
MIT Open Access Articles

The abstract MAC layer

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Kuhn, Fabian, Nancy Lynch and Calvin Newport. "The abstract MAC layer." Proceedings
of the 23rd international conference on Distributed computing, Elche, Spain, Sept. 23-25, 2009.
p.48-62.

As Published: http://dl.acm.org/citation.cfm?id=1813176

Publisher: Association for Computing Machinery

Persistent URL: http://hdl.handle.net/1721.1/71848

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/71848
http://creativecommons.org/licenses/by-nc-sa/3.0/

The Abstract MAC Layer⋆

Fabian Kuhn, Nancy Lynch, and Calvin Newport

MIT CSAIL, Cambridge, MA
{fkhun,lynch,cnewport}@csail.mit.edu

Abstract. A diversity of possible communication assumptions compli-
cates the study of algorithms and lower bounds for radio networks. We
address this problem by defining an Abstract MAC Layer. This service
provides reliable local broadcast communication, with timing guaran-
tees stated in terms of a collection of abstract delay functions applied
to the relevant contention. Algorithm designers can analyze their al-
gorithms in terms of these functions, independently of specific channel
behavior. Concrete implementations of the Abstract MAC Layer over
basic radio network models generate concrete definitions for these delay
functions, automatically adapting bounds proven for the abstract ser-
vice to bounds for the specific radio network under consideration. To
illustrate this approach, we use the Abstract MAC Layer to study the
new problem of Multi-Message Broadcast, a generalization of standard
single-message broadcast, in which any number of messages arrive at
any processes at any times. We present and analyze two algorithms for
Multi-Message Broadcast in static networks: a simple greedy algorithm
and one that uses regional leaders. We then indicate how these results
can be extended to mobile networks.

1 Introduction

The study of bounds for mobile ad hoc networks is complicated by the numer-
ous possible communication assumptions: Do devices operate in slots or asyn-
chronously? Do simultaneous transmissions cause collisions? Can collisions be
detected? Is message reception determined by geographical distances? Or is it
determined by a more complex criteria, such as signal-to-noise ratio? And so on.
This situation causes problems. Results for one set of communication assump-
tions might prove invalid for a slightly different set. In addition, these low-level
assumptions require algorithm designers to grapple with low-level problems such
as contention management, again and again, making it difficult to highlight in-
teresting high-level algorithmic issues. This paper proposes a possible solution
to these concerns. (A technical report with more details is also available [19].)

⋆ This work has been support in part by Cisco-Lehman CUNY A New MAC-Layer
Paradigm for Mobile Ad-Hoc Networks, AFOSR Award Number FA9550-08-1-0159,
NSF Award Number CCF-0726514, and NSF Award Number CNS-0715397.

The Abstract MAC Layer. We introduce an abstract MAC layer service for mo-
bile ad hoc networks (MANETs). We intend this service to be implemented over
real MANETs, with very high probability. At the same time, we intend it to
be simple enough to serve as a good basis for theoretical work on high-level
algorithms in this setting. The use of this service allows algorithm designers to
avoid tackling issues as contention management and collision detection. They
can instead summarize their effects with abstract delay bounds.

The abstract MAC layer service delivers transmitted messages reliably within
its local neighborhood, and provides feedback to the sender of a message in the
form of an acknowledgement that the message has been successfully delivered
to all nearby receivers. The service does not provide the sender with any feed-
back about particular recipients of the message. The service provides guaranteed
upper bounds on the worst-case amount of time for a message to be delivered
to all its recipients, and on the total amount of time until the sender receives
its acknowledgement. It also may provide a (presumably smaller) bound on the
amount of time for a receiver to receive some message among those currently
being transmitted by neighboring senders. These time guarantees are expressed
using delay functions applied to the current amount of contention among senders
that are in the neighborhoods of the receivers and the sender.

To implement our abstract MAC layer over a physical network one could use
popular contention-management mechanisms such as carrier sensing, backoff,
receiver-side collision detection with NACKs, or perhaps even network coding
methods, such as the ZigZag Decoding approach of Gollakota and Katabi [11].
Our MAC layer encapsulates the details of these mechanisms within the service
implementation, presenting the algorithm designer with a simple abstract model
that involves just message delivery guarantees and time bounds.1 We believe
that this MAC layer service provides a simple yet realistic basis for theoretical
work on high-level algorithms and lower bounds for MANETs.

Multi-Message Broadcast and Regional Leader Election. In this paper, we vali-
date our formalism by studying two problems: Multi-Message Broadcast (MMB)
and Regional Leader Election (RLE). The MMB problem is a generalization
of single-message broadcast; c.f., [1–4, 6, 5, 7, 8, 16, 14, 15, 17, 18]. In the MMB
problem, an arbitrary number of messages originate at arbitrary processes in
the network, at arbitrary times; the problem is to deliver all messages to all
processes. We present and analyze two MMB algorithms in static networks, and
indicate how the second of these can be extended to mobile networks.

