in our studies is a flexible cycle-accurate simulator for 
the Hamal architecture.  While many of the novel features of Hamal could 
be presented and evaluated in isolation, there are a number of advantages to 
incorporating them into a complete system and assessing them in this con-
text.  First, a full simulation ensures that no details have been omitted, so 
the true cost of each feature can be determined.  Second, it allows us to ver-
ify that the features are mutually compatible and do not interact in undesir-
able or unforeseen ways.  Third, the cycle-accurate simulator provides a 
consistent framework within which we can conduct our evaluations.  
Fourth, our results are more realistic as they are derived from a cycle-
accurate simulation of a complete system. 

                                                           
1 This research was conducted as part of Project Aries (http://www.ai.mit.edu/projects/aries).  

Hamal is the nickname for Alpha Arietis, one of the stars of the Aries constellation. 
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A fifth and final advantage to the full-system simulation methodology 
is that it forces us to pay careful attention to the layers of software that will 
be running on and cooperating with the hardware.  In designing a general-
purpose parallel machine, it is important to consider not only the proces-
sors, memory, and network that form the hardware substrate, but also the 
operating system that must somehow manage the hardware resources, the 
parallel libraries required to present an interface to the machine that is both 
efficient and transparent, and finally the parallel applications themselves 
which are built on these libraries (Figure 1-1).  During the course of this 
thesis we will have occasion to discuss each of these important aspects of 
system design. 

 
 

 

Figure 1-1: The components of a general purpose parallel computer 

1.3 Contributions 

The first major contribution of this thesis is the presentation of novel mem-
ory system features to support a scalable, efficient parallel system.  A capa-
bility format is introduced which supports pointer arithmetic and nearly-
tight object bounds without the use of capability or segment tables.  We 
present an implementation of sparsely faceted arrays (SFAs) [Brown02a] 
which allow distributed objects to be allocated with minimal overhead.  
SFAs are contrasted with extended address partitioning, a technique that 
assigns a separate 64-bit address space to each node.  We describe a flexible 
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scheme for synchronization within the memory system.  A number of aug-
mentations to DRAM are proposed to improve system efficiency including 
virtual address translation, hardware page management and memory events.  
Finally, we show how to implement forwarding pointers [Greenblatt74], 
which allow references to one memory location to be transparently for-
warded to another, without suffering the high costs normally associated 
with aliasing problems. 

The second contribution is the presentation of a lightweight end-to-end 
messaging protocol, based on a protocol presented in [Brown01], which 
guarantees message delivery and idempotence across a discarding network.  
We describe the protocol, outline the requirements for correctness, and per-
form simulations to determine optimal implementation parameters.  A sim-
ple yet accurate analytical model for the protocol is developed that can be 
applied more broadly to any fault-tolerant messaging protocol. 

Our third and final major contribution is the complete description and 
evaluation of a general-purpose shared-memory parallel computer.  The 
space of possible parallel machines is vast; the Hamal architecture provides 
a design point against which other general-purpose architectures can be 
compared.  Additionally, a discussion of the advantages and shortcomings 
of the Hamal architecture furthers our understanding of how to build a 
“good” parallel machine. 

A number of minor contributions are made as we weave our way 
through the various aspects of hardware and software design.  We develop 
an application-independent hash function with good collision avoidance 
properties that is easy to implement in hardware.  Instruction cache miss 
bits are introduced which reduce miss rates in a set-associative instruction 
cache by allowing the controller to intelligently select entries for replace-
ment.  A systolic array is presented for maintaining least-recently-used in-
formation in a highly associative cache.  We describe an efficient C++ 
framework for cycle-based hardware simulation.  Finally, we introduce 
dynamic sequence partitioning for reproducibly generating good pseudo-
random numbers in multithreaded applications where the number of threads 
is not known in advance. 

1.4 Omissions 

The focus of this work is on scalability and memory integration.  A full 
treatise of general purpose parallel hardware is well beyond the scope of 
this thesis.  Accordingly, there are a number of important areas of investiga-
tion that will not be addressed in the chapters that follow.  The first of these 
is processor fault-tolerance.  Built-in fault-tolerance is essential for any 
massively parallel machine which is to be of practical use (a million node 
computer is an excellent cosmic ray detector).  However, the design issues 
involved in building a fault-tolerant system are for the most part orthogonal 
to the issues which are under study.  We therefore restrict our discussion of 
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fault-tolerance to the network messaging protocol, and our simulations 
make the simplifying assumption of perfect hardware.  The second area of 
research not covered by this work is power.  While power consumption is 
certainly a critical element of system design, it is also largely unrelated to 
our specific areas of interest.  Our architecture is therefore presented in ab-
sentia of power estimates.  The third area of research that we explicitly dis-
regard is network topology.  A good network is of fundamental importance, 
and the choice of a particular network will have a first order effect on the 
performance of any parallel machine.  However, there is already a massive 
body of research on network topologies, much of it theoretical, and we do 
not intend to make any contributions in this area.  Finally, there will be no 
discussion of compilers or compilation issues.  We will focus on low-level 
parallel library primitives, and place our faith in the possibility of develop-
ing a good compiler using existing technologies. 

1.5 Organization 

This thesis is divided into two parts.  In the first part we present the com-
plete system design of the Hamal Parallel Computer.  Chapter 2 gives an 
overview of the design, including the principles that have guided us 
throughout the development of the architecture.  Chapter 3 details the 
memory system which forms the cornerstone of the Hamal architecture.  In 
Chapter 4 we discuss the key features of the processor design.  In Chapter 5 
we present the end-to-end messaging protocol used in Hamal to communi-
cate across a discarding network.  Chapter 6 describes the event-driven mi-
crokernel which was developed in conjunction with the processor-memory 
nodes.  Finally, in Chapter 7 we show how a set of hardware mechanisms 
together with microkernel cooperation can ensure that the machine is 
provably deadlock-free.  The chapters of Part I are more philosophical than 
scientific in nature; actual research is deferred to Part II. 

In the second part we evaluate various aspects of the Hamal architec-
ture.  We begin by describing our simulation methodology in Chapter 8, 
where we present an efficient C++ framework for cycle-based simulation.  
In Chapter 9 we discuss the benchmark programs and we introduce dynamic 
sequence partitioning for generating pseudo-random numbers in a multi-
threaded application.  In Chapters 10, 11 and 12 we respectively evaluate 
Hamal’s synchronization primitives, processor design, and forwarding 
pointer support.  Chapters 13 and 14 depart briefly from the Hamal frame-
work in order to study the fault-tolerant messaging protocol in a more 
general context: we develop an analytical model for the protocol, then 
evaluate it in simulation.  In Chapter 15 we evaluate the system as a whole, 
identifying its strengths and weaknesses.  Finally in Chapter 16 we 
conclude and suggest directions for future research. 
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Part I – Design 

 
 

It is impossible to design a system so perfect that no one needs to be good. 

– T. S. Eliot (1888-1965) 

A common mistake that people make when trying to design something 

completely foolproof is to underestimate the ingenuity of complete fools. 

– Douglas Adams (1952-2001), “Mostly Harmless” 
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Chapter 2    

Overview 

I have always hated machinery, and the only machine I ever  

understood was a wheelbarrow, and that but imperfectly. 

– Eric Temple Bell (1883-1960) 

Traditional computer architecture makes a strong distinction between proc-

essors and memory.  They are separate components with separate functions, 

communicating via a bus or network.  The Hamal architecture was moti-

vated by a desire to remove this distinction, leveraging new embedded 

DRAM technology in order to tightly integrate processor and memory.  

Separate components are replaced by processor-memory nodes which are 

replicated across the system.  Processing power and DRAM coexist in a 

fixed ratio; increasing the amount of one necessarily implies increasing the 

amount of the other.  In addition to reducing the number of distinct compo-

nents in the system, this design improves the asymptotic behavior of many 

problems [Oskin98].  The high-level abstraction is a large number of identi-

cal fine-grained processing elements sprinkled throughout memory; we 

refer to this as the Sea Of Uniform Processors (SOUP) model.  Previous 

examples of the SOUP model include the J-Machine [Dally92], and RAW 

[Waingold97]. 

2.1 Design Principles 

A number of general principles have guided the design of the Hamal archi-

tecture.   They are presented below in approximate order from most impor-

tant to least important. 

2.1.1 Scalability 

Implied in the SOUP architectural model is a very large number of proces-

sor-memory nodes.  Traditional approaches to parallelism, however, do not 

scale very well beyond a few thousand nodes, in part due to the need to 

maintain globally coherent state at each node such as translation lookaside 
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buffers (TLBs).  The Hamal architecture has been designed to overcome 

this barrier and scale to millions or even billions of nodes. 

2.1.2 Silicon Efficiency 

In current architectures there is an emphasis on executing a sequential 

stream of instructions as quickly as possible.  As a result, massive amounts 

of silicon are devoted to incremental optimizations such as branch predic-

tion, speculative execution, out of order execution, superscalar issue, and 

register renaming.  While these optimizations improve performance, they 

may reduce the architecture’s silicon efficiency, when can be roughly de-

fined as performance per unit area.  As a concrete example, in the AMD K7 

less than 25% of the die is devoted to useful work; the remaining 75% is 

devoted to making this 25% run faster (Figure 2-1).  In a scalar machine 

this is not a concern as the primary objective is single-threaded perform-

ance.  

  

 

Figure 2-1: K7 Die Photo.  Shaded areas are devoted to useful work. 

Until recently the situation in parallel machines was similar.  Machines 

were built with one processing node per die.  Since, to first order, the over-

all cost of an N node system does not depend on the size of the processor 

die, there was no motivation to consider silicon efficiency.  Now, however, 

designs are emerging which place several processing nodes on a single die 

([Case99], [Diefen99], [IBM01]).  As the number of transistors available to 

designers increases, this trend will continue with greater numbers of proces-

sors per die (Figure 2-2). 
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Figure 2-2:  (a) Today: 1-4 processors/die.  (b) Tomorrow: N processors/die. 

When a large number of processors are placed on each die, overall sili-

con efficiency becomes more important than the raw speed of any individ-

ual processor.  The Hamal architecture has been designed to maximize sili-

con efficiency.  This design philosophy favours small changes in hardware 

which produce significant gains in performance, while eschewing compli-

cated features with large area costs.  It also favours general mechanisms 

over application- or programming language-specific enhancements. 

As a metric, silicon efficiency is extremely application-dependent and 

correspondingly difficult to quantify.  Applications differ wildly in terms of 

their computational intensity, memory usage, communication requirements, 

parallelism and scalability.  It is not possible to maximize silicon efficiency 

in an absolute sense without reference to a specific set of applications, but 

one can often argue convincingly for or against specific architectural fea-

tures based on this design principle. 

2.1.3 Simplicity 

Simplicity is often a direct consequence of silicon efficiency, as many com-

plicated mechanisms improve performance only at the cost of overall effi-

ciency.  Simplicity also has advantages that silicon efficiency on its own 

does not; simpler architectures are faster to design, easier to test, less prone 

to errors, and friendlier to compilers. 

2.1.4 Programmability 

In order to be useful, an architecture must be easy to program.  This means 

two things: it must be easy to write programs, and it must be easy to debug 

programs.  To a large extent, the former requirement can be satisfied by the 

compiler as long as the underlying architecture is not so obscure as to defy 

compilation.  The latter requirement can be partially addressed by the 

programming environment, but there are a number of hardware mechanisms 

(a) (b) 



 24

which can greatly ease and/or accelerate the process of debugging.  It is 

perhaps more accurate to refer to this design principle as “debuggability” 

rather than “programmability”, but one can also argue that there is no dif-

ference between the two: it has been said that programming is “the art of 

debugging a blank sheet of paper” [Jargon01]. 

2.1.5 Performance 

Last and least of our design principles is performance.  Along with simplic-

ity, performance can to a large extent be considered a subheading of silicon 

efficiency.  They are opposite subheadings; the goal of silicon efficiency 

gives rise to a constant struggle between simplicity and performance.  By 

placing performance last among design principles we do not intend to imply 

that it is unimportant; indeed our interest in Hamal is above all else to de-

sign a terrifyingly fast machine.  Rather, we are emphasizing that a fast 

machine is uninteresting unless it supports a variety of applications, it is 

economical in its use of silicon, it is practical to build and program, and it 

will scale gracefully over the years as the number of processors is increased 

by multiple orders of magnitude. 

2.2 System Description 

The Hamal Architecture consists of a large number of identical processor-

memory nodes connected by a fat tree network [Leiserson85].  The design 

is intended to support the placement of multiple nodes on a single die, 

which provides a natural path for scaling with future process generations 

(by placing more nodes on each die).  Each node contains a 128 bit multi-

threaded VLIW processor, four 128KB banks of data memory, one 512KB 

bank of code memory, and a network interface (Figure 2-3).  Memory is 

divided into 1KB pages.  Hamal is a capability architecture ([Dennis65], 

[Fabry74]); each 128 bit memory word and register in the system is tagged 

with a 129th bit to distinguish pointers from raw data.  Shared memory is 

implemented transparently by the hardware, and remote memory requests 

are handled automatically without interrupting the processor. 
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Figure 2-3: The Hamal Processor-Memory Node. 

There are no data caches in the system for a number of reasons.  First, 

with on-die DRAM it is already possible to access local memory in only a 

few cycles.  A small number of hardware contexts can therefore tolerate 

memory latency and keep the hardware busy at all times.  Second, caches 

consume large amounts of silicon area which could instead be used to in-

crease the number of processor-memory nodes.  Third, designing a coherent 

cache for a massively parallel system is an extremely difficult and error-

prone task. 

System resources are managed by a concurrent event-driven microker-

nel that runs in the first thread context of every processor.  Events, such as 

page faults and thread creation, are placed on a hardware event queue and 

serviced sequentially by the microkernel. 

The following chapters describe the Hamal architecture in more detail.  

One aspect of the design that will not be discussed is secondary storage.  

We assume that some form of secondary storage exists which communi-

cates with the nodes via the existing network.  The sole purpose of this sec-

ondary storage is to store and retrieve pages of data and code, and we make 

the further assumption that the secondary storage maintains the mapping 

from virtual page addresses to physical locations within storage.  Secondary 

storage is otherwise unspecified and may consist of DRAM, disks, or some 

combination thereof. 
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Chapter 3  

The Memory System 

The two offices of memory are collection and distribution. 

– Samuel Johnson (1709-1784) 

In a shared-memory parallel computer, the memory model and its imple-

mentation have a direct impact on system performance, programmability 

and scalability.  In this chapter we describe the various aspects of the 

Hamal memory system, which has been designed to address the specific 

goals of massive scalability and processor-memory integration. 

3.1 Capabilities 

If a machine is to support environment-level general purpose computing, 

one of the first requirements of the memory system is that it provide a pro-

tection mechanism to prevent applications from reading or writing each 

other’s data.  In a conventional system, this is accomplished by providing 

each process with a separate virtual address space.  While such an approach 

is functional, it has three significant drawbacks.  First, a process-dependent 

address translation mechanism dramatically increases the amount of ma-

chine state associated with a given process (page tables, TLB entries, etc), 

which increases system overhead and is an impediment to fine-grained mul-

tithreading.  Second, data can only be shared between processes at the page 

granularity, and doing so requires some trickery on the part of the operating 

system to ensure that the page tables of the various processes sharing the 

data are kept consistent.  Finally, this mechanism does not provide security 

within a single context; a program is free to create and use invalid pointers. 

These problems all stem from the fact that in most architectures there is 

no distinction at the hardware level between pointers and integers; in par-

ticular a user program can create a pointer to an arbitrary location in the 

virtual address space.  An alternate approach which addresses these prob-

lems is the use of unforgeable capabilities ([Dennis65], [Fabry74]).  

Capabilities allow the hardware to guarantee that user programs will make 

no illegal memory references.  It is therefore safe to use a single shared 
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illegal memory references.  It is therefore safe to use a single shared virtual 

address space which greatly simplifies the memory model. 

In the past capability machines have been implemented using some 

form of capability table ([Houdek81], [Tyner81]) and/or special capability 

registers ([Abramson86], [Herbert79]), or even in software ([Anderson86], 

[Chase94]).  Such implementations have high overhead and are an obstacle 

to efficient computing with capabilities.  However, in [Carter94] a capabil-

ity format is proposed in which all relevant address, permission and seg-

ment size information is contained in a 64 bit word.  This approach obviates 

the need to perform expensive table lookup operations for every memory 

reference and every pointer arithmetic operation.  Additionally, the elimina-

tion of capability tables allows the use of an essentially unbounded number 

of segments (blocks of allocated memory); in particular object-based pro-

tection schemes become practical.  The proposed format requires all seg-

ment sizes to be powers of two and uses six bits to store the base 2 loga-

rithm of the segment size, allowing for segments as small as one byte or as 

large as the entire address space. 

Hamal employs a capability format ([Grossman99], [Brown00]) which 

extends this idea.  128 bit capabilities are broken down into 64 bits of ad-

dress and 64 bits of capability information (segment size, permissions, etc.).  

As in [Carter94], all words are tagged with a single bit to distinguish point-

ers from raw data, so capabilities and data may be mixed freely.  Figure 3-1 

shows how the 64 capability bits are broken down; the meaning of these 

fields will be explained in the following sections. 

 

 

Figure 3-1: The Hamal Capability Format. 

3.1.1 Segment Size and Block Index 

Restricting segment sizes to powers of two as in [Carter94] causes three 

problems.  First, since the size of many objects is not a power of two, there 

will be some amount of internal fragmentation within the segments.  This 

wastes memory and reduces the likelihood of detecting pointer errors in 

programs as pointers can be incremented past the end of objects while re-
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maining within the allocated segment.  Second, this fragmentation causes 

the apparent amount of allocated memory to exceed the amount of in-use 

memory by as much as a factor of two.  This can impact the performance of 

system memory management strategies such as garbage collection.  Finally, 

the alignment restriction may cause a large amount of external fragmenta-

tion when objects of different size are allocated.  As a result, a larger num-

ber of physical pages may be required to store a given set of objects. 

To allow for more flexible segment sizes, we use an 11-bit floating 

point representation for segment size which was originally proposed by 

fellow Aries researcher Jeremy Brown [Brown99] and is similar to the for-

mat used in ORSLA [Bishop77].  Each segment is divided into blocks of 

size 2B bytes where 0 ≤ B ≤ 63, so six bits are required to specify the block 
size.  The remaining 5 bits specify the length 1 ≤ L ≤ 32 of the segment in 
blocks: the segment size is L·2B.  Note that the values 1 ≤ L ≤ 16 are only 
required when B = 0.  If B > 0 and L ≤ 16 we can use smaller blocks by 
doubling L and subtracting 1 from B.  It follows that the worst-case internal 

fragmentation occurs when L = 17 and only a single byte in the last block is 

used, so the fraction of wasted memory is less than 1/17 < 5.9%.  As noted 

in [Carter94], this is the maximum amount of virtual memory which is 

wasted; the amount of physical memory wasted will in general be smaller. 

In order to support pointer arithmetic and pointers to object interiors, 

we must be able to recover a segment’s base address from a pointer to any 

location within the segment.  To this end we include a five bit block index 

field K which gives the zero-based index of the block within the segment to 

which the capability points (Figure 3-2).  The segment base address is com-

puted from the current address by setting the low B address bits to zero, 

then subtracting K·2B.  Note that the capability format in [Carter94] can be 

viewed as a special case of this format in which L = 1 and K = 0 for all ca-

pabilities. 

 

 

Figure 3-2: Pointer to segment interior with K = 3. 

3.1.2 Increment and Decrement Only 

Two bits I and D (grouped together in Figure 3-1) are used to specify a ca-

pability as increment-only and decrement-only respectively.  It is an error to 

add a negative offset to a capability with I set, or a positive offset to a capa-

bility with D set.  Setting these bits has the effect of trading unrestricted 

pointer arithmetic for the ability to exactly specify the start (I set) or end (D 
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set) of the region of memory addressable by the capability.  For example, if 

the capability in Figure 3-2 has I set then it cannot access the shaded region 

of the segment shown in Figure 3-3.  This can be used to implement exact 

object bounds by aligning the object with the end of the (slightly larger) 

allocated segment instead of the start, then returning a capability with I set 

that points to the start of the object.  It is also useful for sub-object security; 

if an object contains both private and public data, the private data can be 

placed at the start of the object (i.e. the shaded region of Figure 3-3), and 

clients can be given a pointer to the start of the public data with I set.  Fi-

nally, setting I and D simultaneously prevents a capability from being 

modified at all.  

 

 

Figure 3-3: Using increment-only for sub-object security or exact bounds. 

3.1.3 Subsegments 

It is a simple matter to restrict a capability to a subsegment of the original 

segment by appropriately modifying the B, L and K fields.  In some cases it 

may also be desirable to recover the original segment from a restricted ca-

pability; a garbage collector, for example, would require this information.  

We can accomplish this by saving the values of (B, L, K) corresponding to 

the start of the subsegment within the original segment.  Given an arbitrar-

ily restricted capability, the original segment can then be recovered in two 

steps.  First we compute the base address of the sub-segment as described in 

Section 3.1.1.  Then we restore the saved (B, L, K) and again compute the 

base address, this time of the containing segment.  Note that we must al-

ways store (B, L, K) for the largest containing segment, and if a capability 

is restricted several times then the intermediate sub-segments cannot be 

recovered.  This scheme requires 16 bits of storage; these 16 bits are placed 

in the shared 20-bit subsegment / owner field.  The other use for this field 

will be explained in Section 3.4 when we discuss distributed objects. 

3.1.4 Other Capability Fields 

The three bit type field (T) is used to specify one of seven hardware-

recognized capability types.  A data capability is a pointer to data memory.  

A code capability is used to read or execute code.  Two types of sparse ca-

pabilities are used for distributed objects and will be described in Section 

3.4.  A join capability is used to write directly to one or more registers in a 

segment: L = 19 

cap: I = 1 address 
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thread and will be discussed in Section 4.4.  An IO capability is used to 

communicate with the external host.  Finally, a user capability has a soft-

ware-specified meaning, and can be used to implement unforgeable certifi-

cates. 

The permissions field (P) contains the following permission bits: 

 

Bit Permission 

R read 

W write 

T take 

G grant 

DT diminished take 

DG diminished grant 

X execute 

P execute privileged  

Table 3-1: Capability permission bits 

The read and write bits allow the capability to be used for read-

ing/writing non-pointer data; take and grant are the corresponding permis-

sion bits for reading/writing pointers.  The diminished take and diminished 

grant bits also allow capabilities to be read/written, however they are “di-

minished” by clearing all permission bits except for R and DT.  These per-

mission bits are based on those presented in [Karger88].  The X and P bits 

are exclusively for code capabilities which do not use the W, T, G, DT or 

DG bits (in particular, Hamal specifies that code is read-only).  Hence, only 

6 bits are required to encode the above permissions. 

The eight bit user field (U) is ignored by the hardware and is available 

to the operating system for use.  Finally, the eight bit squid field (S) and the 

migrated bit (M) are used to provide support for forwarding pointers as de-

scribed in the next section. 

3.2 Forwarding Pointer Support 

Forwarding pointers are a conceptually simple mechanism that allow refer-

ences to one memory location to be transparently forwarded to another.  

Known variously as “invisible pointers” [Greenblatt74], “forwarding ad-

dresses” [Baker78] and “memory forwarding” [Luk99], they are relatively 

easy to implement in hardware, and are a valuable tool for safe data com-

paction ([Moon84], [Luk99]) and object migration [Jul88].  Despite these 

advantages, however, forwarding pointers have to date been incorporated 

into few architectures. 

One reason for this is that forwarding pointers have traditionally been 

perceived as having limited utility.  Their original intent was fairly specific 

to LISP garbage collection, but many methods of garbage collection exist 
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which do not make use of or benefit from forwarding pointers 

[Plainfossé95], and consequently even some LISP-specific architectures do 

not implement forwarding pointers (such as SPUR [Taylor86]).  Further-

more, the vast majority of processors developed in the past decade have 

been designed with C code in mind, so there has been little reason to 

support forwarding pointers. 

More recently, the increasing prevalence of the Java programming lan-

guage has prompted interest in mechanisms for accelerating the Java virtual 

machine, including direct silicon implementation [Tremblay99].  Since the 

Java specification includes a garbage collected memory model [Gosling96], 

architectures designed for Java can benefit from forwarding pointers which 

allow efficient incremental garbage collection ([Baker78], [Moon84]).  Ad-

ditionally, in [Luk99] it is shown that using forwarding pointers to perform 

safe data relocation can result in significant performance gains on arbitrary 

programs written in C, speeding up some applications by more than a factor 

of two.  Finally, in a distributed shared memory machine, data migration 

can improve performance by collocating data with the threads that require 

it.  Forwarding pointers provide a safe and efficient mechanism for object 

migration [Jul88].  Thus, there is growing motivation to include hardware 

support for forwarding pointers in novel architectures. 

A second and perhaps more significant reason that forwarding pointers 

have received little attention from hardware designers is that they create a 

new set of aliasing problems.  In an architecture that supports forwarding 

pointers, no longer can the hardware and programmer assume that different 

pointers point to different words in memory (Figure 3-4).  In [Luk99] two 

specific problems are identified.  First, direct pointer comparisons are not a 

safe operation; some mechanism must be provided for determining the final 

addresses of the pointers.  Second, seemingly independent memory opera-

tions may no longer be reordered in out-of-order machines. 

 

  

 

Figure 3-4: Aliasing resulting from forwarding pointer indirection. 

3.2.1 Object Identification and Squids 

Forwarding pointer aliasing is an instance of the more general challenge of 

determining object identity in the presence of multiple and/or changing 

names.  This problem has been studied explicitly [Setrag86]. A natural solu-

tion which has appeared time and again is the use of system-wide unique 
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object ID’s (e.g. [Dally85], [Setrag86], [Moss90], [Day93], [Plainfossé95]).  

UID’s completely solve the aliasing problem, but have two disadvantages: 

 

i. The use of ID’s to reference objects requires an expensive transla-

tion each time an object is referenced to obtain its virtual address. 

 

ii. Quite a few bits are required to ensure that there are enough ID’s 

for all objects and that globally unique ID’s can be easily gener-

ated in a distributed computing environment.  In a large system, at 

least sixty-four bits would likely be required in order to avoid any 

expensive garbage collection of ID’s and to allow each processor 

to allocate ID’s independently. 

 

Despite these disadvantages, the use of ID’s remains appealing as a 

way of solving the aliasing problem, and it is tempting to try to find a prac-

tical and efficient mechanism based on ID’s.  We begin by noting that the 

expensive translations (i) are unnecessary if object ID’s are included as part 

of the capability format.  In this case we have the best of both worlds: 

object references make use of the address so that no translation is required, 

and pointer comparisons and memory operation reordering are based on 

ID’s, eliminating aliasing problems.  However, this still leaves us with dis-

advantage (ii), which implies that the pointer format must be quite large. 

We can solve this problem by dropping the restriction that the ID’s be 

unique.  Instead of long unique ID’s, we use short quasi-unique ID’s 

(squids) [Grossman02].  At first this seems to defeat the purpose of having 

ID’s, but we make the following observation: while squids cannot be used 

to determine that two pointers reference the same object, they can in most 

cases be used to determine that two pointers reference different objects.  If 

we randomly generate an n bit squid every time an object is allocated, then 

the probability that pointers to distinct objects cannot be distinguished by 

their squids is 2-n. 

3.2.2 Pointer Comparisons and Memory Operation Reordering 

We can efficiently compare two pointers by comparing their base addresses, 

their segment offsets and their squids.  If the base addresses are the same 

then the pointers point to the same object, and can be compared using their 

offsets.  If the squids are different then they point to different objects.  If the 

offsets are different then they either point to different objects or to different 

words of the same object.  In the case that the base addresses are different 

but the squids and offsets are the same, we trap to a software routine which 

performs the expensive dereferences necessary to determine whether or not 

the final addresses are equal. 

We can argue that this last case is rare by observing that it occurs in 

two circumstances: either the pointers reference different objects which 
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have the same squid, or the pointers reference the same object through dif-

ferent levels of indirection.  The former occurs with probability 2-n.  The 

latter is application dependent, but we note that (1) applications tend to 

compare pointers to different objects more frequently then they compare 

pointers to the same object, and (2) the results of the simulations in [Luk99] 

indicate that it may be reasonable to expect the majority of pointers to mi-

grated data to be updated, so that two pointers to the same object will usu-

ally have the same level of indirection. 

In a similar manner, the hardware can use squids to decide whether or 

not it is possible to reorder memory operations.  If the squids are different, 

it is safe to reorder.  If the squids are the same but the offsets are different, 

it is again safe to reorder.  If the squids and offsets are the same but the ad-

dresses are different, the hardware assumes that the operations cannot be 

reordered.  It is not necessary to explicitly check for aliasing since preserv-

ing order guarantees conservative but correct execution.  Only simple com-

parisons are required, and the probability of failing to reorder references to 

different objects is 2-n. 

3.2.3 Implementation 

The Hamal capability contains an eight bit squid field (S) which is ran-

domly generated every time memory is allocated.  The probability that two 

objects cannot be distinguished by their squids is thus 2-8 < 0.4%.  This re-

duces the overhead due to aliasing to a small but still non-zero amount.  In 

order to eliminate overhead completely for applications that do not make 

use of forwarding pointers, we add a migrated bit (M) which indicates 

whether or not the capability points to the original segment of memory in 

which the object was allocated.  When a new object is created, pointers to 

that object have M = 0.  When the object is migrated, pointers to the new 

location (and all subsequent locations) have M = 1.  If the hardware is com-

paring two pointers with M = 0 (either as the result of a comparison instruc-

tion, or to check for a dependence between memory operations), it can ig-

nore the squids and perform the comparison based on addresses alone.  

Hence, there is no runtime cost associated with support for forwarding 

pointers if an application does not use them. 

3.3 Augmented Memory 

One of the goals of this thesis is to explore ways in which embedded 

DRAM technology can be leveraged to migrate various features and com-

putational tasks into memory.  The following sections describe a number of 

augmentations to memory in the Hamal architecture. 
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3.3.1 Virtual Memory 

The memory model of early computers was simple: memory was external 

storage for data; data could be modified or retrieved by supplying the mem-

ory with an appropriate physical address.    This model was directly imple-

mented in hardware by discrete memory components.  Such a simplified 

view of memory has long since been replaced by the abstraction of virtual 

memory, yet the underlying memory components have not changed.  In-

stead, complexity has been added to processors in the form of logic which 

performs translations from sophisticated memory models to simple physical 

addresses. 

There are a number of drawbacks to this approach.  The overhead asso-

ciated with each memory reference is large due to the need to look up page 

table entries.  All modern processors make use of translation lookaside 

buffers (TLB’s) to try to avoid the performance penalties associated with 

these lookups.  A TLB is essentially a cache, and as such provides excellent 

performance for programs that use sufficiently few pages, but is of little use 

to programs whose working set of pages is large.  Another problem com-

mon to any form of caching is the “pollution” that occurs in a multi-

threaded environment: a single TLB must be shared by all threads which 

reduces its effectiveness and introduces a cold-start effect at every context 

switch.  Finally, in a multiprocessor environment the TLB’s must be kept 

globally consistent which places constraints on the scalability of the system 

[Teller90]. 

The Hamal architecture addresses these problems by performing virtual 

address translations at the memory rather than at the processor.  Associated 

with each bank of DRAM is a hardware page table with one entry per 

physical page.  These hardware page tables are similar in structure and 

function to the TLB’s of conventional processors.  They differ in that they 

are persistent (since there is a single shared virtual address space) and com-

plete; they do not suffer from pollution or cold-starts.  They are also slightly 

simpler from a hardware perspective due to the fact that a given entry will 

always translate to the same physical page.  When no page table entry 

matches the virtual address of a memory request, a page fault event is gen-

erated which is handled in software by the microkernel. 

A requirement of this approach is that there be a fixed mapping from 

virtual addresses to physical nodes.  Accordingly, the upper bits of each 

virtual address are used to specify the node on which that address resides.  

This allows memory requests to be forwarded to the correct location with-

out storing any sort of global address mapping information at each node 

(Figure 3-5). 

 



 36

 

Figure 3-5:  (a) Conventional approach: virtual address is translated at the 

source node using a TLB.  Physical address specifies node and physical page.  

(b) Hardware page tables: virtual address specifies node and virtual page.  

Memory is accessed using virtual page address. 

The idea of hardware page tables is not new; they were first proposed 

for parallel computers in [Teller88], in which it was suggested that each 

memory module maintain a table of resident pages.  These tables are ac-

cessed associatively by virtual address; a miss indicates a page fault.  Sub-

sequent work has verified the performance advantages of translating virtual 

addresses to physical addresses at the memory rather than at the processor 

([Teller94], [Qui98], [Qui01]). 

A related idea is inverted page tables ([Houdek81], [Chang88], 

[Lee89]) which also feature a one to one correspondence between page ta-

ble entries and physical pages.  However, the intention of inverted page 

tables is simply to support large address spaces without devoting massive 

amounts of memory to traditional forward-mapped page tables.  The page 

tables still reside in memory, and translation is still performed at the proces-

sor.  A hash table is used to locate page table entries from virtual addresses.  

In [Huck93], this hash table is combined with the inverted page table to 

form a hashed page table. 
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node page offset
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3.3.2 Automatic Page Allocation 

Hardware page tables allow the memory banks to detect which physical 

pages are in use at any given time.  A small amount of additional logic 

makes it possible for them to select an unused page when one is required.  

In the Hamal architecture, when a virtual page is created or paged in, the 

targeted memory bank automatically selects a free physical page and cre-

ates the page table entry.  Additionally, pages that are created are initialized 

with zeros.  The combination of hardware page tables and automatic page 

allocation obviates the need for the kernel to ever deal with physical page 

numbers, and there are no instructions that allow it to do so. 

3.3.3 Hardware LRU 

Most operating systems employ a Least Recently Used (LRU) page re-

placement policy.  Typically the implementation is approximate LRU rather 

than exact LRU, and some amount of work is required by the operating 

system to keep track of LRU information and determine the LRU page.  In 

the Hamal architecture, each DRAM bank automatically maintains exact 

LRU information.  This simplifies the operating system and improves per-

formance; a lengthy sequence of status bit polling to determine LRU infor-

mation is replaced by a single query which immediately returns an exact 

result.  To provide some additional flexibility, each page may be assigned a 

weight in the range 0-127; an LRU query returns the LRU page of least 

weight. 

3.3.4 Atomic Memory Operations 

The ability to place logic and memory on the same die produces a strong 

temptation to engineer “intelligent” memory by adding some amount of 

processing power.  However, in systems with tight processor/memory inte-

gration there is already a reasonably powerful processor next to the mem-

ory; adding an additional processor would do little more than waste silicon 

and confuse the compiler.  The processing performed by the memory in the 

Hamal architecture is therefore limited to simple single-cycle atomic mem-

ory operations such as addition, maximum and boolean logic.  These opera-

tions are useful for efficient synchronization and are similar to those of the 

Tera [Alverson90] and CrayT3E [Scott96] memory systems. 

3.3.5 Memory Traps and Forwarding Pointers 

Three trap bits (T, U, V) are associated with every 128 bit data memory 

word.  The meaning of the T bit depends on the contents of the memory 

word.  If the word contains a valid data pointer, the pointer is interpreted as 

a forwarding pointer and the memory request is automatically forwarded.  
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Otherwise, references to the memory location will cause a trap.  This can be 

used by the operating system to implement mechanisms such as data break-

points.  The U and V bits are available to user programs to enrich the se-

mantics of memory accesses via customized trapping behaviour.  Each in-

struction that accesses memory specifies how U and V are interpreted 

and/or modified.  For each of U and V, the possible behaviours are to ig-

nore the trap bit, trap on set, and trap on clear.  Each trap bit may be left 

unchanged, set, or cleared, and the U bit may also be toggled.  When a 

memory request causes a trap the contents of the memory word and its trap 

bits are left unchanged and an event is generated which is handled by the 

microkernel.  The T trap bit is also associated with the words of code mem-

ory (each 128 bit code memory word contains one VLIW instruction) and 

can be used in this context to implement breakpoints. 

