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Abstract

Object recognition in the visual cortex is based on a hierarchical architecture, in which specialized brain
regions along the ventral pathway extract object features of increasing levels of complexity, accompanied
by greater invariance in stimulus size, position, and orientation. Recent theoretical studies postulate a
non-linear pooling function such as the maximum (MAX) operation could be fundamental in achieving
such invariance. In this paper, we are concerned with neurally plausible mechanisms that may be involved
in realizing the MAX operation. Four canonical circuits are proposed, each based on neural mechanisms
that have been previously discussed in the context of cortical processing. Through simulations and math-
ematical analysis, we examine the relative performance and robustness of these mechanisms. We derive
experimentally verifiable predictions for each circuit and discuss their respective physiological consider-
ations.
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1 Introduction

Neurophysiological experiments have provided evidence that object recognition in the visual cortex is accomplished
via a predominantly hierarchical system, in which areas farther along the ventral pathway have larger receptive fields
and are selective for increasingly complex stimulus features with increasing invariance with respect to stimulus size
and position (Hubel & Wiesel, 1962; Perrett et al., 1991; Logothetis, Pauls, & Poggio, 1995; Tanaka, 1996; Pasupathy
& Connor, 1999).

Many theories based on neurobiologically plausible mechanisms have been proposed to account for such invariance
properties. One body of theoretical work involves flexible central mechanisms that dynamically adjust stimulus scale
and position selectivity according to the input: an example is the “shifter circuit” (Anderson & Essen, 1987), which
involves saliency-map driven control neurons that mediate interactions between top-down (memory) and bottom-
up (retinal input) sources in order to dynamically alter synaptic strengths so that only a relevant subset of sensory
information is routed through the cortex. However, although there is evidence for such dynamic modulation in a
variety of visual areas (Motter, 1994; Connor, Preddie, Gallant, & Van Essen, 1997; Treue & Maunsell, 1996), it
functions at a time scale too slow to account for the short latencies that are found for object recognition tasks with
short stimulus presentation (Thorpe, Fize, & Marlot, 1996).

Another class of models circumvents this problem by pooling non-invariant feature detectors. The underlying idea
was first postulated by Hubel and Wiesel, which accounts for complex cell invariance with respect to spatial phase
shifts via linear summation of responses of rectifying, phase-sensitive neurons (Hubel & Wiesel, 1962). Fukushima’s
more general, hierarchical Neocognitron network achieves invariant responses via a feedforward, hierarchical network
of alternating layers of adaptive feature detectors and pooling neurons with nonlinear characteristics (Fukushima,
1980). More recently, Riesenhuber and Poggio have reproduced neurophysiological data from area IT using a hierar-
chical network model that combines pooling by linear summation and by MAX (or soft-max) operations (Riesenhuber
& Poggio, 1999b, 1999a).

It is interesting to note that pooling by the MAX operation is computationally equivalent to ”scanning” an image
with a template, which is the basis for many recognition algorithms in computer vision (Riesenhuber & Poggio, 1999b,
2000). Pooling by a MAX operation as opposed to linear summation achieves high feature specificity and invariance
simultaneously (Riesenhuber & Poggio, 1999b). For example, suppose the inputs to the system are activity levels of a
population of simple cell bar-detectors that prefer the same orientation but have receptive fields in different locations.
Then summing from these detectors gives the same response if the input is an oriented bar contained in any one of the
receptive fields, achieving position invariance. However, the response is even stronger if multiple bars (e.g. a grating),
one long bar, or background clutter are present. Taking the maximum of the responses of these feature detectors,
however, solves this problem, because then the system output is solely determined by the response of its most active
afferent. Thus, the MAX operation both preserves feature specificity and achieves invariance in a more robust fashion
than linear summation.

In this paper, we are concerned with how the MAX operation can be implemented neurophysiologically. In addition
to its potential involvement in a variety of cortical processes such as object recognition (Riesenhuber & Poggio, 1999b),
motion recognition (Giese, 2000), and visual velocity estimate (Grzywacz & Yuille, 1990), the MAX operation is
interesting because it is a basic nonlinear operator that can be implemented by simple, neurophysiologically plausible
circuits. In section 2, we give the mathematical definition of the ideal MAX operation, and discuss the theoretical
and experimental context of our work. In section 3, we isolate a small number of neural mechanisms that may be
involved in realizing the MAX operation, and present four highly simplified “canonical” circuits that implement these
mechanisms. In section 4, we present our main simulation results; the relevant mathematical analysis can be found in
the Appendix. In section 5, we propose various neuronal implementations of the computational operations involved in
each of the networks and compare the relative plausibility of these implementations. The lists of plausible mechanisms
are by no means exhaustive, and their verification depends on future data from more detailed experiments, which we
hope this work will inspire. A number of general and model-specific predictions are presented, along with a discussion
on potential experimental frameworks that can be used to verify these predictions. Finally, section 6 gives a summary
of our work, relates our efforts to previous work in neural modelling, and makes suggestions for future directions of
research.
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2 Definitions and Background