Our first MMB algorithm is a simple greedy algorithm, inspired by the strat-
egy of the single-message broadcast algorithm of Bar-Yehuda et al. [3]. We an-
alyze this algorithm using the abstract MAC layer delay functions. We obtain
an upper bound on the time for delivery of each message that depends in an

1 Note that MAC layer implementations are usually probabilistic, both because as-
sumptions about the physical layer are usually regarded as probabilistic, and because
many MAC layer implementations involve random choices. Thus, these implementa-
tions implement our MAC layer with very high probability, not absolute certainty.

interesting way on the progress bound—the small bound on the time for a re-
ceiver to receive some message. Specifically, the bound for MMB to broadcast
a given message m, is of the form O ((D + k)Fprog + (k − 1)Fack), where D is
the network diameter, k is a bound on the number of messages whose broadcast
overlaps m, and Fack and Fprog are upper bounds on the acknowledgement and
progress delay functions, respectively. Note that a dependency on a progress
bound was implicit in the analysis of the single-message broadcast algorithm
in [3]. Our use of the abstract MAC layer allows us to make this dependency
explicit.

Our second MMB algorithm achieves better time complexity by exploiting
geographical information; in particular, it uses a solution to the RLE problem
as a sub-protocol. In the RLE problem, the geographical area in which the net-
work resides is partitioned statically into regions; the problem is to elect and
maintain a leader in each occupied region. Regional leaders could be used to
form a backbone network that could, in turn, be used to solve many kinds of
communication and coordination problems. We give an RLE algorithm whose
complexity is approximately bFprog, where b is the number of bits required to
represent process ids.

Using the RLE algorithm, our second MMB algorithm works as follows: After
establishing regional leaders, the MMB algorithm runs a version of the basic
greedy MMB algorithm, but using just the leaders. In order to transfer messages
that arrive at non-leader processes to leaders, all the processes run a collect
sub-protocol in parallel with the main broadcast algorithm. The complexity of
the resulting MMB algorithm reduces to O (D + k + bFprog + Fack), a significant
improvement over MMB without the use of leaders.

Finally, to extend our second MMB algorithm to the mobile case, we provide
a preliminary theorem that says that the MMB problem is solved given certain
restrictions on mobility and message arrival rates.

Contributions. The contributions of this paper are: (a) the definition of the
abstract MAC layer, and the suggestions for using it as an abstract layer for
writing mobile network algorithms, and; (b) new algorithms for Multi-Message
Broadcast and Regional Leader Election, and their analysis using the abstract
MAC Layer.

2 Model

We model a Mobile Ad Hoc Network (MANET) using the Timed I/O Automata
(TIOA) formalism. Our model captures n user processes, which we label with
{1, ..., n}, in a mobile wireless network with only local broadcast communication.

2.1 System Components

Our system model consists of three component automata, the network automa-
ton, the abstract MAC layer automaton, and the user automaton, connected as

Fig. 1. The MANET system.

shown in Figure 1. The network automaton models the relevant properties of
the physical world: time, mobile node locations, and physical network behavior.
It provides a physical layer interface for low-level communication on the radio
channel. It outputs the time and mobile node locations; we assume here that
this information is accurate. The network automaton comes equipped with a
pair of functions fG and fG′ that map from states to directed graphs whose
vertices V are the mobile nodes. The graph G = (V, E) = fG(s) is the communi-
cation graph in state s, indicating the processes that are within communication
range in s. The graph G′ = (V, E′) = fG′(s) is the interference graph in state s,
indicating the processes within interference range. We consider communication
separately from interference because in many practical radio network models the
interference range exceeds the reliable communication range.2

The abstract MAC layer automaton mediates the communication of mes-
sages between the user processes and the network. Each user process i interacts
with the MAC layer automaton via MAC layer inputs bcast(m)i and abort(m)i

and MAC layer outputs rcv(m)i and ack(m)i, where m is a message from some
message alphabet. (The abort is used in cases where the sender is satisfied that
“enough” neighbors have already received the message, and so is willing to ter-
minate efforts by the MAC layer to continuing broadcasting.) The abstract MAC
layer automaton connects to the network through the physical layer interface.
Finally, the user automaton models n user processes, numbered 1, . . . , n. Each
process i connects to the MAC layer through the (bcast, abort, rcv, ack) in-
terface described above, and might also receive the network’s location and time
outputs.

2 To capture some physical layer models, notably a Signal to Interference-plus-Noise
Ratio model, we might need to extend our definition of G′ to allow weights on the
edges; that is, capture not just who might interfere but also how much interference
they contribute. We do not make this extension here but leave it as interesting future
work.

2.2 Guarantees for the Abstract MAC Layer

We assume that the user automaton guarantees some basic well-formedness prop-
erties of system executions, namely, that each execution is user-well-formed in
the sense that: (a) it contains at most one bcast event for each message m (all
messages are unique); (b) No process i performs more than one abort(m)i for
any message m, and performs an abort(m)i only after a bcast(m)i but not after
an ack(m)i; and (c) No process submits a bcast until after its previous bcast (if
any) ended with an abort or ack.