The U and V bits are a generalization of the trapping mechanisms im-

plemented in HEP [Smith81], Tera [Alverson90], and Alewife [Kranz92].  

They are also similar to the pre- and post-condition mechanism of the M-

Machine [Keckler98], which differs from the others in that instead of caus-

ing a trap, a failure sets a predicate register which must be explicitly tested 

by the user program. 

Handling traps on the node containing the memory location rather than 

on the node containing the offending thread changes the trapping semantics 

somewhat.  Historically, traps have been viewed as events which occur at a 

well-defined point in program execution.  The active thread is suspended, 

and computation is not allowed to proceed until the event has been atomi-

cally serviced.  This is a global model in that whatever part of the system 

generates the trap, the effects are immediately visible everywhere.  An al-

ternate model is to treat traps as local phenomena which affect, and are 

visible to, only those instructions and hardware components which directly 

depend on the hardware or software operation that caused the trap.  As an 

example of the difference between the global and local models, consider the 

program flow graph shown in Figure 3-6, and suppose that the highlighted 

instruction I generates an trap.  In the global model, there is a strict division 

of instructions into two sets: those that precede I in program order, and 

those that do not (Figure 3-6a).  The hardware must support the semantics 

that at the time the exception handler begins execution, all instructions in 

the first set have completed and none of the instructions in the second set 

have been initiated.  In the local model, only those instructions which have 

true data dependencies on I are guaranteed to be uninitiated (Figure 3-6b).  

All other instructions are unaffected by the exception, and the handler can-

not make any assumptions about their states. 
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Figure 3-6: Global vs. local traps. 

The local model is better suited to parallel and distributed computing, 

in which the execution of a single thread may be physically distributed 

across the machine; it is the model used in the Hamal architecture.  With a 

global trapping model, a thread would have to stall on every remote mem-

ory reference.  Memory references causing a trap would be returned to the 

processor where the thread would be preempted by a trap handler.  With a 

local exception model, a thread may continue processing while waiting for 

a remote memory reference to complete.  If the reference causes a trap, the 

trap is serviced on the remote node, independent of the thread that caused it, 

and the trap handler completes the memory request manually.  This is 

transparent to the thread; the entire sequence is indistinguishable from an 

unusually long-latency memory operation. 

To allow for application-dependent trapping behaviour, each memory 

request which can potentially trap on the U and V bits is accompanied by 

the requesting thread’s trap vector, a code capability giving the entry point 

to a trap handler.  The microkernel responds to U and V trap events by cre-

ating a new thread to run the trap handler. 

3.4 Distributed Objects 

In large-scale shared-memory systems, the layout of data in physical mem-

ory is crucial to achieving the best possible performance.  In particular, for 

many algorithms it is important to be able to allocate single objects in 

memory which are distributed across multiple nodes in the system.  The 

challenge is to allow arbitrary single nodes to perform such allocations 

without any global communication or synchronization.  A straightforward 

approach is to give each node ownership of parts of the virtual address 

space that exist on all other nodes, but this makes poor use of the virtual 

address bits: an N node system would require 2logN bits of virtual address 

to specify both location and ownership. 

In this section we describe two different approaches to distributed ob-

ject allocation: Extended Address Partitioning and Sparsely Faceted Arrays 

I I

(a)  Global trap (b)  Local trap 
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[Brown02a].  These techniques share the characteristic that a node atomi-

cally and without communication allocates a portion of the virtual address 

space - a facet - on each node in the system, but actual physical memory is 

lazily allocated only on those nodes which make use of the object.  Both of 

these mechanisms have been incorporated into the Hamal architecture. 

3.4.1 Extended Address Partitioning 

Consider a simple system which gives each node ownership of a portion of 

the virtual address space on all other nodes, using logN virtual address bits 

to specify ownership (Figure 3-7a).  When a distributed object is allocated, 

these logN bits are set to the ID of the node on which the allocation was 

performed.  Thereafter, the owner bits are immutable.  Pointer arithmetic on 

capabilities for the object may alter the node and address fields, but not the 

owner field.  We can therefore move the owner field from the address bits 

to the capability bits (Figure 3-7b).  This has the effect of extending the 

virtual address space by logN bits, then partitioning it so that each node has 

ownership of, and may allocate segments within, an equal portion of the 

address space. 

 

 

Figure 3-7:  (a) Simple address partitioning.  (b) Extended address partitioning. 

Distributed objects are allocated using extended address partitioning by 

reserving the same address range on all nodes.  Capabilities for these ob-

jects are of type sparse; the term “sparse” reflects the fact that while an 

object is conceptually allocated on all nodes, its facets may physically exist 

only on a small subset of nodes.  There are two differences between sparse 

capabilities and data capabilities.  First, when a sparse capability is created 

the owner field is automatically set (recall that the owner field is used for 

subsegments in data capabilities; subsegmenting of a sparse capability is 

not allowed).  Second, the node field of the address may be altered freely 

using pointer arithmetic or indexing.  The remaining capability fields have 

the same meaning in both capability types.  In particular B, L and K have 

the same values that they would if the specified address range had been 

allocated on a single node only. 

In a capability architecture such as Hamal, no special hardware mecha-

nism is required to implement lazy allocation of physical memory; it suf-

fices to make use of page faults.  This is because capabilities guarantee that 

all pointers are valid, so a page fault on a non-existent page always repre-

sents a page that needs to be created and initialized, and never represents an 

node owner address node owner address 

capability bits address bits capability bits address bits 

(a) (b)
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application error.  As a result, no communication needs to take place be-

tween the allocating node and the nodes on which the object is stored other 

than the capability itself, which is included in memory requests involving 

the object. 

3.4.2 Sparsely Faceted Arrays 

A problem with extended address partitioning is that the facets of distrib-

uted objects allocated by different nodes must reside in different physical 

pages, which can result in significant fragmentation and wasted physical 

memory.  This is illustrated by Figure 3-8a, which shows how the facets of 

four distributed objects allocated by four different nodes are stored in mem-

ory on a fifth node.  Four pages are required to store the facets, and most of 

the space in these pages is unused. 

 

 

Figure 3-8:  (a) Extended address partitioning results in fragmentation.  

(b) Address translation allows facets to be allocated contiguously. 

Sparsely faceted arrays (SFAs) are a solution to this problem described 

in [Brown02a].  The central idea is to perform a translation from global 

array names (which consist of the owner node and the base address on that 

node) to local addresses.  This extra layer of translation allows facets to be 
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allocated contiguously, even intermingled with local data, regardless of the 

nodes on which the SFAs were allocated (Figure 3-8b). 

SFAs require a translation table to exist at the boundary of each proc-

essing node in order to translate local addresses to/from global array names.  

When a SFA pointer moves from a node to the network, it is first decom-

posed into a base address and an offset.  The base address is used to look up 

the array’s global name in the translation table.  Similarly, when a SFA 

pointer arrives at a node, the owner and base address are used to look up the 

local facet base address in the translation table.  If no entry exists in the 

table, which occurs the first time a node sees a pointer to a given SFA, then 

a local facet is allocated and the base address is entered into the table.  Note 

that no translation is required at the boundary of the owner node. 

SFA capabilities in the Hamal architecture have type translated sparse, 

or xsparse.  They are exactly the same as sparse capabilities, and are only 

treated differently by the network interface which recognizes them and 

automatically performs translations.  In particular, the owner field is still set 

automatically when an xsparse capability is created.  While this is not 

strictly necessary for a SFA implementation, it has two advantages.  First, it 

allows the network interface to detect xsparse capabilities that are locally 

owned, so the null local ↔ global translation for this case can be omitted 

from the translation table.  Second, it avoids the need to expand xsparse 

capabilities from 128 to 128 + logN bits to include the owner node when 

they are transmitted across the network.  Each network interface has a 256-

entry translation cache and can perform a single translation on each cycle.  

In the case of a cache miss, an event is generated which must be handled by 

the microkernel.   

3.4.3 Comparison of the Two Approaches 

Each of these approaches has benefits and disadvantages.  Extended address 

partitioning has very low overhead and is inherently scalable.  It has the 

additional advantage of enlarging the virtual address space.  However, it 

can suffer from significant fragmentation problems.  Sparsely faceted arrays 

eliminate fragmentation, but require translation tables to be stored at indi-

vidual nodes which can potentially affect the scalability of the system.  

These tables do not store global information as translations are locally gen-

erated and managed, but it is not clear how quickly they will grow over 

time or with machine size, and some sort of translation garbage collection 

would be required to prevent the tables from becoming arbitrarily large.  

Another issue is the performance degradation which occurs if the working 

set of SFAs on some node exceeds the size of the hardware translation ta-

ble.  It is impossible to determine a priori which approach is to be pre-

ferred; most likely this is application-dependent.  We have therefore chosen 

to implement both mechanisms in the Hamal architecture.  
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3.4.4 Data Placement 

If an application programmer has specific knowledge concerning the physi-

cal layout of the processor nodes and the topology of the network that con-

nects them, it may be desirable to specify not only that an object is to be 

distributed, but also the exact mapping of facets to physical nodes.  The 

ability to do so has been integrated into the High Performance Fortran lan-

guage [Koelbel94], and some parallel architectures provide direct hardware 

support.  The M-Machine has a global translation mechanism which allows 

large portions of the virtual address space to be mapped over rectilinear 

subsets of the system’s three dimensional array of nodes [Dally94b].  In the 

Tera Computer System, consecutive virtual addresses in a segment may be 

distributed among any power of two number of memory units [Alverson90].  

The Cray T3E features an address centrifuge which can extract user-

specified bits from a virtual address and use them to form the ID for the 

node on which the data resides [Scott96]. 

The Hamal processor contains no global segment or translation tables; 

virtual addresses are routed to physical nodes based exclusively on the up-

per address bits.  To compensate for this somewhat rigid mapping and to 

allow applications to lay out an object in a flexible manner without per-

forming excessive computation on indices, a hardware swizzle instruction is 

provided.  This instruction combines a 64 bit operand with a 64 bit mask to 

produce a 64 bit result by right-compacting the operand bits corresponding 

to 1’s in the mask, and left-compacting the operand bits corresponding to 

0’s in the mask.  swizzle is a powerful bit-manipulation primitive with a 

number of potential uses.  In particular, it allows an address centrifuge to be 

implemented in software using a single instruction. 

3.5 Memory Semantics 

Sequential consistency presents a natural and intuitive shared memory 

model to the programmer.  Unfortunately, it also severely restricts the per-

formance of many parallel applications ([Gharach91], [Zucker92], 

[Chong95]).  This is due to the fact that no memory operation from a given 

thread may proceed until the effect of every previous memory operation 

from that thread is globally visible in the machine.  This problem becomes 

worse as machine size scales up and the average round trip time for a re-

mote memory reference increases. 

In order to maximize program efficiency, Hamal makes no guarantees 

concerning the order in which references to different memory locations 

complete.  Memory operations are explicitly split-phase; a thread continues 

to execute after a request is injected into the system, and at some unknown 

time in the future a reply will be received.  The hardware will only force a 

thread to stall in three circumstances: 
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1. The result of a read is needed before a reply containing the value is 

received 

2. There is a RAW, WAR or WAW hazard with a previous memory 

operation 

3. The hardware table used to keep track of incomplete memory op-

erations is full 

 

A wait instruction is provided to force a thread to stall until all out-

standing memory operations have completed.  This allows release consis-

tency [Gharach90] to be efficiently implemented in software.  
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Chapter 4  

Processor Design 

Everything should be made as simple as possible, but not simpler. 

– Albert Einstein (1879-1955) 

The Hamal architecture features 128 bit multithreaded Very Long Instruc-

tion Word (VLIW) processors.  There are eight hardware contexts; of these, 

context 0 is reserved for the event-driven microkernel, and contexts 1-7 are 

available for running user programs.  Instructions may be issued from a 

different context on each cycle, and instructions from multiple contexts may 

complete in a given cycle.  Each context consists of an instruction cache, a 

trace controller (which fetches instructions from the instruction cache and 

executes control flow instructions), issue logic, 32 128-bit tagged general 

purpose registers, 15 single-bit predicate registers, and a small number of 

special-purpose registers.   

Each VLIW instruction group consists of three instructions and an im-

mediate.  One instruction is an arithmetic instruction which specifies up to 

two source operands and a destination register.  One instruction is a mem-

ory instruction which specifies up to three source operands (address, index, 

data) and a destination register; this can also be a second arithmetic instruc-

tion for certain simple single-cycle operations.  The last instruction is a con-

trol flow instruction which specifies zero or one operands.  Predicated exe-

cution is supported; each instruction within an instruction group can be in-

dependently predicated on the value (true or false) of any one the 15 predi-

cates. 

This chapter gives an overview of, and provides motivation for, the key 

features of the Hamal processor.  These features represent various tradeoffs 

involving the five design principles outlined in Section 2.1: scalability, sili-

con efficiency, simplicity, programmability, and performance.  A more de-

tailed description of the processor can be found in [Grossman01a] and 

[Grossman01b]. 
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4.1 Datapath Width and Multigranular Registers 

The choice of 128 bits as the basic datapath and register width was moti-

vated by two factors: 

 

1. Capabilities are 128 bits, so at least some datapaths must be this 

wide 

2. Wide datapaths make effective use of the available embedded 

DRAM bandwidth 

 

A criticism of wide datapaths is that large portions of the register file 

and/or functional units will be unused for applications which deal primarily 

with 32 or 64 bit data, significantly reducing the area efficiency of the proc-

essor.  This issue is addressed in two ways.  First, each register is address-

able as a single 128 bit register, two 64 bit registers, or four 32 bit registers 

(Figure 4-1).  This requires a small amount of shifting logic to implement in 

hardware, and increases both the register file utilization and the number of 

registers available to user programs.  Second, many of the instructions can 

operate in parallel on two sets of 64 bit inputs or four sets of 32 bit inputs 

packed into 128 bits.  This provides the opportunity to increase both per-

formance and functional unit usage via fine-grained SIMD parallelism.  

Note that, for the purpose of scoreboarding, busy bits must be maintained 

for the finest register granularity; a register is marked as busy by setting the 

busy bits of all of its sub-registers. 

 
 r3  r2y r2x r1y r1b r1a r0d r0c r0b r0a 

 r7  r6 r5 r4 

 r11  r10 r9 r8 

 r15  r14 r13 r12 

o 

Figure 4-1: Multigranular general purpose registers. 

4.2 Multithreading and Event Handling 

Multithreading is a very well known technique.  In [Agarwal92] and [Thek-

kath94] it is shown that hardware multithreading can significantly improve 

processor utilization.  A large number of designs have been proposed and/or 

implemented which incorporate hardware multithreading; examples include 

HEP [Smith81], Horizon [Thistle88], MASA [Halstead88], Tera [Alver-

son90], April [Agarwal95], and the M-Machine [Dally94b].  Most of these 

designs are capable of executing instructions from a different thread on 

every cycle, allowing even single-cycle pipeline bubbles in one thread to be 

filled by instructions from another.  An extreme model of multithreading, 

variously proposed as processor coupling [Keckler92], parallel multithread-
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ing [Hirata92] and simultaneous multithreading [Tullsen95], allows multi-

ple threads to issue instructions during the same cycle in a superscalar ar-

chitecture.  This has been implemented in the Intel Pentium 4 Xeon archi-

tecture [Marr02]. 

The idea of using multithreading to handle events is also not new.  It is 

described in both [Keckler99] and [Zilles99], and has been implemented in 

the M-Machine [Dally94b].  Using a separate thread to handle events has 

been found to provide significant speedups.  In [Keckler99] these speedups 

are attributed to three primary factors: 

 

1. No instructions need to be squashed 

2. No contexts need to be saved and subsequently restored 

3. Threads may continue to execute concurrently with the event han-

dler 

 

In the Hamal architecture, events are placed in a hardware event queue.  

Events may be generated by memory (e.g. page faults), the network inter-

face (e.g. xsparse translation cache misses) or by the processor itself (e.g. 

thread termination).  The size of the event queue is monitored in hardware; 

if it grows beyond a high-water mark, certain processor activities are throt-

tled to prevent new events from being generated, thus avoiding event queue 

overflow and/or deadlock.  A special poll instruction allows context 0 to 

remove an event from the queue; information concerning the event is placed 

in read-only event registers.  The Hamal event-handling model is illustrated 

in Figure 4-2. 

 

Figure 4-2: Event queue and event handler context. 

4.3 Thread Management 

One of the requirements for efficient fine-grained parallelism is a set of 

lightweight mechanisms for thread management.  This is made possible in 

the Hamal architecture via hardware support for thread swap pages.  Each 

thread is explicitly assigned to a page in memory; the virtual address of this 

page is used to identify the thread.  All major thread management opera-

tions are performed by single instructions, issued from context 0, which 

specify a thread swap address as their argument.  Context loading and 
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unloading is performed in the background while the processor continues to 

execute instructions, as described in [Soundarar92]. 

4.3.1 Thread Creation 

Threads are created in the Hamal architecture using a fork instruction which 

specifies a code starting address for the new thread and a subset of the 32 

general purpose registers to copy into the thread.  The upper bits of the 

starting address indicate the node on which the new thread should be cre-

ated (code capabilities, like sparse capabilities, allow the node field of the 

address to be changed via pointer arithmetic and indexing).  When a fork 

request has arrived at the destination node (which may be the same node 

that issued the fork instruction), it is placed in a hardware fork queue.  Each 

node has an eight-entry FIFO queue for storing fork requests; when the 

queue fills fork instructions on that node are not allowed to issue, and fork 

packets received from the network cannot be processed.  Each time a fork is 

placed in the queue a fork event is generated.  The microkernel can handle 

this event in one of two ways: it can issue an fload instruction to immedi-

ately load the new thread into a free context and activate it, or it can issue 

an fstore instruction to write the new thread to memory.  Both of these in-

structions specify as their single operand a swap address for the new thread. 

4.3.2 Register Dribbling and Thread Suspension 

One of the challenges of fine-grained parallelism is deciding when a thread 

should be suspended; it is not even clear whether this decision should be 

made by hardware or software.  The problem is that it is difficult or impos-

sible to predict how long a blocked thread will remain inactive, particularly 

in a shared-memory system with no bounds on the amount of time required 

for a remote access to complete.  In order to minimize the likelihood of 

suspending a thread that would have become unblocked a short time in the 

future while at the same time attempting to keep the processor active, the 

Hamal processor waits until no forward progress is being made by any con-

text.  If there less than two free contexts, it then generates a stall event 

without actually suspending any threads, informing the microkernel of the 

least-recently-issued (LRI) thread and allowing it to make the final decision 

as to whether or not this thread should be suspended.  Hamal uses dribbling 

registers [Soundarar92] to minimize the cost of a context switch; the proc-

essor is always dribbling the LRI context to memory.  This dribbling is in-

cluded in the determination of forward progress, hence a stall event is not 

generated until the LRI context is clean and no context can issue. 
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4.4 Register-Based Synchronization 

Hamal supports register-based synchronization through the use of join ca-

pabilities.  A join capability allows one thread to write directly to the regis-

ter file of another.  Three instructions are provided to support this type of 

synchronization: jcap, busy, and join.  jcap creates a join capability and 

specifies the intended destination register as its argument.  busy sets the 

scoreboard busy bit(s) associated with a register, simulating the effect of a 

high-latency memory request.  Finally, join takes as arguments a join capa-

bility and data and writes the data directly to the destination register speci-

fied by the capability.  When a join is received, the appropriate busy bit(s) 

are cleared. 

gives a simple example of how these instructions can be used: a parent 

thread creates a child thread and supplies it with a join capability; the child 

thread uses this capability to inform the parent thread that it has finished its 

computation. 

 

 parent thread 

 
r0 = jcap r1a
r1a = busy
fork _child_thread, {r0}
r1a = and r1a, r1a

child thread 

 
_child_thread:

<computation>
join r0, 0

Figure 4-3: Register-based synchronization example. 

4.5 Shared Registers 

Eight 128-bit shared registers are visible to all contexts.  They may be read 

by any thread, but may be modified only by programs running in privileged 

mode.  Their purpose is to hold shared kernel data, such as allocation 

counters and code capabilities for commonly-called kernel routines. 

4.6 Hardware Hashing 

Hashing is a fundamental technique in computer science which determinis-

tically maps large data objects to short bit-strings.  The ubiquitous use of 

hashing provides motivation for hardware support in novel processor archi-

tectures.  The challenge of doing so is to design a single hash function with 

good characteristics across a wide range of applications. 

The most important measure of a hash function’s quality is its ability to 

minimize collisions, instances of two different inputs which map to the 

same output.  In particular, similar inputs should have different outputs, as 

many applications must work with clusters of related objects (e.g. similar 

variable names in a compiler, or sequences of board positions in a chess 

program).  While the meaning of “similar inputs” is application-dependent, 
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one simple metric that can be applied in any circumstance is hamming dis-

tance; the number of bits in which two inputs differ.  We define the mini-

mum collision distance of a hash function to be the smallest positive integer 

d such that there exist two inputs separated by hamming distance d that map 

to the same output.   

For an n bit input, m bit output hash function, the goal is to maximize 

the minimum collision distance.  The problem is that the number of re-

quired input and output bits varies greatly from application to application.  

A hardware hash function must therefore choose n and m large enough so 

that applications can simply use as many of the least significant input and 

output bits as they need.  It is therefore not enough to ensure that this n → 

m hash function has a good minimum collision distance, for if the outputs 

of two similar inputs differ only in their upper bits, then these two inputs 

will collide in applications that discard the upper output bits. 

In this section we will show how to construct a single n → m hash 

function which is easy to implement in hardware and has the property that 

the n → m’ subhashes obtained by discarding the upper m – m’ output bits 

all have good minimum collision distances.  Our approach is to construct a 

nested sequence of linear codes; we will begin with a brief review of these 

codes and their properties.  Note that it suffices to consider the size of the 

outputs, as any n’ → m subhash obtained by forcing a set of n – n’ input 

bits to zero will have a minimum collision distance at least as large as that 

of the original n → m hash. 

4.6.1 A Review of Linear Codes 

An (n, k) binary linear code C is a k-dimensional subspace of GF(2)n.  A 

generator matrix is any kxn matrix whose rows form a basis of C.  A gen-

erator matrix G defines a mapping from k-dimensional input vectors to code 

words; given a k-dimensional row vector v, the corresponding code word is 

vG.  A parity check matrix is any (n − k)xn matrix whose rows form a basis 

of C⊥, the subspace of GF(2)n orthogonal to C.  A parity check matrix H has 

the property that an n-dimensional vector w is a code word if and only if 

wH
T = 0. 

The minimum distance of a code is the smallest hamming distance d 

between two different code words.  For a binary linear code, this is also 

equal to the smallest weight (number of 1’s) of any non-zero code word.  

The quality of a code is determined by its minimum distance, as this dic-

tates the number of single-bit errors that can be tolerated when code words 

are communicated over a noisy channel.  Maximizing d for a particular n 

and k is an open problem, with upper limits given by the non-constructive 

Johnson bound [Johnson62].  The best known codes tend to come from the 

Bose-Chaudhury-Hocquenghem (BCH) [Kasami69] or Extended BCH 

[Edel97] constructions. 
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A BCH code with minimum distance d is constructed as follows.  

Choose n odd, and choose q such that n divides 2q – 1.  Let β be an order n 
element of GF(2q), and let j be an integer relatively prime to n.  Finally, let 

g be the least common multiple of the minimal polynomials of β  j, β  j + 1, 

β  j + 2, …, β  j + d – 2 over GF(2).  The code words are then the coefficients of 

the polynomials over GF(2) with degree < n which are divisible by g.  If g 

has degree m, this defines an (n, n − m) linear code with minimum distance 
≥ d. 

4.6.2  Constructing Hash Functions from Linear Codes 

Let H be a parity check matrix for an (n, k, d) linear code (the third parame-

ter in this notation is the minimum distance).  Let H() be the linear n → k 

hash function defined by H(v) = vHT.  For any two input vectors x and y, 

we have H(x) = H(y)  ⇔  xHT = yHT  ⇔  (x – y)HT  ⇔  x – y is a code 

word.  It follows that the minimum collision distance of H() is the smallest 

weight of any non-zero code word, which is equal to d.  We can therefore 

apply the theory of error-correcting codes to the construction of good hash 

functions. 

Next, suppose that C1 is an (n, k1, d1) linear code and C2 is an (n, k2, d2) 

subcode of C1 (so k2 < k1 and d2 ≥ d1).  Let H1 be a parity check matrix for 

C1.  Since C2 ⊂ C1, we have C1

⊥ ⊂ C2

⊥, so the rows of H1, which form a 

basis of C1

⊥, can be extended to a basis of C2

⊥.  Let H2 be the matrix whose 

rows are the vectors of this extended basis, ordered so that the bottom n – k1 

rows of H2 are the same as the rows of H1.  Then H2 is a parity check ma-

trix for C2, and the hash function H1() is the subhash of H2() obtained by 

discarding the k1 – k2 leftmost output bits.  It follows that we can construct 

an n → m hash function whose subhashes have good minimum collision 

distances by constructing a nested sequence Cn – m ⊂ Cn – m + 1 ⊂ Cn – m + 2 ⊂ 

… of linear codes where Ck is an (n, k, dk) code with dk as large as possible. 

4.6.3 Nested BCH Codes 

Assume for now that n is odd; we construct a nested sequence of BCH 

codes as follows.  Choose q, β, and j as described in Section 4.6.1.  For d ≥ 
2, let gd be the least common multiple of the minimal polynomials of β  j, 

β  j + 1, …, β  j + d – 2, let md = deg(gd), and let Bd be the resulting (n, n – md) 

BCH code with minimum distance ≥ d.  Since gd divides gd+1, it follows 
from the BCH construction that all the code words of Bd+1 are also code 

words of Bd, hence B2 ⊃ B3 ⊃ B4 ⊃ …. 

We can use this nested sequence of BCH codes to construct the desired 

sequence Cn – m ⊂ Cn – m + 1 ⊂ Cn – m + 2 ⊂ … of linear codes, assuming still 

that n is odd.  Start by choosing D large enough so that mD ≥ m.  Construct a 
basis {bi} of B2 by choosing the first n – mD vectors to be a basis of BD, 
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choosing the next mD – mD–1 vectors to extend this basis to a basis of BD–1, 

and so on, choosing the last m3 – m2 vectors to extend the basis of B3 to a 

basis of B2.  Finally, for n – m ≤ k ≤ n – m2 let Ck = span{b1, b2, …, bk}.  

Then {Ck} is an increasing sequence of nested codes.  When k = n – md for 

some d, Ck = Bd and therefore Ck has minimum distance ≥ d.  At this point 
we note that we can construct the {Ck} with n even by first using n – 1 to 

construct the {bi}, then adding a random bit to the end of each bi.  This has 

the effect of simultaneously extending the {Ck} from (n – 1, k) codes to (n, 

k) codes, and does not decrease their minimum distances.  Note that in this 

case k ranges from n – m to n – 1 – m2. 

4.6.4 Implementation Issues 

Assume for the remainder that n is even (we are, after all, interested in a 

hardware implementation, and in computer architecture all numbers are 

even).  Using the technique described in Section 4.6.2 we can construct a 

parity check matrix Hk  for each code Ck such that for n – m ≤ k ≤ n – 1 – 
m2, Hk consists of the bottom n – k rows of Hn−m.  This gives us an n → m 

hash function Hn–m() whose subhashes, obtained by discarding up to m – m2 

– 1 of the leftmost output bits, all have provably good minimum collision 

distances. 

We can manipulate the rows and columns of Hn−m to improve the prop-

erties of the hash function.  Permissible operations are to permute the col-

umns or the bottom m2 + 1 rows, or to add two rows together and replace 

the upper row with the sum (not the lower row, as this would destroy the 

properties of the subhashes).  There are three ways in which it is desirable 

to improve the hash function.  First, the weights of the rows and columns 

should be as uniform as possible so that each input bit affects the same 

number of output bits and each output bit is affected by the same number of 

input bits.  Additionally, the maximum row weight should be as small as 

possible as this determines the circuit delay of a hardware implementation.  

Second, as many as possible of the m’xm’ square submatrices in the lower 

right-hand corner should have determinant 1, so that the m’ → m’ sub-

hashes are permutations.  Finally, the BCH construction provides poor or no 

lower bounds for the minimum collision distance of the n’ → m’ subhashes 

with n’ < n and m’ < m4 + 1.  We can attempt to improve these small sub-

hashes using the following general observations.  If the hash function corre-

sponding to a matrix H has minimum collision distance d, then: 

 

1. d > 1 if the columns of H are all non-zero 

2. d > 2 if in addition the columns of H are distinct 

3. d > 3 if in addition the columns of H all have odd weight 

 

The proofs of (1) and (2) are trivial; the proof of (3) is the observation 

that vector addition over GF(2) preserves parity, so three columns of odd 
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weight cannot sum to zero.  As a final note, linear hash functions are 

straightforward to implement in hardware as each output bit is simply the 

XOR of a number of input bits. 

4.6.5 The Hamal hash Instruction 

The Hamal architecture implements a 256 → 128 hash function constructed 

as described in the previous sections; the hash instruction takes two 128 bit 

inputs and produces a 128 bit output.  Figure 4-4 plots the minimum colli-

sion distance d of the 256 → m subhashes against the best known d for in-

dependently constructed linear hash functions of the same size.  We see that 

for many values of m the minimum collision distance of the subhash is op-

timal. 

The hash matrix was manipulated as described in Section 4.6.4.  The 

weight of all rows in the resulting matrix is 127 with one exception of 

weight 128.  All 128 m → m subhashes are permutations.  For small n’ → 

m’ hashes, we chose to optimize the particular common case m’ = 8.  The 

256 → 8 subhash has d = 2.  The 128 → 8 subhash has d = 3.  For n1 ≤ 64 
and n2 ≤ 32, the (n1, n2) → 8 subhashes, obtained by supplying n1 bits to the 

first operand and n2 bits to the second operand of the hash instruction, all 

have d ≥ 4. 
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Figure 4-4: Best constructible vs. achieved minimum collision distance d for 

256 →→→→ m hashes. 
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4.7 Instruction Cache 

Each context in the Hamal processor contains a 64 entry, single cycle ac-

cess, fully associative instruction cache.  Each of the 64 cache lines is 1024 

bits long and holds 8 consecutive VLIW instruction groups.  When a cache 

line is accessed, the next 8 instruction groups are prefetched from instruc-

tion memory if they are not already present in the cache.  In this section we 

present two mechanisms used to optimize cache line replacement. 

4.7.1 Hardware LRU 

Implementing a least recently used (LRU) policy is difficult in caches with 

high degrees of associativity.  As a result, hardware designers generally opt 

for simpler replacement strategies such as round-robin [Clark01], even 

though the LRU policy is known to provide better performance [Smith82].  

The Hamal instruction cache uses a systolic array to maintain exact LRU 

information for the cache lines.  Since the length of the critical path in a 

systolic array is constant, this approach is suitable for arbitrarily associative 

caches. 

 

Figure 4-5:  Maintaining LRU information using (a) an atomically updated list 

(b) a systolic array. 

The central idea is to maintain a list of cache line indices sorted from 

LRU to MRU (most recently used).  When a cache line is accessed its line 

index L is presented to the list, and that index is rotated to the MRU posi-

tion at the end (Figure 4-5a).  We can implement this list as a systolic array 

by advancing L one node per clock cycle, along with a single-bit “matched” 

signal M, indicating whether or not the index has found a match within the 

array.  Until a match is found, L is advanced without any changes being 

made.  Once a match is found, nodes begin copying values from their 

neighbours to the right.  Finally, L is deposited in the last node.  This is 

illustrated in Figure 4-5b.  We can use the same design for all nodes by wir-

ing together the last node’s inputs, as shown in Figure 4-5b.  This ensures 
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that L will be deposited because by the end of the array we are guaranteed 

that M = 1, so the last node will attempt to copy a value from the right, and 

with the inputs wired together this value is L.  Note that we can only pre-

sent indices to the array on every other cycle.  For example, if in Figure 

4-5b ‘2’ were presented on the cycle immediately following ‘1’, then the 

value ‘1’ would erroneously be copied into the first node instead of the cor-

rect ‘3’. 

Figure 4-6 shows a hardware implementation of the systolic array 

node.  The forward signals are the line index L and the match bit M; the 

backward signal is the current index which is used to shift values when M = 

1.  The node contains two logN bit registers (where N is the degree of asso-

ciativity), one single-bit register, a logN bit multiplexer, a logN bit com-

parator, and an OR gate.  No extra hardware is required to set up the array 

as it can be initialized simply by setting M = 1 and presenting all N line 

indices in N consecutive cycles followed by N copies of the last index (N – 

1) in the next N consecutive cycles. 

 

 

Figure 4-6: Systolic array node. 

In normal operation the input M to the first node is always 0.  On a 

cache hit, the line index L is presented to the array.  On a cache miss, the 

output of the first node gives the LRU line index; this line is replaced and 

the index is fed back into the array.  On a cycle with no cache activity, the 

index of the most recently accessed line is presented, which does not 

change the state of the array (this technique avoids the need for a separate 

“valid” bit). 

We can modify the systolic array to accommodate one cache line ac-

cess per cycle simply by removing every other set of forward registers and 

altering the backward ‘index’ signal slightly to obtain the new node imple-

mentation shown in Figure 4-7.  The index signal is taken from the input 

rather than the output of the bottom register to ensure that when the previ-

ous node attempts to copy the index value, it obtains the value that would 

be stored in this register after the node has finished processing its current 

inputs.  This new systolic array, which contains N/2 nodes, can be initial-

ized by presenting all N line indices in N consecutive cycles with M = 1. 
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ML index
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Figure 4-7: Modified systolic array node. 

4.7.2 Miss Bits 

Simple prefetching can be used to avoid cache misses in straight-line code.  

This leads to the observation that there is no need to maintain such code in 

the instruction cache.  It suffices to keep one cache line containing the first 

instruction group in the basic block; the rest of the instructions will be 

automatically prefetched when the code is executed.  The Hamal instruction 

cache takes advantage of this observation by adding a miss bit to each cache 

line.  The bit is set for lines that were loaded in response to a cache miss, 

and clear for lines that were prefetched.  The instruction cache is then able 

to preferentially replace those lines which are likely to be successfully pre-

fetched the next time they are required.  This scheme requires a slight modi-

fication to the LRU systolic array so that the line indices are sorted first by 

miss bits and then by LRU. 

Making use of miss bits is similar to the use of a branch target buffer 

[Kronstadt87], but differs in that it more precisely identifies those lines 

which cannot be successfully prefetched.  In particular, the branch targets of 

short forward or backward branches may be successfully prefetched, 

whereas the cache line following a branch target may not be successfully 

prefetched if, for example, the branch target is the last instruction group in 

its cache line. 
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Chapter 5  

Messaging Protocol  

What I tell you three times is true. 

– Lewis Carroll (1832-1898), “The Hunting of the Snark” 

In large parallel machines, the implementation of the network has a first 

order effect on the performance characteristics of the system.  Both the 

network topology and the messaging protocol must be carefully chosen to 

suit the needs of the architecture and its target applications.  One of the first 

decisions that designers must face is whether the responsibility for success-

ful packet delivery should be placed on the network or the processing 

nodes.  