The ideal MAX operation is defined as a mapping from an input vector x = [x 1; x2; :::; xn] to an output signal z,
where

z = max
1�i�n

xi = xmax (1)

In particular, the operation should achieve the following properties:

1. Selectivity: The output signal z depends only on the maximum of all the input signals 1, xmax, and not on the
other values.

2. Linearity: The output signal z depends linearly on xmax with a constant gain factor g, i.e. z = gxmax.

The first property is relevant to achieving feature specificity. The second property is important for optimally recovering
information about the strength of the maximal input.

Biological systems can only be expected to implement an approximation to the ideal MAX operation. Likewise, in
most computation models employing the MAX operation, ideal MAX operation behavior is also not strictly necessary.
For example, it has been demonstrated by Riesenhuber and Poggio that the “soft-max” operation is sufficient for
obtaining good simulation results in their model of object recognition (Riesenhuber & Poggio, 1999b). In section 4,
we discuss the conditions under which our models achieve good approximations to the ideal MAX operation.

Two areas of earlier work on neural modelling are closely related to the MAX operation: winner-takes-all (WTA)
and contrast gain control networks.

WTA has been widely studied in the neural networks and VLSI literature (Kohonen, 1995; Lazzaro, Ryckenbusch,
Mahowald, & Mead, 1989; Starzyk & Fang, 1993; Hahnloser, Douglas, Mahowald, & Hepp, 2000), and has been used
to model cortical functions such as the integration of component motions (Nowlan & Sejnowski, 1995) and attentional
selection (Koch & Ullman, 1985; Lee, Itti, Koch, & Braun, 1999). WTA networks select the afferent input with the
largest amplitude, but its output is not required to reflect this amplitude and is often nonlinear or even binary. In general,
WTA networks convey the identity of the “winner neuron” but not its precise amplitude to the downstream cortical
processing areas, whereas the MAX operation communicates the amplitude and not the identity. There are exceptions
among the WTA networks, however, whose output does communicate some information about the amplitude of the
maximal input: Yuille and Grzywacz’s divisive feedback network (Yuille & Grzywacz, 1989) and Hahnloser’s linear
threshold VLSI network (Hahnloser, 1998) both output the maximal input under certain conditions, and Lazzaro et
al’s VLSI network outputs the logarithm of the maximal input (Lazzaro et al., 1989). The main difference between
these previous studies and ours is that both the mechanisms and the functional goals of these previous models are
less biologically motivated. However, the underlying neural substrates of WTA and MAX operations may be similar.
Indeed, some of our implementations are inspired by previously proposed models in the context of WTA.

A second class of neural circuits that is closesly related to the MAX operation is that of contrast gain control
(Reichardt, Poggio, & Hausen, 1983; Carandini & Heeger, 1994; Wilson & Humanski, 1993; Simoncelli & Heeger,
1998). Such circuits make the response of neural detectors independent of the stimulus energy or contrast, thus exhibit-
ing some invariance in stimulus size or intensity. However, typical gain control circuits fail the linearity requirement
because they renormalize all input channels regardless of input amplitude.

3 Canonical Circuits

We present four simple, deterministic “canonical” neural models that implement the MAX operation with well-studied
neural principles and which allow some degree of mathematical analysis. All these circuits can be described as three
layer neural networks with an input layer representing input signals xn, a symmetrically-connected hidden layer that
transforms the input signals into output signals yn in a nonlinear fashion, and an output unit that simply sums the
hidden layer activities: z =

P
i
yi. In biophysiological terms, the inputs correspond to output signals from earlier

stages of sensory information processing, and if these earlier feature detectors have similar response curves in all
feature dimensions but for a small subset, then the output signal would reflect invariance in this subset of feature
dimensions.