The composition of an abstract MAC layer and network automaton, which
we call a MAC layer, must ensure the constraints described below, for any user-
well-formed execution α. To begin, we assume a cause function that assigns to
every rcv(m)j event in α a preceding bcast(m)i event, where i 6= j, and that
assigns to each ack(m)i and abort(m)i a preceding bcast(m)i. This function must
satisfy:

1. Receive correctness: Suppose that bcast(m)i event π causes rcv(m)j event
π′ in α. Then: (a) Proximity: At some point between events π and π′,
(i, j) ∈ E′ (notice, we use the edge set from the interference graph, E′, in-
stead of the edge set from the communication graph, E, because the former
captures edges where communication might occur, while the latter captures
edges where communication is guaranteed to occur); (b) No duplicate re-
ceives: No other rcv(m)j event caused by π precedes π′; and (c) No receives
after acknowledgements: No ack(m)i event caused by π precedes π′;

2. Acknowledgment correctness: Suppose that bcast(m)i event π causes
ack(m)i event π′ in α. Then: (a) Guaranteed communication: If for every
point between events π and π′, (i, j) ∈ E (the edge set of the communication
graph), then a rcv(m)j event caused by π precedes π′; (b) No duplicate
acknowledgements: No other ack(m)i event caused by π precedes π′; and (c)
No acknowledgements after aborts: No abort(m)i caused by π precedes π′;

3. Termination: Every bcast(m)i causes either an ack(m)i or an abort(m)i.

We also impose upper bounds on the time from a bcast(m)i event to its
corresponding ack(m)i and rcv(m)j events. These bounds are expressed in terms
of the contention involving i and j during the broadcast interval. Let frcv, fack,
and fprog be monotonically non-decreasing functions from natural numbers to
nonnegative reals. We use these to bound the delay for a specific message to be
delivered, for an acknowledgement to be received, and for some message among
many to be received, all with respect to a given amount of contention. For many
MAC layer implementations, fprog is smaller than fack, because the time to
deliver some message is smaller than the time to deliver a specific message. Let
ǫa be a small constant, used to bound the amount of time beyond an abort when
the message could still be received somewhere.

We define a “message instance” to be a matched pair of bcasti and acki, or
bcasti and aborti events. Let α be an execution, α′ a closed execution fragment
within α and j a process. Then contend(α, α′, j) is the set of message instances
in α that intersect with fragment α′, and such that (i, j) ∈ E′ at some point in

this intersection, where i is the sender from the instance in question. These are
the message instances that might reach j during α′. Similarly, connect(α, α′, j) ⊆
contend(α, α′, j) is the set of message instances such that α′ is entirely contained
between the corresponding bcasti and acki events and (i, j) ∈ E for the duration
of α′, where i is the sender. These are the messages instances that must reach
j if α′ is long enough. For an execution α and events π and π′, α[π, π′] denotes
the execution fragment within α that spans from π to π′.

We can now formalize our time bounds with the receive, acknowledgment, and
progress properties. These bound the time for a specific message to be received,
a specific message to be acknowledged at the sender, and some message from
among many to be received, respectively.

5. Receive: Suppose that a bcast(m)i event π causes a rcv(m)j event π′ in α.
Then the time between π and π′ is at most frcv(c), where c is the number
of distinct senders of message instances in contend(α, α[π, π′], j). Thus, the
bound for j’s receipt of m grows with the number of nearby processes (in-
coming neighbors, according to G′) that have message instances intersecting
with the instance in question. Also, if π causes an abort(m)i event π′′, then
π′ occurs at most ǫa time after π′′.

6. Acknowledgement: Suppose that a bcast(m)i event π causes an ack(m)i

event π′ in α. Let ackcon be the set containing i and every process j such
that there exists a rcv(m)j with cause π. Then the time between π and
π′ is at most fack(c), where c is the number of distinct senders of message
instances in

⋃

j∈ackcon contend(α, α[π, π′], j). This bound is similar to the
receive bound, except that we now consider the contention at the sender
and at all receivers. This is intended to allow enough time for the receivers
to somehow communicate their receipt of the message back to the sender.

7. Progress: For every closed fragment α′ within α, for every process j, and
for every integer c ≥ 1, it is not the case that all three of the following
conditions hold:

(a) The total time described by α′ is strictly greater than fprog(c); (b) The
number of distinct senders of message instances in contend(α, α′, j) is at
most c, and connect(α, α′, j) is non-empty; and (c) No rcv(m)j event from
a message instance in contend(α, α′, j) occurs by the end of α′.

Thus, the time bound for j to receive some message (when at least one
message is being sent by an incoming neighbor in G), grows with the total
number of processes that are in interference range.

Fixed Bounds on Message Delivery. In some results, we will use constant upper
bounds Frcv, Fack, and Fprog on frcv, fack, and fprog, respectively, all defined
with respect to a particular execution α. These upper bounds take the maximum
values of the functions over all graphs that occur in α and all possible amounts
of contention, as defined by the node degrees that occur in those graphs. In the
design of algorithms, we sometimes use F+

rcv, F+

ack, F+
prog, which are defined with

respect to all executions of a given network automaton.