If it is the network’s responsibility, then packets injected into the net-

work are precious and must not be corrupted or lost under any circum-

stances.  Network nodes must contain adequate storage to buffer packets 

during congestion, and some strategy is required to prevent or recover from 

deadlock.  The mechanical design of the network must afford an extremely 

low failure rate, as a single bad component or connection can result in sys-

tem failure.  Many fault-tolerant routing strategies alleviate this problem 

somewhat by allowing the system to tolerate static detectable faults at the 

cost of increased network complexity and often reduced performance.  Dy-

namic or undetected faults remain a challenge, although techniques have 

been described to handle the dynamic failure of a single link or component 

([Dennison91], [Dally94a], [Galles96]). 

If, on the other hand, responsibility for message delivery is placed on 

the processing nodes, network design is simplified enormously.  Packets 

may be dropped if the network becomes congested.  Components are al-

lowed to fail arbitrarily, and may even be repaired online so long as at least 

one routing path always exists between each pair of nodes.  Simpler control 

logic allows the network to be clocked at a higher speed than would other-

wise be possible ([DeHon94], [Chien98]). 

The cost, of course, is a more complicated messaging protocol which 

requires additional logic and storage at each node, and reduces the perform-

ance of the system.  Thus, with few nodes (hundreds or thousands), it is 
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likely a good tradeoff to place extra design effort into the network and reap 

the performance benefits of guaranteed packet delivery.  However, as the 

scale of the machine increases to hundreds of thousands or even millions 

[IBM01] of nodes and the number of discrete network components is simi-

larly increased, it becomes extremely difficult to prevent electrical or me-

chanical failures from corrupting packets within the network.  There is 

therefore a growing motivation to accept the possibility of network failure 

and to develop efficient end-to-end messaging protocols. 

Any fault-tolerant messaging protocol must have the following two 

properties: 

 

i. delivery:  All messages must be successfully delivered at least 

once. 

ii. idempotence:  Only one action must be taken in response to a 

given message even if duplicates are received. 

 

Additionally, for a protocol to be scalable to large systems, it should 

exhibit these properties without storing global information at each node 

(e.g. sequence numbers for packets received from every other node).  In 

light of this restriction, the idempotence property becomes more of a chal-

lenge. 

In this chapter we develop a lightweight fault-tolerant idempotent mes-

saging protocol that is easy to implement in hardware and has been incorpo-

rated into the Hamal architecture.  Each communication is broken down 

into three parts: the message, sent from sender to receiver, the acknowl-

edgement, sent from receiver to sender to indicate message reception, and 

the confirmation, sent from sender to receiver to indicate that the message 

will not be re-sent.  For the most part the protocol arises fairly naturally 

from the delivery and idempotence requirements as well as the restriction 

that global information may not be stored at each node.  There are some 

subtleties, however, that must be addressed in order to ensure correctness.  

We begin with the assumption that the network does not reorder packets; in 

Section 5.3 we will see how this restriction can be relaxed. 

5.1 Previous Work 

The vast majority of theoretical and applied work in interconnection net-

works has focused on fault-tolerant routing strategies for non-discarding 

networks.  While specific types of operations may be transformed into 

idempotent forms for repeated transmission over unreliable networks [Es-

lick94], no general mechanism providing lightweight end-to-end idempo-

tence has previously been reported.  As a result, most previous and existing 

parallel architectures have implemented non-discarding networks 

([Hwang93], [Ni93], [Culler99]). 
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The practice of discarding packets is common among WAN net-

working technologies such as Ethernet [Metcalfe83] and ATM [Roohola-

mini]; end-to-end protocols such as TCP [Postel81] are required to ensure 

reliable message delivery over these networks.  However, WAN-oriented 

protocols generally require total table storage proportional to N2 for N inter-

communicating nodes ([Dennison91], [Dally93]), and are therefore poorly 

suited to large distributed shared-memory machines. 

Only a few parallel architectures feature networks which may discard 

packets; among these exceptional cases are the BBN Butterfly 

[Rettburg86], the BBN Monarch [Rettburg90], and the Metro router archi-

tecture [DeHon94].  Each of these implements a circuit-switched network 

which discards packets in response to collisions or network faults. 

The protocol presented in this chapter was first described in [Brown01] 

and was implemented as part of a faulty network simulation in [Woods01]. 

5.2 Basic Requirements 

The message-acknowledge pair is fundamental to any end-to-end messag-

ing protocol.  The sender has no way of knowing whether or not a message 

was successfully delivered, so it must remember and periodically re-send 

the message until an acknowledgement (ACK) is received at which point it 

can forget the message. 

Because a message can be sent (and therefore received) multiple times, 

the receiver must somehow remember that it has already acted on a given 

message in order to preserve message idempotence.  One approach, used in 

the TCP protocol [Postel81], is to sequentially generate packet numbers for 

every sender-receiver pair; each node then remembers the last packet num-

ber that it received from every other node.  This approach is feasible with 

thousands of nodes, but the memory requirements are likely to be prohibi-

tive in machines with millions of nodes. 

Without maintaining this type of global information at each node, the 

only way to ensure message idempotence is to remember individual mes-

sages that have been received.  To ensure correctness, each message must 

be remembered until a guarantee can be made that no more duplicates will 

be received.  This, however, depends on a remote event, specifically the 

successful delivery of an ACK to the sender.  Only the sender knows when 

no more copies of the message will be sent, and so we require a third con-

firmation (CONF) packet to communicate this information to the receiver. 

We thus have our three-part idempotent messaging protocol.  The 

sender periodically sends a message (MSG) until an ACK is received, at 

which point it can drop the message.  Once a message is received, the re-

ceiver ignores duplicates and periodically sends back an ACK until a CONF 

is received, at which point it can forget about the message.  Finally, each 

time that a sender receives an ACK it responds with a CONF to indicate 
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that the message will not be resent.  This is illustrated in Figure 5-1, which 

shows how the protocol is able to deal with arbitrary packets being lost. 

 

 

Figure 5-1: Idempotent messaging example. 

5.3 Out of Order Messages 

The assumption that no more duplicate messages will be delivered once a 

CONF has been received is true only if packets sent from one node to an-

other are received in the order that they were sent.  If the network is permit-

ted to reorder packets then the messaging protocol can fail as shown in 

Figure 5-2. 

This problem can be fixed as long as the amount of time allowed for a 

packet to traverse the network is bounded.  Suppose that all packets are 

either delivered or discarded at most T cycles after they are sent.  We mod-

ify the protocol by having the receiver remember a message for T cycles 
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after the CONF is received.  Since any duplicate message would have been 

sent before the CONF, by choice of T it is safe to forget the message after T 

cycles have elapsed. 

We can ensure that the bound T exists either by assigning packets a 

time to live as in TCP [Postel81], or by limiting both the number of cycles 

that a packet may be buffered by a single network node and the length of 

the possible routing paths.  The former approach places a tighter bound on 

T, while latter is simpler as it does not require transmitting a time to live 

with each packet. 

 

 

Figure 5-2: Failure resulting from packet reordering. 

5.4 Message Identification 

Each message must be assigned an identifier (ID) that can be placed in the 

ACK and CONF packets relating to that message.  On the sending node the 

ID is sufficient to identify the message; on the receiving node the message 

is uniquely identified by the pair (source node ID, message ID).  Figure 5-3 

shows the structure of an ACK/CONF packet. 

 

 

Figure 5-3: ACK/CONF packet structure. 

A header field is present in all packets and contains the packet type and 

routing information.  The source node ID field identifies the node which 

sent the packet; for a CONF this is combined with the message ID field at 

the receiving node to uniquely identify the message, and for an ACK it pro-
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vides the destination for the CONF response (note that this information 

must be stored in the ACK and cannot simply be remembered with the 

original message since the message is discarded when the first ACK is re-

ceived, but multiple ACKs may be received). 

The ACK and CONF packets represent the overhead of the idempotent 

messaging protocol, and as such it is desirable to make them as small as 

possible.  It is tempting to try to use short (say 4-8 bit) message ID’s and 

simply ensure that, on a given sending node, no two active messages have 

the same ID.  Unfortunately, this approach fails because a message is “ac-

tive” until the CONF is received, and there is no way for the sending node 

to know when this occurs (short of adding a fourth message to the proto-

col).  Figure 5-4 shows how a message can be erroneously forgotten if mes-

sage ID’s are reused too quickly. 

 

 

Figure 5-4: Failure resulting from message ID reuse. 

It is therefore necessary to use long message ID’s so that there is a suf-

ficiently long period between ID reuse.  It is difficult to quantify “suffi-

ciently long” since a message can, in theory, be active for an arbitrarily long 

time if the network continually drops its CONF packets.  One possible 

strategy is to use reasonably long ID’s, say 48 bits, then drain the network 

by suppressing new messages once every 4-12 months of operation. 

MSG 7 

sender receiver 

(a)  Receiver sends ACK to message with ID = 7 

MSG 7

CONF 7

ACK 7

(b)   Sender forgets MSG and sends CONF.  Network 

drops CONF.  Receiver re-sends ACK. 

ACK 7 MSG 7

MSG 7

MSG 7

ACK 7

(c)   While ACK is in transit, sender re-uses ID 7 for a new 

message which is dropped by the network. 

MSG 7 

CONF 7 MSG 7

(d)   Sender receives ACK and forgets the new message, 

thinking it has been received. 



 63

The next temptation is to eliminate the source node ID field and 

shorten the message ID field in CONF packets only.  This can be achieved 

by assigning to messages short secondary ID’s on the receiving node so that 

CONF packets consist of only a header field and this secondary ID (the 

source node ID is no longer necessary since the secondary ID’s are gener-

ated by the receiving node).  Secondary ID’s can be direct indices into the 

receive table.  However, the straightforward implementation of this idea 

also fails when secondary ID’s are reused prematurely.  Figure 5-5 shows 

how a message can lose its idempotence when this occurs. 

   

 

Figure 5-5: Failure resulting from secondary ID reuse. 

Fortunately, a more careful implementation of secondary ID’s does, in 

fact, work.  The key observation is that because the sending node forgets 

CONF packets as soon as they are sent, we can place a bound on the 

amount of time that a secondary ID remains active after a CONF has been 
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received.  If an ACK was sent before the CONF was received, then the sec-

ondary ID will be active as long as the ACK is traveling to the sender, or 

the sender is processing the ACK, or the CONF response is traveling back 

to the receiver.  We have already seen how to place a bound T on packet 

travel time.  If in addition we place a bound R on the time taken to process 

an ACK (dropping the packet if it cannot be serviced in time), then a secon-

dary ID can remain active for at most 2T + R cycles after the first CONF is 

received.  We can therefore avoid secondary ID reuse by remembering a 

message for 2T + R cycles after the CONF is received. 

5.5 Hardware Requirements 

In addition to the control logic needed to implement the protocol, the pri-

mary hardware requirements are two content addressable memories 

(CAMs) used for remembering messages.  The first of these remembers 

messages sent, stores {message ID, message index} on each line, and is 

addressed by message ID.  “message index” locates the actual message and 

is used to free resources when an ACK is received.  The processor is pro-

hibited from generating new messages if this send table fills, and must stall 

if it attempts to do so until an entry becomes available.  The second CAM 

remembers messages received, stores {source node ID, message ID} on 

each line and is addressed by (source node ID, message ID).  No additional 

information is required in this CAM since the receiver simply needs to 

know whether or not a particular message has already been received.  If this 

table is full, new messages received over the network are dropped. 
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Chapter 6  

The Hamal Microkernel 

I claim not to have controlled events, but confess  

plainly that events have controlled me. 

– Abraham Lincoln (1809-1865), in a letter to Albert G. Hodges 

The resources of the Hamal processor-memory node are managed by a 

lightweight event-driven microkernel that runs concurrently in context 0.  

This approach has the effect of blurring the distinction between hardware 

and software, and necessitates an integrated design methodology.  Indeed, 

throughout the course of the design process, many hardware mechanisms 

have been replaced by software alternatives, and many basic kernel tasks 

have been migrated into hardware.  The resulting design reflects an effort to 

maximize system efficiency and flexibility while keeping both the hardware 

and the kernel as simple as possible.  In this chapter we describe the various 

aspects of the Hamal microkernel, including both its event handling strate-

gies and the interface it presents to user applications. 

6.1 Page Management 

The Hamal instruction set contains privileged instructions that allow the 

kernel to create, destroy, page in and page out pages of memory.  All page 

management instructions take a virtual page address as their operand.  The 

kernel is never required (or able) to manipulate physical page numbers; it is 

simply required to keep track of the number of free pages in each bank. 

The use of capabilites guarantees that a page fault is always caused by 

an attempt to access a page which is not resident in memory and is never 

due to a program error.  This fact, together with the use of virtual addresses 

to reference pages both in memory and in secondary storage, means that 

there is no need for the kernel to maintain any sort of page tables. 

There are two types of page fault events: data page faults, caused by 

memory references, and code page faults, caused by instruction fetching.  

The kernel handles both types of events by issuing a page-in request and 

writing the event information to a page-in table in memory, so that the 
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faulting operation may be resumed when the page arrives.  For a data page 

fault, this information consists of the memory operation, the memory ad-

dress, the reply address, up to 128 bits of data, and a trap vector.  For a code 

page fault, the information consists of the instruction address and the swap 

address of the faulting thread.  In the case of a code page fault the kernel 

also suspends the offending thread. 

Secondary storage responds to page-in requests by using the virtual ad-

dress to physically locate the page; it then fetches the page and sends it to 

the requesting node.  If the page does not exist, which occurs the first time a 

new data page is accessed, it is created and initialized with zeros.  When a 

code or data page-in completes, a page-in event is generated which supplies 

the kernel with the virtual address of the newly arrived page.  The kernel 

searches the page-in table for matching data page fault entries, and uses a 

special privileged instruction to reissue memory requests (this must be done 

even for code memory page-ins because code is readable).  If the new page 

is a code page, the kernel also searches the table for matching code page 

fault entries, reactivating the corresponding threads. 

6.2 Thread Management 

Privileged mode instructions allow the kernel to suspend, resume, and ter-

minate threads.  As with the page management instructions, these instruc-

tions all take the virtual swap address of a thread as their operand.  The ker-

nel is neither required nor able to manipulate physical context numbers, but 

must keep track of the number of free contexts. 

The kernel maintains threads in four doubly linked lists according to 

their state.  active threads are those currently executing in one of the hard-

ware contexts.  new threads have been created to handle a trap or in re-

sponse to a fork event but have not yet been activated.  ready threads have 

been swapped out to allow other threads to run, and are ready to continue 

execution at any time.  suspended threads are blocked, and are waiting for a 

memory reply, a code page, or a join operation. 

When a fork is added to a node’s hardware fork queue a fork event is 

generated.  When the kernel handles this event, it allocates a new swap page 

by advancing a counter and creating the page.  If there is a free context, the 

kernel loads the new thread immediately and places it in the ‘active’ list.  

Otherwise, it writes the thread to the swap page and adds it to the ‘new’ list.  

To improve the efficiency of micro-threads that perform a very simple task 

and then exit, the kernel attempts to reserve a context for new threads.  This 

allows these threads to run immediately without having to wait for a longer-

running thread to relinquish a context. 

When a stall event occurs (Section 4.3.2), the kernel checks to see if 

there are any new or ready threads waiting to execute.  If so, the stalled 

thread is suspended.  Otherwise, the stall event is ignored.  If the thread is 

suspended, it is not immediately added to the ‘suspend’ list; the kernel sim-
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ply issues the suspend instruction and returns to the head of the event loop.  

This allows other events to be processed while the thread state dribbles 

back to its swap page.  Once the thread has been completely unloaded, a 

suspend event is generated to inform the kernel that the contents of the 

swap page are valid and that the context is available.  At this point the ker-

nel adds the thread to the ‘suspend’ list and checks to see if it can activate 

any new or ready threads. 

In addition to the suspend event which is generated after a thread has 

been manually suspended, there are four other events which indicate to the 

kernel that a thread is unable to continue execution.  A code page fault 

event occurs when a thread tries to execute an instruction group located in a 

non-resident page, and was described in the previous section.  A code T 

trap event occurs when a thread tries to execute an instruction group with 

the T trap bit set.  A break event occurs when a thread issues a break in-

struction; this is the normal mechanism for thread termination.  The kernel 

responds to a break event by removing the thread from the ‘active’ list and 

checking to see if it can activate any new or ready threads.  A trap event 

occurs when a thread encounters an error condition and its trap vector is 

invalid.  Each of these events is placed in the event queue after the faulting 

thread has been dribbled to memory, so the kernel can assume that the con-

tents of the swap page are valid and the thread’s context is available. 

When a reply to a memory request is received, the processor checks to 

see if the requesting thread is still active in one of the contexts.  If so, the 

reply is processed by that context.  Otherwise a reply event is generated.  

The kernel handles this event by directly modifying the contents of the 

thread’s swap page.  If the thread was suspended and the kernel determines 

that the reply will allow the thread to continue executing, then the thread is 

reactivated if there is more than one free context (recall that one context is 

reserved for new threads), otherwise it is moved to the ‘ready’ list. 

Thread scheduling is performed using a special purpose count-down 

register which is decremented every cycle when positive and which gener-

ates a timer event when it reaches zero.  If there are no threads waiting to be 

scheduled, then the timer event is simply ignored.  Otherwise the least re-

cently activated thread (i.e. the thread at the head of the ‘active’ list) is sus-

pended using the suspend instruction. 

6.3 Sparsely Faceted Arrays 

In order to support sparsely faceted arrays, the kernel must supply the net-

work interface with translations when translation cache misses occur.  Two 

events notify the kernel of cache misses: translate-in events, generated by 

failed global→local translations, and translate-out events, generated by 

failed local→global translations.  The kernel maintains a full translation 

table, and responds to translation events by looking up the appropriate 

translation and communicating it to the network interface using the privi-



 68

leged xlate instruction.  If no translation is found, which can only occur for 

a translate-in event the first time a node encounters an xsparse capability for 

a SFA, the kernel uses the segment size information embedded in the 

xsparse capability to allocate a local facet, and the base address of this facet 

is entered into the translation table. 

6.4 Kernel Calls 

The kernel exposes a set of privileged subroutines to user applications by 

creating a kernel table of entry points in memory, then placing a read-only 

capability for this table in one of the shared registers.  The entry points are 

all code capabilities with the P (execute privileged), I (increment only) and 

D (decrement only) bits set, allowing applications to call these subroutines 

in privileged mode.  Table 6-1 lists some examples of kernel subroutines. 

 

Subroutine Description 

trap Default trap handler 

malloc Allocate a data capability 

smalloc Allocate a sparse capability 

xmalloc Allocate an xsparse capability 

fopen Open an existing file 

fnew Create a file 

Table 6-1: Kernel subroutines examples. 

Because the trap and malloc entry points are used so frequently 

(threads typically copy trap into the trap vector when they initialize, and 

malloc is called to allocate memory), they are stored in shared registers so 

that they may be accessed directly.  The fopen and fnew routines return IO 

capabilities that allow applications to communicate with the external host. 

The malloc routine allocates memory simply by advancing an alloca-

tion counter.  The allocation counter is stored in a shared register.  Spin-

wait synchronization is used to obtain the counter; malloc begins by atomi-

cally reading and resetting the shared register (using two instructions in a 

single instruction group) until a non-zero value is read.  After the memory 

is allocated the counter is advanced and written back into the shared regis-

ter.  Both malloc and xmalloc use the same counter; smalloc uses a separate 

counter so that multiple sparse objects allocated by the same node will be 

stored contiguously on all nodes. 

6.5 Forwarding Pointers 

Hamal implements forwarding pointers by setting the T trap bit of a 128-bit 

memory word and storing the forwarding pointer in that word.  When a 

memory request attempts to access a forwarding pointer, the memory sys-
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tem attempts to automatically forward the request.  In some cases, however, 

it may not be possible for the request to forwarded in hardware (see Chapter 

7: Deadlock Avoidance).  In these cases a data T trap event is generated.  

The kernel spawns a new thread to handle the trap and forward the memory 

request.  When this thread runs, it uses the loadw instruction, a privileged 

non-trapping load, to read the forwarding pointer from memory, and then 

reissues the memory request using the new address. 

The default trap handler supplied by the kernel contains code to handle 

squid traps, caused by pointer comparison instructions that cannot be com-

pleted in hardware, as described in Section 3.2.2.  The handler uses loadt, a 

privileged instruction to inspect a T trap bit, in conjunction with loadw to 

determine the final addresses of the pointers being compared.  It then per-

forms the comparison and manually updates the predicate register specified 

as the destination of the trapping instruction. 

6.6 UV Traps 

When a memory reference causes a U/V trap (Section 3.3.5), a UV trap 

event is generated.  The kernel responds to this event by creating a new 

thread to handle the event.  The starting address for this thread is the user-

supplied trap vector which accompanies every potentially-trapping memory 

request.  The thread is created in memory, and is initialized with the UV 

trap information.  It is activated immediately if a context is available, oth-

erwise it is added to the ‘new’ list.  The kernel must create this thread 

manually and cannot simply issue a fork as this is a potentially blocking 

instruction (see Chapter 7). 

6.7 Boot Sequence 

The boot sequence on a processing node is initiated by the arrival of a page 

of code whose virtual address is zero, at which point context 0 starts execut-

ing the code from the beginning.  This page contains the start of the kernel 

loader which performs the following tasks in order: 

1. Root code and data capabilities are created. 

2. The rest of the kernel code pages are paged in from secondary 

storage. 

3. Kernel data pages are created and initialized 

4. The kernel table is created and the shared registers are initialized. 

5. The code pages containing the kernel loader are destroyed. 

6. The kernel loader branches to the head of the event loop. 

At this point the event queue will be empty and the kernel will stall 

waiting for an event.  The external host can then initiate user applications 

by injecting one or more fork messages into the machine. 
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Chapter 7   

Deadlock Avoidance 

Advance, and never halt, for advancing is perfection. 

– Kahlil Gibran (1883-1931), “The Visit of Wisdom” 

One of the most important considerations in designing a large parallel sys-

tem is ensuring that it is deadlock-free.  Much of the literature regarding 

deadlock avoidance deals exclusively with the network, which is the most 

obvious potential source of deadlocking problems.  In a non-discarding 

network, one must rely on either topological routing constraints [Dally87] 

or virtual channels [Dally93] to prevent network deadlock.  In addition, it is 

necessary to guarantee that nodes can always sink packets that arrive over 

the network.  A discarding network, by contrast, finesses the problem by 

simply dropping packets that cannot make forward progress.  As a result, 

cyclic routing dependencies are transient at worse and will never bring the 

machine to a halt.  There are, however, two other potential sources of dead-

lock in the system.  The first of these is inter-node deadlock, caused by a 

group of nodes that exhaust their network resources while trying to send 

each other packets.  Consider the simple case in which programs running on 

two different nodes issue a large number of remote read requests to each 

other’s memory (Figure 7-1).  If the send and receive tables on each node 

should fill up with these requests, then no more forward progress will be 

made.  No packets can be delivered because the receive tables are full, and 

no packets can be processed because the send tables are full so there is no 

room for the read replies.  The second possible type of deadlock is intra-

node deadlock, which occurs when the event-handling microkernel be-

comes wedged.  This can happen, for example, if the kernel issues a read 

request which causes a page fault.  A page fault event will be placed on the 

event queue but will never be serviced; the kernel thread will stall indefi-

nitely waiting for the read operation to complete.  

Eliminating these potential sources of deadlock requires cooperation 

between the hardware design and the software microkernel.  In this chapter 

we outline the strategies used in the Hamal architecture and microkernel to 

ensure that the entire system is provably deadlock-free. 
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Figure 7-1: Inter-node deadlock can occur if the network tables fill up. 

7.1 Hardware Queues and Tables 

To first order approximation, the possibility of deadlock emerges directly 

from the presence of hardware queues and tables.  A hardware queue/table 

has a fixed size and can potentially fill up; when it does backpressure must 

be exerted to suppress various other events and operations.  We therefore 

begin our discussion of deadlock avoidance by reviewing the hardware 

queues and tables of the Hamal processor-memory nodes and the various 

types of backpressure used to ensure that they do not overflow. 

As shown in Figure 7-2, there are two queues and two tables that need 

to be considered.  First and foremost is the hardware event queue.  Events 

can be generated by the processor (e.g. thread termination, memory replies), 

the memory banks (e.g. page faults, memory traps), or the network interface 

(e.g. translation cache miss, forks).  The second queue is the fork queue 

which is fed by both the network interface and the local processor.  Finally, 

the network interface contains two tables: a send table, fed by the processor 

and the memory banks (for replies to remote memory operations or for-

warded addresses), and a receive table, which is fed by the network. 

If the receive table fills, no packets will be accepted from the network.  

If the fork queue fills, fork packets in the receive table will not be proc-

essed, and any context that tries to issue a fork instruction will stall.  Having 

the send table or event queue fill is a much more serious problem as in this 

case a memory bank could stall if it needs to generate an event or service a 

remote memory request.  This in turn can deadlock the node if the kernel 

needs to access the stalled memory bank to make forward progress.  

Mechanisms are therefore required to ensure that memory banks are always 

able to finish processing requests. 

The node controller guarantees space in the send table by reserving en-

tries in advance.  Before accepting a remote memory request from the net-

work or a local request from the processor with a remote return address, the 

controller attempts to reserve a spot in the send table.  If it is unable to do 

so then the memory request is blocked.  If a remote memory request is al-
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lowed to proceed to the appropriate memory bank but causes a trap, an 

event is added to the event queue and the send table reservation for that 

request is cancelled. 

 

 

Figure 7-2: Hardware queues and tables in the Hamal processor-memory node. 

The event queue is prevented from overflowing using a high water 

level mechanism.  If the event queue fills beyond the high water level, all 

operations which can potentially give rise to new events are throttled.  

Other potentially event-causing operations may already be in progress; the 

high water level mark is chosen so that there are enough free entries to ac-

cept these events.  Network events are suppressed, and no forks, joins or 

memory requests are accepted from the network.  Processor events (such as 

thread termination) are suppressed.  All memory requests are blocked ex-

cept for those generated by context 0.  Once the kernel has processed 

enough events to bring the event queue below the high water level, normal 

operation resumes. 

7.2 Intra-Node Deadlock Avoidance 

We begin by describing a set of requirements to prevent an individual node 

from deadlocking.  In the following section we show how to use the as-

sumption that individual nodes are deadlock-free to avoid inter-node dead-

locks.  For now, however, we can make no assumptions about the system as 

a whole, and in particular we must allow for the possibility that packets 
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destined to other nodes remain in the send table for arbitrarily long periods 

of time. 

To avoid intra-node deadlock, we must be able to guarantee that the 

microkernel’s event handling routines do not block and finish executing in a 

finite amount of time.  This ensures that forward progress can always be 

made, independent of the pattern of events which occur.  For the most part 

this is easy to do; software exceptions can be avoided through careful pro-

gramming, and instructions requiring machine resources that may not be 

available (e.g. fork) can be avoided altogether.  The difficulty lies in per-

forming memory operations, since every memory reference can potentially 

generate a page fault or a trap. 

The solution to this problem requires cooperation between the kernel 

and the hardware.  The kernel must not issue a potentially trapping memory 

request, a remote memory request, or a memory request with a remote re-

turn address.  When the kernel accesses local memory it must ensure that 

the page being referenced is present in memory.  If a page is not present, 

then the kernel must first page it in and spin-wait for it to arrive, possibly 

first paging out another page to make room.  Thus, the hardware must guar-

antee that page-ins and page-outs can always complete without blocking. 

Figure 7-3 shows the complete path taken by a page-in request; page-

outs follow the first half of this path.  We can ensure that secondary storage 

requests do not block by working backwards along this path.  First, the 

processor-memory node must be able to process the page-in packet.   Proc-

essing a page-in usually involves storing the page to memory and generat-

ing a page-in event.  However, this can cause problems if the kernel needs 

to page-in and spin-wait for several pages; the resulting page-in events 

could overwhelm the event queue.  We avoid this situation with a special 

version of the pagein instruction that does not generate an event when the 

page is loaded.  By using this instruction to load pages that are needed im-

mediately, the kernel guarantees that the node will be able to process the 

page when it arrives. 

 

 

Figure 7-3: Life cycle of a page-in request. 

Next, the network interface must be able to receive the page-in packet 

sent from secondary storage.  This is guaranteed by reserving an entry in 
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the network receive table for secondary storage packets.  If a packet arrives 

from some other source and there is only one available receive table entry, 

that packet is dropped.  Moving backwards along the path, secondary stor-

age simply handles requests in the order that they are received and will 

never block.  Although its send table can potentially fill up, the fact that 

nodes can always eventually receive secondary storage packets implies that 

a send table entry will become available in a finite amount of time.  Finally, 

a node must always be able send page-in and page-out packets to secondary 

storage.  We again make this guarantee by reserving a table entry for sec-

ondary storage packets, this time in the send table.  The combination of an 

event-free pagein instruction and reserved entries in the send and receive 

tables ensures that page-in and page-out operations can always proceed to 

completion.  This in turn implies that the event-handling microkernel can 

always make forward progress, so the nodes are deadlock-free. 

There is still one subtlety that must be addressed with regard to page-

ins.  While the above mechanisms are sufficient to ensure that event-free 

page-ins will never become blocked, we must also consider those page-ins 

which are issued in response to a page fault and which must be allowed to 

generate an event when they arrive at the node.  Furthermore, at any given 

time there could be many active page-in requests at various points in the 

path of Figure 7-3.  The event queue must be able to absorb their events 

when they arrive at the node: the page-ins cannot stall in the receive table 

until an event queue slot becomes available as this could block a page-in for 

which the kernel is spin-waiting, nor can the reserved receive table entry be 

designated for event-free page-ins only as then the secondary storage send 

table could fill with event-generating page-ins that cannot be sent.  One 

solution is to lower the event-queue high water mark to allow for some 

specified number of in-flight page-ins, requiring that the kernel cooperate 

by never requesting more than that number of page-ins simultaneously.  A 

slightly more efficient solution, implemented in the Hamal architecture, is 

to maintain a separate event queue specifically for page-in events.  This 

avoids wasting large event-queue entries (512 bits each) for small page-in 

events (each page-in event simply consists of the virtual base address of the 

newly arrived page).  Again, the kernel cooperates by restricting the number 

of simultaneously requested pages. 

7.3 Inter-Node Deadlock Avoidance 

We can now use the fact that individual nodes are deadlock-free to elimi-

nate the possibility of inter-node deadlocks.  A sufficient condition for the 

system to be deadlock free is for every request in a node’s network receive 

table entry to be processed in a finite amount of time.  The difficulty is that 

some of these requests cannot be processed unless there is space in the send 

table; it is this dependency that leads to the deadlock situation illustrated in 

Figure 7-1.  We will refer to these as non-terminal requests.  A terminal 
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request is one that can be processed by the node without generating a new 

remotely destined request.  Terminal requests consist of forks, joins (Sec-

tion 4.4) and replies to remote memory references.  Non-terminal requests 

consist of all memory operations.  We can leverage the fact that, because a 

given node is deadlock-free, all terminal requests in the receive table will 

eventually be processed by the node. 

The network send and receive tables already have an entry reserved for 

secondary storage packets.  Our approach to inter-node deadlock avoidance 

is to reserve an additional entry in each table for terminal requests.  We 

claim that with this simple hardware modification, the system as a whole is 

deadlock-free.  To see this, suppose that a node is unable to process one of 

the packets in its receive table.  This implies both that the packet is a non-

terminal request (i.e. a remote memory request) and that a reservation can-

not be made in the send table for the reply to this request.  Since a memory 

reply is a terminal request, this means that the terminal request entry in the 

send table is occupied.  But this terminal request will eventually be deliv-

ered to its destination, because the destination node has a receive entry re-

served for terminal requests.  It doesn’t matter if this entry is occupied or if 

there are other nodes competing for it; because the destination node can 

always service terminal requests, with probability 1 the terminal request 

will eventually be successfully delivered.  Thus, the terminal request entry 

in the send table will eventually be unoccupied, allowing the remote mem-

ory request to be processed.  Again, it doesn’t matter if other non-terminal 

requests, existing in the receive table or locally generated, are competing 

for the send table; as long as the node’s arbitration policy is starvation-free, 

with probability 1 the memory request will eventually be processed by the 

node. 

What makes this approach possible is the fact that when a non-terminal 

request is serviced, a terminal request is generated.  There is, however, one 

exception to this rule: if a request encounters a forwarding pointer, it is 

automatically forwarded, possibly generating a new non-terminal request if 

the forwarding destination is remote.  This is not a problem, and does not 

affect the above proof, so long as the send table reservation for that request 

was not made using the entry set aside for terminal requests.  If it was, then 

the request cannot be automatically forwarded.  Instead, the node controller 

cancels the send table reservation and generates a data T trap event to be 

handled by the microkernel. 
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Part II – Evaluation 

 

 

There is nothing either good or bad, but thinking makes it so. 

– William Shakespeare (1564-1616), “Hamlet”, Act 2 scene 2 

It is a capital mistake to theorize before one has data. 

– Sir Arthur Conan Doyle (1859-1930), “Scandal in Bohemia” 
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Chapter 8   

Simulation 

I just bought a Mac to help me design the next Cray. 

– Seymour Cray (1925-1996) 

Our evaluations of the Hamal parallel architecture are based on a cycle ac-

curate simulator of the entire system.  In this chapter we describe our simu-

lation methodology.  We begin by presenting Sim, a C++ framework for 

cycle-based simulation that was developed to facilitate the construction of 

the Hamal simulator.  We then give an overview of the Hamal simulator, 

and we describe the development environment used to edit, assemble, run 

and debug both the kernel and benchmark applications. 

8.1 An Efficient C++ Framework for Cycle-Based 

Simulation 

Software simulation is a critical step in the hardware design process.  

Hardware description languages such as Verilog and VHDL allow design-

ers to accurately model and test the target hardware, and they provide a 

design path from simulation to fabrication.  However, they are also notori-

ously slow, and as such are not ideal for simulating long runs of a large, 

complex system.  Instead, a high-level language (usually C or C++) is gen-

erally used for initial functional simulations.  Inevitably, the transition from 

this high-level simulation to a low-level hardware description language is a 

source of errors and increased design time. 

Recently there have been a number of efforts to develop simulation 

frameworks that enable the accurate description of hardware systems using 

existing or modified general-purpose languages ([Ku90], [Liao97], [Ga-

jski00], [Ramanathan00], [Cyn01], [SC01]).  This bridges the gap between 

high-level and register transfer level simulations, allowing designers to pro-

gressively refine various components within a single code base.  The ap-

proach has been successful: one group reported using such a framework to 
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design a 100 million transistor 3D graphics processor from start to finish in 

two months [Kogel01]. 

There are four important criteria to consider when choosing or develop-

ing a framework: 

 

Speed: The simulator must be fast.  Complex simulations can take 

hours or days; a faster simulator translates directly into re-

duced design time. 

 

Modularity: There should be a clean separation and a well-defined inter-

face between the various components of the system. 

 

Ease of Use: The framework should not be a burden to the programmer.  

The programming interface should be intuitive, and the 

framework should be transparent wherever possible. 

 

Debugging: The framework must contain mechanisms to aid the pro-

grammer in detecting errors within the component hierarchy.  

 

These criteria were used to create Sim, a cycle-based C++ simulation 

framework used to simulate the Hamal architecture.  Through experience 

we found that Sim met all four criteria with a great deal of success.  In the 

following sections we describe the Sim framework and we report on what 

we observed to be its most useful features.  We also contrast Sim with Sys-

temC [SC01], an open-source C++ simulation framework supported by a 

number of companies. 

8.1.1 The Sim Framework 

To a large extent, the goals of speed and modularity can be met simply by 

choosing an efficient object-oriented language, i.e. C++.  What distin-

guishes a framework is its simulation model, programming interface and 

debugging features.  Sim implements a pure cycle-based model; time is 

measured in clock ticks, and the entire system exists within a single clock 

domain.  The programmer is provided with three abstractions: components, 

nodes and registers.  A component is a C++ class which is used to model a 

hardware component.  In debug builds, Sim automatically generates hierar-

chical names for the components so that error messages can give the precise 

location of faults in the simulated hardware.  A node is a container for a 

value which supports connections and, in debug builds, timestamping.  