The main neural principles explored in our models are:
1Sometimes also referred to as input amplitude in this paper.
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� feedforward vs. recurrent processing

� synaptic (divisive) vs. neuronal (linear threshold) inhibition

� cellular vs. network level of interactions

To help visualize the networks, we provide schematic diagrams of a generic feedforward system and a feedback
system (Figure 1). Readers should note that the circles in these diagrams represent computational units and not nec-
essarily biological neurons, and the lines denote computational interactions rather than dendritic or axonic processes.
Instances of apparent violations of Dale’s Law can be resolved via inhibitory interneurons (Li, 2000), as is apparently
done in the real cortex (White, 1989; Gilbert, 1992; Rockland & Lund, 1983).

3.1 Divisive Feed-Forward (FFN) Circuit

The first circuit is a feedforward network that normalizes each individual input by a sum of signals that are derived
from the inputs by transformation through a strongly nonlinearly increasing function. Similar architectures have been
used to model WTA behavior (Grossberg, 1973; Koch & Ullman, 1985; Fukai & Tanaka, 1997), gain control in the
fly visual system (Reichardt et al., 1983), and the modulatory effects of attention on orientation filters in human vision
(Lee et al., 1999). The normalization can be modelled by divisive shunting inhibition (Naka & Rushton, 1966), which
had been previously proposed as the neural basis of multiplicative “gating” and logical “AND” operations (Torre &
Poggio, 1978; Koch & Poggio, 1989).

The feedforward network “dynamics”2 modelled is given by:

yn =
xnf(xn)

c+
P

m
f(xm)

(2)

z =
X

n

yn (3)

where c is a small positive constant that ensures the normalization factor remains bounded. f(x) is a positive and
strongly nonlinearly increasing function, whose precise form is non-crucial for its functionality 3. If f(x) is sufficiently
convex and therefore sufficiently exaggerates the difference between the maximal input xM and the other inputs, then
f(xM ) dominates the sum, and z � yM � xM . Note that this circuit can be thought of as gating the individual input
signals with the output of a binary winner-takes-all network.

In terms of neurophysiological plausibility of this circuit, two factors stand out: nonlinearity of f(x), and the
matching of f(x) in the numerator and denominator of equation 2. f(x) can be provided by the initial segment of the
current-and-firing-rate relationship of neurons (Koch & Poggio, 1989; Carandini & Ferster, 2000; Ferster & Miller,
2000) or the relationship between current and voltage at electrical synapses (Furshpan & Potter, 1959; Koch & Poggio,
1989). Approximate matching of f(x) is necessary for fulfilling the linearity property of the MAX operation, and can
be achieved either by providing a reproducible relationship between two different neural nonlinearities (f(x) and
xf(x)) or by using one nonlinearity to generate both quantities at the expense of an extra multiplication operation.
Multiplication can be realized either by interneurons with shunting inhibition 4, or by more complex subnetworks of
groups of linear threshold neurons (Salinas & Abbott, 1996). Cascaded multiplicative operations can also be realized
by nonlinear interactions between synapses on a single synaptic tree (Koch, Poggio, & Torre, 1983; Mel & Ruderman,
1998).

3.2 Divisive Feedback (DFB) Circuit

The second circuit is based on recurrent divisive normalization signals, which are derived from the hidden layer
activities rather than from the input signals. Circuits of this type have been used to model gain control in the fly

2As with all of the other models we present, this feedforward network does not model synaptic delay, and so the
dynamics is trivial in the sense that the output immediately and fully reflects the system’s processing of the input.

3A polynomial form of f(x) = x
q was used in our simulations, where q > 1.

4The physiological basis and functional relevance of shunting inhibition have been debated for a long time and
are still topics of current research (Ferster & Jagadesh, 1992; Borg-Graham, Monier, & Fregnac, 1998; Anderson,
Carandini, & D, 2000; Koch & Poggio, 1989; Holt & Koch, 1997).
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Figure 1: FFN and FBN Schematics: (a) Schematic diagram of the feedforward network (FFN). (b) Schematic dia-
gram of the feedback networks (FBN). The solid arrows denote excitatory inputs, while open arrows denote inhibitory
inputs. Circles and lines represent computational units and interactions rather than explicit delineation of neurons and
their processes. The excitatory and inhibitory operations may be either additive or multiplicative.
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(Reichardt et al., 1983) and human (Wilson & Humanski, 1993; Carandini & Heeger, 1994; Simoncelli & Heeger,
1998) visual systems, and in WTA networks (Yuille & Grzywacz, 1989).