2.3 Implementing an Abstract MAC Layer

It is beyond the scope of this paper to offer a detailed implementation of an
abstract MAC layer automaton. Here we discuss, only informally, some basic
ideas for implementations with the aim of providing some intuition regarding
the type of concrete definitions our delay functions might adopt in practice. We
consider the simple case where G and G′ are the same for all network states
(that is, the network is static) and undirected, and G = G′. (See [12] for an
example of how a scheme could be adapted to tolerate mobility and transient
faults.) We assume a physical network that corresponds to the slotted radio
broadcast model of [2, 3, 10, 20, 22, 13]. This model assumes that communication
occurs in synchronized slots, and that a message from a sender i is correctly
received by a neighbor j in a time slot s if and only if i is the only neighbor of
j broadcasting during s. The model includes no collision detection—a collision
cannot be distinguished from silence.

In this setting, a simple Decay strategy [2, 3] can be used to implement the
abstract MAC layer. In this approach, time is divided into synchronized epochs
of Θ(log ∆) time slots, where ∆ is the maximum degree in G. A process with
a message to broadcast starts broadcasting at the beginning of the next epoch.
During an epoch, a sending process decreases its probability of broadcasting
exponentially, from 1 to 1/∆. It is guaranteed that every process with at least
one neighbor sending a message during an epoch receives at least one message,
with constant probability. Thus, the progress delay function fprog is O(log ∆)
(with high probability). The receive and acknowledgement delay functions, frcv

and fack, are both O(∆ log ∆).

2.4 Multiple Abstract MAC Layer Automata

To simplify the analysis of multiple user protocols running on the same physical
network, it is sometimes useful to include several independent abstract MAC
automata in the same system. In this scheme, each protocol connects with its
own MAC automaton, all of which connect with the same network automa-
ton. Each MAC automaton satisfies the specifications given above, with respect
to the common network. This approach allows an algorithm designer to prove
properties of the behavior of the individual protocols and assert that they still
hold when the protocols are combined, thus evading issues of contention among
the protocols. Note that there are practical realizations of multiple MAC au-
tomata. For example, most radio-equipped computing devices have access to
many communication frequencies. If a device has several transmitters, it can
execute several simultaneous MAC protocols on independent frequencies. If the
device has a single transceiver and/or access to only a single frequency, it can use
a Time-Division Multiplexing scheme to partition use of the frequency among
the logical MAC layers.

3 Multi-Message Broadcast

The Multi-Message Broadcast (MMB) problem assumes that the environment
submits messages to the user processes at arbitrary times during an execution.
The goal is to propagate every such message to all of the users in the network.
In this section we assume a static network, that is all states generate the same G
and G′ graphs. Furthermore, we assume G = G′ and the graphs are undirected.
We use the notation D(G) to refer to the diameter of graph G.

An MMB protocol for a message alphabet M is a user automaton whose
external interface includes an arrive(m)i input and deliver(m)i output for each
user process i and message m. We say that an execution of an MMB protocol is
MMB-well-formed if it contains at most one arrive(m)i event for each m. (Each
broadcast message is unique). An MMB protocol solves the MMB problem if, for
every MMB-well-formed execution: (a) For every arrive(m)i and every process
j, there is a deliver(m)j ; and (b) For every m and j, there is at most one
deliver(m)j , and it comes after some arrive(m)i.

Our first MMB algorithm is a simple greedy algorithm, inspired by the single-
message broadcast algorithm of Bar-Yehuda et al. [2, 3].

The Basic Multi-Message Broadcast (BMMB) Protocol
Every process i maintains a FIFO queue named bcastq and a set named rcvd.
Both are initially empty. If process i is not currently broadcasting a message
(i.e., not waiting for an ack from the MAC layer) and bcastq is not empty, it
broadcasts the message at the head of the queue. If i receives an arrive(m)i

event it immediately performs a deliver(m)i output and adds m to the back
of bcastq. It also adds m to rcvd. If i receives a broadcast message m from the
MAC layer it first checks rcvd. If m ∈ rcvd it discards it. Else, i immediately
performs a deliver(m)i event, and adds m to the back of bcastq and to the
rcvd set.

Theorem 1. The BMMB protocol solves the MMB problem.

The proof is presented in the full version of this paper [19]. We continue with
a collection of definitions used by our complexity proof. In the following, let α
be some MMB-well-formed execution of the BMMB protocol composed with a
MAC layer.

The get Event. We define a get(m)i event with respect to α, for some arbitrary
message m and process i, to be one in which process i first learns about message
m. Specifically, get(m)i is the first arrive(m)i event if message m arrives at
process i, otherwise, get(m)i is the first rcv(m)i event.