Nodes are used for all component inputs and outputs.  Registers are essen-

tially D flip-flops.  They contain two nodes, D and Q; on the rising clock 

edge D is copied to Q. 

Simulation proceeds in three phases.  In the construction phase, all 

components are constructed and all connections between inputs and outputs 
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are established.  When an input/output node in one component is connected 
to an input/output node in another component, the two nodes become syno-
nyms, and writes to one are immediately visible to reads from the other.  In 
the initialization phase, Sim prepares internal state for the simulation and 
initial values may be assigned to component outputs.  Finally, the simula-
tion phase consists of alternating calls to the top-level component’s Update 
function (to simulate combinational evaluation) and a global Tick function 
(which simulates a rising clock edge). 

Figure 8-1 gives an example of a simple piece of hardware that com-
putes Fibonacci numbers and its equivalent description using Sim.  The 
example shows how components can contain sub-components (Fibonacci 
contains a ClockedAdder), how nodes and registers are connected during 
the construction phase (using the overloaded left shift operator), and how 
the simulation is run at the top level via alternating calls to fib.Update() and 
Sim::Tick().  The component functions Construct() and Init() are called 
automatically by the framework; Update() is called explicitly by the pro-
grammer. 

8.1.2 Timestamps 

In a cycle-based simulator, there are three common sources of error: 
 

Invalid Outputs:  The update routine(s) for a component may neglect to 
set one or more outputs, resulting in garbage or stale values being propa-
gated to other components. 

 
Missing Connections:  One or more of a component’s inputs may never be 
set. 

 
Bad Update Order:  When the simulation involves components with com-
binational paths from inputs to one or more outputs, the order in which 
components are updated becomes important.  An incorrect ordering can 
have the effect of adding or deleting registers at various locations. 

 
While careful coding can avoid these errors in many cases, experience 

has shown that it is generally impossible to write a large piece of software 
without introducing bugs.  In addition, these errors are particularly difficult 
to track down as in most cases they produce silent failures which go unno-
ticed until some unrelated output value is observed to be incorrect.  The 
programmer is often required to spend enormous amounts of time finding 
the exact location and nature of the problem. 
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class ClockedAdder : public CComponent
{

DECLARE_COMPONENT(ClockedAdder)
public:

Input<int> a;
Input<int> b;
Output<int> sum;

Register<int> reg;

void Construct (void) {sum << reg;}
void Init (void) {reg.Init(0);}
void Update (void) {reg = a + b;}

};

class Fibonacci : public CComponent
{

DECLARE_COMPONENT(Fibonacci)
public:

Output<int> fib;

Register<int> reg;
ClockedAdder adder;

void Construct (void)
{

adder.a << adder.sum;
adder.b << reg;
reg << adder.sum;
fib << reg;

}
void Init (void)
{

adder.sum.Init(1);
reg.Init(0);

}
void Update (void)
{

adder.Update();
}

};

void main (void)
{

Fibonacci fib; // Construction
Sim::Init(); // Initialization
while (1) // Simulation
{

fib.Update();
Sim::Tick();

}
}

Figure 8-1: Sim code and schematic for a Fibonacci number generator. 

a b 

sum

fib 

+ 
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 The Sim framework helps the programmer to eliminate all three 

sources of error by timestamping inputs and outputs.  In debug builds, each 

time a node is written to it is timestamped, and each time a node is read the 

timestamp is checked to ensure that the node contains valid data.  When an 

invalid timestamp is encountered, a warning message is printed which in-

cludes the automatically generated name of the input/output, pinpointing 

the error within the component hierarchy.   

Timestamped nodes have proven to be by far the most useful feature of 

the Sim framework.  They can speed up the debugging process by an order 

of magnitude, allowing the programmer to detect and correct errors in min-

utes that would otherwise require hours of tedious work.  Figure 8-2 shows 

the exact warning message that would be generated if the connection “ad-

der.b << reg” were omitted from the function Fibonacci::Construct() in 

Figure 8-1. 

 
Warning: Fibonacci0::Adder0::Input1

Invalid timestamp
c:\projects\sim\sim.h, line 527, simTime = 1

Figure 8-2: Warning message generated if the programmer forgets the connec-

tion adder.b << reg. 

8.1.3 Other Debugging Features 

The Sim framework provides a number of Assert macros which generate 

warnings and errors.  As is the case with standard assert macros, they give 

the file and line number at which the error condition was detected.  In addi-

tion, the error message contains the simulation time and a precise location 

within the component hierarchy (as shown in Figure 8-2).  Again, this al-

lows the programmer to quickly determine which instance of a given com-

ponent was the source of the error. 

When one node A is connected to another node B, the intention is usu-

ally to read from A and write to B (note that order is important; connecting 

A to B is not the same as connecting B to A).  Timestamps can be used to 

detect reads from B, but not writes to A.  To detect this type of error, in 

debug builds a node connected to another node is marked as read-only1; 

assignment to a read-only node generates a warning message.  In practice 

this feature did not turn out to be very useful as the simple naming conven-

tion of prefixing inputs with in_ and outputs with out_ tended to prevent 

these errors.  The feature does, however, provide a safety net, and it does 

not affect release builds of the simulator. 

                                                           
1
 Unless the node has been declared as a bi-directional Input/Output. 
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8.1.4 Performance Evaluation 

Making use of a simulation framework comes at a cost, both in terms of 
execution time and memory requirements.  We can quantify these costs for 
the Sim framework by implementing four low-level benchmark circuits in 
both Sim and straight C++.  The most important difference between the 
implementations is that inputs and outputs in the C++ versions are ordinary 
class member variables; data is propagated between components by explic-
itly copying outputs to inputs each cycle according to the connections in the 
hardware being modeled.  The following benchmark circuits are used in our 
evaluation: 

 
LFSR: 4-tap 128-bit linear feedback shift register.  Simulated for 224 

cycles. 
 
LRU: 1024 node systolic array used to keep track of least recently 

used information for a fully associative cache (see Chapter 4, 
Section 4.7.1).  Simulated for 217 cycles. 

 
NET: 32x32 2D grid network with wormhole routing.  Simulated for 

213 cycles. 
 
FPGA: 12 bit pipelined population count implemented on a simple 

FPGA.  The FPGA contains 64 logic blocks in an 8x8 array; 
each block consists of a 4-LUT and a D flip-flop.  Simulated for 
221 cycles. 

 
In the Sim version of FPGA, the FPGA configuration is read from a 

file during the construction phase and used to make the appropriate node 
connections.  In the C++ version, which does not have the advantage of 
being able to directly connect inputs and outputs, the configuration is used 
on every cycle to manually route data between logic blocks. 

The benchmarks were compiled in both debug and release modes and 
run on a 1.2GHz Pentium III processor.  Table 8-1 shows the resulting exe-
cution times in seconds, and Table 8-2 lists the memory requirements in 
bytes. 
 

 Debug Release 

 C++ Sim Ratio C++ Sim Ratio 

LFSR 17.56 500.40 28.50 5.77 20.56 3.56 

LRU 15.78 106.54 6.75 3.15 5.14 1.63 

NET 11.34 126.54 11.16 2.86 5.38 1.88 

FPGA 12.29 6.42 0.52 3.44 0.36 0.10 

Table 8-1: Benchmark execution time in seconds. 
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 Debug Release 

 C++ Sim Ratio C++ Sim Ratio

LFSR 129 7229 56.04 129 1673 12.97

LRU 28672 233484 8.14 28672 61448 2.14

NET 118784 806936 6.79 118784 249860 2.10

FPGA 9396 74656 7.95 7084 14598 2.06

Table 8-2: Benchmark memory requirements in bytes. 

The time and space overheads of the Sim framework are largest for the 
LFSR benchmark; the release build runs 3.56 times slower and requires 
12.97 times more memory than the corresponding C++ version.  This is 
because the C++ version is implemented as a 128-element byte array which 
is manually shifted, whereas the Sim version is implemented using 128 ac-
tual registers which are chained together.  In release builds, each register 
contains three pointers: one for the input (D) node, one for the output (Q) 
node, and one to maintain a linked list of registers so that they can be auto-
matically updated by the framework when Sim::Tick() is called.  This, to-
gether with the 129 bytes of storage required for the actual node values, 
accounts for the factor of 13 increase in memory usage.  Clearly the register 
abstraction, while more faithful to the hardware being modeled, is a source 
of inefficiency when used excessively. 

The execution time and memory requirements for the release builds of 
the other three Sim benchmarks compare more favorably to their plain C++ 
counterparts.  In all cases the memory requirements are roughly doubled, 
and the worst slowdown is by a factor of 1.88 in NET.  In the FPGA 
benchmark the Sim implementation is actually faster by an order of magni-
tude.  This is due to the fact that the framework is able to directly connect 
nodes at construction time as directed by the configuration file. 

Not surprisingly, the Sim framework overhead in the debug builds is 
quite significant.  The debug versions run roughly 20-25 times slower than 
their release counterparts, and require four times as much memory.  This is 
largely a result of the node timestamping that is implemented in debug 
builds. 

8.1.5 Comparison with SystemC 

SystemC is an open source C++ simulation framework originally developed 
by Synopsys, CoWare and Frontier Design.  It has received significant in-
dustry support; in September 1999 the Open SystemC Initiative was en-
dorsed by over 55 system, semiconductor, IP, embedded software and EDA 
companies [Arnout00].   

The most important difference between Sim and SystemC is that, like 
Verilog and VHDL, SystemC is event driven.  This means that instead of 
being called once on every cycle, component update functions are activated 
as a result of changing input signals.  Event driven simulators are strictly 
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more powerful than cycle-based simulators; they can be used to model 

asynchronous designs or systems with multiple clock domains. 

Event driven simulation does, of course, come at a price.  A minor cost 

is the increased programmer effort required to register all update methods 

and specify their sensitivities (i.e. which inputs will trigger execution).  

More significant are the large speed and memory overheads of an event 

driven simulation kernel.  For example, we implemented the LRU bench-

mark using SystemC, and found that the release version was over 36 times 

slower and required more than 8 times as much memory as the Sim release 

build. 

While event driven simulation is more powerful in terms of the hard-

ware it can simulate, it also presents a more restrictive programming model.  

In particular, the programmer has no control over when component update 

functions are called.  Hiding this functionality ensures that updates always 

occur when needed and in the correct order, but it also prevents certain 

techniques such as inlining a combinational component within an update 

function.  Figure 8-3 gives an example of such inlining in the Sim frame-

work; it is simply not possible using SystemC. 

 
class BlackBox : public CComponent
{

DECLARE_COMPONENT(BlackBox)
public:

Input<int> a;
Input<int> b;
Output<int> out;

void Update (void);
};

class GreyBox : public CComponent
{

DECLARE_COMPONENT(GreyBox)
public:

Input<int> in;
Output<int> out;

BlackBox m_box;
int m_key;

void Update (void)
{

m_box.a = in;
m_box.b = m_key;
m_box.Update();
out = in + m_box.out;

}
};

Figure 8-3: Inlining a combinational component (BlackBox) within the Grey-

Box Update() function. 
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Another important difference between Sim and SystemC is the manner 
in which inputs and outpus are connected.  Sim allows input/output nodes to 
be directly connected; in release builds a node is simply a pointer, and con-
nected nodes point to the same piece of data.  SystemC, by contrast, re-
quires that inputs and outputs be connected by explicitly declared signals.  
This approach is familiar to hardware designers from hardware description 
languages such as Verilog and VHDL.  However, it is less efficient in terms 
of programmer effort (more work is required to define connections between 
components), memory requirements, and execution time. 

A minor difference between the frameworks is that SystemC requires 
component names to be supplied as part of the constructor, whereas Sim 
generates them automatically.  In particular, components in SystemC have 
no default constructor, so one cannot create arrays of components in the 
straightforward manner, nor can components be member variables of other 
components.  The programmer must explicitly create all components at run 
time using the new operator.  Clearly this is not a fundamental difference 
and it would be easy to fix in future versions of SystemC.  It does, however, 
illustrate that the details of a framework’s implementation can noticeably 
affect the amount of programmer effort that is required to use it.  A crude 
measure of programmer effort is lines of code; the SystemC implementation 
of LRU uses 160 lines of code, compared to 130 lines for Sim and 110 lines 
for straight C++. 

8.1.6 Discussion 

Our experience with Sim has taught us the following five lessons regarding 
simulation frameworks: 
 
1.    Use C++ 

 
For a number of reasons, C++ has “The Right Stuff” for developing a simu-
lation framework.  First, it is fast.  Second, it is object-oriented, and objects 
are without question the appropriate model for hardware components.  Fur-
thermore, well defined construction orders (e.g. base objects before derived 
objects) allow the framework to automatically deduce the component hier-
archy.  Third, templated classes allow abstractions such as inputs and out-
puts to be implemented for arbitrary data types in a clear and intuitive man-
ner.  Fourth, macros hide the heavy machinery of the framework behind 
short, easy to use declarations.  Fifth, the preprocessor permits different 
versions of the same code to be compiled.  In particular, debugging mecha-
nisms such as timestamps can be removed in the release build, resulting in 
an executable whose speed rivals that of straight C++.  Sixth, operator over-
loading allows common constructs to be expressed concisely, and typecast 
overloading allows the framework’s abstractions to be implemented trans-
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parently.  Finally, C++ is broadly supported and can be compiled on virtu-
ally any platform.  
 
2.    Use timestamps 

 
Silent failures are the arch-nemesis of computer programmers.  Using time-
stamped nodes in conjunction with automatically generated hierarchical 
component names, the Sim framework was able to essentially eliminate all 
three of the common errors described in Section 8.1.2 by replacing silent 
failures with meaningful warning messages. 
 
3.    Allow inputs/outputs to be directly connected 

 
Using explicitly declared signals to connect component inputs and outputs 
is familiar to users of existing hardware description languages.  However, 
directly connecting inputs and outputs does not change the underlying 
hardware model or make the simulator framework any less powerful.  Di-
rect connections reduce the amount of programmer effort required to pro-
duce a hardware model, and they lead to an extremely efficient implementa-
tion of the input/output abstraction. 
 
4.    Don’t make excessive use of abstractions 

 

The most useful abstractions provided by a simulation framework are com-
ponents and their interfaces.  Within a component, however, further use of 
abstractions may not add to the modularity of the design or make the transi-
tion to silicon any easier.  Thus, when simulation speed is a concern, 
programmers are well-advised to use straight C++ wherever possible.  A 
good example of this principle is the LFSR benchmark.  The Sim 
implementation could just as easily have implemented the shift register 
internals using a 128-element byte array, as in the C++ implementation.  
Using the register abstraction slowed down execution significantly, 
especially in the debug build.  In general, we found the register abstraction 
to be most useful for implementing clocked outputs, as in the Adder of 
Figure 8-1.  

5.    Pay attention to the details 

 
While the speed and modeling power of a framework are primarily deter-
mined by its high-level design, it is the implementation details that pro-
grammers need to work with.  How easy is it for the programmer to declare 
and connect components?  Can components be inherited?  Can they be tem-
plated?  The answers to questions such as these will determine which 
programmers will want to use the framework, and how much effort they 
must expend in order to do so. 
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8.2 The Hamal Simulator 

The Sim framework was used to construct a cycle accurate simulator of the 
Hamal architecture.  We made use of the framework to define a component 
hierarchy and to establish connections between components.  Component 
internals were coded in straight C++.  The top level Hamal component con-
tains four major component types.  A Root node component emulates an 
external host and provides the interface between the simulator and the simu-
lation environment.  Secondary Storage components serve the sole purpose 
of storing and retrieving code and data pages.   Processor-Memory nodes 
implement the actual architecture.  Finally, a network component simulates 
the fat tree interconnect between the various other components.  The fol-
lowing sections provide additional details for the processor-memory and 
network components. 

8.2.1 Processor-Memory Nodes 

Processor-memory nodes are divided into components exactly as shown in 
Figure 2-3, reproduced below as Figure 8-4 for convenience.  Four data 
memory components and one code memory component implement the 
augmented embedded DRAM.  A processor component simulates the 
Hamal processor described in Chapter 4.  A network interface component 
allows the processor-memory node to communicate with the rest of the sys-
tem via the idempotent messaging protocol presented in Chapter 5.  Finally, 
a controller component arbitrates the various requests and replies and di-
rects the flow of data within the node.  

 

 

Figure 8-4: Component hierarchy of the processor-memory node. 
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8.2.2 Network 

A single network component is broken down into three different types of 
sub-components which are connected together to form the fat tree intercon-
nect.  Fat nodes are radix 4 (down) dilation 2 (up) fat tree routers with two 
upward connections and four downward connections.  Storage nodes con-
nect k network connections to a single secondary storage unit; the value of k 
and the placement of secondary storage nodes within the network depends 
on the ratio of processor-memory nodes to secondary storage units.  Finally, 
leaf nodes are connected to the root node and all processor-memory nodes; 
they dilate one network port into two.  Each connection in the network is a 
64 bit bidirectional link. 

The exact configuration of the network depends on the number of 
processor-memory nodes and the number of secondary-storage units, both 
of which must be powers of two.  Figure 8-5 shows an example with 16 
nodes and 4 storage units.   

 

 

Figure 8-5:  Fat tree network with 16 processor-memory nodes and 4 secon-

dary storage units. 

Each network port is implemented by a network link sub-component 
which contains a four-flit FIFO queue in the input direction, and a single flit 
buffer in the output direction (Figure 8-6).  Whenever possible, input flits 
are routed directly to a destination port where they are buffered and then 
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forwarded on the rising clock edge.  In case of contention, input flits are 

queued for up to four cycles, after which they are discarded. 

 

 

Figure 8-6:  Network link sub-components implement buffering in the network 

nodes. 

8.3 Development Environment 

The Hamal simulator was integrated into ramdev, a fully featured de-

velopment environment containing both an assembler and a debugger.  The 

debugger allows the user to run code, step through code, set conditional 

breakpoints, save/restore the state of the entire machine, single step the en-

tire machine, and view the contents of contexts, event queues and memory.  

Figure 8-7 shows a screenshot from a ramdev debugging session. 

 

 

Figure 8-7: ramdev development environment for the Hamal architecture. 
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Ramdev was modeled after Microsoft Visual C++ and contains most of 
the features found in conventional debuggers.  In addition, it contains a 
number features to facilitate the debugging of multithreaded programs: 

 
Thread Hierarchy:  The debugger automatically detects the hierarchy of 
threads and displays it as an expanding tree (top right of Figure 8-7).  Dif-
ferent icons indicate whether or not a thread has already terminated.   
 

Trace Thread: The debugger identifies a single thread as the trace thread.  
Single stepping the trace thread causes the simulation to run until the 
thread’s instruction pointer is advanced.  When any thread encounters a 
breakpoint which causes the simulation to halt, that thread becomes the 
trace thread. 

 
One Thread/All Thread Breakpoints:  Two different types of breakpoints 
may be set by the user.  Single thread breakpoints only cause the simulation 
to halt if they are encountered by the current trace thread.  Multiple thread 
breakpoints halt the simulation when they encountered by any thread. 

 
Step Into Child:  In addition to the standard Step Over, Step Into and Step 
Out single stepping mechanisms, ramdev contains a Step Into Child mecha-
nism.  This causes the simulation to run until a new thread is created which 
is a child thread of the current trace thread.  The simulation is then halted, 
and the child thread becomes the new trace thread. 

 
The microkernel, parallel libraries and benchmark applications were all 

coded in assembly using the ramdev development environment. 
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Chapter 9   

Parallel Programming 

The process of preparing programs for a digital computer is  

especially attractive, not only because it can be economically  

and scientifically rewarding, but also because it can be an  

aesthetic experience much like composing poetry or music. 

– Donald E. Knuth (1938- ), “The Art of Computer Programming” 

Our evaluation of Hamal’s support for parallel computation, most notably 
thread management and synchronization, are based on four parallel bench-
mark programs.  In this chapter we describe the benchmark programs and 
the underlying parallel primitives used to create them. 

9.1 Processor Sets 

The basic primitive that we use to construct parallel libraries and bench-
marks is the processor set.  A processor set is an opaque data structure that 
specifies an arbitrary subset of the available processor nodes.  Processor 
sets can be passed as arguments to parallel library functions to specify the 
set of nodes on which a computation should run.  They can also be included 
as members of parallel data structures, indicating the nodes across which 
structures are distributed and implicitly specifying the processor nodes 
which should be used to operate on these structures.  The permissible opera-
tions on processor sets are union, intersection, and split (split the set into 
two smaller sets according to a supplied ratio). 

Processor sets are nearly identical to processor teams in [Hardwick97] 
and spans in [Brown02a]; the only difference is that both teams and spans 
are restricted to processor sets of the form [a, b] (where the processors are 
numbered from 0 to N – 1).  Removing this restriction allows one to take 
the union of two processor sets and also provides the opportunity to allocate 
processor sets which reflect the physical layout of the nodes (e.g. create a 
processor set for a sub-cube of the nodes in a 3D mesh).  In [Hardwick97] it 
is shown that the processor team abstraction provides simple and efficient 
support for divide-and-conquer algorithms. 
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struct Vector
{

int32 len; // number of elements
int32 elsize; // size of elements
ProcSet procs;
Veclet *veclets; // sparse pointer

};

struct Veclet
{

int32 len; // number of elements
int32 elsize; // size of each element
int32 start; // index of first element
void *data;

};

Figure 9-1: Parallel vector data structures. 

Processor sets were used in conjunction with sparsely faceted arrays to 
create a parallel vector library.  A parallel vector is simply a vector distrib-
uted across some subset of the processor-memory nodes.  Figure 9-1 shows 
the two data structures used to implement parallel vectors.  The primary 
Vector data structure, which exists on a single node, specifies the total 
number of elements in the vector, the size in bytes of each element, the set 
of processors across which the vector is distributed, and a sparse pointer to 
the vector’s veclets.  One Veclet data structure exists on each node which 
contains a portion of the vector.  A veclet specifies the number of elements 
on that node, the size in bytes of each element (this is the same for all ve-
clets), the index of the first element on that node, and a pointer to the actual 
vector data.  The routines in the parallel vector library all operate on vectors 
by spawning a thread on each node within the vector’s processor set; these 
threads then operate on individual veclets. 

9.2 Parallel Random Number Generation 

Random number generation is one of the fundamental numerical tasks in 
computer science, used in applications such as physical simulations, Monte 
Carlo integration, simulated annealing, and of course all randomized algo-
rithms.  While work has been done on “true” random number generators 
based on some form of physical noise, the majority of software makes use 
of pseudo-random numbers generated by some deterministic algorithm.  A 
good pseudo-random number generator should satisfy several properties.  
Ideally, the stream of numbers that is generated should be: 

 
1. uniformly distributed 
2. completely uncorrelated 
3. non-repeating 
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4. reproducible (for debugging) 
5. easy to generate 

 
Conditions 2 and 3 are not theoretically possible to satisfy since a 

pseudo-random stream is generated by a deterministic algorithm, and any 
generator which uses a finite amount of storage will eventually repeat itself.  
In practice, however, many generation algorithms are known with good 
statistical properties and extremely long periods.  The three most commonly 
used generators are linear congruential generators, lagged Fibonacci genera-
tors, and combined generators which somehow combine the values from 
two different generators ([Coddington97], [Knuth98]). 

9.2.1 Generating Multiple Streams 

Parallel random number generation is more difficult because it becomes 
necessary to produce multiple streams of pseudo-random numbers.  Each 
stream should satisfy the five properties listed above; in addition there 
should be no correlation between the various streams.  Three main tech-
niques are used to produce multiple streams of pseudo-random data from 
sequential generators [Coddington97]: 

 
Leapfrog:  A single sequence {xi} is cyclically partitioned among N proc-
essors so that the sequence generated by the kth processor is {xk+iN}. 
 
Sequence Splitting:  A single sequence {xi} with large period D is parti-
tioned in a block fashion among N processors so that the sequence gener-
ated by the kth processor is {xk(D/N)+i}. 
 
Independent Sequences:  The same random number generator is used by 
all processors with different seeds to generate completely different se-
quences. 

 
These techniques are effective in the restricted setting where there is 

exactly one thread per processor, but they are unsatisfactory for a more 
general multithreaded model of parallel computation.  By associating ran-
dom number generators with physical processors rather than threads of exe-
cution, the random number generators becomes shared resources and thus 
much more difficult to use.  Furthermore, different runs of the same deter-
ministic multithreaded program can produce different results if the threads 
on a given node access the generator in a different order.  It may still be 
possible to use one of these techniques if the exact number of threads is 
known in advance, but in general this is not the case. 
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9.2.2 Dynamic Sequence Partitioning 

An alternative to setting up a fixed number of pseudo-random streams a-
priori is to use dynamic sequence partitioning to dynamically partition a 
single sequence on demand in a multithreaded application.  This technique 
is based on the observation that parallel applications start as a single thread; 
new threads are created one at a time whenever a parent thread spawns a 
child thread.  The idea is simply to perform a leapfrog partition each time a 
new thread is created.  Thus, if the pseudo-random number sequence asso-
ciated with a thread is {xi} (where x0 is the next value that would be gener-
ated), then after creating a child thread the parent thread uses the sequence 
{x2i} and the child thread uses the sequence {x2i+1}.  This partitioning is 
applied recursively as new threads are created. 

Figure 9-2 shows an example of dynamic sequence partitioning.  Ini-
tially, the single thread A has sequence {x0, x1, x2, …}.  When thread B is 
created it inherits the subsequence {x1, x3, x5, …} while A retains {x0, x2, x4, 
…}.  Then A calls rand(), generating x0 and leaving {x2, x4, x6, …}.  When 
thread C is created it is given the subsequence {x4, x8, x12, …} and A is left 
with {x6, x10, x14, …}.  Finally, thread C creates thread D which is initial-
ized with the sequence {x8, x16, …}. 

 

 

Figure 9-2: Dynamic sequence partitioning example. 

Given an infinite initial pseudo-random sequence {xi}, dynamic se-
quence partitioning would assign to each thread a disjoint pseudo-random 
sub-sequence.  In practice, of course, pseudo-random sequences are peri-
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odic, not infinite.  Furthermore, since leapfrog partitioning has the effect of 
halving the sequence period, creating threads in an adversarial manner can 
cause the sequence to wrap around in logarithmic time.  It is therefore de-
sirable to choose an initial sequence with an extremely long period. 

9.2.3 Random Number Generation in Hamal 

For the Hamal benchmarks, we have implemented a multiplicative linear 
congruential generator with modulus 261 – 1 (this is the next Mersenne 
prime beyond 231 – 1, a common modulus for existing applications).  Given 
a multiplier a, the sequence {xi} is defined by 

 xi+1 ≡ axi (mod 261 – 1) (1) 

This generator provides a balance between quality and simplicity of 
random number generation.  The period is of medium length – if a is a 
primitive root then the period is 261 – 2.  Only 128 bits of state are required 

to store a and xi.  Because Hamal supports 64→128 bit integer multiplica-
tion, computing xi+1 is very efficient.  Figure 9-3 shows assembly code for 
rand(), which consists of 7 arithmetic instructions arranged in 5 VLIW in-
struction groups.  $holdrand (r29) is a 128 bit register whose upper 64 bits 
($holdrand.y) are used to store a and whose lower 64 bits ($holdrand.x) are 
used to store xi shifted left by 3 bits (8xi). 

 
#var holdrand r29
#var rand r29b

rand:
. r0x = move $holdrand.y ;; r0x = multiplier ‘a’

$holdrand = mul64 $holdrand.x, $holdrand.y
. $holdrand.y = shl64 $holdrand.y, 3
. $holdrand.x = add64 $holdrand.x, $holdrand.y

$holdrand.y = move r0x
. (p13) $holdrand.x = add64 $holdrand.x, 8
. r0a = move $rand

return

Figure 9-3: Hamal assembly code for rand(). 

The multiplication in the first instruction group computes 8axi = 8xi+1 
as a 128 bit number.  If the upper 64 bits of the product are u and the lower 
64 bits are 8v, then 

 8xi+1 = 264u + 8v ≡ 8u + 8v (mod 261 – 1) (2) 

To reduce the product modulo 261 – 1 we therefore left shift the upper bits 
by 3 then add them to the lower bits.  In case of a carry beyond the last bit 
(indicated by the integer inexact flag p13), we must add an additional 8, 
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since 264 ≡ 8 (mod 261 – 1).  Finally, rand() returns a 32 bit random number 
taken from the upper 32 bits of xi+1. 

Another advantage of this generator is that dynamic sequence partition-
ing is easy.  If the state of a thread’s random number generator is (a, x), 
then when a child thread is created the state is changed to (a2, x), and the 
state of the child thread’s generator is (a2, ax).  Note that if a is a primitive 
root then a2 is not a primitive root and has order 260 – 1.  Since 260 – 1 is 
odd, successive squarings do not change this order.  Thus, all pseudo-
random number sequences created by dynamically partitioning this genera-
tor will have period 260 – 1 and will cycle through all the squares modulo 
261 – 1. 

9.3 Benchmarks 

Four benchmark applications were chosen to test Hamal’s support for paral-
lel programming: a simple parallel-prefix addition, quicksort, an N-body 
simulation, and a frequency count of words from a large body of text.  The 
following sections describe each of these benchmarks in detail. 

9.3.1 Parallel Prefix Addition 

Parallel prefix operations (also known as scans) are important data-parallel 
primitives supported by high-level parallel languages such as NESL [Blel-
loch95].  The ppadd benchmark performs parallel prefix addition on a vec-
tor of 32 bit integers, replacing the entry xk with the sum x0 + x1 + … + xk.  
ppadd stores the vector as a single sparsely faceted array and sets up a bi-
nary tree of threads with one leaf thread on each node, using register-based 
synchronization to pass values between parent and child threads (Figure 
9-4).  Each leaf computes the sum of the values on its node and passes this 
sum to its parent.  The tree of threads is then used to compute partial sums 
in logarithmic time.  Finally, each leaf receives from its parent the sum of 
all values on all previous nodes, and uses this sum to perform the local par-
allel prefix computation. 

The running time of parallel prefix on N nodes for a vector of length m 
can be modeled as C0 + C1m/N + C2log(N).  The constant C2 represents the 
overhead of creating a binary tree of threads and communicating within this 
tree and it limits the overall speedup that can be achieved.  Setting the de-
rivative of this expression to zero, we find that optimal speedup is expected 
with N = C1m/C2.  Plotting execution time of ppadd against the number of 
nodes N therefore allows us to evaluate the efficiency of thread creation and 
communication in a parallel architecture. 
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Figure 9-4: Parallel prefix addition thread structure. 

9.3.2 Quicksort 

Quicksort is the archetypal randomized divide-and-conquer algorithm.  The 
quicksort benchmark uses parallel vectors to perform quicksort on an array 
of integers.  The top level quicksort function chooses a random pivot ele-
ment, splits the vector into less-than and greater-than vectors, subdivides 
the processor set according to the NlogN ratio of expected work, redistrib-
utes the less-than and greater-than vectors to the two smaller processor sets, 
then recurses by creating two child threads.  When the processor set con-
sists of a single node, a fast sequential in-place quicksort is used. 

9.3.3 N-Body Simulation 

The nbody benchmark performs 8 iterations of a 256 body simulation.  
Exact force calculations are performed, i.e. on each iteration the force be-
tween every pair of bodies is computed.  Computation is structured for 

O(√N) communication by conceptually organizing the processors into a 
square array; each processor communicates only with the other processors 
in the same row or column.  An iteration consists of three phases.  In the 
first phase, each processor broadcasts the mass and position of its bodies to 
the other processors in the same row and column.  In the second phase, the 
processor in row i and column j computes, for each body in row i, the net 
force from all bodies in column j; these partial forces are then forwarded to 
the appropriate processor in that row.  Finally in the third phase the partial 
forces for each body are added up, and all velocities and positions are up-
dated.  This is illustrated in Figure 9-5 for 18 bodies on 9 processors.  The 
key aspect of this benchmark is the inter-node synchronization that is re-
quired between the phases of an iteration when bodies and forces are passed 
from node to node. 

 

ppadd 



 100

 

Figure 9-5: N-Body example with 18 bodies on 9 processors.  In phase 1 bodies 

are broadcast to rows and columns.  In phase 2 partial forces Fm
j
 of column j 

acting on body m are computed.  In phase 3 (not shown) these forces are 

accumulated and the bodies are updated. 

9.3.4 Counting Words 

In the final benchmark, wordcount, the number of occurrences of each 
word in [Brown02a] is computed.  In the initial configuration, the text of 
this thesis is distributed across the machine.  A distributed hash table is 
used to keep track of the words.  A thread is created on each node to proc-
ess the local portion of the text and isolate words.  For each word, the dis-
tributed hash table node and index are computed, then the count for the 
word is incremented (creating a new entry in the hash table if necessary).  
Each location in the hash table contains a pointer to a linked list of words 
with the same hash value; these pointers must be locked and unlocked to 
ensure consistency when two or more threads attempt to access the same 
hash table location. 
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Chapter 10  

Synchronization 

The days of the digital watch are numbered. 

– Tom Stoppard (1937- ) 

One of the most important aspects of a parallel computer is its support for 
synchronization.  Inter-thread synchronization is required in parallel pro-
grams to ensure correctness by enforcing read-after-write data dependencies 
and protecting the integrity of shared data.  All shared-memory multiproc-
essors provide, at minimum, atomic read-and-modify memory operations 
(e.g.  swap, test-and-set).  These operations are sufficient to implement 
higher-level synchronization primitives such as locks, semaphores, {I, J, L, 
M}-structures ([Arvind86], [Barth91], [Kranz92]), producer-consumer 
queues, and barriers.  However, the overhead of synchronization primitives 
implemented with atomic memory operations alone can be quite high, so it 
becomes desirable to provide additional hardware support for efficient syn-
chronization.  In this chapter we discuss four synchronization primitives in 
the Hamal architecture: atomic memory operations, shared registers, regis-
ter-based synchronization, and user trap bits. 

10.1 Atomic Memory Operations 

Hamal supports eight atomic read-and-modify memory operations, shown 
in Table 10-1.  Each of these operations returns the original contents of the 
memory word.  The operations can be performed on 8, 16, 32 or 64 bit 
words.  Additionally, the three boolean operations can be performed on 128 
bit words.  The utility of atomic memory operations has been well estab-
lished; we list those supported by Hamal for completeness only and focus 
our evaluation efforts on other synchronization primitives. 
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Instruction Width (bits) Operation 

memadd 8, 16, 32, 64 word = word + data 

memsub 8, 16, 32, 64 word = word – data 

memrsub 8, 16, 32, 64 word = data – word 

memand 8, 16, 32, 64, 128 word = word & data 

memor 8, 16, 32, 64, 128 word = word | data 

memxor 8, 16, 32, 64, 128 word = word ^ data 

memmax 8, 16, 32, 64 word = max(word, data) 

memmin 8, 16, 32, 64 word = min(word, data) 

Table 10-1: Atomic memory operations. 