The recurrent network dynamics is given by the following equations:

� _yn(t) = �yn(t) +
xnf(yn(t))

c+
P

m
f(yn(t))

(4)

z(t) =
X

n

yn(t) (5)

(6)

where f(x) and c are as for the feedforward circuit, and � is the time constant of the dynamical system 5.
The biophysiological considerations for this model are similar to those for the feedforward version, except the

multiplication of xn

c+
P

f(yn(t))
by f(yn(t)) is more difficult to implement via synaptic mechanisms within a single

neuron. Thus, network mechanisms such as those described by Salinas and Abbott (1996) provide more plausible
explanations for this model. Another difference between the feedback and feedforward normalization model is that the
recurrent dynamics requires some time to reach equilibrium, resulting in comparatively longer input-output latencies
in the feedback model.

3.3 Linear Threshold (LIN) Circuit

This recurrent network uses additive feedback through a half-wave rectifying nonlinearity 6, instead of divisive feed-
back. Intracellular recordings show that the half-wave rectification model provides a good fit for intracellular recording
data (Carandini & Ferster, 2000). Below are the network dynamics equations:

� _yn(t) = �yn(t)� w

X

m

[ym(t)]+ + xn (7)

z(t) = w

X

n

[yn(t)]+

where w > 0 represents the inhibitory strength. Linear threshold networks have a homogeneity property (e.g. Hahn-
loser et al., 2000): rescaling of the input by a factor leads to the rescaling of the responses of the active units in the
hidden layer and the output by the same factor.

The architecture of this network is similar to that of the divisive feedback circuit, where the pooling action could
be mediated by either a dedicated pooling neuron or dendritic trees. However, since the inhibitory signal matches the
network output, this feedback can be provided by the system output rather an extra unit processing the hidden-layer
activities. Networks similar to this model have been proposed to simulate the inhibitory interactions in the limulus
retina (Hartline & Ratliff, 1957), orientation tuning in the visual cortex (Ben-Yishai, Lev Bar-Or, & Sompolinsky,
1995), and gain fields in the parietal cortex (Salinas & Abbott, 1996). Linear threshold models of this type also play
an important role in analog VLSI circuits for the realization of winner-takes-all (WTA) behavior (Lazzaro et al., 1989;
Hahnloser et al., 2000). In particular, Hahnloser et al’s linear threshold model is very similar to our model, except for
the absence of a final summing unit and the exact cancellation of self-inhibition by self-excitation. We will see in the
simulation results section, however, the summing unit significantly improves the networks’ performance. The issue of
the relative strengths of self-inhibition and self-excitation is addressed in our work elsewhere (Giese, Yu, & Poggio,
2001).

5For the divisive feedback circuit, we used f(x) = e
qx.

6For simplicity, we assumed the rectification threshold to be zero.
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3.4 Spiking Feedback (SPK) Circuit

This last circuit uses deterministic, spiking neurons to realize the nonlinearity in the network. A simple, leaky
integrate-and-fire model is used for each hidden layer unit, whose output inhibits all the other units symmetrically:

� _mn(t) = �mn(t)� w

X

m 6=n

ym(t) + xn (8)

yn(t) =
X

k

Æ(t� tk) (9)

z(t) =
X

n

yn(t) (10)

The membrane potential is reset to zero after a spike at time tk:

mn(t
�
k
) = � (11)

mn(t
+
k
) = 0 (12)

where mn(t) is the membrane potential of the n
th hidden neuron at time t, yn(t) is the corresponding spike output

signal, � is the time constant of the membrane, and w is the inhibitory strength.
In the limit of high firing rates, the dynamics of this model is similar to that of the linear threshold model, except

there is no self-inhibition, and the inhibitory nonlinearity is explicitly modeled by the nonlinear membrane potential-
firing rate relationship. In the regime of high firing rate, this model can also be thought of as a spiking implementation
of the Hahnloser (1998) linear threshold model with fixed time constant and instantaneous inhibition. Typically, the
membrane potentials of the most strongly stimulated neurons reach the spiking threshold earlier than the others and
inhibit them from ever reaching the threshold �.

4 Results

In the following we present a number of results from our simulation studies. The relevant mathematical analysis are to
be found in the Appendix. We are interested in how well the networks achieve the linearity and selectivity properties
of the MAX operation. We also analyze the responses of hidden layer and output layer units in the face of noise and
their dependence on network parameters. In all of our simulations, unless otherwise noted, we used 81 input units and
81 corresponding hidden units, plus one output unit. Similarly, assume the input amplitude to be 1 unless otherwise
noted.