The clear Event. Let m ∈ M be a message for which an arrive(m)i event occurs
in α. We define clear(m) to describe the final ack(m)j event in α for any process
j.3

3 Notice, by the definition of BMMB if an arrive(m)i occurs then i eventually broad-
casts m, so ack(m)i occurs. Furthermore, by the definition of BMMB, there can be
at most one ack(m)j event for every process j. Therefore, clear(m) is well-defined.

The Set K(m). Let m ∈ M be a message such that arrive(m)i occurs in α for
some i. We define K(m) = {m′ ∈ M : an arrive(m′) event precedes the last
deliver(m) event and the clear(m′) event follows the arrive(m)i event}. That
is, K(m) is the set of messages whose processing overlaps the interval between
the the arrive(m)i event and the last deliver(m) event.

The obvious complexity bound would guarantee the delivery of a given mes-
sage m in O(D(G)kFack) time, for k = |K(m)|, as there can be no more than
k messages ahead of m at each hop, and each message is guaranteed to be sent,
received, and acknowledged within Fack time. The complexity theorem below
does better. By separating kFack from the diameter, D(G), instead multiplying
by the smaller progress bound, Fprog. This captures an implicit pipelining effect
that says some message always makes progress in Fprog time.

Theorem 2. Let k be a positive integer and α be an MMB-well-formed execution
of the BMMB protocol composed with a MAC layer. Assume that an arrive(m)i

event occurs in α. If |K(m)| ≤ k then the time between the arrive(m)i and the
last deliver(m)j is at most:
(D(G) + 2k − 2)Fprog + (k − 1)Fack.

Theorem 2 is a direct consequence of the following lemma.

Lemma 1. Let α be an MMB-well-formed execution of the BMMB protocol com-
posed with a MAC layer. Assume that at time t0, arrive(m)i0 occurs in α for
some message m ∈ M and some process i0. Let j be a process at distance
d = dG(i0, j) from the process i0. Further, let M′ ⊆ M be the set of messages
m′ for which arrive(m)i0 precedes clear(m′). For integers ℓ ≥ 1, we define

td,ℓ := t0 + (d + 2ℓ − 2) · Fprog + (ℓ − 1) · Fack.

For all integers ℓ ≥ 1, at least one of the following two statements is true:

(1) The get(m)j event occurs by time td,ℓ and ack(m)j occurs by time td,ℓ+Fack.
(2) There exists a set M′′ ⊆ M′, |M′′| = ℓ, such that, for every m′ ∈ M′′,

get(m′)j occurs by time td,ℓ, and ack(m′)j occurs by time td,ℓ + Fack.

Proofs of Lemma 1 and Theorem 2 are presented in the full version of the
paper [19].

4 Regionalized Networks

Our general model specifies that the network automaton reports node locations,
but does not constrain the geography of these locations or their relationship to
G and G′. Here we define such constraints; we use these to study the leader
election and optimized MMB protocols in Sections 5 and 6, respectively.

Fix L, a set of locations (e.g., points in the plane), R, a set of regions ids, and
reg, a region mapping that maps locations to region ids. Let NR ⊆ N ′

R be two
symmetric neighbor relations among regions in R. We call the graph Gregion =

(R, NR) a region communication graph and the graph G′

region = (R, N ′

R) a region
interference graph. We assume that Gregion is connected and that the maximum
node degree in G′

region is constant.

We define a physical network N to be regionalized (with respect to L, R,
reg, NR, and N ′

R) provided that the following hold. N uses locations in L; in
any particular state of N , let loc(i) denote the location of node i as encoded by
N . Then at any point in any execution of N : (a) If reg(loc(i)) = reg(loc(j)) or
(reg(loc(i)), reg(loc(j))) ∈ NR, then (i, j) ∈ E; and (b) If (i, j) ∈ E′, then either
reg(loc(i)) = reg(loc(j)) or (reg(loc(i)), reg(loc(j))) ∈ N ′

R. That is, if two nodes
are in the same region or neighboring regions in the region communication graph
Gregion, then they must be connected in G, and if two nodes are connected in
G′ then they are in the same or neighboring regions in the region interference
graph G′

region. Thus, Gregion describes which regions must be in communication
range while G′

region describes which regions might be in interference range.

Fixing a Regionalized Network. For Sections 5 and 6 we fix a static network N
that is regionalized with respect to some parameters L, R, reg, NR, and N ′

R.
As in Section 3 we assume that G = G′ and the graphs are undirected. We
also assume that the network occupies every region in every execution. When
we refer to MAC layers in these sections, we implicitly mean MAC layers that
include N . When we refer to any region r, we implicitly assume that r ∈ R.

5 Leader Election

The BMMB protocol does not take advantage of location information. In Sec-
tion 6 we describe a new MMB algorithm, the Regional Multi-Message Broadcast
algorithm, which leverages this information to achieve a better complexity bound.
The Regional MMB algorithm uses a backbone of leaders—one per region of the
regionalized network—that are each elected using a local leader election proto-
col. This leader backbone forms a connected dominating set (CDS), as studied,
for example, in [23, 21, 20, 24, 9]. Our algorithm, however, is simpler than those
in prior work, because we use location information and the abstract MAC layer
masks contention.