10.2 Shared Registers 

The Hamal processor contains eight shared registers g0-g7 which can be 
read by any context and written by contexts running in privileged mode.  
The primary purpose of these registers is to allow the kernel to export data 
to user programs, such as a pointer to the table of kernel calls and the in-
struction pointer for the frequently-called malloc routine.  In addition, they 
allow shared data to be atomically read and modified by privileged-mode 
subroutines.  Atomicity can be implemented by making use of both arith-
metic data paths in a VLIW instruction group to simultaneously read and 
write a shared register.  For example, the current implementation of the 
Hamal microkernel uses g0 as a malloc counter; it stores the 64 bit local 
address at which the next segment should be allocated.  Figure 10-1 gives 
assembly code for the privileged malloc routine.  The first instruction group 
(instruction groups are demarcated by periods) attempts to obtain the 
counter by simultaneously reading and resetting g0.  If it is successful, the 
capability formed in r1 will have a non-zero address.  If it is unsuccessful, 
indicating that another context currently holds the counter, then it spins 
until the counter is obtained.  This implementation of malloc is extremely 
fast, running in only four cycles when the code is present in the instruction 
cache. 

 
malloc:
. r1 = gcap _CAP_BIG | _CAP_ALL, g0

g0 = move 0 ;; obtain the counter
. p0 = test r1x, r1x ;; p0 indicates success

r2 = alloc r1, r0a ;; allocate the memory
. (p0) r1 = askip r1, r0a ;; advance the counter

(p0) r0 = move r2 ;; new pointer in r0
. (p0) g0 = move r1x ;; replace the counter

(p0) r1x = move 0 ;; destroy the capability
(p0) return

. branch malloc ;; spin on failure

Figure 10-1: Assembly code for malloc, which atomically reads & modifies g0. 



 103

10.3 Register-Based Synchronization 

Hamal supports register-based synchronization via the join, jcap and busy 
instructions.  The jcap instruction creates a join capability which, when 
given to other threads, allows them to use the join instruction to write di-
rectly to a register in the thread that created the capability.  The busy in-
struction marks a register as busy, which will cause a thread to stall when it 
attempts to access this register until another thread uses join to write to it.  
This is similar to register-based synchronization in the M-Machine [Keck-
ler98], but differs in two important respects.  First, the mechanism is pro-
tected via join capabilities, so mutually untrusting threads can run on the 
same machine without worrying about unsolicited writes to their register 
files.  Second, while the M-Machine restricts register-based synchronization 
to active threads running on the same physical processor, the Hamal join 
instruction can be used to write to an arbitrary local or remote thread in the 
system, and the reply event allows the microkernel to handle joins to 
threads which are not currently active. 

One of the most important uses of register-based synchronization is to 
implement parent-child synchronization.  A parent thread can initialize a 
child thread with a join capability allowing the child to write directly to one 
or more of the parent’s registers.  This allows both synchronization and 
one-way communication of data.  A two-way communication channel can 
be established if the child thread passes a join capability back to its parent. 

As an example, consider the procs_doacross and procs_doacross_sync 
library routines.  procs_doacross starts a family of threads, one thread on 
every processor within a given processor set.  It takes as arguments a proc-
essor set, the code address at which the threads should be started, and a set 
of arguments with which to initialize the threads.  A call to procs_doacross 
does not return until all threads have exited.  The procs_doacross_sync 
function provides barrier synchronization for these threads.  A call to 
procs_doacross_sync does not return until all other threads in the family 
have either exited or also called procs_doacross_sync. 

procs_doacross recursively creates a binary tree of threads with one 
leaf on each processor in the processor set.  This tree of threads is used for 
both barrier and exit synchronization.  Each thread in the tree is initialized 
with a join capability for its parent.  To request barrier synchronization, a 
thread passes a join capability to its parent.  The parent uses this join capa-
bility to signal the child once the barrier has passed.  To exit, a thread sim-
ply passes NULL to its parent.   
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void procs_doacross_thread (ProcSet p, Code ∗func,
JCap ∗j, <args>)

{
if (|p| == 1) // If there’s only one processor

func(j, <args>); // call the supplied function
else
{

ProcSet (p1, p2) = Split(p);
JCap j0, j1, j2, sync0, sync1, sync2, temp;

j1 = JCap(sync1); // Left child
sync1 = busy;
fork(middle_node(p1), procs_doacross_thread,

p1, func, j1, <args>);

j2 = JCap(sync2); // Right child
sync2 = busy;
fork(middle_node(p2), procs_doacross_thread,

p2, func, j2, <args>);

while (sync1 || sync2) // while (one of the
{ // children called sync)

j0 = JCap(sync0);
sync0 = busy;
join(j, j0); // Ask parent for barrier
test(sync0); // Wait for signal from parent

if (sync1) // If left child did not exit
{ // then signal it

temp = sync1; // Need to mark sync1 as
sync1 = busy; // busy before joining
join(temp, 0); // to avoid race condition!

}
if (sync2) // If right child did not exit
{ // then signal it

temp = sync2;
sync2 = busy;
join(temp, 0);

}
}

}
join(j, NULL); // Tell parent that we’re done

}

Figure 10-2: Register-based synchronization in procs_doacross thread. 

Figure 10-2 gives pseudo-code for the main procs_doacross thread.  If 
the thread is a leaf node, it simply calls the user-supplied function and then 
exits.  Otherwise, it splits the processor set, initiates left and right child 
threads, then enters a loop to service barrier requests from its children.  
Each barrier request is passed on to its parent.  Figure 10-3 gives pseudo-
code for the top-level procs_doacross function which ultimately handles all 
barrier requests as well as the procs_doacross_sync function which sends a 
barrier request to the parent thread. 
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void procs_doacross (ProcSet p, Code ∗func, <args>)
{

JCap j, sync, temp;

j = JCap(sync);
sync = busy;
fork(middle_node(p), procs_doacross_thread,

p, func, j, <args>);

while (sync) // barrier request loop
{

temp = sync;
sync = busy;
join(temp, 0);

}
}

void procs_doacross_sync (JCap ∗j)
{

Word sync = busy;
JCap j0 = JCap(sync);
join(j, j0);
test(sync);

}

Figure 10-3: Register-based synchronization in top-level procs_doacross and in 

barrier function. 
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Figure 10-4: Barrier time measured in machine cycles. 
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The time required to perform a barrier synchronization using these li-
brary functions is plotted  against machine size in Figure 10-4.  These times 
were measured as the number of machine cycles between consecutive barri-
ers with no intermediate computation.  We see that register-based synchro-
nization leads to an extremely efficient software implementation of barriers 
which outperforms even some previously reported hardware barriers (e.g. 
[Kranz93]).  Furthermore, because no special hardware resources are re-
quired, multiple independent barrier operations may be performed simulta-
neously. 

In a similar manner, the ppadd benchmark uses register-based synchro-
nization to pass values between parent and child threads and to perform exit 
synchronization.  Figure 10-5 shows a log-log plot of speedup versus ma-
chine size for ppadd on a 216 entry vector.  Again, register-based synchroni-
zation permits efficient communication between threads which results in 
linear speedup over a wide range of machine sizes.  Note that since the 
problem size is only 216, the amount of work performed by each thread be-
comes quite small beyond 64 processor nodes. 
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Figure 10-5: Speedup in parallel prefix addition benchmark. 

10.4 UV Trap Bits 

The fourth synchronization primitive provided in the Hamal architecture is 
user-controlled U and V trap bits associated with every 128-bit word of 
memory.  Each memory operation may optionally specify both trapping 
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behaviour and how U and V should be modified if the operation succeeds.  
UV traps are a generalization of previous similar mechanisms ([Smith81], 
[Alverson90], [Kranz92], [Keckler98]).  They differ in that a trap is not 
returned to the thread that issued the operation.  Instead, an event is gener-
ated on, and handled by, the node containing the memory word being ad-
dressed.  In this section we show how UV traps can be used to implement 
two common forms of synchronization: producer-consumer structures and 
locks. 

10.4.1 Producer-Consumer Synchronization 

Producer-consumer synchronization is required when one thread passes 
data to another via a shared memory location.  In the simple case where 
only one value is passed, the consumer must simply wait for the data to 
become available.  In the more general case involving multiple values, the 
producer must also wait for the previous data to be consumed. 

We can implement producer-consumer synchronization using the four 
states listed in Table 10-2.  In the empty state the word contains no data.  In 
the full state the word contains a single piece of data which is ready to be 
consumed.  The trap state indicates either that the word is empty and the 
consumer is waiting, or that the word is full and the producer is waiting.  
Finally, the busy state indicates that a UV trap handler is currently operating 
on the word.  The producer uses a store instruction that traps on U or V high 
and sets U.  The consumer uses a load instruction that traps on U low or V 
high and clears U. 

 
U V Meaning 

0 0 empty 

1 0 full 

0 1 trap 

1 1 busy 

Table 10-2: Producer-consumer states. 

Figure 10-6 gives pseudo-code for the producer-consumer trap han-
dlers.  Each handler begins by using the special loaduv instruction in a spin-
wait loop to simultaneously lock the word and obtain its previous state 
(empty, full or trap).  If the consumer attempts to read from an empty word, 
the load handler stores in the word a join capability which can be used to 
complete the load operation and sets the state to trap.  The next time the 
producer attempts to write to the word the store handler will be invoked 
which will manually complete the consumer’s load and set the state to 
empty.  If the producer attempts to write to a full word, the store handler 
reads the previous value, replaces it with a join capability for one of its own 
registers, sets the state to trap, and uses register-based synchronization to 
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wait for a signal from the load handler.  The next time the consumer at-
tempts to read the word, the load handler will be invoked which will pass a 
join capability for the consumer to the store handler.  Finally, the store han-
dler uses this join capability and the old value to manually complete the 
consumer’s load operation, then writes the new value to the word and sets 
the state to full. 

 
trap_store:

lock the word
if (state == empty)

complete store, clear V
else if (state == full)

swap old value with
join capability

wait for join capability
from load handler

complete load
write new value, clear V

else if (state == trap)
read join capability,

complete load, clear UV

trap_load:
lock the word
if (state == empty)

write join capability,
clear U

else if (state == full)
complete load, clear UV

else if (state == trap)
pass join capability to

store handler

Figure 10-6: Producer-consumer trap handlers. 

Producer-consumer synchronization is needed between the phases of an 
iteration in the nbody benchmark.  Two versions of this benchmark were 
programmed: one using UV trap bits to implement fine-grained producer-
consumer synchronization, and one using the global barrier synchronization 
described in Section 10.3.  Table 10-3 compares the run times of the two 
versions.  For small machine sizes in which the barrier overhead is ex-
tremely low the times are roughly the same, but as the machine size and 
barrier overhead increase the version using fine-grained synchronization 
begins to noticeably outperform the barrier version.  For 256 nodes it runs 
nearly 9% faster; with this many nodes 2.6% of the loads and 1.7% of the 
stores caused UV traps.  These results are very similar to those reported in 
[Kranz92]. 
 

# processors 1 4 16 64 256 

barrier (cycles) 38555371 9690415 2479124 665263 212725 

UV (cycles) 38583457 9703698 2476991 648438 195365 

speedup 0.999272 0.998631 1.000861 1.025947 1.088859 

Table 10-3: Run times and speedup of UV synchronization vs. global barrier 

synchronization. 
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10.4.2 Locks 

Locks are one of the most fundamental and widely used synchronization 
primitives.  They preserve the integrity of shared data structures by enforc-
ing transactional semantics.  Locks have traditionally been implemented as 
separately-allocated data structures.  In the simplest case a single bit in 
memory indicates whether or not a lock is available; threads acquire a lock 
using an atomic memory operation that reads and sets the appropriate bit, 
and they release a lock by clearing the bit.  This, however, is unsatisfactory 
for applications that need to maintain locks for a large number of small data 
structures (such as individual words).  There are two specific problems.  
First, at least two extra memory references are required to access locked 
data: one to acquire the lock and one to release the lock.  Second, extra 
storage is required for these locks.  At minimum a single bit is needed for 
every lock, but this simple scheme only supports acquisition by spin-
waiting.  For more sophisticated waiting strategies involving thread block-
ing and wait queues, the lock must consist of at least an entire word. 

In a tagged architecture with a swap instruction (such as Hamal), it is 
possible to finesse these problems by using a special tagged value to indi-
cate that a word is locked.  Spin-wait acquisition then consists of atomically 
swapping this LOCKED value with the desired word until it is obtained, 
and a lock is released simply by writing the value back to memory.  This 
approach still requires the use of spin-waiting, the overhead of which con-
sists of at least one test instruction, one branch, and possibly a number of 
network messages. 

U and V trap bits can be used to implement word-level locking with 
minimal communication and no overhead in the absence of contention.  We 
again make use of four states, shown in Table 10-4.  A word is available if 
it is unlocked.  When a word has been locked it is unavailable and its con-
tents are undefined.  The trap state indicates that at least one thread is wait-
ing to acquire the lock; in this state the word contains a join capability for a 
thread or trap handler that has requested the lock.  As before, the busy state 
indicates that a trap handler is currently operating on the word.  A lock is 
acquired using a load operation that traps on U or V high and sets U.  It is 
released using a store operation that traps on V high and clears U. 

 
U V Meaning 

0 0 available 

1 0 unavailable 

0 1 trap 

1 1 busy 

Table 10-4: Locked word states. 

The first time that some thread attempts to acquire an unavailable lock, 
the trap handler simply stores a join capability for this thread in the word, 
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sets the state to trap, and exits.  Trap handlers invoked by subsequent ac-
quisition attempts swap this join capability with a join capability for one of 
their own registers, then use register-based synchronization to wait for the 
lock to be released.  Thus, each waiting acquire handler stores two join ca-
pabilities: one for the thread that caused the acquire trap, and one that was 
previously stored in the memory word.  When a thread attempts to release a 
lock which is in the trap state, the trap handler uses the join capability 
stored in the memory word to pass the lock on to the next requester and sets 
the state to unavailable.  Finally, when a lock is passed to a waiting acquire 
handler, the handler uses its first join capability to pass on the lock.  It then 
loops back to the start to re-handle the acquisition request corresponding to 
its second join capability.  This is illustrated in Figure 10-7. 

 

 
 

       
 

(a)                                                                        (b) 

Figure 10-7:  (a) Threads A, B, C, D request a lock in that order.  (b) Thread A 

releases the lock. 

In the wordcount benchmark, locks are required to preserve the integ-
rity of the distributed hash table used to count words.  In a remote access 
version of the benchmark, a single thread runs on each node and acquires 
these locks remotely.  Two methods are used to acquire the locks: UV trap 
bits, as described above, and spin-waiting.  The spin-wait version uses a 
special LOCKED value to acquire locks with a swap instruction, so the UV 
locking mechanism is being compared to the most efficient form of spin-
waiting available. 

Figure 10-8a gives execution time for both remote access versions of 
the wordcount benchmark as the number of processors is varied from 1 to 
128.  As the number of processors increases, so too does the contention for 
locks.  This is shows in Figure 10-8b which gives the number of acquire 
and release traps for the UV version.  There is a sequential bottleneck 
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caused by commonly occurring words such as ‘the’ (1775 occurrences) and 
‘of’ (949).   

With few processors (1-4) there is little contention, so the UV version 
marginally out-performs the spin-wait version due to the absence of test and 
branch instructions when a lock is acquired.  For a medium number of 
processors (8-32) contention increases considerably, and the overhead of 
creating trap-handling threads in the UV version becomes a factor.  Spin-
waiting over a small network with few requestors is efficient enough to out-
perform UV traps in this case.  For a large number of processors (64+), the 
performance of spin-waiting becomes unacceptable as both the size of the 
network and the number of requestors increases.  The performance of the 
UV version, by contrast, remains roughly constant even as the number of 
trap handler threads grows past 6000.  This is due to a combination of fixed 
communication costs, which prevent performance degradation, and sequen-
tial bottlenecks, which eliminate the possibility of performance improve-
ments. 

 
wordcount - remote-access version

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

1 2 4 8 16 32 64 128

# processors

ti
m
e
 (
c
y
c
le
s
)

spin

UV

wordcount - remote-access version

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 4 8 16 32 64 128

# processors

#
 t
ra
p
s

acquire traps

release traps

 
(a)                                                         (b) 

Figure 10-8:  (a) Execution time for non-forking wordcount benchmark using 

both spin-waiting and UV traps.  (b) Number of acquire and release traps for 

UV version. 

These results indicate that the primary benefit of the UV trapping 
mechanism is the automatic migration of the lock-requesting task from the 
source node to the destination node.  This has two positive effects.  First, it 
reduces network communication for remote lock acquisition to the absolute 
minimum: one message to request the lock, and another message when the 
lock is granted.  The sequence is indistinguishable from a high-latency re-
mote memory request.  Second, when a lock is heavily requested (as in the 
wordcount benchmark), only the node on which the lock resides spends 
time managing the lock.  The other nodes in the system do not have to 
waste cycles by spin-waiting. 

To verify this conjecture, local access versions of the benchmark were 
programmed which create a thread for each word on the node containing 
the word’s hash table entry.  These threads then acquire locks (which are 
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now always local) and update the hash table.  With threads being manually 
migrated to the nodes containing the required locks, we would expect the 
performance advantages of the UV trapping mechanism to be lost. 

Figure 10-9a plots execution times for the modified benchmark.  Creat-
ing threads on the nodes containing the desired hash table entries dramati-
cally reduces the amount of time that a given lock is held, which corre-
spondingly lowers contention as shown in Figure 10-9b.  With little conten-
tion there is no noticeable difference between the spin-wait and UV ver-
sions.  For 128 processors when contention becomes significant, UV trap 
bits are indeed outperformed by spin-waiting. 
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(a)                                                                                (b) 

Figure 10-9:  (a) Execution time for forking wordcount benchmark using both 

spin-waiting and UV traps.  (b) Number of acquire and release traps for UV 

version. 
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Chapter 11   

The Hamal Processor 

I wish to God these calculations had been executed by steam. 

– Charles Babbage (1792-1871) 

The Hamal processor combines a number of novel and existing mechanisms 
and is designed to provide high performance while minimizing complexity 
and silicon requirements.  A full evaluation of its performance and features 
is unfortunately beyond this scope of this thesis; in this chapter we focus on 
the implementations of the instruction cache and hardware multithreading.  
Specifically, we investigate the extent to which instruction cache miss bits 
are able to reduce the instruction cache miss rate, and we evaluate the per-
formance benefits of register dribbling as the number of hardware contexts 
is varied. 

11.1 Instruction Cache Miss Bits 

In the Hamal instruction cache, each cache line is tagged with a miss bit 
which indicates whether the cache line was prefetched or loaded in response 
to a cache miss.  When the cache must select a line to replace, it preferen-
tially selects lines with the miss bit clear.  The motivation for this is that 
cache lines which were successfully prefetched in the past are likely to be 
successfully prefetched in the future. 

As an example of the potential benefits of miss bits, consider the loop 
illustrated in Figure 11-1 which consists of 3 basic blocks.  Suppose N 
cache lines are required to hold all the instructions in this loop.  Without 
miss bits, a prefetching cache with fewer than N lines which uses LRU re-
placement will incur 3 cache misses on every pass through the loop: one 
miss at the start of each basic block.  With miss bits, only 5 cache lines are 
required to avoid misses altogether: one for the start of each basic block, 
and 2 more to hold the current and next set of instructions. 
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Figure 11-1:  Loop containing 3 basic blocks.  Grey instructions can be pre-

fetched by the cache. 

To test the actual effectiveness of miss bits in reducing the number of 
cache misses, we ran the quicksort, nbody and wordcount benchmarks both 
with and without miss bits, varying the size of the instruction cache from 2 
to 64 lines.  We did not make use of the ppadd benchmark as the loops in 
this benchmark are extremely small and fit into a single instruction cache 
line.  The quicksort benchmark was run on a 216 entry array.  The remote 
access spin-waiting version of wordcount was used, and the barrier syn-
chronization version of nbody was used.  All benchmarks were run on 16 
processors. 
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Figure 11-2:  Instruction cache miss rates for the quicksort, nbody and word-

count benchmarks. 
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The results of these simulations are shown in Figure 11-2.  As ex-
pected, miss bits are able to significantly reduce the miss rate for small 
cache sizes.  Once the cache grows large enough to accommodate the inner 
loops of the benchmarks, the miss rates drops to nearly zero with or without 
miss bits.  Miss bits are therefore a simple and effective mechanism for 
both improving the performance of small caches and reducing the miss rate 
in applications with large inner loops. 

11.2 Register Dribbling 

In a multithreaded architecture, register dribbling [Soundarar92] reduces 
the overhead of thread switching by allowing a context to be loaded or 
unloaded in the background while other contexts continue to perform useful 
computation.  The Hamal processor extends this idea by maintaining a set 
of dirty bits for all registers and constantly dribbling the least recently is-
sued (LRI) context to memory.  Each time a dirty register is successfully 
dribbled (dribbling can only take place on cycles in which no thread is initi-
ating a memory request), the register is marked as ‘clean’.  We will refer to 
this strategy as extended dribbling. 

By dribbling a context’s registers to memory in advance of the time at 
which the context is actually suspended, extended dribbling reduces the 
amount of time required to save the state of the context to memory.  This in 
turn reduces the latency between the decision to suspend a thread and the 
activation of a new thread.  The disadvantage of extended dribbling is that 
even though it makes use of cycles during which the processor is not ac-
cessing memory, a successful dribble will occupy a memory bank for the 
amount of time required to perform a write operation in the embedded 
DRAM (this is modeled as three machine cycles in the Hamal simulator).  
Thus, memory requests generated immediately after a dribble and targeted 
at the same memory bank will be delayed for two cycles. 

It is impossible to determine a priori whether or not the benefits of ex-
tended dribbling outweigh its costs, so as usual we resort to simulation.  All 
four benchmarks were run both with and without extended dribbling with 
the number of hardware contexts varying from 4 to 16.  With extended 
dribbling, a stall event is generated when there are less than two free con-
texts, no context can issue, and the LRI context is clean.  Without extended 
dribbling this last condition is dropped, so stall events are generated sooner 
than they would be otherwise.  Since the ppadd benchmark only creates two 
threads on each node (one internal node and one leaf node in the thread 
tree), 8 instances were run simultaneously.  The quicksort benchmark was 
run on a 216 entry array.  To maximize the number of threads, UV trap bit 
synchronization was used for both the nbody and wordcount benchmarks, 
and the local access version of wordcount was used.  All benchmarks were 
again run on 16 processors. 
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Figure 11-3:  Execution time vs. number of contexts with and without extended 

dribbling. 

The resulting execution times are shown in Figure 11-3.  The two 
exceptional data points in the wordcount benchmark resulted from a thread 
being swapped out while it held a lock that was in high demand.  In ppadd 
and wordcount, which make heavy use of thread swapping, we see that ex-
tended register dribbling offers a performance advantage (~8% in word-
count).  By contrast, both quicksort and nbody feature threads which run for 
long periods of time without being swapped out, so in these cases extended 
register dribbling actually degrades performance slightly (~1% in each 
case).  On the whole, our initial conclusion is that extended dribbling helps 
more than it hurts. 

We were surprised to find that increasing the number of contexts be-
yond 6 offers little or no performance gains in any of the benchmarks, even 
in ppadd8 which creates many threads on each node.  Running this bench-
mark again with 32 simultaneous instances produces similar results, shown 
in Figure 11-4, which graphs both execution time and processor utilization.  
In retrospect this result should not have been surprising; the simple explana-
tion is that 6 or 7 concurrent ppadd threads are able to fully saturate the 
processor’s interface to memory.  This also explains why extended drib-
bling has almost no effect with 8 or more contexts: if the processor is gen-
erating a memory request on every cycle, then the LRI context will never 
dribble.  In the other three benchmarks, the flat performance curves are due 
to a lack of sufficient parallelistm. 
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Figure 11-4:  Execution time and processor utilization vs. number of contexts 

for ppadd32. 
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Chapter 12  

Squids 

"Its head," rejoined Conseil, "was it not crowned with eight 

tentacles, that beat the water like a nest of serpents?" 

– Jules Verne (1828-1905), “20,000 Leagues Under the Sea” 

Squids (Short Quasi-Unique IDentifiers) were introduced in Chapter 3 as a 
way of mitigating the effects of forwarding pointer aliasing.  The theoretical 
motivation for squids is that by assigning a short random tag to objects, 
pointers to different objects can be disambiguated with high probability.  
This avoids expensive dereferencing operations when performing pointer 
comparisons, and prevents the processor from having to wait for every 
split-phase memory operation to complete before initiating the next one.  In 
this chapter we discuss experiments performed using the Hamal simulator 
to quantify the performance advantages of squids. 

12.1 Benchmarks 

Table 12-1 lists the eight benchmarks used to evaluate squids.  The first five 
(list, 2cycle, kruskal, fibsort, sparsemat) involve pointer comparisons and 
the primary overhead is traps taken to determine final addresses.  The last 
three (vector, filter, listrev) involve rapid loads/stores and the primary over-
head is memory stalls when addresses cannot be disambiguated. 

It was necessary to carefully choose these benchmarks as most pro-
grams either do not make use of pointer comparisons, or compare them so 
infrequently that slow comparisons would have no impact on performance.  
Nonetheless, as exemplified by the benchmarks, there are some fundamen-
tal data structures for which pointer comparisons are frequently used.  One 
common example is graphs, in which pointer comparisons can be used to 
determine whether two vertices are the same.  Both 2cycle and kruskal are 
graph algorithms.  2cycle uses a brute force approach to detect 2-cycles in a 
directed graph by having each vertex look for itself in the connection lists 
of its neighbours.  kruskal uses Kruskal’s minimum spanning tree algorithm 
[CLR90] in which edges are chosen greedily without creating cycles.  To 
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avoid cycles, a representative vertex is maintained for every connected sub-
tree during construction, and an edge may be selected only if the vertices it 
connects have different representatives. 

 
Benchmark Description Parameters 

list Add/delete objects to/from a linked list 32 objects in list, 1024 iterations 

2cycle Detect 2-cycles in a directed graph 1024 vertices, 10,240 edges 

kruskal Kruskal’s minimal spanning tree  512 vertices, 2048 edges 

fibsort Fibonacci heap sort 4096 keys 

sparsemat Sparse matrix multiplication 32x32 matrix with 64 entries; 5 

iterations of B = A * (B + A) 

vector ai = xi * yi   bi = xi + yi   ci = xi – yi 20,000 terms 

filter yi = .25 * xi-1 + .5 * xi + .25 * xi+1 200,000 terms 

listrev Reverse the pointers in a linked list 30,000 nodes 

Table 12-1: Benchmark programs. 

Another important data structure which makes use of pointer compari-
sons is the cyclically linked list.  Figure 2 gives C code for iterating over all 
elements of a non-empty cyclically linked list; a pointer comparison is used 
as the termination condition.  This differs from a linear linked list in which 
termination is determined by comparing a pointer to NULL.  Both fibsort 
and sparsemat make use of cyclically linked lists.  fibsort sorts a set of inte-
gers using Fibonacci heaps [Fredman87]; in a Fibonacci heap the children 
of each node are stored in a cyclically linked list.  sparsemat uses an effi-
cient sparse matrix representation in which both the rows and columns are 
kept in cyclically linked lists. 

 
Node *p = first;
do
{

...
p = p->next;

} while (p != first);

Figure 12-1: Iterating over a cyclically linked list. 

In the list benchmark, 32 objects are stored in both an array and a 
linked list.  On each iteration, an object is randomly selected from the array 
and located in the linked list using pointer comparisons.  The object is de-
leted, and a new object is created and added to both the array and the linked 
list.  Every 64 iterations the list is linearized [Clark76]; this is one of the 
locality optimizations performed in [Luk99].  This benchmark is somewhat 
contrived; it was constructed to provide an example in which squids are 
unable to asymptotically reduce overhead to zero.  Because the pointers in 
the array are not updated, subsequent to a linearization comparisons will be 
made between pointers having different levels of forwarding indirection.  In 
particular, an object will be found by comparing two pointers to the same 
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object with different levels of indirection.  This is one of the two cases in 
which squids fail.  Previously it was argued that this may be a rare case in 
general, however it is a common occurrence in the list benchmark. 

The overhead of forwarding pointer dereferencing is potentially quite 
large, especially if there is a deep chain of forwarding pointers, a remote 
memory reference is required, or, in the worst case, a word in the forward-
ing chain resides in a page that has been sent to disk.  For the purposes of 
evaluation, we wish to minimize this overhead before introducing squids in 
order to avoid exaggerating their effectiveness.  Accordingly, all bench-
marks are run as a single thread on a single node and fit into main memory.  
Additionally, we emulate a scenario in which data has been migrated at 
least once by setting the migrated (M) bit in all capabilities. 

12.2 Simulation Results 

Figure 12-2 shows the results of running all eight benchmark programs with 
the number of squid bits varying from 0 to 8.  Execution time is broken 
down into program cycles, trap handler cycles, and memory stalls.  A cycle 
is counted as a memory stall when the hardware is unable to disambiguate 
different addresses and as a result a memory operation is blocked.  Table 
12-2 lists the total speedup of the benchmarks over their execution time 
with zero squid bits. 

As expected, in most cases the overhead due to traps and memory stalls 
drops exponentially to zero as the number of squid bits increases.  The three 
exceptions are list, vector and filter.  In vector and filter the lack of a 
smooth exponential curve is simply due to the small number of distinct ob-
jects (five in vector, two in filter), so in both cases the overhead steps down 
to zero once all objects have distinct squids.  In list the overhead drops ex-
ponentially to a non-zero amount.  This is because squids offer no assis-
tance in comparisons of two pointers to the same object with different lev-
els of indirection. 
 

Squid bits: 1 2 3 4 5 6 7 8 

list 1.57 2.22 2.76 3.16 3.41 3.55 3.62 3.65 

2cycle 1.66 2.47 3.27 3.91 4.32 4.56 4.68 4.75 

kruskal 1.01 1.02 1.02 1.02 1.02 1.03 1.03 1.03 

fibsort 1.26 1.46 1.58 1.65 1.69 1.70 1.71 1.72 

sparsemat 1.62 2.24 2.83 3.41 3.57 3.92 3.98 4.00 

vector 1.18 1.30 1.30 1.30 1.30 1.30 1.30 1.30 

filter 1.00 1.12 1.12 1.12 1.12 1.12 1.12 1.12 

listrev 1.09 1.14 1.17 1.18 1.19 1.20 1.20 1.20 

Table 12-2: Speedup over execution time with zero squid bits. 
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Figure 12-2: Squid simulation results.  For each benchmark the horizontal axis 

indicates the number of squid bits used and the vertical axis gives the execution 

time in millions of cycles.  Execution time is broken down into program cycles, 

trap handler cycles and memory stall cycles. 

We note that squids are most effective in programs that compare point-
ers within the inner loop.  This includes list, 2cycle, fibsort and sparsemat, 
where the speedup with eight squid bits ranges from 1.72 for fibsort to 4.75 
for 2cycle.  In kruskal, by contrast, the inner loop follows a chain of point-

program execution trap handler memory stall 
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ers to find a vertex’s representative; only once the representatives for two 
vertices have been found is a pointer comparison performed.  As a result, 
the improvement in performance due to squids is barely noticeable. 

Squids are also helpful, albeit to a lesser extent, in the three memory-
intensive benchmarks.  With eight squid bits the speedup ranges from 1.12 
in filter to 1.30 in vector.  Note that in each of these benchmarks, as the 
number of squid bits is raised the decrease in overall execution time is 
slightly less than the decrease in the number of memory stalls.  This is be-
cause programs are allowed to continue issuing arithmetic instructions 
while a memory request is stalled, so in some cases there is overlap be-
tween memory stalls and program execution.  Overlap cycles have been 
graphed as memory stall cycles. 

12.3 Extension to Other Architectures 

The design space of capability architectures is quite large, so we must call 
into question the extent to which our results would generalize to other ar-
chitectures.  In particular, the execution time of the trap handler (which is 
roughly 48 cycles from start to finish in our simulations) may be signifi-
cantly smaller in an architecture with data caches or extra registers available 
to the trap handler.  However, we note that: 

 
1. Any mechanism that speeds up the trap handler but is not specific 

to traps (e.g. data caches, out-of-order execution) will most likely 
reduce program execution time comparably, keeping the percent-
age of trap handler cycles the same. 

 
2. Hardware improvements reduce the cost but not the number of 

traps.  Squids reduce the number of traps exponentially independ-
ent of the architecture. 

 
The number of memory operations that the hardware fails to reorder or 

issue simultaneously is architecture dependent since it is affected by such 
factors as memory latency and the size of the instruction reorder buffer (if 
there is one).  If the overhead due to memory stalls in memory intensive 
applications is negligible to begin with, then the architecture will not bene-
fit from adding squids to the memory controller logic.  On the other hand if 
the overhead is noticeable, then squids will reduce it exponentially. 

12.4 Alternate Approaches 

We have focused our evaluations on the specific implementation of squids 
in the Hamal architecture, i.e. a hardware-recognized field within capabili-
ties.  A number of other approaches to the problem of pointer disambigua-
tion can be used in place of or in addition to this technique. 
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12.4.1 Generation Counters 

We can associate with each pointer an m bit saturating generation counter 
which indicates the number of times that the object has been migrated.  If 
two pointers being compared have the same generation counter (and it has 
not saturated), then the hardware can simply compare the address fields 
directly. 

The migrated (M) bit in Hamal capabilities is a single-bit generation 
counter that deals with the common case of objects that are never migrated.  
This completely eliminates aliasing overhead for applications that choose 
not to make use of forwarding pointers.  Using two generation bits handles 
the additional case in which objects are migrated exactly once as a 
compaction operation after the program has initialized its data (this is one 
of the techniques used in [Luk99]).  Again, overhead is completely elimi-
nated in this case. 

More generally, generation counters are effective in programs for 
which (1) objects are migrated a small number of times, and (2) at all times 
most working pointers to a given object have the same level of indirection.  
They lose their effectiveness in programs for which either of these state-
ments is false. 

12.4.2 Software Comparisons 

Instead of relying on hardware to ensure the correctness of pointer compari-
sons, the compiler can insert code to explicitly determine the final addresses 
and then compare them directly, as in [Luk99].  Figure 12-3 shows the code 
that must be inserted; for each pointer a copy is created, and the copy is 
replaced with the final address by repeatedly checking for the presence of a 
forwarding pointer in the memory word being addressed.  The outer loop is 
required in systems that support concurrent garbage collection or object 
migration to avoid a race condition when an object is migrated while the 
final addresses are being computed.  In a complex superscalar processor, 
the cost of this code may only be a few cycles (and a few registers) if the 
memory words being addressed are present in the data cache.  The overhead 
will be much larger if a cache miss occurs while either of the final ad-
dresses is being computed. 

Making use of hardware traps, and placing this code in a trap handler 
rather than inlining it at every pointer comparison, has the advantages of 
reducing code size and eliminating overhead when the hardware is able to 
disambiguate the pointers.  On the other hand, overhead is increased when a 
trap is taken due to the need to initialize the trap handler and clean up when 
it has finished.  In our simulations, we found that 25% of the trap cycles 
were used to perform the actual comparisons.  Thus, using software com-
parisons would give roughly the same performance as hardware compari-
sons with two squid bits. 
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temp1 = ptr1;
temp2 = ptr2;
flag = 0;
do
{

while (check_forwarding_bit(temp1))
temp1 = unforwarded_read(temp1);

while (check_forwarding_bit(temp2))
{

temp2 = unforwarded_read(temp2);
flag = 1;

}
} while (flag);
compare(temp1, temp2);

Figure 12-3: Using software only to ensure the correctness of pointer compari-

sons, the compiler must insert the above code wherever two pointers are com-

pared. 

The cost of software comparisons can be reduced (but not eliminated) 
by incorporating squids, as shown in Figure 5.  This combined approach 
features both exponential reduction in overhead and fast inline comparisons 
at the expense of increased code size and register requirements. 

 
temp = ptr1 ^ ptr2;
if (temp & SQUID_MASK)

<pointers are different>
else

<compare by dereferencing>

Figure 12-4: Using squids in conjunction with software comparison. 