4.1 Linearity and Selectivity

One crucial feature of selectivity is that the output of the system, z, should be minimally influenced by the non-
maximal inputs. Regardless of the relative strengths of the input signals, the output should always only depend on
the maximum of the inputs. As the networks were all symmetrically connected, the ordering of the inputs makes no
difference, so we simulated the networks for different classes of inputs with identical amplitude �. The input units
were indexed n = �40; :::; 40

� Gaussian: variance � = 10, mean � = 0

� Ramp: xn = � � (n=80 + 1=2)

� Uniform inputs but for one winner: x0 = �; xn = 0:90 � �; n 6= 0

� Uniform inputs but for two identical “winners”: x(�40) = x(40) = �; x(n) = 0:90 � �; n 6= �40; 40

� Random, iid-distributed inputs drawn from uniform distribution: inputs normalized so that the maximum is �.

Figure 2(a) is a graphical illustration of what the inputs look like. The random inputs are not depicted to avoid clutter.
Figure 2(b) shows the hidden-layer activities of the divisive feedforward network to these same inputs. The network
output, z, as shown in the legend, is very similar for the different types of inputs, indicating the selecitivity property
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of the ideal MAX operation is well-approximated (this was also true for all the other network models under a large
regime of parameter space). Moreover, although the outputs do not always achieve unit-gain, they still appear to
satisfy the linearity property well, as can be seen from the approximately linear response to systematic variation of
input amplitude from 0 to 4:5. The network response to Gaussian and ramp inputs is an interesting illustration of
how the hidden-layer interactions attenuate the input signals nonlinearly: the Gaussian peak is narrower and the ramp
has been transformed into an exponential. The “uniform” inputs represent a worst-case scenario (as we shall see in
the Appendix), while the “2 winner” scenario examines whether any model breaks down when multiple, identical
maximal inputs are present. It is reassuring that the models behave reasonably under both conditions. We also used
“random” inputs to ensure that the networks do not behave especially nicely for smoothly varying or regular inputs.
The “random” inputs were independently generated for each network for each input amplitude. The results are shown
in Figure 2(c)-(f). Note that the scale of the firing rate in the last panel is necessarily arbitrary, but it is not an issue as
we are in any case only concerned with linearity. In this case, we simply summed up the number of spikes for each
unit over the duration of the simulation.

The fact that the networks responded similarly to the different types of inputs is encouraging support for fulfillment
of the selectivity property. However, to test selectivity more systematically, we used uniform inputs and varied the
relative relationship between the magnitude of the non-maximal inputs and the maximal one. Uniform inputs were
chosen because they are easy to vary systematically, and they provide a worst-case scenario for some of the network
models (see Appendix).

The results are shown in Figure 3. For the FFN model, ymax decreases sigmoidally with the magnitude of the
non-maximal inputs, while z approximates xmax well both when the non-maximal inputs are small and large, but dips
at an intermediate value. This dipper is larger and affects a larger range of magnitudes of non-maximal inputs when
q is smaller. A similar effect is seen in the DFB model, except for sufficiently small q, the network breaks down
completely and z varies linearly with the magnitude of the non-maximal inputs. The LIN model performs extremely
well except when all the inputs are approximately equal, in which case all the units are active and the activity pattern
oscillates rather than settling into a stable equilibrium. The SPK model behaves very similarly to the LIN model,
breaking down when all the inputs are approximately equal.

4.2 Strength of Lateral Inhibition

In each of the models, there is a parameter that controls the strength of lateral inhibition: q for the divisive models
and w for the linear threshold and spiking models. In one series of simulations, we varied the strength of inhibition
to examine its effects on linearity (figures not provided, although the values of q and w in figure 2 were chosen to
demonstrate some of the phenomena described below). In general, stronger inhibition lead to better realization of
perfect linearity, while weaker inhibition resulted in poorer performance. In the case of the feedforward network,
the approximation to perfect linearity is poorer for smaller amplitudes than for larger amplitudes. A more rigorous
mathematical treatment of this relationship is given in the Appendix. For the divisive feedback network (DFB), the
linear relationship breaks down for smaller input amplitudes. The point at which this breakdown occurs decreases with
larger inhibitory strength q, for reasons similar to those for the gradual deterioration of performance in the FFN model.
For the linear network, different inputs still lead to linear output, but at slightly different slopes; this effect is can also
be explained by a mathematical analysis presented elsewhere(Giese et al., 2001). The input-output relationship of
the spiking network is also roughly linear. The non-zero x-intercept results from the neurons firing only when the
membrane potential rises above the threshold.