An Regional Leader Election (RLE) protocol is a user automaton that has a
leader(r)i and notleader(r)i output for every process i and every region r. Such
a protocol solves the RLE problem for region r by time t if in every execution,
by time t, exactly one process i in region r outputs leader(r)i, and every other
process j in region r outputs notleader(r)j .

We begin by describing the Fast Regional Leader Election (FRLE) protocol
whose complexity depends only on F+

prog (which we typically assume to be much

smaller than F+

ack), and the size of the id space. In the following, let b be the
number of bits needed to describe the id space, and let ǫb be a fixed small

constant. We use this latter value in both leader election protocols to add a
small buffer after the time required to receive a message.4

The r-Fast Regional Leader Election (FRLE) Protocol
In the r-FRLE protocol for some region r, each process i in r behaves as follows.
Let ǫ′a = ǫa + ǫb. Divide the time interval from 0 to b(F+

prog + ǫ′a) into b phases
each of length Fprog + ǫ′a. We associate phase p with bit p of the id space. At
the beginning of phase 1, process i broadcasts the phase number and its id if it
has a 1 bit in location 1 of its id. Otherwise it does not broadcast. After F+

prog

time has elapsed in the phase, if i broadcast and has not yet received an ack,
it submits an abort. At the end of the phase (i.e., ǫ′a time after the potential
abort), i processes its received messages. If i did not broadcast in this phase
yet received at least one message, it outputs notleader(r)i and terminates the
protocol. Otherwise, it continues with the next phase, which proceeds the same
as before with respect to bit position 2. This continues until i terminates with
a notleader(r)i output or finishes the last phase without terminating. In the
latter case, i submits a leader(r)i output.

Theorem 3. For any region r, the r-FRLE protocol solves the RLE problem for
region r by time b(F+

prog + ǫa + ǫb).

FRLE works correctly because it is impossible for all processes that are non-
terminated at the beginning of a phase to submit notleader(r) outputs at the
end of the phase. Moreover, two or more processes cannot survive all b phases to
become leaders, because their ids differ in at least one bit position. The formal
correctness proof is presented in the full version of the paper [19].

We continue by describing the Complete Regional Leader Election (CRLE)
Protocol, which elects a leader in every region. It uses FRLE within each region
and a Time-Division Multiplexing (TDM) strategy to avoid interference among
the FRLE instances. As before, let b be the bits needed to describe the id space.
This protocol uses a minimal-sized region TDMA schedule T defined with respect
to the region interference graph for the regionalized network.5 (Notice, by the
definition of regionalized, |T | = O(1).)

The Complete Regional Leader Election (CRLE) Protocol
In the CRLE protocol each process i behaves as follows. We dedicate b(F+

prog +
ǫ′a) time to each set in T . Process i does nothing until the start of the time
dedicated to the single set in T that contains i. Process i runs the reg(loc(i))-
FRLE protocol during the time interval dedicated to this set. It first adds,
however, a fixed offset to the time input used by FRLE to transform the time
at the beginning of the interval to evaluate to 0, as expected by FRLE.

Theorem 4. The CRLE protocol solves RLE problem for every region by time
Θ

(

b · (F+
prog + ǫa)

)

The proof is presented in the full version [19].

4 This is required by a technicality of the TIOA definition that allows multiple events
to occur at the same time.

5 That is, T describes minimally-sized sequence of sets of region ids such that: (a)
every region id shows up in exactly one set; (b) no set contains two region ids that
are neighbors in the region interference graph.

6 Regional Multi-Message Broadcast

The Regional MMB (RMMB) protocol runs a version of the basic greedy MMB
algorithm over a connected backbone of leaders elected by the CRLE protocol.
To transfer messages that arrive at non-leader processes to leaders, the processes
run a Collect protocol in parallel with the main broadcast algorithm. The com-
plexity of RMMB is just O (D + k + bFprog + Fack), a significant improvement
over Basic MMB. The improvement arises because RMMB confines the propa-
gation of messages to the low-degree backbone of leaders elected by CRLE.

The Regional Multi-Message Broadcast (RMMB) Protocol
The protocol uses three independent MAC automata (see Section 2.4), which
we call the Collect, Leader, and Broadcast MAC automata. We use the Leader