12.4.3 Data Dependence Speculation 

In [Luk99], the problem of memory operation reordering is addressed using 
data dependence speculation ([Moshovos97], [Chrysos98]).  This is a tech-
nique that allows loads to speculatively execute before an earlier store when 
the address of the store is not yet known.  In order to support forwarding 
pointers, the speculation mechanism must be altered so that it compares 
final addresses rather than the addresses initially generated by the instruc-
tion stream.  This in turn requires that the mechanism is somehow informed 
each time a memory request is forwarded.  The details of how this is ac-
complished would depend on whether forwarding is implemented directly 
by hardware or in software via exceptions. 

Data dependence speculation does not allow stores to execute before 
earlier loads/stores, but this is unlikely to cause problems as a store does not 
produce data which is needed for program execution.  A greater concern is 
the failure to reorder atomic read-and-modify memory operations, such as 
those supported by Tera [Alverson90], the Cray T3E [Scott96], or Hamal. 
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12.4.4 Squids without Capabilities 

It is possible to implement squids without capabilities by taking the upper n 
bits of a pointer to be that pointer’s squid.  This has the effect of subdivid-
ing the virtual address space into 2n domains.  When an object is allocated, 
it is randomly assigned to one of the domains.  Objects migration is then 
restricted to a single domain in order to preserve squids. 

Using a large number of domains introduces fragmentation problems 
and makes data compaction difficult since, for example, objects from dif-
ferent domains cannot be placed in the same page.  However, as seen in 
Section 12.2, noticeable performance improvements are achieved with only 
one or two squid bits (two or four domains). 

Alternately, the hardware can cooperate to avoid the problems associ-
ated with multiple domains by simply ignoring the upper n address bits.  In 
this case the architecture begins to resemble a capability machine since the 
pointer contains both an address and some additional information.  The dif-
ference is that the pointers are unprotected, so user programs must take care 
to avoid mutating the squid bits or performing pointer arithmetic that causes 
a pointer to address a different object.  Additionally, because the pointer 
contains no segment information, arrays of objects are still a problem since 
a single squid would be created for the entire array. 

12.5 Discussion 

Forwarding pointers facilitate safe data compaction, object migration, and 
efficient garbage collection.  In order to address the aliasing problems that 
arise, the Hamal architecture implements squids, which allow the hardware 
to, with high probability, disambiguate pointers in the presence of aliasing 
without performing expensive dereferencing operations.  Our experimental 
results show that squids provide significant performance improvements on 
the small but important set of applications that suffer from aliasing, speed-
ing up some programs by over a factor of four. 

The fact that the overhead associated with forwarding pointer support 
diminishes exponentially with the number of squid bits has two important 
consequences.  First, very few squid bits are required to produce consider-
able performance improvements.  Even a single squid bit provides notice-
able speedups on the majority of the benchmarks, and as Figure 12-2 
shows, most of the potential performance gains can be realized with four 
bits.  Thus, squids remain appealing in architectures which have few capa-
bility bits to spare.  Second, squids allow an architecture to tolerate slow 
traps and/or long memory latencies while determining final addresses.   For 
most applications, three or four additional squid bits would compensate for 
an order of magnitude increase in the time required to execute the pointer 
comparison code of Figure 12-3. 
 



 127

 

Chapter 13  

Analytically Modeling a Fault-

Tolerant Messaging Protocol 

Models are to be used, not believed. 

– Henri Theil (1924-2000), “Principles of Econometrics” 

Analytical models are an important tool for the study of network topologies, 
routing protocols and messaging protocols.  They allow evaluations to be 
conducted without expensive simulations that can take hours or even days 
to complete.  However, analytically modeling a fault-tolerant messaging 
protocol is challenging for several reasons: 

 

• There are multiple packet types (at least two are required: ‘mes-
sage’ and ‘acknowledge’) 

• Many packets must be re-sent 

• The future behaviour of the network depends on which packets 
have been successfully received 

 
In this chapter we present a simple approach to the analysis of fault-

tolerant protocols that accurately models these effects while hiding many of 
the other protocol details.  We are able to solve for key performance pa-
rameters by considering only the rates at which the different types of pack-
ets are sent and the probabilities that they are dropped at various points in 
the network once the system has reached a steady state.  Our method is 
quite general and can be applied to various topologies and routing strate-
gies.  We will demonstrate the accuracy of the models obtained by compar-
ing them to simulated results for the idempotent messaging protocol de-
scribed in Chapter 5 implemented using both circuit switching and worm-
hole routing on three different network topologies. 

The literature contains a myriad of analytical models for dynamic net-
work behaviour.  Models have been proposed for specific network topolo-
gies ([Dally90], [Stamoulis91], [Saleh96], [Greenberg97]), routing algo-
rithms ([Draper94], [Sceideler96], [Ould98]), and traffic patterns [Sar-
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bazi00].  While the vast majority of this work has focused on non-
discarding networks, discarding networks have also been considered ([Par-
viz79], [Rehrmann96], [Datta97]).  However, in [Rehrmann96] and 
[Datta97] packet retransmission was not modeled.  In [Parviz79] the model 
did take into account packet retransmission, but a magic protocol was used 
whereby the sending node was instantly and accurately informed as to the 
success or failure of a packet.  Our work differs from previous research in 
that we present an accurate model for the higher-level messaging protocol 
required to ensure packet delivery across a faulty network. 

13.1 Motivating Problem 

Our work was motivated by an attempt to analytically answer the following 
question: Given a desire to implement the idempotent messaging protocol 
on a bisection-limited network, should one use wormhole routing or circuit 
switching?  In a wormhole routed network, all three protocol packets are 
independently routed through the network; all three are subject to being 
discarded due to contention within the network.  In a circuit switched net-
work, only the MSG packet is routed through the network.  A connection is 
maintained along the path that it takes, and the ACK and CONF packets are 
sent through this connection.  They can still be lost due to corruption, but 
not due to contention.  On one hand, wormhole routing generally makes 
more efficient use of network resources.  On the other hand, circuit switch-
ing capitalizes on a successful MSG route through the network bisection by 
holding the channel open for the ACK and CONF packets.  We will answer 
this question in Section 13.3.4 after deriving models for both wormhole 
routing and circuit switching on a bisection-limited network. 

13.2 Crossbar Network 

To introduce our technique, we begin with the simplest of networks: a 
crossbar.  Specifically, we assume a pipelined crossbar of diameter d where 
the head of each packet takes d cycles to reach its destination and there is 
no contention within the network.  Each node has one receive port.  When a 
packet reaches its destination node it is delivered if the receive port is free 
and it is discarded otherwise. 

In all that follows, we assume that each node generates messages inde-

pendently at an average rate of λ messages per cycle, and that message des-
tinations are chosen randomly.  MSG packets are L flits long; ACK and 
CONF packets are each m flits long.  For all networks that we consider, we 
assume that packets are lost due to contention only.  We do not model net-
work failures.  
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13.2.1 Circuit Switched Crossbar 

To derive our models, we use the standard approach of assuming that the 
network reaches a steady state and then solving for the steady state parame-
ters.  For uniform traffic on a circuit switched crossbar, there are two pa-

rameters of interest: the rate α at which each node attempts to send mes-
sages, and the probability p that a message is successfully delivered when it 
reaches its destination. 

With only two parameters, we need only two equations.  Our first equa-
tion comes from conservation of messages: messages must be successfully 
delivered at the same rate that they are generated, hence 

 λ = αp (1) 

Our second equation comes from port utilization: the probability that a 
message is dropped at the receive node (1 – p) is equal to the probability 
that the receive port is in use.  When a message is dropped, it uses zero re-
ceive port cycles.  Using circuit switching, when a message is successfully 
received it uses 2d + L + 2m receive port cycles (L cycles to absorb the 
MSG packet, d cycles to send the ACK packet to the sender, m cycles for 
that packet to be absorbed, d cycles to send the CONF packet to the re-
ceiver, finally m cycles for that packet to be absorbed).  Thus, each node 

causes receive port cycles to be used at a rate of αp(2d + L + 2m).  Since 
the number of senders is equal to the number of receivers, this is the prob-
ability that a receive port wil be in use, so 

  1 – p = αp(2d + L + 2m) (2) 

Finally, we use (1) and (2) to solve for p: 

 p = 1 – λ(2d + L + 2m) (3) 

13.2.2 Wormhole Routed Crossbar 

The wormhole model is more complicated as we must consider the various 

protocol packets separately.  Let α, β, γ be the rates at which a node sends 
MSG, ACK and CONF packets respectively in steady state.  As before, let 
p be the probability that a packet is successfully delivered (this is independ-
ent of the packet type). 

Our port utilization equation is similar to (2).  When a MSG packet is 
successfully delivered it uses L receive port cycles.  When an ACK or 
CONF packet is delivered it uses m receive port cycles.  Hence, each node 

causes receive port cycles to be used at a rate of p(αL + (β + γ)m), so 

 1 – p = p(αL + (β + γ)m) (4) 
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Note that αL + (β + γ)m is the fraction of cycles during which a node 

is injecting a packet into the network; it is therefore ≤ 1.  It follows from (4) 

that 1 – p ≤ p, or p ≥ 0.5.  This implies that the network cannot reach a 

steady state unless the probability of successful delivery is ≥ 0.5. 
Our next three equations are conservation equations: conservation of 

messages, acknowledgements and confirms.  The rate λ at which messages 
are generated must be equal to the rate at which they are forgotten in re-

sponse to ACK packets.  ACK packets are received at a rate of pβ, but in 
general multiple ACK’s may be received for a single message, and only the 
first of these causes the message to be forgotten.  A receiver will periodi-
cally send ACK’s until it receives a CONF.  Since the probability of receiv-
ing a CONF after sending an ACK is p2 (both packets must be delivered 
successfully), the expected number of ACK’s sent before a conf is received 
is 1/p2.  Of these, it is expected that 1/p will  be successfully delivered.  
Hence, if an ACK is received, the probability that it is the first ACK in re-
sponse to the message is p, so our conservation of messages equation is: 

 λ = p2β (5) 

Next, the rate at which ACK’s are created must be equal to the rate at 
which they are destroyed.  We consider an ACK to exist for the duration of 
time that a receiver remembers the corresponding message.  The rate of 

destruction is simply pγ because every CONF that is successfully delivered 
destroys an ACK.  The rate of creation is slightly trickier to compute as 
again it is only the first time a message is received that an ACK is created. 

Let x be the expected number of times that a message is sent.  With 
probability 1 – p a message is not delivered, in which case we expect it to 
be sent x more times.  With probability p it is delivered, and the receiver 
will begin sending ACK’s.  If we assume the approximation that the proto-
col retransmits MSG’s and ACK’s at the same rate, then in this case we 
expect the number of messages sent by the sender to be equal to the number 
of ACK’s sent by the receiver before one is received.  This in turn is 1/p 
since the probability of a given ACK being received is p.  It follows that: 

 x = p(1/p) + (1 – p)(x + 1) (6) 

Solving for x: 

 x = 2/p – 1 (7) 

The expected number of times a message is received is therefore px = 2 
– p.  Thus, when a message is received the probability that it is the first 
copy received (and hence creates an ACK) is 1/(2 – p), so our equation for 
conservation of ACK’s is: 
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 pα / (2 – p) = pγ (8) 

which we rewrite as: 

 α = (2 – p)γ (8’) 

Finally, a CONF is created every time an ACK is received and it is for-
gotten as soon as it is sent, so our equation for conservation of CONF’s is: 

 γ = pβ (9) 

Let T = 1/λ, so T is the average amount of time in cycles between the 

generation of new messages on a node.  Eliminating α, β, γ from equations 
(4), (5), (8) and (9) leaves us with the following quadratic in p: 

 f(p) = (T – L)p2 + (2L + m – T)p + m = 0 (10) 

Solving for p: 

  
)(2

)(

LT

mLLT
p

−
∆±−−−=  (11) 

Where ∆ is the discriminant of f. Recall that for the solution to be 

meaningful we must have p ≥ 0.5.  But if f has real roots then we see from 
(11) that the smaller root is less than 0.5, so it is the larger root that we are 
interested in.  Furthermore, f(1) = L + 2m > 0, so it follows that f has a real 

root in [0.5, 1) if and only if f(0.5) ≤ 0.  Substituting this into (9) gives us 
the following necessary and sufficient condition for a meaningful solution 
to exist: 

 T ≥ 3(L + 2m) (12) 

13.2.3 Comparison with Simulation 

Simulations were performed of the idempotent messaging protocol using 
both circuit switching and wormhole routing on a crossbar network with d = 
10.  On every simulated cycle a node generates a new message to send with 

probability λ.  A node’s send queue is allowed to grow arbitrarily long, and 
nodes are always able to accept packets from the network so long as their 
receive port is free.  For the wormhole network, MSG and ACK packets are 
retransmitted at a fixed interval of twice the network round-trip latency  
Additionally, if a node has more than one packet which is ready to be sent, 
preference is given to ACK and CONF packets. 
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In Figure 13-1 we compare the results of the simulations to the predic-
tions of our models for three different values of L and m.  The graphs plot p, 
the probability of successful delivery, versus T, the average time between 
message generation on a node.  In all cases the model agrees closely with 
simulation results.  Note that the graphs diverge slightly for small values of 
T on a circuit switched network.  This is due to the fact that in simulation a 
steady state was never reached for these values of T; the size of the send 
queues continued to increase for the duration of the simulation.  
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Figure 13-1: Simulated and predicted values of p plotted against T for both 

circuit switched and wormhole routed crossbar networks. 

The probability p is all that is required to determine the performance 
characteristics of the network.  For example, in the wormhole routed net-
work the expected number of message transmissions is given by (7), and in 
both networks the expected latency from initial message transmission to 
message reception is 

 R
p

p
Ld

−++ 1
 (13) 

where R is the retransmission interval for a message packet.  Note that the 
value of p does not depend on R; this is one of the ways in which our model 
hides the details of the protocol implementation.  Our only assumption has 
been that the same retransmission interval is used for both MSG and ACK 
packets. 

wormhole routed model 

wormhole routed simulation 

circuit switched model 

circuit switched simulation 
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13.2.4 Improving the Model 

Inspecting the graphs of Figure 13-1 reveals a small but consistent discrep-
ancy between the model and simulation.  This is most noticeable for worm-
hole routing with L = 5, 7.  The source of this error is an inaccuracy in our 
port utilization equations (2) and (4).  In deriving these equations, we made 
the assumption that in steady state a fixed fraction of receive ports are al-
ways in use, and that this fraction is the probability of a message being 
dropped.  However, in a discrete time system this is not quite correct, be-
cause at the start of each cycle some fraction of receive ports will become 
available, then later in the same cycle the same expected number of ports 
will become occupied with new packets.  

In the wormhole network, the expected fraction of busy receive ports 
that become available at the start of a cycle is 1/(expected packet length), 
i.e. 
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so the actual fraction x of receive ports that are in use at the start of a cycle 
is: 
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If we randomly order the new packets competing for receive ports and 
attempt to deliver them in that order, then x is the probability that the first 
of these packets will encounter a busy port.  As more packets are delivered 
this probability increases, until finally the probability that the last packet 
encounters a busy port is very nearly 

  p(αL + (β + γ)m) (16) 

A reasonable approximation is therefore to assume that all new packets 
encounter a busy receive port with probability midway between above two 
probabilities.  This gives the following revised port utilization equation: 

 1 – p = p(α(L – ½) + (β + γ)(m – ½)) (17) 

Using equations (5), (8) and (9) once again to eliminate α, β, γ  gives 
us the same quadratic (10) and solution (11) as before but with L, m re-
placed by L – ½, m – ½.  Figure 13-2 shows p plotted against T with d = 10, 
L = 5 and m = 1 for the original model, the simulation, and the revised 
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model.  We see that the revised model gives a much closer match to the 
simulation results.  For the remainder of the chapter we will use this im-
proved model when considering wormhole routed networks; for circuit 
switched networks we will continue to use the original model as the inaccu-
racy is less pronounced. 
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Figure 13-2: p plotted against T in a wormhole routed network.   Shown are the 

original model, the simulation results, and the revised model based on the cor-

rected port utilization equation. 

13.3 Bisection-Limited Network 

We now shift our attention to the subject of our motivating problem: a net-
work whose performance is limited by its bisection bandwidth.  Figure 13-3 
illustrates the network model that we use.  There are N nodes in each half of 
the network, and the bisection consists of k ports in either direction.  We 
model each half of the network as a crossbar, so that the nodes and bisec-
tion ports are fully connected.  Both crossbars are again pipelined with di-
ameter d.  We will refer to a packet’s destination as remote if it is on the 
other side of the bisection and local otherwise.  A remotely destined packet 
is randomly routed to one of the bisection ports; if the port is free the packet 
passes through, otherwise it is dropped.  
  

 

Figure 13-3: Bisection-limited network model. 

N N

k 
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13.3.1 Circuit Switched Network 

Our circuit switched model now consists of four steady state parameters.  

Let α0, α1 be the rates at which a node attempts to send messages with local 
and remote destinations respectively.  Let p0 be the probability of successful 
delivery once a packet reaches its destination; let p1 be the probability that a 

packet with a remote destination is able to cross the bisection.  L, m, λ and 
T are as defined previously. 

We now have two conservation of messages equations: one for local 
messages and one for remote messages.  Since destinations are randomly 
chosen and, from a given node, exactly half of the destinations are remote, 
it follows that a node generates both local and remote messages at a rate of 

λ/2.  The probability of successful delivery for a local message is p0, and 
for a remote message it is p0p1.  Our conservation equations are therefore:  

 λ/2 = p0α0 (18) 

 λ/2 = p0p1α1 (19) 

We also have two port utilization equations: one for receive ports and 
one for bisection ports.  If a node successfully sends a local message it uses 
2d + L + 2m receive port cycles as in Section 13.2.1.  Similarly, a success-
ful remote message uses 4d + L + 2m receive port cycles.  Again, the prob-
ability that a receive port is in use is equal to the rate at which receive port 
cycles are used, so 

 1 – p0 = p0α0 (2d + L + 2m) + p0p1α1 (4d + L + 2m) 

 = λ(3d + L + 2m)        (using (18), (19))  

 ⇒   p0 = 1 – λ(3d + L + 2m) (20) 

When a remote message passes through the bisection, the number of 
bisection port cycles used depends on whether or not the message is suc-
cessfully delivered to its destination.  If so (probability p0), then the port is 
used for 4d + L + 2m cycles (the port is released as soon as the tail of the 
CONF packet passes through).  Otherwise (probability 1–p0) it is released 
after 2d cycles when it is informed of the message’s failure. 

In a given direction, there are N nodes sending messages which pass 

through the bisection at a rate of p1α1.  Since there are k bisection ports in 
that direction, the rate at which each one is used (which is equal to the 
probability that a bisection port is in use) is: 
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Using (21), we can solve for p1 in terms of p0: 

 
0

0

1
2

))22(2(
1

kp

mLdpdN
p

+++
−=

λ
 (22) 

Figure 13-4 plots p0 and p1 against T for the model and our simulations.  
We show results for four different bisection bandwidths k with N = 1024, d 
= 10, L = 7 and m = 2.  Again, the simulation results are closely matched by 
the model’s predictions.  The corresponding graphs for other values of L 
and m are very similar. 
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Figure 13-4: :  Simulated and predicted values of p0 and p1 plotted against T for 

a circuit-switched bisection-limited network with N = 1024, d = 10, L = 7, m = 2. 

13.3.2 Wormhole Routed Network 

The number of steady-state parameters is also doubled in the wormhole-
routed network.  Let p0, p1 be as defined in the previous section.  For i = 0, 

1, let αi, βi, γi be the respective rates at which a node sends MSG, ACK and 

p0 model 

p0 simulation 

p1 model 

p1 simulation 
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CONF packets with local (i = 0) and remote (i = 1) destinations.  Our re-
ceive port utilization equation is: 

1–p0 = p0(α0(L–½)+(β0+γ0)(m–½))+p0p1(α1(L–½)+(β1+γ1)(m–½)) (23) 

and our bisection port utilization equation is: 
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The six conservation equations are the same as equations (5), (8) and 
(9) with p = p0 for the local packets and p = p0p1 for the remote packets.  
Hence: 

 λ/2 = p02β0 (25) 

 λ/2 = p02p12β1 (26) 

 α0 = (2 – p0)γ0 (27) 

 α1 = (2 – p0p1)γ1 (28) 

 γ0 = p0β0 (29) 

 γ1 = p0p1β1 (30) 

Eliminating αi, βi, γi and p1 leaves a quartic in p0, and p1 is expressed as 
a rational function of p0.  Figure 13-5 shows the resulting plots of p0 and p1 
against T, again compared with simulation, using the same network parame-
ters as the previous section (N = 1024, d = 10, L = 7 and m = 2).  Once 
again, the model agrees closely with simulation results.  
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Figure 13-5: Simulated and predicted values of p0 and p1 plotted against T for a 

wormhole routed bisection-limited network with N = 1024, d = 10, L = 7, m = 2. 

13.3.3 Multiple Solutions 

In the wormhole model, each of the four (complex) solutions to the quartic 

in p0 gives us values for αi, βi, γi and p1.  In most cases only one of these 

solutions is meaningful, i.e. p0 is a real number, 0 < p0, p1 < 1, αi, βi, γi are 
all positive, and the expected rate at which a node injects flits into the net-
work is between 0 and 1: 

 0 < (α0 + α1)L + (β0 + β1 + γ0 + γ1)m < 1 (31) 

For some values of k, T, however, we found two solutions to the equa-
tions that satisfied all of these constraints.  Figure 13-6 plots both solutions 
of p0, p1 against T for k = 32 (again using L = 7 and m = 2).  The extra solu-
tion behaves rather oddly; both p0 and p1 decrease with T, while at the same 

time α1, β1 and γ1 increase (not shown).  This indicates that the extra solu-
tion models a dynamically unstable state in which the bisection is bom-
barded with so many remotely destined packets that few packets can get 
through and as a result remote messages remain in the system for longer, 
compensating for their slower rate of generation.  
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Figure 13-6: Multiple Solutions. 

13.3.4 Comparing the Routing Protocols 

We are now in a position to compare the two types of routing protocols that 
we have studied: circuit switched and wormhole routed.  Recall our motiva-
tion for making this comparison; while wormhole routing generally pro-
vides better performance, circuit switching may offer an advantage on a 
bisection limited network by allowing the ACK and CONF packets to cross 
the bisection with probability 1 after the MSG packet is delivered. 
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Figure 13-7: Analytic comparison of wormhole routing vs. circuit switching on 

a bisection-limited network for 4 values of L, m with N = 1024, k = 32, d = 10. 
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In Figure 13-7 we analytically compare the two protocols on a bisec-
tion-limited network with N = 1024, k = 32 and d = 10.  We see that circuit 
switching can offer improved performance and greater network capacity, 
but only if the messages are extremely long (at least ~4 times the network 
diameter) and the network is heavily loaded. 

13.4 Multistage Interconnection Networks 

The modeling technique we have presented is general and can be applied to 
arbitrary network topologies.  In this section we will show how to model 
wormhole-routed multistage interconnection networks, using a butterfly 
network as a concrete example.  Multistage interconnection networks are 
particularly well suited to this type of analysis as they can be modeled one 
stage at a time. 
 

 

Figure 13-8: N processor nodes (squares) connected by a d stage interconnec-

tion network with Nk network nodes after the k
th
 stage. 

Consider N processor nodes connected by a d stage wormhole-routed 
interconnection network.  Let Nk, k = 1, …, d – 1, be the number of network 
nodes at the end of the kth stage, and for completeness let N0 = Nd = N 
(Figure 13-8).  Assume that network traffic is uniform and that all nodes at 

the same stage are indistinguishable.  As before, let α, β and γ be the rates 
at which processor nodes send MSG, ACK and CONF packets respectively.  

Let αk, βk, γk be the corresponding rates at which packets emerge from 

nodes at the end of the kth stage, with (α0, β0, γ0) = (α, β, γ).  Let pk be the 
probability that a packet entering the kth network stage passes through 
successfully to the next stage, or is delivered if k = d (Figure 13-9).  Finally, 

let p = p1p2⋅⋅⋅pd be the overall probability that a packet is successfully 
delivered to its destination. 

  

N0 = N N1 Nd–1 Nd = N
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Figure 13-9: Nodes at the end of stage k–1 emit packets into stage k at rates (ααααk–

1, ββββk–1, γγγγk–1).  Each of these packets passes through to stage k+1 with probability 
pk. 

In the kth network stage, we derive our conservation equations from the 

following observation: the rate at which a given type of packet emerges 

from a node at the end of the kth stage is equal to the rate at which packets 

are delivered to that node times the probability pk of successfully passing 

through the node.  Hence: 
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or equivalently, 
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The port utilization equation for the kth stage depends on the specific 

topology of this stage.  Regardless of the topology, the equation will pro-

vide a rational expression for pk in terms of αk–1, βk–1 and γk–1.  Finally, the 
end-to-end conservation equations are the same as equations (5), (8) and 

(9).  These equations give α, β, γ in terms of p and λ.  Using (33) and the 

(αk–1, βk–1, γk–1) 

Nk–1 

(αk, βk, γk) 

Nk

pk 
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port utilization equations we can inductively find rational expressions for 

αk, βk, γk and pk in terms of p and λ.  Finally, we can use the end-to-end 
probability equation p = p1p2⋅⋅⋅pd to solve numerically for p given λ. 

 

 

Figure 13-10: 3-state butterfly network. 

13.5 Butterfly Network 

We now apply the results of the previous section to the butterfly network.  

A d stage butterfly network connects N = 2d processor nodes; Figure 13-10 

shows a 3-stage butterfly network.  Two features of the butterfly network 

are relevant to our analysis.  First, each stage contains the same number of 

nodes, so we can drop the fraction N / Nk from equations (33).  Second, the 

topology of each stage consists of pairs of nodes at the beginning of the 

stage which are cross-connected to the corresponding nodes at the end of 

the stage.  It follows that when a packet is emitted into a stage, it will be 

competing with packets from only one other node, but packets are sent to 

one of two receive ports at the end of the stage depending on their ultimate 

destination.  We therefore must divide the probability of encountering a 

busy port by 2, so our port utilization equation for the kth stage is 

 1 – pk = ½ pk(αk–1(L – ½) + (βk–1 + γk–1)(m – ½)) 

 = ½ p1p2⋅⋅⋅ pk(α (L – ½) + (β+ γ)(m – ½)) (34) 

Dividing the kth stage equation by the (k–1)th stage equation allows us 

to solve for pk in terms of pk–1: 
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If we let pk = ak/bk (where we have a degree of freedom in choosing ak, 

bk), then equation (35) becomes: 
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At this point we can use our degree of freedom to assume that the nu-

merators and denominators of (36) are exactly equal.  Thus bk–1 = ak and 

 ak+1 = 2ak – ak–1 (37) 

so {ak} is an arithmetic sequence.  Since ad / ad+1 = pd, we can again use the 

degree of freedom to assume that ad = pd and ad+1 = 1.  It follows that: 

 ak = pd + (d – k)(pd – 1) (38) 

Now the port utilization equation for the dth stage is: 

 1 – pd = ½ p(α(L – ½) + (β + γ)(m – ½)) (39) 

Using equations (5), (8) and (9) to eliminate α, β and γ, this becomes: 

 p – p⋅pd = ½(p(2 – p)λ(L – ½) + (1 + p)λ(m – ½)) (40) 

Next, we have 
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Using (41) to eliminate pd in (40) and substituting λ = 1/T leaves us 
with a quadratic in p: 
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Surprisingly, this is exactly the same quadratic that we obtained for the 

crossbar network (10) but with T replaced by 2T/d.  Figure 13-11 shows p 

plotted against T on a 10-stage butterfly network for the model and simula-

tions.  Three different choices of (L, m) are shown.  We see that the accu-

racy of the model increases with T; for small values of T the model is opti-

mistic and in particular it overestimates the capacity of the network. 
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Figure 13-11: Simulated and predicted values of p versus T for a 10-stage but-

terfly network. 

model simulation 
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Chapter 14   

Evaluation of the Idempotent 

Messaging Protocol 

The more we elaborate our means of  

communication, the less we communicate. 

– Joseph Priestley (1733-1804), “Thoughts in the Wilderness” 

In this chapter we evaluate the idempotent messaging protocol in simula-

tion.  Our simulations are directed by two specific goals.  First, we wish to 

determine the implementation parameters that optimize overall perform-

ance.  Second, we would like to quantify the performance impact of the 

messaging protocol compared to wormhole routing on a non-discarding 

network. 

14.1 Simulation Environment 

Our evaluations were conducted using a trace-driven network simulator.  In 

this section we describe the machine model, the format of the traces, how 

they were obtained, the four micro-benchmarks that were used, and the pa-

rameters of the trace-driven simulator. 

14.1.1 Hardware Model 

Our hardware model, based on the Hamal architecture, is a distributed 

shared memory machine with explicitly split-phase memory operations, 

hardware multithreading, and register-based synchronization via join capa-

bilities.  New threads are created with a fork instruction which specifies the 

node on which the new thread should run and the set of registers to copy 

from parent to child.  Memory consistency is enforced in software using a 

wait instruction.  Pointers contain node and offset fields; distributed objects 

are implemented by allocating the same range of offsets on each node.  

There are no data caches, which does not affect our results as all micro-

benchmarks explicitly migrate data to where it is needed.   
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14.1.2 Block Structured Traces 

Typically, the input to a trace-driven simulator is simply a set of network 

messages where each message specifies a source node, a destination node, 

the size of the message, and the time at which the message should be sent.  

These traces may be obtained by instrumenting actual parallel programs 

running on multiple real or simulated processor nodes. 

There are two problems with this straightforward approach.  First, in an 

actual program the time at which a given message is sent generally depends 

on the time that one or more previous messages were received.  It is there-

fore inaccurate to specify this time a priori in a trace.  Second, a large paral-

lel computer may not be readily available, and the number of threads re-

quired to run a parallel program on thousands of simulated nodes can easily 

overwhelm the operating system.  

We address the first problem by organizing the trace into blocks of 

timed messages.  Each block represents a portion of a thread in the parallel 

program which can execute from start to finish without waiting for any 

network messages.  When a block is activated, each of its messages is 

scheduled to be sent at a specified number of cycles in the future.  Each 

message optionally specifies a target block to signal when the message is 

successfully delivered; a block is activated when it has been signaled by all 

messages having that block as a target.  This block-structured trace captures 

the dependency graph of messages within an application, and allows the 

simulation to more accurately reflect the pattern of messages that would 

arise from running the parallel program with a given network configuration. 

Block-structured traces are a similar to intrinsic traces [Holliday92], 

used in trace-driven memory simulators to model programs whose address 

traces depend on the execution environment.  It has been observed that 

trace-driven parallel program simulations can produce unreliable results if 

the traces are of timing-dependent code ([Holliday92], [Goldschmidt93]); 

our micro-benchmarks and synchronization mechanisms were therefore 

chosen to ensure deterministic program execution. 

14.1.3 Obtaining the Traces 

The second problem – the difficulty of simulating thousands of nodes on a 

single processor – is addressed by our method of obtaining traces.  We pro-

vide a small library of routines that implement the hardware model de-

scribed in Section 14.1.1; these functions are listed in Table 14-1.  The rou-

tines are instrumented to transparently manage threads, blocks, messages, 

and the passage of time.  Most importantly, they are designed to allow the 

program to run as a single thread.  This is primarily accomplished by im-

plementing the Fork routine using a function call rather than actually creat-

ing a new thread.  Figure 14-1 gives a very simple program written with this 

library. 
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Function Description 

Load Load data from a (possibly remote) location 

Store Store data to a (possibly remote) location 

Wait Wait for all outstanding stores to complete 

Fork Start a new thread of execution 

Join Write data to another thread’s registers 

Sync Register synchronization: wait for a join 

Table 14-1: Simulation library functions. 

void Fork (_thread t, /* thread entry point */
int node, /* destination node */
...); /* other arguments */

int ComputeSum (Pointer data)
{

JCap *j = new JCap;
Fork(SumThread, 0, numNodes, data, j);
return Sync(j);

}

void SumThread (int cNodes, Pointer data, JCap *j)
{

if (cNodes > 1)
{

int n = cNodes / 2;
JCap *j1 = new JCap;
JCap *j2 = new JCap;
Fork(SumThread, node, n, data, j1);
Fork(SumThread, node + n, cNodes - n, data, j2);
Join(j, Sync(j1) + Sync(j2));

}
else
{

data.node = node;
Join(j, Load(data));

}
}

Figure 14-1: Sample program to compute the sum of a distributed object with 

one word on each node.  node and numNodes are global variables. 

As an example of how the library routines are implemented, Figure 

14-2 gives simplified code for Load.  thread is a global variable man-
aged by the library routines which points to the current thread of execution.  

The Load routine begins by creating a new block representing the continua-

tion of the current thread once the value of the load has been received (it is 

assumed that the current thread must wait for this value – we are not taking 

prefetching into account).  Then a message of type ‘load’ is added to the 

current block which targets this continuation (the trace driven simulator 

automatically generates load reply messages; the target block becomes the 
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target of the reply).  Finally, the thread block pointer is updated to the new 

block and the contents of the memory word are returned.   

The actual Load routine is slightly more complicated as it also checks 

for address conflicts with outstanding stores.  The Wait routine is provided 

to enforce memory consistency by explicitly waiting for all stores to com-

plete before execution continues. 

While the library routines automatically manage the passage of time for 

the parallel primitives that they implement, it is the programmer’s job to 

manage the passage of time for normal computation.  A macro is provided 

for adding time to the current block.  The programmer is responsible for 

making use of this macro and providing a reasonable estimate of the num-

ber of cycles required to perform a given computation. 

 
void Block::AddMessage (int type, /* message type */

int dst, /* destination */
Block *target); /* target block */

Word Load (Pointer p)
{

Block *newBlock = new Block;

thread->block->AddMessage(TYPE_LOAD, p.node, newBlock);
thread->block = newBlock;

return memory[p.address];
}

Figure 14-2: Load routine (simplified).  thread is a global variable. 

14.1.4 Synchronization 

In the simulation environment, register-based synchronization is accom-

plished using the Sync and Join library routines.  There are no actual regis-

ters in the simulation, so Join is implemented by storing a word of data in 

the join capability data structure (and adding a message to the current 

block); Sync retrieves the word from the data structure (and creates a new 

block). 

Because the simulation is run as a single thread, the straightforward 

implementation of Sync will only work if the data is already available, i.e. 

if the corresponding Join has already been called.  If all synchronization is 

from child to parent then this will always be the case because implementing 

Fork using a function call causes the “threads” to run to completion in a 

depth-first manner.  Figure 14-1 gives an example of child to parent syn-

chronization.  While each Fork conceptually creates a new thread, the sin-

gle-threaded implementation simply calls SumThread as a subroutine and 

then returns, so Join will already have been called by the time the parent 

thread calls the corresponding Sync. 
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To allow for more complicated synchronization wherein Sync may be 

called before the corresponding Join, a version of Sync is provided in which 

the programmer explicitly provides a continuation.  If the data is ready 

when Sync is called, then the continuation is invoked immediately.  Other-

wise the continuation is stored in the join capability data structure and in-

voked when the corresponding Join is called (Figure 14-3).  This sacrifices 

some of the transparency of the simulation environment in order to retain 

the benefits of being able to run the simulation using a single thread. 

 

 

Figure 14-3:  (a) Join called before Sync; continuation invoked by Sync.  (b) 

Sync called before Join; continuation invoked by Join. 

14.1.5 Micro-Benchmarks 

Four micro-benchmarks were chosen to provide a range of network usage 

patterns.  Each one was coded as described in the previous sections.  The 

four resulting block-structured traces were used to drive our simulations.  

The micro-benchmarks are as follows: 

 

add: Parallel prefix addition on 4096 nodes with one word per 

node.  Light network usage.  Network is used for synchroniza-

tion and thread creation. 