In addition, we examine how each circuit’s output varies explicitly as a function of q or w. As shown in Figure 4,
the input amplitude is recovered almost perfectly by each circuit for a large range of values for q and w. It is especially
interesting that, in general, even though the hidden layer activity depends strongly on the strength of lateral inhibition,
the summed output signal is less affected. For instance, the hidden-layer activity levels differ greatly as a function of
q for the divisive feedforward network, and yet the sum of these hidden units output still recovers the input amplitude
extremely well (Figure 4). Note also that the non-monotonic relationship between activity level and w in the case of
the spiking network correlated closely with the number of active units (units that emitted spikes from time to time
rather than those who were completely suppressed at all times). It will be demonstrated in the mathematical Appendix
why robustness is helped by the final summing operation and also how it depends on q or w.
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Figure 2: Different input types: Panel (a) shows the different input types that were tested, where the maximal input
was 1 in each case. (b) shows the corresponding hidden-layer activities in the FFN (divisive feedforward network )
network. q = 10. The remaining panels show the relationship between z and xmax. (c) FFN: q = 3, (d) DFB (divisive
feedback network): q = 30, (e) LIN (linear threshold network): w = 10, (f) SPK (spiking network):w = 130, output
refers to firing rate.
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Figure 3: Dependence on non-maximal input: For each network, the ratio of non-maximal inputs to maximal input
was varied, while the input amplitude was kept at 1 in all cases. “Sum” refers to the output signal z, while “Max”
refers to the amplitude of the most strongly activated hidden layer unit. (a) FFN, (b) DFB, (c) LIN, (d) SPK. The firing
rate of the spiking network has been normalized to 1 in order to be comparable to the other networks.

10



0 100 200
0

0.5

1

1.5

2

q

D
iv

is
iv

e 
F

ee
df

or
w

ar
d

0 100 200
0

0.5

1

1.5

2

q
D

iv
is

iv
e 

F
ee

db
ac

k

0 100 200
0

0.5

1

1.5

2

w

L
in

ea
r 

T
hr

es
ho

ld

0 100 200
0

0.5

1

1.5

2

w

Sp
ik

in
g 

N
et

w
or

k

Figure 4: Dependence on inhibitory strength: Relationship between output and input amplitude as a function of
inhibitory strength, represented by the parameter q or w. For each value of q or w, each network was simulated to
convergence. The dashed line refers to ymax and the solid line corresponds to z.

11



0 50 100
0

0.5

1

1.5

2

No. Inputs

D
iv

is
iv

e 
F

ee
df

or
w

ar
d

0 50 100
0

0.5

1

1.5

2

No. Inputs

D
iv

is
iv

e 
F

ee
db

ac
k

0 50 100
0

0.5

1

1.5

2

No. Inputs

L
in

ea
r 

T
hr

es
ho

ld

0 50 100
0

0.5

1

1.5

2

No. Inputs

Sp
ik

in
g 

N
et

w
or

k

Figure 5: Number of inputs: The dependence of network performance on the number of inputs, ranging from 2 to
100. The inputs were uniform (magnitude = 0:9) but for one winner (magnitude = 1). FFN: q = 10, DFB: q = 55,
LIN: w = 10, SPK: w = 10. The circles refer to ymax and the triangles refer to z. Note the firing rate of the spiking
network has been normalized to 1 to be comparable to the other models.