MAC to elect regional leaders using CRLE, the Broadcast MAC to run BMMB
on the leader backbone once CRLE terminates, and the Collect MAC to trans-
fer messages that arrive at non-leaders to the regional leaders. The Collect pro-
tocol runs concurrently with the CRLE and BMMB protocols. Before CRLE
completes, all processes running Collect queue messages in case they are elected
leader. Each process i in region r maintains a broadcast queue and an arrive

queue, both initially empty. It also maintains a leader flag, initially false, and
two sets, delivered and rcvd, both initially empty.
Leader Election: Starting at time 0, process i executes the CRLE leader
election protocol, using the Leader MAC. At the end of the protocol, process
i sets its leader flag to true if and only if it performed a leader(r)i output.
Collect: When an arrive(m)i or rcv((m,r))i event occurs, process i adds the
message (m or (m, r)) to its arrive queue. When i’s arrive queue is non-empty
it does the following. If the element at the head of the queue is a single message
m′, process i removes m′ from the arrive queue, outputs deliver(m′)i, adds
m′ to the delivered set and to the broadcast queue, and propagates m′. Then
it moves on to the next element in the arrive queue. The propagate step
depends on the value of the leader flag: If leader = true, then propagate is
a noop. If leader = false then i broadcasts (m′, r) using the Collect MAC,
and then waits for the corresponding ack((m′, r))i. If the element at the head
of the arrive queue is (m′, r), then i removes (m′, r) from the queue, outputs
deliver(m′)i, adds m′ to the delivered set and to the broadcast queue. (It does
not propagate in this case.)
Broadcast: Process i waits for the fixed amount of time required for the CRLE
protocol to complete. If i has leader = true at this point, then it executes
the BMMB protocol using the Broadcast MAC, using the broadcast queue
maintained by the Collect protocol, and using its delivered set in addition to
the list rcvd used by BMMB to determine when to pass along a message. If i

is not a leader, then for each m received from the Broadcast MAC, if m is not
in the delivered set then it outputs deliver(m)i and adds m to the delivered

set.

The proofs to the following theorems are presented in the full version of the
paper [19].

Theorem 5. The RMMB protocol solves the MMB problem.

For the time complexity, the key observation is that RMMB executes on a
backbone of leaders. So the contention on the broadcast MAC automaton is at
most the maximum degree of G′

region, which is constant, reducing the Fack and
Fprog to constants. For the following theorem, we assume that the rate of arrive
events at each process is O(1/Fack), preventing any process from having more
than a constant number of messages in its arrive queue at once. Let K(m) and
D(G) be defined the same as in Section 3.

Theorem 6. Let k be a positive integer and α be an MMB-well-formed execu-
tion of the RMMB protocol composed with three MAC automata and a network.
Assume that an arrive(m)i event occurs in α. If |K(m)| ≤ k then the length of
the interval between arrive(m)i and the last deliver(m)j is:

O
(

max{b(F+
prog + ǫa), Fack} + D(G) + k

)

.

7 Adapting RMMB for Mobile Networks

In the full version of this paper [19] we describe mobile RMMB—a modification
of RMMB for a mobile setting. In addition to the protocol description, we prove
a preliminary theorem that establishes bounds on RMMB’s message delivery,
under certain mobility constraints. We reproduce the theorem below to provide
intuition regarding the type of results that can be proved in a mobile setting.
(The full details of the protocol, and the proof of theorem, are in [19].)

In the statement below, we assume each process maintains a region exit bound
state variable. This variable contains a time value that is no later than the time
when the process will next exit its current region. We assume that while a process
remains within a region, this value does not change. We say a network is T -stable,
for some nonnegative real T , if and only if every process calculates an exit bound
at least T past the current time upon entering a new region, and for all regions
and for all times there exists at least one process with an exit bound at least T
past the current time. Finally, we use tCF to describe the running time of CRLE
and D to describe the maximum diameter of G in the mobile network.

We obtain the following theorem:

Theorem 7. Let k be a positive integer, Fmax
ack and tmax

CF be nonnegative reals,
and T = (D + 1)2kFmax

ack + kFmax
ack . If we restrict the rate of arrive events

such that no more than k such events happen in any interval of length T , and
consider only regionalized (2kFmax

ack + max{kFmax
ack , tmax

CF })-stable networks with
Fack ≤ Fmax

ack , and tCF ≤ tmax
CF , then the mobile RMMB protocol, executed with

kFmax
ack + tmax

CF passed as the parameter to the mobile leader election sub-protocol,
solves the MMB problem.

8 Conclusion

We presented the abstract MAC layer for MANETs. This service is intended
to be implemented over real MANETs, with high probability. It abstracts the
complexities of programming for this environment—including contention man-
agement and collision behavior—allowing the algorithm designer to focus on the
issues unique to the problem being solved.

This approach generates many interesting open questions. For example, ex-
ploring how we can use the layer to implement basic primitives such as neighbor
discovery and unicast communication, or complex protocols such as spanning
trees and dominating sets. Extensions to the MMB problem, such as calculat-
ing throughput bounds and the cost of sender acks, are also important. Another
direction is to improve the abstract MAC layer formalism itself. We might gener-
alize the G and G′ model to capture the effects of signal to interference-plus-noise
ratios (SINR), or perhaps replace the deterministic delay functions with proba-
bility distributions over the different possible delays. This latter change would
support more advanced analysis of the system’s probabilistic behavior. Finally,
it will prove useful to analyze specific MAC layer strategies for specific radio
network models, providing concrete definitions for the delay functions.

Acknowledgements

We thank those who contributed comments and suggestions towards this project.
In particular, we acknowledge Jennifer Welch and Seth Gilbert for their careful
readings and helpful suggestions, and thank Rotem Oshman and Majid Khab-
bazian for their helpful discussions and comments.