 

reverse:  Reverse the data of a 16K entry vector distributed across 1024 

nodes.  Very heavy network usage with almost all messages 

crossing the bisection. 
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quicksort:   Parallel quicksort of a 32K entry random vector on 1024 

nodes.  Medium, irregular network usage (lighter than reverse 

or nbody due to a higher computation to communication ra-

tio). 

 

nbody:  N-body simulation on 256 nodes with one body per node.  

Computation is structured for O(√N) communication by con-

ceptually organizing the nodes in a square array and broad-

casting the location of each body to all nodes in the same row 

and column.  Heavy network usage; network is used in bursts. 

14.1.6 Trace-Driven Simulator 

The trace driven simulator keeps track of active blocks and memory re-

quests on all nodes in the system.  Blocks are serviced in a round-robin 

fashion; on each cycle every node picks an active block and advances it by 

one time step, possibly generating a new message.  This models a multi-

threaded processor which is able to issue from a different thread on each 

cycle.  Memory requests are processed on a first-come first-served basis.  

Each request takes 6 cycles to process, after which the reply message is 

automatically generated and the next request can be serviced. 

In an attempt to ensure that our results are independent of the network 

topology, four different topologies are used in all simulations: a 2D grid, a 

3D grid, a radix-2 dilation-2 multibutterfly, and a radix-4 (down) dilation-2 

(up) fat tree.  For the grid networks dimension-ordered routing is preferred, 

but any productive channel may be used to route packets.  In all cases 

wormhole routing is used, with packet heads advancing one step per cycle.  

Each network link contains a small flit buffer; if a packet cannot be ad-

vanced due to congestion it may be buffered for as many cycles as there are 

flits in the buffer, after which it is discarded.  The maximum packet transit 

time T is therefore the size of these buffers multiplied by the diameter of the 

network.  When a node receives an ACK packet it has 32 cycles to respond 

with a CONF, after which the ACK is discarded.  Receivers must therefore 

remember messages for 2T + 32 cycles after receiving a CONF, as ex-

plained in Chapter 5. 

The size of a packet is determined by the fields that it contains, which 

in turn is determined by the packet type.  Table 14-2 lists the sizes of the 

various fields.  All fields are fixed-size except for the type field which uses 

a variable length encoding to identify the packet as a CONF, an ACK, or 

one of four message types.  Table 14-3 lists the sizes of the various packets.  

In this table “MSG header” refers to the four fields present in every mes-

sage packet which are required to route the packet and implement the idem-

potent messaging protocol: type, dest, source and message ID.  The size of 

the fork packet depends on the number of registers being copied to the new 
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thread; this number is denoted by N in the table.  Flits are 25 bits each.  This 

size was chosen both so that CONF packets would fit into a single flit and 

so that the number of physical bits required to transmit a flit with double 

error correction is ≤ 32 (five ECC bits are required for 25 bit flits). 
 

Field Size in Bits 

type 1 (CONF), 2(ACK), 4(MSG) 

source 16 

destination 16 

address 32 

data 32 

message ID 32 

secondary ID 8 

Table 14-2: Packet field sizes. 

Packet Type Fields Size in Bits 

CONF type + dest + secondary ID 25 

ACK type + dest + source + messageID + secondary ID 74 

LOAD MSG header + address + return address 132 

STORE MSG header + address + data + return address 164 

FORK MSG header + address + N x data 100 + 32N 

JOIN MSG header + address + data 132 

Table 14-3: Packet sizes.  MSG header = type + dest + source + message ID. 

14.2 Packet Retransmission 

The first important implementation parameter for the idempotent messaging 

protocol is the strategy used for packet retransmission.  In order for the pro-

tocol to function correctly, it is necessary to periodically retransmit MSG 

and ACK packets.  When such a packet is sent, it should be scheduled for 

retransmission at 

 

size + 2 x distance + constant + backoff 

 

cycles in the future.  The first three terms in this sum represent the amount 

of time it takes to receive an ACK/CONF packet if the receiving node is 

able to reply immediately and if neither packet is dropped by the network, 

where size is the size of the packet in flits, distance is the number of hops to 

the destination node, and constant is a small constant to account for proc-

essing time.  The backoff term is a function of the number of transmit at-

tempts for the packet (n), and represents the strategy being used to manage 

network congestion. 

Four backoff terms were considered: constant (C), linear (Cn), quad-

ratic (Cn2) and exponential (C·2n).  We do not present results for constant or 
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exponential backoff as their performance was unacceptable.  A constant 

backoff is intuitively bad as it makes no attempt to manage congestion, and 

indeed in simulation it often caused livelock when the network became 

congested.  Exponential backoff was found to be overkill; in a congested 

network packets were often rescheduled with excessively large delays and 

as a result performance suffered. 

Figure 14-4 shows plots of execution time for all four micro-

benchmarks on all four topologies with both linear and quadratic backoff as 

the retransmission constant C is varied from 1 to 32.  We see that quadratic 

backoff performs well with small C, but performance quickly degrades as C 

becomes larger.  By contrast, in almost all cases the performance of linear 

backoff improves with C, the one exception being quicksort on a multibut-

terfly.  Intuitively this indicates that even quadratic backoff is overkill, so 

that linear backoff with a large constant is to be preferred.  However, it is 

difficult to say with any certainty from simply inspecting the graphs which 

retransmission strategy is best.  Resorting to numerical analysis, we asked 

the question of which strategies provided closest-to-optimal performance in 

the worst and average cases (where “optimal” refers to the best observed 

performance for a given benchmark/topology combination).  We found lin-

ear backoff with C = 30 to be superior under both metrics, performing 

within 9.3% of optimal in the worst case and within 2.8% of optimal in the 

average case. 
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Figure 14-4: Execution time in cycles plotted against retransmission constant C 

for liner (––––) and quadratic (––––) backoff. 

Table 14-4 list the best backoff strategy according to both metrics for 

each benchmark, each network, and overall.  So, for example, in the quick-

sort benchmark a quadratic backoff with C = 15 performed at worst within 

1.020 of optimal across all four topologies, and on a 2D grid network linear 

backoff with C = 28 performed on average within 1.026 of optimal across 

all four benchmarks.  This table is much easier to read than the previous 

graphs, and clearly indicates that a linear backoff with a large constant is to 

be preferred.  We therefore use linear backoff with C = 32 (since this is 

easy to compute in hardware) for the remainder of the evaluations. 

 

 

 slowdown over optimal 

 worst case average case 

add 1.009 L5 1.003 L5 

reverse 1.028 L30 1.016 L32 

quicksort 1.020 Q15 1.015 Q12 

nbody 1.085 L31 1.045 L31 

2D grid 1.033 L32 1.026 L28 

3D grid 1.039 L32 1.018 L30 

fat tree 1.085 L31 1.036 L30 

multibutterfly 1.041 L32 1.015 L32 

overall 1.093 L30 1.028 L30 

Table 14-4: Best backoff strategy as measured by worst case and average case 

slowdown over optimal for each benchmark, each network, and overall. 
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It is worth noting that our results differ from those obtained in 

[Brown02b].  Our simulations and analyses have changed in three respects.  

First, the simulator has been improved to more accurately model threads 

and memory references.  Second, flit buffering has been added to the net-

work nodes.  Third, the multibutterfly network has been included in the 

simulations.  The graphs of Figure 14-4 are qualitatively similar to those in 

[Brown02b], but numerical analysis has yielded different results. 
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Figure 14-5: Execution time vs. send table size. 

14.3 Send Table Size 

The next important implementation parameter is the size of the send tables.  

There is a tradeoff between performance and implementation cost since if a 

table fills up it will temporarily prevent new messages from being sent, but 

increasing the size of the table requires additional resources to remember 

more message packets.  In Figure 14-5 execution time is graphed for all 

micro-benchmarks and topologies as the send table size is varied from 20 to 

28.  In most cases execution time quickly drops to a minimum, and we can 

achieve near-optimal performance with as few as 8 send table entries.  The 

notable exception is reverse, where execution time actually increases with 

larger table sizes.  This is due to the increased network congestion that re-

sults when nodes are able to send more messages.  The remainder of the 

simulations will assume 8-entry send tables. 

 

2D Grid 3D Grid Fat Tree Multibutterfly 
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Figure 14-6: Execution time vs. network node flit buffer size. 

14.4 Network Buffering 

A single flit buffer along every routing path within a network node is both 

necessary and sufficient for correct network operation.  It is necessary be-

cause the network is assumed to be synchronous so that flits must be buff-

ered before being advanced to the next node; it is sufficient because a dis-

carding network can simply drop packets when there is contention for an 

output port.  However, we may be able to improve performance by allowing 

a small number of flits to be buffered instead of immediately discarding the 

packets.  In Figure 14-6 we plot execution time against flit buffer size as the 

buffers are varied from 1 to 8 flits.  The graphs show that the improvement 

is significant – over 2x for reverse on a 2D grid or multibutterfly. 

There are two costs associated with these buffers.  The obvious cost is 

the additional hardware within the network nodes.  The less obvious cost is 

an increase in the number of receive table entries.  Recall that a receive 

2D Grid 3D Grid Fat Tree Multibutterfly 
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table entry must be remembered for 2T + R cycles after a CONF is received, 

where T is the maximum transit time for a packet and R is the maximum 

time allowed to process an ACK (32 cycles in our simulations).  If the di-

ameter of the network is d and the size of the buffers is k flits, then 2T + R = 

2kd + 32.  In the worst case, then, it would not be unreasonable to expect 

the receive table requirements to increase almost linearly with k.  However, 

this may be partially or wholly compensated for by the fact that larger buff-

ers reduce the probability of ACK’s and CONF’s being dropped, reducing 

in turn the expected amount of time from sending the first ACK to receiving 

a CONF.  Resorting again to simulation, Figure 14-7 plots the maximum 

number of active receive table entries at any time on any node as the buffer 

sizes range from 1 to 8 flits.  We see that in most cases the effect of the 

buffer sizes on the receive tables is minimal.  It is therefore reasonable to 

choose the size of the buffers based solely on the tradeoff between perform-

ance and network hardware complexity.  For the remainder of our simula-

tions we will use 8 flit buffers. 
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Figure 14-7: Maximum number of receive table entries vs. network node flit 

buffer size. 
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Figure 14-8: Execution time vs. receive table size. 

14.5 Receive Table Size 

If a receive table fills, new message packets which arrive over the network 

must be dropped.  This wastes network bandwidth since these packets have 

already traversed the network, so it is important to ensure that the receive 

tables are not too small.  At the same time there are two costs associated 

with the receive tables.  First, the tables themselves require expensive con-

tent-addressable memory.  Second, the size of the secondary ID’s is the 

base 2 logarithm of the receive table size (recall that a secondary ID is a 

direct index into the receive table).  Thus, increasing the size of the receive 

tables beyond a power of two increases the size of both ACK and CONF 

packets. 

In Figure 14-8 execution time is plotted against four different receive 

table sizes (16, 32, 64, 128).  We see a significant improvement in perform-

ance from 16 to 32 entries, moderate improvement from 32 to 64 entries, 

and negligible improvement from 64 to 128 entries.  As can be seen from 

Figure 14-7, this is largely due to the fact that most benchmark/topology 

combinations never use more than 64 receive table entries in the worst case.  

Figure 14-8 shows that in the cases where more than 64 entries are required, 

performance is barely affected by limiting the size of the receive table to 

64.  We therefore use 64-entry receive tables for the remainder of the simu-

lations.  Note that this reduces the size of CONF packets to 23 bits and the 

size of ACK packets to 72 bits. 
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Figure 14-9: Execution time vs. channel width. 

14.6 Channel Width 

Different network implementations will make use of different flit sizes.  In 

Figure 14-9 we show execution time plotted against flit size as the number 

of bits in a flit varies from 16 to 32.  We see that our choice of 25 bit flits 

was fortuitous; there is a significant improvement in performance from 16 

to 25 bits, but little improvement beyond that point.  Figure 14-10 provides 

some intuition for these graphs by showing packet size vs. flit size for five 

different packet types.  Fork (3) refers to a fork packet where 3 registers are 

copied into the child thread.  Note that for many benchmark/topology com-

binations there is a noticeable improvement in performance from 23 bits to 

24 bits as the size of the ACK packets drops from 4 flits to 3 flits (e.g. re-

verse on a 2D grid). 
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Figure 14-10: Packet size in flits vs. flit size in bits. 

14.7 Performance Comparison: Discarding vs. Non-

Discarding 

For small systems it is probably worth constructing a reliable network, 

whereas for extremely large systems it is almost certainly necessary to im-

plement a fault-tolerant messaging protocol.  In between these extremes, 

however, it may be difficult to determine which approach is more appropri-

ate, and it becomes useful to know the performance impact of the fault-

tolerant messaging protocol. 

To compare the two approaches, we simulated a perfect network with 

both the discarding protocol and non-discarding buffered wormhole routing.  

In both cases network nodes have 8-entry flit buffers and each communica-

tion link consists of 30 physical bits.  In the discarding network 25 of these 

bits contain data and 5 are ECC bits required to detect up to two bit errors.  

In the non-discarding network, errors must be corrected, not simply de-

tected, which requires 9 bits.  Additionally, a single backpressure bit is re-

quired to prevent buffer overruns.  Thus, the non-discarding network uses 

20 bit flits.  For the non-discarding grid networks, strict dimension-ordered 

routing is used to avoid deadlocks [Dally87]. 

The results of the comparison are shown in Table 14-5.  We see that 

the actual slowdown, which ranges from as little as 0.99 to as much as 3.36, 

depends on both the application and the network topology.  In general, a 

more congested network leads to greater slowdowns.  Note that in our simu-

lations we are assuming that the cycle times of the two networks are the 

same.  In practice this would likely not be the case for two reasons.  First, 
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the control logic of the discarding network is much simpler than that of the 

non-discarding network; as a result it will be possible to clock the discard-

ing network nodes at a higher speed ([DeHon94], [Chien98]).  Second, with 

a fault-tolerant messaging protocol it is possible to boost the clock speed 

even further since one does not need to worry about introducing the occa-

sional signaling error so long as it can be detected.   

 

2D Grid 3D Grid 

discarding? discarding? 

topology: 

no yes 

slowdown 

no yes 

slowdown 

add 934 926 0.99 741 730 0.99 

reverse 4711 13924 2.96 2372 6829 2.88 

quicksort 165368 212296 1.28 128526 155849 1.21 

nbody 44200 98708 2.23 33576 45838 1.37 

 

Fat Tree Multibutterfly 

discarding? discarding? 

topology: 

no yes 

slowdown 

no yes 

slowdown 

add 773 768 0.99 893 884 0.99 

reverse 2432 8183 3.36 640 859 1.34 

quicksort 119382 176369 1.48 110543 118979 1.08 

nbody 36115 51930 1.44 34369 38146 1.11 

Table 14-5: Slowdown of messaging protocol compared to wormhole routing on 

a perfect network. 

We can attempt to quantify the amount by which clock speed may be 

increased by “normalizing for reliability”, that is, choosing network pa-

rameters so that both the discarding and the non-discarding networks have 

the same mean time between failures (MTBF).  Suppose we wish the net-

work as a whole to have a MTBF of 1010 seconds.  Assuming a 1GHz net-

work, this is 1019 cycles.  If ~105 flits are transferred on each cycle, then the 

probability of failure for a single flit should be 10-24. 

In the non-discarding network, each flit consists of 29 bits, including 

ECC bits.  A failure occurs whenever a flit contains 3 or more single bit 

errors.  If the probability of error for a single bit is p, then to first order the 

probability of failure for the entire flit is 

 33
3654

3

29
pp =








  (1) 

⇒  3654 p3 = 10-24  ⇒  p ≈ 6.492 x 10-10.  Next we must relate p to the 
clock speed.  We will consider the case in which sampling jitter is the 

dominant source of error, where by “sampling jitter” we mean the combina-

tion of signal jitter and receiver clock jitter.  Assume that signal setup time t 
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and sampling jitter j are fixed by the physical interconnect, circuit design 

and fabrication process, independent of clock speed.  Assume further that 

the sampling jitter j is normally distributed [Kleeman90].  If the clock has 

period T, then the probability of a bit error is 

 






 −>
22

1 tT
jP  (2) 

This equation assumes that if the signal is sampled within the sampling 

window of size T – t then the correct value is obtained, otherwise a random 

value is obtained so that the probability of error is ½.  Figure 14-11 illus-

trates the model we are using. 

 

 

Figure 14-11: Normally distributed sampling jitter. 

The probability p can be determined by measuring the width of the 

sampling window in standard deviations δ of j.  Using (1) and (2) we find 
½(T – t) ≈ 6.068δ. 

To properly trade off speed for reliability in the discarding network, we 

use 6 ECC bits and 24 data bits to allow for up to three single bit errors.   In 

Chapter 4, Section 4.6.4 we observed that a linear code has d ≥ 4 if the col-
umns of its parity check matrix are distinct and have odd weight.  We can 

therefore define a (30, 24, 4) linear code by constructing its 6x30 parity 

check matrix: fill the columns of the upper 5x30 submatrix with all five-bit 

binary integers except for 00000 and 11111, then fill in the bottom row so 

that each column has odd weight (Figure 14-12). 

 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1  

 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1  

 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1  

 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0  

 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1  

Figure 14-12: Parity check matrix for a (30, 24, 4) linear code. 
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In the discarding network, a failure is an undetected error.  Thus, a fail-

ure occurs whenever a flit contains 4 or more single bit errors and the modi-

fied flit is a valid code word.  Since we are using a linear code, this is the 

case if and only if the error vector itself is a valid code word.  It can be 

shown using a simple counting argument (or by brute force if one is not 

inclined to count) that the given code contains 945 code words of weight 4.  

Thus, if the probability of error for a single bit is p, then to first order the 

probability of failure for an entire flit is 945 p4  ⇒  945 p4 = 10-24  ⇒  p ≈ 
1.804 x 10-7.  If the clock period in the discarding network is T’, then in this 

case we find ½(T’ – t) ≈ 5.089δ. 
Finally, to relate the clock speeds of the two networks we must make 

an additional assumption regarding the size of the sampling window rela-

tive to the clock period.  Assuming that t = T/3, we have 

 TTTT
TTTT

892.0332
068.6

089.5
'

089.5

3'

068.6

3 ≈+=⇒
−=−

 (3) 

If we again compare the two approaches under the assumption that the 

non-discarding network has 24 bit flits and a clock that runs 11% faster, we 

obtain the results shown in Table 14-6.  In this case the slowdowns are 

slightly less severe. 

 

2D Grid 3D Grid 

discarding? discarding? 

topology: 

no yes 

slowdown 

no yes 

slowdown 

add 934 862 0.92 741 690 0.93 

reverse 4711 13765 2.92 2372 7007 2.95 

quicksort 165368 200076 1.21 128526 148210 1.15 

nbody 44200 91019 2.06 33576 43378 1.29 

 

Fat Tree Multibutterfly 

discarding? discarding? 

topology: 

no yes 

slowdown 

no yes 

slowdown 

add 773 722 0.93 893 825 0.92 

reverse 2432 7809 3.21 640 845 1.32 

quicksort 119382 165556 1.39 110543 112669 1.02 

nbody 36115 49989 1.38 34369 35319 1.03 

Table 14-6: Slowdown when discarding network uses 24 bit flits and runs 11% 

faster. 
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Chapter 15   

System Evaluation 

The whole is more than the sum of its parts. 

– Aristotle (ca. 330 BC), “Metaphysica” 

Ultimately, the question of interest regarding any parallel architecture is: 

How well does it perform?  In a scalable system, performance is eventually 

limited by the costs of synchronization, communication and thread man-

agement.  As the number of processors increases, so too do these overheads.  

For every application, there comes a point at which increasing the number 

of processors offers no further performance gains.  The goal, then, is to 

minimize these overheads so that programs can take full advantage of the 

large number of available processors.  The extent to which an architecture 

meets this goal can be measured by inspecting performance curves of paral-

lel applications.  In this chapter we use the four benchmarks presented in 

Chapter 9 as case studies in our evaluation of the Hamal parallel computer. 

15.1 Parallel Prefix Addition 

ppadd is a simple benchmark in which there is a clean separation between 

the linear-time vector processing and the log-time overheads of thread crea-

tion, communication and synchronization.  The running time for a vector of 

length m on N processors is C0 + C1m/N + C2log(N).  Figure 15-1 shows 

log-log plots of execution time and speedup for several different problem 

sizes as the number of processors is increased from 1 to 512.  The larger the 

problem size, the greater the range of machine sizes over which linear 

speedup is achieved. 
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Figure 15-1: Execution time and speedup for the ppadd benchmark. 

Fitting the model for run-time to the observed data using least-squares 

analysis yields constants C0 = 1386, C1 = 15 and C2 = 398.  The accuracy of 

the resulting model can be seen in Figure 15-2 which superimposes graphs 

of predicted and observed run-times.  C2 represents the overhead of adding 

another level to the binary tree of threads used to perform the parallel prefix 

computation.  This overhead, which includes the costs of thread creation, 

upward communication of partial sums, downward communication of left 

sums, and exit synchronization, is less than 400 cycles.  As a result, the 

benchmark scales extremely well and benefits from increasing the number 

of processors even when there are fewer than 32 vector entries on each 

node. 
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Figure 15-2: Actual (black) and modeled (grey) run times for the ppadd 

benchmark. 
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15.2 Quicksort 

The quicksort benchmark is qualitatively similar to ppadd in that a log-

depth binary tree of threads is created to perform the computation.  It is 

quantitatively different, however, because the cost of adding a level to the 

tree is much higher.  Each step in the recursion involves splitting one vector 

into two and then redistributing these vectors over two disjoint sets of proc-

essors.  Thus, the dominant overhead is communication and not thread crea-

tion or synchronization. 

Figure 15-3 shows log-log plots of execution time and speedup for sev-

eral different problem sizes.  Again, the larger the problem size, the greater 

the range over which linear speedup is achieved.  Note that in this case we 

generally do not see linear speedup with few (1-4) processors; this is due to 

the fact that quicksort is a randomized algorithm so each recursion does not 

subdivide the problem into two equal parts.  As the number of processors 

grows it becomes easier to subdivide them according to the ratio of the ex-

pected work in the sub-problems, resulting in closer-to-linear speedups. 

Inspecting the curves for problem sizes 4096-65536, we find that opti-

mal performance is achieved when the average number of vector entries per 

node is 128.  It follows that the communication overhead of each recursion 

step is on the same order of magnitude as the time required to quicksort a 

128-entry vector on a single node, which we measured to be 19536 cycles.  

This is nearly two orders of magnitude larger than the overhead in the 

ppadd benchmark, indicating that while the Hamal architecture provides 

extremely efficient thread management and synchronization, communica-

tion is an area of weakness. 
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Figure 15-3: Execution time and speedup for the quicksort benchmark. 

15.3 N-body Simulation 

The nbody benchmark has been optimized for communication by conceptu-

ally arranging the processor nodes in a square array; processors communi-

cate only with other processors in the same row or column.  With m bodies 

distributed across N processors, each processor maintains m/N bodies and 
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must send them to (2√N – 1) other processors, and each processor computes 
and communicates a partial force for each of the m/√N bodies in its row, so 
the communication overhead is proportional to m/√N.  Each processor must 

then compute the force interactions between the m/√N bodies in its row and 
the m/√N in its column, so the work for each processor is proportional to 
m2/N.  Furthermore, the constant for this work is fairly high since each force 

interaction requires performing the computation 
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We measured this constant to be approximately 70 cycles.  Roughly 

speaking, we expect performance to improve as the number of nodes is in-

creased as long as the communication overhead is less than the single-

threaded workload, i.e. Cm/√N < 70m2/N where C is the constant for the 

communication overhead.  Simplifying, this condition becomes N < 

(70m/C)2.  From this we see that nbody is extremely scalable and, indeed, 

the execution time and speedup curves for 256 bodies on 1-256 processors 

(Figure 15-4) are almost perfectly linear.  This is an indication that 256 << 

(70⋅256/C)2, so C << 1120.  Thus, the average cost of communicating 2 

bodies and 1 force (a total of 88 bytes, using double-precision floating point 

numbers) in a 256 node machine is much less than 1120 cycles.  This is not 

terribly informative and merely serves to reassure us that while the per-

formance of communication in the Hamal architecture is not optimal, nei-

ther is it unacceptable. 
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Figure 15-4: Execution time and speedup for the nbody benchmark. 

15.4 Wordcount 

The wordcount benchmark differs from the other three in that commonly 

occurring words (such as ‘a’ and ‘the’) introduce sequential bottlenecks 

which constrain performance as the number of processors is increased.  

Figure 15-5 shows execution time and speedup for the best-performing ver-
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sion of the program, which is a spin-waiting local-access version in which 

each parent thread creates at most one child thread at a time.  For ≤ 16 
processors there is no lock contention, and as a result good speedups are 

observed.  The speedup is slightly less than linear due primarily to load 

imbalance (each child thread is essentially created on a random node de-

pending on the hash value of the current word).  At 32 processors we see 

the emergence of contention which noticeably impacts performance.  Addi-

tionally, the sequential bottlenecks start to become significant.  Thereafter, 

performance improves at a much reduced rate. 

From an evaluation standpoint, the most significant aspect of the word-

count benchmark is the large number of threads that it generates (over 

30,000 – one for every word in [Brown02b]).  This demonstrates the effec-

tiveness of the thread management mechanisms in the Hamal processor and 

microkernel.  In particular, the low cost of remote thread creation gives rise 

to the speedups observed with ≤ 16 processors. 
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Figure 15-5: Execution time and speedup for the wordcount benchmark. 

15.5 Multiprogramming 

Hamal is a general purpose architecture and is designed to provide efficient 

support for running multiple independent programs via hardware multi-

threading and low-overhead thread management.  Processor utilization is 

maximized by dynamically choosing a context to issue on every cycle, al-

lowing concurrent threads to fill each other’s pipeline bubbles and memory 

stalls.  Figure 15-6 shows execution times and processor utilization for 

various combinations of the quicksort and nbody benchmarks run concur-

rently on 16 processors.  quicksort was run on a 216 entry vector, and nbody 

was run for 10 iterations; these parameters were chosen to roughly equalize 

the run-times of the individual benchmarks.  Figure 15-6 graphs total num-

bers of processor cycles (there are 16 processor cycles on each machine 

cycle) and breaks them down into three categories.  On a given processor, a 

cycle is a program cycle if a user thread issues, a kernel cycle if the kernel 

running in context 0 issues, and an unused cycle if no context can issue.  

The first two bars of Figure 15-6a give execution times for quicksort and 

nbody run on their own.  The remaining bars given execution times for con-
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current execution of copies of these benchmarks, using the nomenclature 

qXnY for X copies of quicksort and Y copies of nbody.  Data is collected 

from the time the machine boots to the time the last user thread exits. 

Both graphs clearly illustrate the benefits of cycle-by-cycle multi-

threading which results in sub-additive run-times (Figure 15-6a) and in-

creased processor utilization (Figure 15-6b).  The execution time of q1b1 is 

only slightly greater than that of the benchmarks run alone; in general pro-

gram cycles are almost exactly additive whereas the number of unused cy-

cles decreases.  Note that as the number of threads increases, so too does 

the number of kernel cycles as more work is required to manage these 

threads.  However, the kernel is largely able to take advantage of otherwise 

unused cycles so this has little effect on the overall run time (compare the 

number of kernel and unused cycles for q3n2 and q3n3). 

 
multiprogrammed workload

0

20

40

60

80

100

120

140

160

quicksort nbody q1n1 q2n1 q1n2 q2n2 q3n2 q2n3 q3n3

e
x
e
c
u
ti
o
n
 t
im

e
 (
m
il
li
o
n
s
 o
f 
p
ro
c
e
s
s
o
r 
c
y
c
le
s
)

unused cycles

kernel cycles

program cycles

multiprogrammed workload

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

quicksort nbody q1n1 q2n1 q1n2 q2n2 q3n2 q2n3 q3n3

p
ro
c
e
s
s
o
r 
u
ti
li
z
a
ti
o
n

 
(a)                                                               (b) 

Figure 15-6:  (a) Execution time and (b) processor utilization for concurrent 

execution of the quicksort and nbody benchmarks. 

15.6 Discussion 

Without question, the main strength of the Hamal architecture lies in its 

broad support for massive fine-grained parallelism.  The low overheads of 

thread creation, concurrent execution, context swapping, event-driven 

thread management and register-based synchronization allow parallel appli-

cations to obtain high speedups as the number of processors is increased.  

The efficiency of thread management permits the use of a large number of 

threads without overwhelming the system (there are over 30,000 threads in 

wordcount and over 50,000 in quicksort on 512 nodes).  Communication, 

on the other hand, is an area of weakness.  In particular, possibly the most 

serious design flaw in the Hamal architecture is the lack of hardware sup-

port for data streaming.  In order to move data from one node to another an 

application must write it to remote memory 128 bits at a time.  Each write is 

placed in a separate network packet, incurring an overhead of at least 300%.  

This simple method of communication is sufficient for processor-intensive 

applications such as nbody, but noticeably impacts both the performance 

and potential scalability of communication-intensive applications such as 

quicksort. 
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Chapter 16  

Conclusions and Future Work 

Great is the art of beginning, but greater is the art of ending. 

– Henry Wadsworth Longfellow (1807-82) 

The goal of a building a general-purpose shared-memory machine with mil-

lions or even billions of nodes gives rise to a number of design challenges 

and requires fundamental changes to the models currently used to construct 

systems with hundreds or thousands of processors.  Ultimately, success will 

depend on advances in fabrication technology, computer architecture, fault 

management, compilers, programming languages, and development envi-

ronments.  This thesis has focused on hardware design, and we have pre-

sented Hamal: a shared-memory architecture with efficient support for 

massive parallelism which is directly scalable to one million nodes.  In this 

chapter we summarize the key features of Hamal as well as our major find-

ings, and we suggest directions for further research. 

16.1 Memory System 

A memory system is the canvas on which a parallel architecture is painted.  

A properly designed memory system facilitates the creation of a flexible 

and easily programmable machine, whereas a poor design inhibits perform-

ance and limits scalability.  The Hamal memory system addresses the needs 

of future architectures by tightly integrating processors with memory and 

by making use of mechanisms which support arbitrary scaling. 

The basic building block of the Hamal memory system is the capabil-

ity, a tagged, unforgeable pointer containing hardware-enforced permissions 

and segment bounds.  The use of capabilities has two important conse-

quences.  First, they allow the use of a single shared virtual address space.  

This greatly reduces the amount of state associated with a process and al-

lows data to be shared simply by communicating a pointer.  Second, capa-

bilities ensure that all memory references are valid.  Page faults no longer 

require the operating system to validate the faulting address, and they can 

be used to implement lazy allocation of physical pages.  Additionally, we 
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have seen that it can be useful to place auxiliary information within the ca-

pability: we presented squids, which allow an architecture to support for-

warding pointers without the overhead normally associated with aliasing 

problems. 

All memory operations are explicitly split-phased, and a thread may 

continue to perform computation while it is waiting for replies from one or 

more memory requests.  The hardware does not enforce any consistency 

model and makes no guarantee regarding the order in which memory opera-

tions with different addresses complete; weak consistency is supported via a 

wait instruction which allows software to wait for all outstanding memory 

operations to complete. 

Virtual memory is implemented using a fixed mapping from virtual ad-

dresses to physical nodes and with associative hardware page tables, located 

at the memory, to perform virtual→ physical address translation.  This 

completely eliminates the need for translation lookaside buffers, simplify-

ing processor design and removing an obstacle to scalability. 

We have presented extended address partitioning as well as an imple-

mentation of sparsely faceted arrays [Brown02b].  Each of these mecha-

nisms allows distributed objects to be atomically allocated by a single node 

without any global communication or synchronization.  Physical storage for 

distributed objects is lazily allocated on demand in response to page faults.  

A hardware swizzle instruction is provided to allow applications to map a 

continuous range of indices to addresses within a distributed object in a 

flexible manner. 

16.2 Fault-Tolerant Messaging Protocol 

In a machine with millions of discrete network components, it is extremely 

difficult to prevent electrical or mechanical failures from corrupting packets 

within the network.  In the future, systems will need to rely on end-to-end 

messaging protocols in order to guarantee packet delivery.  We have pre-

sented an implementation of a lightweight fault-tolerant messaging protocol 

[Brown02a] which ensures both message delivery and message idempo-

tence.  Each communication is broken down into three parts: a message, an 

acknowledgement which indicates message reception, and a confirmation 

which indicates that the message will not be re-sent.  The protocol does not 

require global information to be stored at each node and is therefore inher-

ently scalable.  We have shown how the overhead of this protocol can be 

reduced by using receiver-generated secondary ID’s. 

We have developed an analytical model using a technique that can be 

applied to any fault-tolerant messaging protocol.  The accuracy of the 

model was verified by simulation.  An evaluation of the messaging protocol 

was conducted using block-structured trace driven simulations.  We found 

that performance is optimized with small send tables (~8 entries), slightly 



 173

larger receive tables (~64 entries), and with linear backoff used for packet 

retransmission.   

16.3 Thread Management 

Massive parallelism implies massive multithreading; a scalable machine 

must be able to effectively manage a large number of threads.  Hamal con-

tains a number of mechanisms to minimize the overhead of thread man-

agement.  A multithreaded processor allows multiple threads to execute 

concurrently.  New threads are created using a single fork instruction which 

specifies a starting address for the new thread, the node on which the thread 

is to be created, and the set of general-purpose registers which are to be 

copied into the thread.  Nodes contain 8-entry fork queues from which new 

threads can be loaded directly into a context or stored to memory for later 

activation.  Each thread is associated with a hardware-recognized swap 

page in memory; this provides a uniform naming mechanism for threads 

and enables the use of register-dribbling to load and unload contexts in the 

background.  Finally, stall events inform the microkernel that a context is 

unable to issue, allowing rapid replacement of blocked threads. 

 The effectiveness of these mechanisms was experimentally confirmed 

by simulating a number of parallel benchmark programs.  Good speedups 

were observed, and benchmarks were able to make use of a large number of 

threads (over 50,000 in quicksort) without overwhelming the system.  Addi-

tionally, cycle-by-cycle hardware multithreading was found to provide effi-

cient support for mutiprogrammed workloads by significantly increasing 

processor utilization. 

16.4 Synchronization 

Typically, the threads of a parallel program do not run in isolation; they 

collaborate to perform a larger task.  Synchronization is required to ensure 

correctness by enforcing data dependencies and protecting the integrity of 

shared data structures.  Hamal provides four different synchronization 

primitives.  Atomic memory operations are the atomic read-and-modify 

operations found in all modern architectures.  Shared registers provide effi-

cient support for brief periods of mutual exclusion while accessing heavily-

used shared data such as the malloc counter.  Register-based synchroniza-

tion allows one thread to write directly to another thread’s registers, giving 

synchronization the same semantics and overheads as a high-latency mem-

ory operation.  Register-based synchronization can be used to implement 

fast barrier and exit synchronization; the latency of a software barrier on 

512 nodes is only 523 cycles.  Finally, UV trap bits extend the semantics of 

memory operations in a flexible manner and can be used to implement a 

number of high-level synchronization primitives including locks and pro-

ducer-consumer structures.  Our experiments confirmed the results reported 



 174

in [Kranz92] regarding the performance advantages of using trap bits in 

memory to implement fine-grained synchronization.  Additionally, we 

found the primary advantage of Hamal’s UV trapping mechanism over pre-

vious similar mechanisms to be the handling of traps on the node containing 

the memory word rather than on the node which initiated the memory re-

quest. 

16.5 Improving the Design 

Our experience with the current design of the Hamal architecture has sug-

gested a myriad of potential improvements.  Many of these are trivial hard-

ware modifications such as adding a status register or prioritizing events.  In 

this section we outline some of the more challenging directions for future 

work. 