4.3 Number of Inputs

In some of the previous models proposed for the realization of the MAX operation or WTA, the performance of the
models were dependent upon the number of inputs. As the number of inputs increased, the system tended to become
increasingly inaccurate in reproducing the maximal input (e.g. Yuille & Grzywacz, 1989). To investigate this issue,
we simulated our networks for different number of input units (2 to 100) and obtained the results shown in Figure
5. Uniform inputs (but for one winner) were used. For the FFN model the amplitude of the hidden-layer behavior
quickly deteriorated in a graded fashion as the number of inputs increased, but z decreased only slightly initially and
then stabilized. For the DFB model, up to a certain number of inputs, there was only one active unit in the hidden layer,
and its activity level (as well as z) reflected xmax. For larger number of inputs, however, all the hidden-units became
active, albeit at a lower level, and z dropped slightly but consistently, indicating the system switched to a different
attractor state (Giese et al., 2001). With a smaller q, this change of state occurs with a smaller number of inputs. In the
LIN and SPK models, the number of inputs did not affect the network behaviour, neither in the hidden-layer nor in the
output unit: the active set of the hidden-layer consisted of a single unit, whose activity reflected the input amplitude
exactly. This last result is consistent with the mathematical result that the linear threshold model and the spiking model
(in the limit of large firing rate) are monostable (see Section 4.5 and Giese et al., 2001). Suppose the system has N
inputs, all but one of them is smaller than the middle one, and the system has been simulated to convergence such that
only the middle one is active. Then adding another unit of sub-maximal magnitude would be the same thing as having
started out with N + 1 units to begin with, if the system were monostable. In this case, adding another sub-maximal
unit should not change the identity or amplitude of the winning hidden unit, since the winning unit would suppress the
new unit so that its activity is below the threshold.
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Figure 6: Noise sensitivity: Standard deviation of output for each network over 50 trials, normalized by the expected
or noiseless output, as a function of the amount of uncorrelated noise (measured in terms of standard deviation from
the noiseless input signal) added independently to each unit in each iteration. Variance of Gaussian input was 10 in all
cases, and q = w = 120.
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Figure 7: Hysteresis: Hysteresis in the spiking model. Initially, higher input to neuron 2 induces it to fire regularly
and suppresses the membrane potential of neuron 1 and prevents neuron 1 from reaching the spiking threshold (the
initial segment of the simulation has been cut off in order to show the latter segment more clearly). As the input to
neuron 1 slowly but steadily increased, while the input to neuron 2 was kept constant, the excitatory input to neuron 1
eventually overcomes the suppression from neuron 2 and neuron 1 starts firing instead. However, this switch does not
take place until long after the relative strength of inputs have swapped, indicating hysteresis.

4.4 Noise Sensitivity

In order to test the robustness of the networks, normally distributed, random noise was added independently to the
input at each iteration. Figure 4.4 shows the result: Noise from 0% to 100% of the input signal was added to the
inputs. In accordance with previous work on recurrent networks, the feedback action performs noise-reduction (Yuille
& Grzywacz, 1989) on uncorrelated noise in the input: the recurrent mean-firing-rate models are more resistant to
noise than the feedforward model. In particular, suppose the acceptable level of output noise is no more than 10%

(for the purpose of downstream decoding), then the feedforward network can tolerate no more than 10% noise in the
input, while the linear feedback network can tolerate up to 40%, and the divisive feedback network can tolerate up to
as much as 60%. Note that the noise behaviour of the spiking model is not directly comparable to the other models,
as the input noise of the spiking model was measured in terms of membrane potential, while the output noise was
measured in terms of firing rate; for all the other models, both the input and output nosie were measured in terms of
mean firing rate. Overall, it is comforting that despite the presence of high-gain amplifiers in the systems, output noise
increases linearly as a function of input noise with acceptably small slope.

14



Prediction / Model FFN DFB LIN SPK

Shunting/gating

cellular implemen-
tation: yes
network imple-
mentation: no

cellular impleme-
nation: yes
network imple-
mentation: no

no no

Homogeneity property no no yes yes
Sparse hidden-layer activation no yes no yes
Hysteresis no yes yes yes

Table 1: Predictions from the different neural mechanisms: FFN: divisive feed-forward, DFB: divisive feedback,
LIN: linear threshold, SPK: spiking mechanism

4.5 Stability and Hysteresis

It can be shown that a Lyapunov function exists for the recurrent models, implying the networks converge to stable
fixed points7. However, the Lyapunov functions have multiple minima, raising the possibility of hysteresis. To in-
vestigate this issue, simple two-hidden-unit versions of the different networks were used: while the input signal of
one hidden unit was kept constant, the input signal of the other neuron was gradually increased from being smaller to
larger than the first one. Hysteresis was found for both models in the appropriate parameter regimes. The feedforward
network is monostable and exhibits no hysteresis. The SPK model is shown empirically to exhibit hysteresis (see
Figure 7(b)).

5 Predictions

As we are interested in how the MAX operation is implemented in the nervous system, we derive from our simulation
and theoretical results a number of predictions which may help guide future experimental research.