References

1. N. Alon, A. Bar-Noy, N. Linial, and D. Peleg. On the complexity of radio commu-
nication. In Proceedings of the ACM Symposium on Theory of Computing, 1989.

2. R. Bar-Yehuda, O. Goldreich, and A. Itai. Efficient emulation of single-hop ra-
dio network with collision detection on multi-hop radio network with no collision
detection. Distributed Computing, 5:67–71, 1991.

3. R. Bar-Yehuda, O. Goldreich, and A. Itai. On the time-complexity of broadcast in
multi-hop radio networks: An exponential gap between determinism and random-
ization. Journal of Computer and System Sciences, 45(1):104–126, 1992.

4. I. Chlamtac and S. Kutten. On broadcasting in radio networks - problem analysis
and protocol design. IEEE Transactions on Communications, 33(12):1240–1246,
1985.

5. B. S. Chlebus, L. Gasieniec, A. Gibbons, A. Pelc, and W. Rytter. Determinis-
tic broadcasting in unknown radio networks. In Proceedings of the ACM-SIAM

Symposium on Discrete Algorithms, 2000.

6. B. S. Chlebus, L. Gasieniec, A. Gibbons, A. Pelc, and W. Rytter. Deterministic
broadcasting in ad hoc radio networks. Distributed Computing, 15(1):27–38, 2002.

7. A. Clementi, A. Monti, and R. Silvestri. Round robin is optimal for fault-tolerant
broadcasting on wireless networks. Journal of Parallel and Distributed Computing,
64(1):89–96, 2004.

8. A. Czumaj and W. Rytter. Broadcasting algorithms in radio networks with un-
known topology. In Proceedings of the Symposium on Foundations of Computer

Science, 2003.
9. B. Das and V. Bharghavan. Routing in ad-hoc networks using minimum con-

nected dominating sets. In Proceedings of the IEEE International Conference on

Communications, 1997.
10. L. Gasieniec, A. Pelc, and D. Peleg. The wakeup problem in synchronous broadcast

systems. SIAM Journal of Discrete Mathematics, 14(2):207–222, 2001.
11. S. Gollakota and D. Katabi. Zigzag decoding: Combating hidden terminals in

wireless networks. In Proceedings of the ACM SIGCOMM Conference, 2008.
12. T. Hernman and S. Tixeuil. A distributed TDMA slot assignment algorithm for

wireless sensor networks. In Proceedings of the International Workshop on Algo-

rithmic Aspects of Wireless Sensor Networks, 2004.
13. T. Jurdzinski and G. Stachowiak. Probabilistic algorithms for the wakeup problem

in single-hop radio networks. In Proceedings of the Symposium on Algorithms and

Computation, 2002.
14. D. Kowalski and A. Pelc. Broadcasting in undirected ad hoc radio networks. In

Proceedings of the International Symposium on Principles of Distributed Comput-

ing, 2003.
15. D. Kowalski and A. Pelc. Time of radio broadcasting: Adaptiveness vs. oblivi-

ousness and randomization vs. determinism. In Proceedings of the Colloquium on

Structural Information and Communication Complexity, 2003.
16. D. Kowalski and A. Pelc. Time of deterministic broadcasting in radio networks

with local knowledge. SIAM Journal on Computing, 33(4):870–891, 2004.
17. D. R. Kowalski and A. Pelc. Deterministic broadcasting time in radio networks of

unknown topology. In Proceedings of the Symposium on Foundations of Computer

Science, 2002.
18. E. Kranakis, D. Krizanc, and A. Pelc. Fault-tolerant broadcasting in radio net-

works. In Proceedings of the Annual European Symposium on Algorithms, 1998.
19. F. Kuhn, N. Lynch, and C. Newport. The abstract MAC layer. Technical Report,

MIT-CSAIL-TR-2009-021, 2009. http://hdl.handle.net/1721.1/45515
20. F. Kuhn, T. Moscibroda, and R. Wattenhofer. Initializing newly deployed ad hoc

and sensor networks. In Proceedings of the International Conference on Mobile

Computing and Networking, 2004.
21. F. Kuhn, T. Moscibroda, and R. Wattenhofer. Fault-tolerant clustering in ad hoc

and sensor networks. In Proceedings of the IEEE International Conference on

Distributed Computing Systems, 2006.
22. T. Moscibroda and R. Wattenhofer. Maximal independent sets in radio networks.

In Proceedings of the International Symposium on Principles of Distributed Com-

puting, 2005.
23. C. Scheideler, A. Richa, and P. Santi. An o(log n) dominating set protocol for

wireless ad-hoc networks under the physical interference model. In Proceedings of

the International Symposium on Mobile Ad Hoc Networking and Computing, 2008.
24. P.-J. Wan, K. Alzoubi, and O. Frieder. Distributed construction of connected

dominating set in wireless ad hoc networks. Mobile Networks and Applications,
9(2):141–149, 2004.