16.5.1 Memory Streaming 

The most significant limitation of the Hamal architecture is the lack of 

hardware support for streaming data transfers.  Conceptually, a memory 

streaming mechanism is easy to implement by adding a small state machine 

to either the processor-memory node controllers or the individual memory 

banks.  The difficulty is that this then becomes a hardware resource which 

must be carefully managed so that it does not introduce the possibility of 

deadlock.  Additionally, the thread which initiates the streaming request 

must somehow be informed of the operation’s completion for the purpose 

of memory consistency. 

16.5.2 Security Issues with Register-Based Synchronization 

Any general-purpose implementation of register-based synchronization 

must address the obvious security concern: threads must not be allowed to 

arbitrarily write to other threads’ registers.  Hamal deals with this issue by 

using unforgeable join capabilities which are generated by the thread con-

taining the register(s) to be used for synchronization and which are required 

to perform writes to these registers.  However, there is a more subtle secu-

rity hole which has not yet been completely closed that involves trusted 

privileged subroutines. 

The kernel exposes privileged functions to user programs via the kernel 

table which contains code capabilities with the execute, privileged, incre-

ment-only and decrement-only bits set.  These functions are trusted black 

boxes; user programs may call them but should not be able to tamper with 

them.  However, register-based synchronization introduces exactly this pos-

sibility.  Consider a malicious program which spawns a child thread and 

gives the child a join capability for one of its own registers.  The program 

then calls a trusted kernel routine while the colluding child thread uses the 
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join capability, interfering with the privileged routine and producing unpre-

dictable results. 

The obvious “solution” to this problem, which is to simply discard 

joins to registers which are not marked as busy, is insufficient as registers 

may be busy due to a memory read.  Keeping track of registers which have 

been explicitly marked as busy using the busy instruction, and only allow-

ing joins to these registers, solves the problem if trusted subroutines do not 

themselves make use of register-based synchronization, but this is a some-

what unfair and unsatisfying restriction. 

16.5.3 Thread Scheduling and Synchronization 

Locking and mutual exclusion synchronization is, as a rule, efficient when 

successful and costly when unsuccessful due to the need to spin-wait and/or 

block.  It is therefore desirable for threads with one or more locks to com-

plete their protected operations and release the locks as quickly as possible.  

However, there is currently no way for the kernel to know which threads 

have locks, and there is nothing preventing the kernel from swapping out a 

thread which is in a critical section in response to a stall or timer event.  

When this occurs it can seriously affect performance, as was shown by the 

two outstanding data points in the wordcount graph of Figure 11-3.  An 

interesting direction for future research is to investigate ways of temporarily 

granting threads higher priority or immunity from being swapped out with-

out introducing the possibility of deadlock or allowing dishonest applica-

tions to raise their own priority without cause. 

16.6 Summary 

When ENIAC – the world’s first large-scale general-purpose electronic 

computer – was completed in 1945, it filled an entire room and weighed 

over 30 tons.  The engineers who designed it were visionaries, and yet even 

to them the concept of one million such processing automata integrated into 

a single machine would have been unfathomable.  Just think of how many 

punch card operators would be required!  Over half a century later, this fan-

tasy of science fiction is close to becoming a reality.  The first million node 

shared-memory machine will likely be built within the next decade.  

Equally likely is that it will fill an entire room and weigh over 30 tons. 

The realization of this dream will have been made possible by the in-

credible advances of circuit integration and process technology.  Yet 

Moore’s law alone is insufficient to carry shared-memory architectures past 

the million node mark.  In this thesis we have presented design principles 

for a scalable memory system, a fault-tolerant network, low-overhead 

thread management and efficient synchronization, all of which are essential 

ingredients for the success of tomorrow’s massively parallel systems. 

 



 176

 

 



 177

 

 

Bibliography 

Pereant qui ante nos nostra dixerunt. 

(To the devil with those who published before us.) 

– Aelius Donatus (4th Century), Quoted by St. Jerome, his pupil 

[Abramson86] D. A. Abramson, J. Rosenberg, “The Micro-Architecture of a Ca-

pability-Based Computer”, Proc. Micro ’86, pp. 138-145.  

[Agarwal92] Anant Agarwal, “Performance Tradeoffs in Multithreaded Proces-

sors”, IEEE Transactions on Parallel and Distributed Systems, Vol. 

3, No. 5, September 1992, pp. 525-539.  

[Agarwal95] Anant Agarwal, Ricardo Bianchini, David Chaiken, Kirk L. John-

son, David Kranz, John Kubiatowicz, Beng-Hong Lim, Kenneth 

Mackenzie, Donald Yeung, “The MIT Alewife Machine: Architec-

ture and Performance”, Proc. ISCA ’95, pp. 2-13.  

[Alverson90] Robert Alverson, David Callahan, Daniel Cummings, Brian 

Koblenz, Allan Porterfield, Burton Smith, “The Tera Computer 

System”, Proc. 1990 International Conference on Supercomputing, 

pp. 1-6.  

[Anderson86] M. Anderson, R. D. Pose, C. S. Wallace, “A Password-Capability 

System”, The Computer Journal, Vol. 29, No. 1, 1986, pp. 1-8.  

[Anderson97] Ed Anderson, Jeff Brooks, Charles Grassl, Steve Scott, “Perform-

ance of the Cray T3E Multiprocessor”, Proc. SC ’97, November 

1997. 

[Arnout00] Dr. Guido Arnout, “SystemC Standard”, Proc. 2000 Asia South 

Pacific Design Automation Conference, IEEE, 2000, pp. 573-577.  

[Arvind86] Arvind, R. S. Nikhil, K. K. Pingali, “I-Structures: Data Structures 

for Parallel Computing”, Proc. Workshop on Graph Reduction, 

Springer-Verlag Lecture Notes in Computer Science 279, pp. 336-

369, September/October 1986. 

[Baker78] Henry G. Baker, Jr., “List Processing in Real Time on a Serial 

Computer”, Communications of the ACM, Volume 21, Number 4, 

pp. 280-294, April 1978. 

[Barth91] Paul S. Barth, Rishiyur S. Nikhil, Arvind, “M-Structures: Extend-

ing a Parallel, Non-Strict, Functional Language with State”, Proc. 



 178

5th ACM Conference on Functional Programming Languages and 

Computer Architecture, August 1991. 

[Bishop77] Peter B. Bishop, “Computer Systems with a Very Large Address 

Space and Garbage Collection”, Ph.D. Thesis, Dept. of EECS, 

M.I.T., May 1977.  

[Blelloch95] Guy E. Blelloch, “NESL: A Nested Data-Parallel Language”, 

Technical Report CMU-CS-95-170, School of Computer Science, 

Carnegie Mellon University, September 1995. 

[Brown99] Jeremy Brown, Personal communication, 1999. 

[Brown00] Jeremy Brown, J.P. Grossman, Andrew Huang, Tom Knight, “A 

Capability Representation with Embedded Address and Nearly-

Exact Object Bounds”, Project Aries Technical Memo ARIES-TM-

05, AI Lab, M.I.T., April 14, 2000. 

[Brown01] Jeremy Brown, “An Idempotent Message Protocol”, Project Aries 

Technical Memo ARIES-TM-14, AI Lab, M.I.T., May, 2001. 

[Brown02a] Jeremy Hanford Brown, “Sparsely Faceted Arrays: A Mechanism 

Supporting Parallel Allocation, Communication, and Garbage 

Collection”, Ph.D. Thesis, Dept. of EECS, M.I.T., June 2001, 126 

pp. 
[Brown02b] Jeremy Brown, J.P. Grossman, Tom Knight, “A Lightweight 

Idempotent Messaging Protocol for Faulty Networks”, Proc. 

SPAA ’02, pp. 248-257. 

[Carter94] Nicholas P. Carter, Stephen W. Keckler, William J. Dally, “Hard-

ware Support for Fast Capability-based Addressing”, Proc. AS-

PLOS VI, 1994, pp. 319-327.  

[Case99] Brian Case, “Sun Makes MAJC With Mirrors”, Microprocessor 

Report, October 25, 1999, pp. 18-21.  

[Chang88] Albert Chang, Mark F. Mergen, “801 Storage: Architecture and 

Programming”, ACM Transactions on Computer Systems, Vol. 6, 

No. 1, February 1988, pp. 28-50.  

[Chase94] Jeffrey S. Chase, Henry M. Levy, Michael J. Feeley, Edward D. 

Lazowska, “Sharing and Protection in a Single-Address-Space Op-

erating System”, ACM Transactions on Computer Systems, Vol. 12, 

No. 4, November 1994, pp. 271-307.  

[Chien98] Andrew A. Chien, “A Cost and Speed Model for k-ary n-Cube 

Wormhole Routers”, IEEE Transactions on Parallel and Distrib-

uted Systems, Vol. 9, No. 2, 1998, pp. 150-162.  

[Chong95] Yong-Kim Chong, Kai Hwang, “Performance Analysis of Four 

Memory Consistency Models for Multithreaded Multiprocessors”, 

IEEE Transactions on Parallel and Distributed Systems, Vol. 6, No. 

10, October 1995, pp. 1085-1099.  

[Chrysos98] George Z. Chrysos, Joel S. Emer, “Memory Dependency Predic-

tion using Store Sets”, Proc. ISCA ’98, pp. 142-153, June 1998.  

[Clark76] D. W. Clark, “List Structure: Measurements, Algorithms and En-

codings”, Ph.D. thesis, Carnegie-Mellon University, August 1976.  



 179

[Clark01] Lawrence T. Clark, Eric J. Hoffman, Jay Miller, Manish Biyani, 

Yuyun Liao, Stephen Strazdus, Michael Morrow, Kimberley E. 

Velarde, Mark A. Yarc, “An Embedded 32b Microprocessor Core 

for Low-Power and High-Performance Applications”, IEEE Jour-

nal of Solid-State Circuits, Vol. 36, No. 11, November 2001, pp. 

1599-1608. 

[CLR90] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Intro-

duction to Algorithms, MIT Press, Cambridge, MA, 1990, 1028pp.  

[Coddington97] Paul D. Coddington, “Random Number Generation for Parallel 

Computers”, NHSE Review, 1996 Volume, Second Issue, May 2, 

1997, 26 pp., http://www.crpc.rice.edu/NHSEreview/RNG/ 

[Culler99] D. Culler, J. Singh, A. Gupta, Parallel Computer Architecture.  A 

Hardware/Software Aproach, Morgan Kaufmann Publishers, Inc, 

San Francisco, 1999. 

[Cyn01] CynApps, “Cynlib Users Manual”, 2001.  

[Dally85] William J. Dally, James T. Kajiya, “An Object Oriented Architec-

ture”, Proc. ISCA ’85, pp. 154-161.  

[Dally87] William J. Dally, Charles L. Seitz, “Deadlock-Free Message Rout-

ing in Multiprocessor Interconnection Networks”, IEEE Transac-

tions on Computers, Vol. 36, No. 5, 1987, pp. 547-553.  

[Dally90] William J. Dally, “Performance Analysis of k-ary n-cube Intercon-

nection Networks”, IEEE Transactions on Computers, Vol. 39, No. 

6, June 1990, pp. 775-785.  

[Dally92] William J. Dally, J. A. Stuart Fiske, John S. Keen, Richard A. 

Lethin, Michael D. Noakes, Peter R. Nuth, Roy E. Davison, 

Gregory A. Fyler, “The Message-Driven Processor: A 

Multicomputer Processing Node with Efficient Mechanisms”, 

IEEE Micro, April 1992, pp. 23-38. 

[Dally93] William J. Dally, Hiromichi Aoki, “Deadlock-free Adaptive Rout-

ing in Multicomputer Networks using Virtual Channels”, IEEE 

Transactions on Parallel and Distributed Systems, Vol. 4, No. 4, 

1993, pp. 466-475.  

[Dally94a] William J. Dally, Larry R. Dennison, David. Harris, Kinhong Kan, 

Thucydides Xanthopoloulos, “The Reliable Router: A Reliable and 

High-Performance Communication Substrate for Parallel Com-

puters”, Proc. First International Parallel Computer Routing and 

Communication Workshop, Seattle, WA, May 1994.  

[Dally94b] William J. Dally, Stephen W. Keckler, Nick Carter, Andrew Chang, 

Marco Fillo, Whay S. Lee, “M-Machine Architecture v1.0”, MIT 

Concurrent VLSI Architecture Memo 58, Massachusetts Institute 

of Technology, August 24, 1994.  

[Dally98] William J. Dally, Andrew Chien, Stuart Fiske, Waldemar Horwat, 

Richard Lethin, Michael Noakes, Peter Nuth, Ellen Spertus, Deb-

orah Wallach, D. Scott Wills, Andrew Chang, John Keen, “The J-

Machine: A Retrospective”, 25 years of the international symposia 

on Computer architecture (selected papers), 1998, pp. 54-55. 



 180

[Datta97] Suprakash Datta, Ramesh Sitaramann, “The Performance of Sim-

ple Routing Algorithms that Drop Packets”, Proc. SPAA ’97, pp. 

159-169.  

[Day93] Mark Day, Barbara Liskov, Umesh Maheshwari, Andrew C. Myers, 

“References to Remote Mobile Objects in Thor”, ACM Letters on 

Programming Languages & Systems, vol.2, no.1-4, March-Dec. 

1993, pp.115-26.  

[DeHon94] André DeHon, Frederic Chong, Matthew Becker, Eran Egozy, 

Henry Minsky, Samuel Peretz, Thomas F. Knight, Jr., “METRO: A 

Router Architecture for High-Performance, Short-Haul Routing 

Networks”, Proc. ISCA ’94, pp. 266-277. 

[Denneau00] Monty Denneau, personal communication, Nov. 17, 2000. 

[Dennis65] Jack B. Dennis, Earl C. Van Horn, “Programming Semantics for 

Multiprogrammed Computations”, Communications of the ACM, 

Vol. 9, No. 3, March 1966, pp. 143-155.  

[Dennison91] Larry R. Dennison, “Reliable Interconnection Networks for Paral-

lel Computers”, MIT Artificial Intelligence Laboratory technical 

report AITR-1294, 1991, 78pp.  

[Diefen99] Keith Diefendorff, “Power4 Focuses on Memory Bandwidth”, 

Microprocessor Report, October 6, 1999, pp. 11-17.  

[Draper94] Jeffrey T. Draper, Joydeep Ghosh, “A Comprehensive Analytical 

Model for Wormhole Routing in Multicomputer Systems”, Journal 

of Parallel and Distributed Computing, November 1994, pp. 202-

214.  

[Edel97] Yves Edel, Jürgen Bierbrauer, “Extending and Lengthening BCH-

codes”, Finite Fields and their Applications, 3:314-333, 1997. 

[Eslick94] Ian Eslick, André DeHon, Thomas Knight Jr., “Guaranteeing 

Idempotence for Tightly-coupled, Fault-tolerant Networks”, Proc. 

First International Workshop on Parallel Computer Routing and 

Communication, 1994, pp. 215-225. 

[Fabry74] R. S. Fabry, “Capability-Based Addressing”, Communications of 

the ACM, Volume 17, Number 7, July 1974, pp. 403-412.  

[Fillo95] Marco Fillo, Stephen W. Keckler, William J. Dally, Nicholas P. 

Carter, Andrew Chang, Yevgeny Gurevich, Whay S. Lee, “The M-

Machine Multicomputer”, Proc. MICRO-28, 1995, pp. 146-156.  

[Fredman87] M. L. Fredman, R. E. Tarjan, “Fibonacci heaps and their uses in 

improved network optimization algorithms”, JACM, vol. 34, no. 3, 

July 1987, pp. 596-615.  

[Gajski00] D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, S. Zhao, SpecC: Speci-

fication Language and Methodology, Kluwer Academic Publishers, 

Norwell, USA, 2000.  

[Galles96] M. Galles, “Scalable Pipelined Interconnect for Distributed End-

point Routing: The SPIDER Chip”, Proc. Hot Interconnects Sym-

posium IV, August 1996, pp. 141-146.  



 181

[Gharach90] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip 

Gibbons, Anoop Gupta, John Hennessy, “Memory Consistency and 

Event Ordering in Scalable Shared-Memory Multiprocessors”, 

Proc. ISCA ’90, pp. 15-26.  

[Gharach91] Kourosh Gharachorloo, Anoop Gupta, John Hennessy, “Perform-

ance Evaluation of Memory consistency Models for Shared-

Memory Multiprocessors”, Proc. ASPLOS ’91, pp. 245-257. 

[Gokhale95] Maya Gokhale, Bill Holmes, Ken Iobst, “Processing in Memory: 

The Terasys Massively Parallel PIM Array”, IEEE Computer, 

April 1995, pp. 23-31.  

[Goldschmidt93] Stephen R. Goldschmidt, John L. Hennessy, “The Accuracy of 

Trace-Driven Simulations of Multiprocessors”, Measurement and 

Modeling of Computer Systems, 1993, pp. 146-157.  

[Gosling96] James Gosling, Bill Joy, Guy L. Steele Jr., The Java Language 

Specification, Addison-Wesley Publication Co., Sept. 1996, 825pp.  

[Greenberg97] Ronald I. Greenberg, Lee Guan, “An Improved Analytical Model 

for Wormhole Routed Networks with Application to Butterfly Fat-

Trees”, Proc. ICPP ’97, pp. 44-48.  

[Greenblatt74] Richard Greenblatt, “The LISP Machine”, Working Paper 79, 

M.I.T. Artificial Intelligence Laboratory, November 1974. 

[Grossman99] J.P. Grossman, Jeremy Brown, Andrew Huang, Tom Knight, “An 

Implementation of Guarded Pointers with Tight Bounds on Seg-

ment Size”, Project Aries Technical Memo ARIES-TM-02, AI Lab, 

M.I.T., September 14, 1999. 

[Grossman01a] J.P. Grossman, “The Hamal Processor-Memory Node”, Project 

Aries Technical Memo ARIES-TM-11, AI Lab, M.I.T., February 

10, 2001. 

[Grossman01b] J.P. Grossman, “Hamal ISA Revision 9.3”, Project Aries Technical 

Memo ARIES-TM-11, AI Lab, M.I.T., November 22, 2001. 

[Grossman02] J.P. Grossman, Jeremy Brown, Andrew Huang, Tom Knight, “Us-

ing Squids to Address Forwarding Pointer Aliasing”, Project Aries 

Technical Memo ARIES-TM-04, AI Lab, M.I.T., August 16, 2002.  

[Halstead88] Robert H. Halstead Jr., Tetsuya Fujita, “MASA: A Multithreaded 

Processor Architecture for Parallel Symbolic Computing”, Proc. 

ISCA ’88, pp. 443-451.  

[Hardwick97] Jonathan C. Hardwick, “Practical Parallel Divide-and-Conquer 

Algorithms”, Ph.D. Thesis, School of Computer Science, Carnegie 

Mellon University, December 1997, 154 pp. 

[Herbert79] A. J. Herbert, “A Hardware-Supported Protection Architecture”, 

Proc. Operating Systems: Theory and Practice, North-Holland, 

Amsterdam, Netherlands, 1979, pp. 293-306.  

[Hirata92] Hiroaki Hirata, Kozo Kimura, Satoshi Nagamine, Yoshiyuki Mo-

chizuki, Akio Nishimura, Yoshimori Nakase, Teiji Nishizawa, “An 

Elementary Processor Architecture with Simultaneous Instruction 

Issuing from Multiple Threads”, Proc. ISCA ’92, pp. 136-145.  



 182

[Holliday92] Mark A. Holliday, Carla Schlatter Ellis, “Accuracy of Memory 

Reference Traces of Parallel Computations in Trace-Driven Simu-

lation”, IEEE Transactions on Parallel and Distributed Systems, 

Vol. 3, No. 1, 1992, pp. 97-109.  

[Houdek81] M. E. Houdek, F. G. Soltis, R. L. Hoffman, “IBM System/38 Sup-

port for Capability-Based Addressing”, Proc. ISCA ’81, pp. 341-

348.  

[Huck93] Jerry Huck, Jim Hays, “Architectural Support for Translation Table 

Management in Large Address Space Machines”, Proc. ISCA ’93, 

pp. 39-50. 

[Hwang93] Kai Hwang, Advanced Computer Architecture: Parallelism, Scal-

ability, Programmability, McGraw-Hill New York, 1993, 771 pp. 

[IBM01] IBM Blue Gene Team, “Blue Gene: A Vision for Protein Science 

using a Petaflop Supercomputer”, IBM Systems Journal, Vol. 40, 

No. 2, 2001, pp. 310-327. 

[Jargon01] The Jargon File, “programming”, http://www.tuxedo.org/~esr/jar-

gon/html/entry/programming.html 

[Johnson62] S. M. Johnson, “A New Upper Bound for Error-Correcting Codes”, 

IEEE Transactions on Information Theory, 8:203-207, 1962. 

[Jul88] Eric Jul, Henry Levy, Norman Hutchinson, Andrew Black, “Fine-

Grained Mobility in the Emerald System”, ACM TOCS, Vol. 6, No. 

1, Feb. 1988, pp. 109-133.  

[Karger88] Paul Karger, “Improving Security and Performance for Capability 

Systems”, Technical Report No. 149, University of Cambridge 

Computer Laboratory, October 1988 (Ph. D. thesis).  

[Kasami69] T. Kasami, N. Nokura, “Some Remarks on BCH Bounds and 

Minimum Weights of Binary Primitive BCH Codes”, IEEE Trans-

actions on Information Theory, 15:408-413, 1969. 

[Keckler92] Stephen W. Keckler, William J. Dally, “Processor Coupling: Inte-

grating Compile Time and Runtime Scheduling for Parallelism”, 

Proc. ISCA ’92, pp. 202-213.  

[Keckler98] Stephen W. Keckler, William J. Dally, Daniel Maskit, Nicholas P. 

Carter, Andrew Chang, Whay S. Lee, “Exploiting Fine–Grain 

Thread Level Parallelism on the MIT Multi-ALU Processor”, Proc. 

ISCA ’98, pp. 306-317. 

[Keckler99] Stephen W. Keckler, Whay S. Lee, “Concurrent Event Handling 

through Multithreading”, IEEE Transactions on Computers, Vol. 

48, No. 9, September 1999, pp. 903-916.  

[Kempf61] Karl Kempf, "Electronic Computers Within the Ordnance Corps", 

November 1961, http://ftp.arl.mil/~mike/comphist/61ordnance/ 

[Kleeman90] Lindsay Kleeman, “The Jitter Model for Metastability and Its Ap-

plication to Redundant Synchronizers”, IEEE Transactions on 

Computers, Vol. 39, No. 7, July 1990, pp. 930-942. 



 183

[Knuth98] Donald E. Knuth, The Art of Computer Programming, Vol. 2, 3rd 

Edition, Addison Wesley Longman, 1998, 762 pp. 

[Koelbel94] Charles H. Koelbel, David B. Loveman, Robert S. Schreiber, Guy 

L. Steele, Jr., and Mary E. Zosel, The High Performance Fortran 

Handbook, MIT Press, 1994. 

[Kogel01] Tim Kogel, Andreas Wieferink, Heinrich Meyr, Andrea Kroll, 

“SystemC Based Architecture Exploration of a 3D Graphic Proces-

sor”, Proc. 2001 Workshop on Signal Processing Systems, IEEE, 

2001, pp. 169-176. 

[Kranz92] David Kranz, Beng-Hong Lim, Donald Yeung, Anant Agarwal, 

“Low-Cost Support for Fine-Grain Synchronization in Multiproc-

essors”, in Multithreading: A Summary of the State of the Art, Klu-

wer Academic Publishers, 1992. 

[Kranz93] David Kranz, Kirk Johnson, Anant Agarwal, John Kubiatowicz, 

Beng-Hong Lim, “Integrating Message-Passing and Shared-

Memory: Early Experience”, in Proceedings of the Practice and 

Principles of Parallel Programming, 1993, pp. 54-63. 

[Kronstadt87] Eric P. Kronstadt, Tushar R. Gheewala, Sharad P. Gandhi, “Small 

Instruction Cache using Branch Target Table to Effect Instruction 

Prefetch”, US Patent US4691277, Sept. 1, 1987, 7 pp. 

[Ku90] D. Ku, D. Micheli, “HardwareC – A Language for Hardware De-

sign (version 2.0)”, CSL Technical Report CSL-TR-90-419, Stan-

ford University, April 1990.  

[Kuskin94] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Rich-

ard Simoni, Kourosh Gharachorloo, John Chapin, David Nakahira, 

Joel Baxter, Mark Horowitz, Anoop Gupta, Mendel Rosenblum, 

John Hennessy, “The Stanford FLASH Multiprocessor”, Proc. 

ISCA ’94, pp. 302-313.  

[Laudon97] James Laudon, Daniel Lenoski, “The SGI Origin: A ccNUMA 

Highly Scalable Server”, Proc. ISCA ’97, pp. 241-251.  

[Lee89] Ruby Lee, “Precision Architecture”, IEEE Computer, January 1989, 

pp. 78-91.  

[Leiserson85] Charles E. Leiserson, “Fat-Trees: Universal Networks for Hard-

ware-Efficient Supercomputing”, IEEE Transactions on Computers, 

C-34(10), Oct. 1985, pp. 393-402. 

[Lenoski92] Daniel Lenoski, James Laudon, Truman Joe, David Nakahira, Luis 

Stevens, Anoop Gupta, John Hennessy, “The DASH Prototype: 

Implementation and Performance”, Proc. ISCA ’92, pp. 92-103.  

[Liao97] Stan Liao, Steve Tjiang, Rajesh Gupta, “An Efficient Implementa-

tion of Reactivity for Modeling Hardware in the Scenic Design En-

vironment”, Proc. DAC ’97, pp. 70-75.  

[Luk99] Chi-Keung Luk, Todd C. Mowry, “Memory Forwarding: Enabling 

Aggressive Layout Optimizations by Guaranteeing the Safety of 

Data Relocation”, Proc. ISCA ’99, pp. 88-99.  



 184

[Mai00] Ken Mai, Tim Paaske, Nuwan Jayasena, Ron Ho, William J. Dally, 

Mark Horowitz, “Smart Memories: A Modular Reconfigurable Ar-

chitecture”, Proc. ISCA ’00, pp. 161-171. 

[Margolus00] Norman Margolus, “An Embedded DRAM Architecture for Large-

Scale Spatial-Lattice Computations”, Proc. ISCA ’00, pp. 149-160. 

[Marr02] Deborah T. Marr, Frank Binns, David L. Hill, Glenn Hinton, David 

A. Koufaty, J. Alan Miller, Michael Upton, "Hyper-Threading 

Technology Architecture and Microarchitecture", Intel Technology 

Journal, Feb. 2002,  

http://developer.intel.com/technology/itj/2002/volume06issue01/ 

[Metcalfe83] Robert Metcalfe, David Boggs, “Ethernet: Distributed Packet 

Switching for Local Computer Networks (Reprint)”, Communica-

tions of the ACM, Vol. 26, No. 1, 1983, pp. 90-95. 

[Moon84] David A. Moon, “Garbage Collection in a Large Lisp System”, 

Proc. 1984 ACM Conference on Lisp and Functional Program-

ming, pp. 235-246.  

[Moshovos97] Andreas Moshovos, Scott E. Breach, T. N. Vijaykumar, Gurindar S. 

Sohi, “Dynamic Speculation and Synchronization of Data Depend-

ences”, Proc. ISCA ’97, pp. 181-193, June 1997.  

[Moss90] J. Eliot B. Moss, “Design of the Mneme Persistent Object Store”, 

ACM Transactions on Information Systems, Vol. 8, No. 2, April 

1990, pp. 103-139. 

[Ni93] Lionel M. Ni, Philip K. McKinley, “A Survey of Wormhole Rout-

ing Techniques in Direct Networks”, IEEE Computer, Vol. 26, No. 

2, 1993, pp. 62-76. 

[Oskin98] Mark Oskin, Frederic T. Chong, Timothy Sherwood, “Active 

Pages: A Computation Model for Intelligent Memory”, Proc. 

ISCA ’98, pp. 192-203.  

[Oskin99a] Mark Oskin, Frederic T. Chong, Timothy Sherwood, “ActiveOS: 

Virtualizing Intelligent Memory”, Proc. ICCD ’99, pp. 202-208.  

[Ould98] Ould-Khaoua, “An Analytical Model of Duato’s Fully-Adaptive 

Routing Algorithm in k-Ary n-Cubes”, Proc. ICPP 1998, pp. 106-

113.  

[Parviz79] Parviz Kermani, Leonard Kleinrock, “Virtual Cut-Through: A New 

Computer Communication Switching Technique”, in Computer 

Networks 3, North-Holland Publishing Company, 1979, pp. 267-

286.  

[Patterson97] David Patterson, Thomas Anderson, Neal Cardwell, Richard 

Fromm, Kimberly Keeton, Christoforos Kozyrakis, Randi Thomas, 

Katherine Yelick, “A Case for Intelligent RAM: IRAM”, IEEE Mi-

cro, Vol. 17, No. 2, March/April 1997, pp. 33-44.  

[Plainfossé95] David Plainfossé, Marc Shapiro, “A Survey of Distributed Garbage 

Collection Techniques”, Proc. 1995 International Workshop on 

Memory Management, pp. 211-249.  

[Postel81] J. Postel, “Transmission Control Protocol”, RFC 793, 1981.  



 185

[Qiu98] Xiaogang Qiu, Michel Dubois, “Options for Dynamic Address 

Translation in COMAs”, Proc. ISCA ’98, pp. 214-225.  

[Qiu01] Xiaogang Qiu, Michel Dubois, “Towards Virtually-Addressed 

Memory Hierarchies”, Proc. HPCA ’01, pp. 51-62.  

[Ramanathan00] Dinesh Ramanathan, Ray Roth, Rajesh Gupta, “Interfacing Hard-

ware and Software Using C++  Class Libraries”, Proc. ICCD 2000, 

pp. 445-450.  

[Rehrmann96] Ralf Rehrmann, Burkhard Monien, Reinhard Lüling, Ralf Diek-

mann, “On the Communication Throughput of Buffered Multistage 

Interconnection Networks”, Proc. SPAA ’96, pp. 152-161. 

[Rettburg86] Randall Rettberg, Robert Thomas, “Contention is no obstacle to 

shared-memory multiprocessing”, Communications of the ACM, 

Vol. 29, No. 12, 1986, pp. 1202-1212. 

[Rettburg90] Randall Rettberg, William R. Crowther, Philip P. Carvey, Ray-

mond S. Tomlinson, “The Monarch Parallel Processor Hardware 

Design”, IEEE Computer, Vol. 23, No. 4, 1990, pp. 18-30. 

[Rooholamini94] Reza Rooholamini, Vladimir Cherkassky, Mark Garver, “Find-

ing the Right ATM Switch for the Market”, IEEE Computer, Vol. 

27, No. 4, 1994, pp. 16-28. 

[Saleh96] Mahmoud Saleh, Mohammed Atiquzzaman, “An Exact Model for 

Analysis of Shared Buffer Delta Networks with Arbitrary Output 

Distribution”, Proc. ICAPP ’96, pp. 147-154.  

[Sarbazi00] H. Sarbazi-Azad, M. Ould-Khaoua, L. M. Mackenzie, “An Ana-

lytical Model of Fully-Adaptive Wormhole-Routed k-Ary n-Cubes 

in the Presence of Hot Spot Traffic”, Proc. IPDPS 2000, pp. 605-

610.  

[SC01] “SystemC Version 2.0 User’s Guide”, available at 

http://www.systemc.org, 2001.  

[Sceideler96] Christian Sceideler, Berthold Vöcking, “Universal Continuous 

Routing Strategies”, Proc. SPAA ’96, pp. 142-151.  

[Scott96] Steven L. Scott, “Synchronization and Communication in the T3E 

Multiprocessor”, Proc. ASPLOS VII, 1996, pp. 26-36.  

[Setrag86] Setrag N. Khoshafian, George P. Copeland, “Object Identity”, Proc. 

1986 ACM Conference on Object Oriented Programming Systems, 

Languages and Applications, pp. 406-416.  

[Smith81] Burton J. Smith, “Architecture and Applications of the HEP Multi-

processor Computer System”, Proc. Real-Time Signal Processing 

IV, SPIE Vol. 298, 1981, pp. 241-248.  

[Smith82] A. J. Smith, “Cache Memories”, ACM Computing Surveys, Vol. 14, 

No. 3, September 1982, pp. 473-530.  

[Soundarar92] Vijayaraghavan Soundararajan, Anant Agarwal, “Dribbling Regis-

ters: A Mechanism for Reducing Context Switch Latency in Large-

Scale Multiprocessors”, Laboratory for Computer Science Techni-

cal Memo MIT/LCS/TM-474, M.I.T., November 6, 1992, 21 pp. 



 186

[Stamoulis91] George D. Stamoulis, John N. Tsitsiklis, “The Efficiency of 

Greedy Routing in Hypercubes and Butterflies”, Proc. SPAA ’91, 

pp. 248-259.  

[Taylor86] George S. Taylor, Paul N. Hilfinger, James R. Larus, David A. 

Patterson, Benjamin G. Zorn, “Evaluation of the SPUR Lisp Archi-

tecture”, Proc. ISCA ’86, pp. 444-452, 1986.  

[Teller88] Patricia J. Teller, Richard Kenner, Marc Snir, “TLB Consistency 

on Highly-Parallel Shared-Memory Multiprocessors”, Proc. 21st 

Annual Hawaii International Conference on System Sciences, 1988, 

pp. 184-193.  

[Teller90] Patricia J. Teller, “Translation-Lookaside Buffer Consistency”, 

IEEE Computer, Vol. 23, Iss. 6, June 1990, pp. 26-36.  

[Teller94] Patricia J. Teller, Allan Gottleib, “Locating Multiprocessor TLBs 

at Memory”, Proceedings of the Twenty-Seventh Annual Hawaii 

International Conference on System Sciences, 1994, pp. 554-563.  

[Thekkath94] Radhika Thekkath, Susan J. Eggers, “The Effectiveness of Multiple 

Hardware Contexts”, Proc. ASPLOS VI, 1994, pp. 328-337.  

[Thistle88] Mark R. Thistle, “A Processor Architecture for Horizon”, Proc. 

Supercomputing ’88, pp. 35-41.  

[Tremblay99] Marc Tremblay, “An Architecture for the New Millennium”, Proc. 

Hot Chips XI, Aug. 15-17, 1999.  

[Tullsen95] Dean M. Tullsen, Susan J. Eggers, Henry M. Levy, “Simultaneous 

Multithreading: Maximizing On-Chip Parallelism”, Proc. ISCA ’95, 

pp. 392-403.  

[Tyner81] P. Tyner, “iAXP 432 General Data Processor Architecture Refer-

ence Manual”, Intel Corporation, Aloha, OR, 1981.  

[Waingold97] Elliot Waingold, Michael Taylor, Vivek Sarkar, Walter Lee, Victor 

Lee, Jang Kim, Matthew Frank, Peter Finch, Srikrishna Devabhak-

tuni, Rajeev Barua, Jonathan Babb, Saman Amarasinghe, Anant 

Agarwal, “Baring it all to Software: The Raw Machine”, IEEE 

Computer, Vol. 30, Iss. 9, Sept. 1997, pp. 86-93. 

[Woods01] Bobby Woods-Corwin, “A High Speed Fault-Tolerant Inter-

connect Fabric for Large-Scale Multiprocessing”, M.Eng Thesis, 

Dept. of EECS, M.I.T., May 2001. 

[Zilles99] Craig B. Zilles, Joel S. Emer, Gurindar S. Sohi, “The Use of Multi-

threading for Exception Handling”, Proc. Micro ’99, pp. 219-229.  

[Zucker92] Richard N. Zucker, Jean-Loup Baer, “A Performance Study of 

Memory Consistency Models”, Proc. ISCA ’92, pp. 2-12. 