The first task is to determine where the MAX operation is actually performed in the brain. It is postulated to be a
fundamental operation involved at many stages of the visual processing system, and possibly may also be found other
modalities (Riesenhuber & Poggio, 1999a). There is already evidence MAX-like mechanisms exist in area V1 (Sakai
& Tanaka, 1997), where the linear response of simple cells and the larger receptive field and nonlinear response of
complex cells make them potential candidates for the input and output units in our models, respectively. Preliminary
data from intracellular recordings in area V1 of anesthetized cats indicate that some of the complex cells’s behaviors
approximate the MAX operation when 2 spots or optimally oriented bars are presented alone or simultaneously at
different separations and contrast levels (Lampl, Riesenhuber, Poggio, & Ferster, 2001). There is also support for the
existence of MAX operation in the inferiotemporal cortex (Sato, 1989).

Another very important question is whether the MAX operation is implemented at a cellular or networks level.
That is, are the computational operations mediated by dendritic/synaptic mechanisms or network dynamics? For the
divisive feedforward and feedback networks, synaptic shunting inhibition is the mostly likely candidate, while mul-
tiplication achieved by dynamic interactions of linear threshold neurons is also plausible (Salinas & Abbott, 1996).
Although the topic of shunting inhibition is still under heated debate, the latest evidence indicate that not only do con-
ductance changes contribute to shunting inhibition, but that they are more prominent in simple cells than in complex
cells (Anderson et al., 2000), in accordance with our hypothesis that pooling from simple cells operates in a MAX-like
fashion in the visual cortex. For the linear threshold and spiking models, network interactions are the prime candi-
dates. To investigate the potential synaptic/dendritic mechanisms, injection of currents or monitoring of excitatory and
inhibitory synaptic currents in conjunction with patch-clamping can be used to tease apart the possibilities (Aksay,
Gamkrelidze, Seung, Baker, & Tank, 2001).

7The DFB model has the following Lyapunov function: L(y) = � log(c+1T
y)+
P

n
(1=xn)

R log f(yn)
0

f
�1(e)d.

A Lyapunov function has also been shown to exist for the LIN model (Grossberg, 1988; Hahnloser, 1998). The same
Lyapunov function also applies to the SPK model in the limit of high firing rate.
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When a neuron or a group of neurons have reliably been confirmed to be involved in a MAX-like operation via
the postulated three-layer architecture, we would then need a set of model-specific predictions to test whether these
neurons implement the MAX operation via a network structure similar to any of our models. Some of these model-
specific predictions are summarized in Table 1, touching upon anatomical, neurophysiological, and computational
aspects of the individual models that we have discussed in this paper.

The active involvement of shunting inhibition or gating would suggest divisive interactions at the synaptic level,
lending more plausibility to the cellular implementation of the divisive feedforward and feedback models. The ho-
mogeneity property was discussed in section 3.3, and is expected to be found for the active hidden units and the
output unit of the linear threshold and spiking models. This can be investigated by manipulating the sensory input
and monitoring the input-output relationship. Sparse hidden-layer activation is expected to be found in models where
MAX-operation-like behaviour is achieved only when there is a single significantly active unit in the hidden unit, as
in the case of the DFB and SPK models (see Figure 4 for simulation results and (Giese et al., 2001) for mathematical
analysis). Hysteresis was discussed in the previous section. If it can be induced in neurons presumably involved in the
MAX operation, then there must recurrent interactions involved.

6 Discussion

In this paper we have reviewed and analyzed a number of neural circuits that provide good approximations to the
MAX operation, which has been proposed to play a significant role in various processes of the visual system. The
MAX operation is interesting because it is an example of a fundamental, nonlinear computational operation that
can be realized with neurophysiologically plausible mechanisms. The circuits were chosen in order to demonstrate
different neural principles for the realization of this computational operation. They are simple enough to allow an
understanding of the underlying parametric dependencies and some mathematical analysis. The neural mechanisms
on which our models are based are also fundamental in models for contrast gain control and winner-take-all, both of
which have already been extensively studied in the context of important cortical processes. Our analysis suggests that
these processes and the MAX operation may share similar or overlapping neural substrates.

From the neurophysiological perspective, it appears that the divisive feedforward network and the linear threshold
model (the spiking model is a variation on the latter) are more plausible than the divisive feedback network. The
divisive feedforward model uses a neurophysiologically less complicated form of shunting inhibition/multiplication
than the divisive feedback model; the linear threshold model uses a standard form of linear threshold feedback, which
has been demonstrated experimentally in many different systems in many different contexts. Moreover, the feedfor-
ward model and the linear threshold model are both superior over the divisive feedback model in that they require
smaller inhibitory gains in order to achieve equivalent proximity to the ideal MAX operation. From the computational
perspective, the divisive feedback network has the advantage over the others in that it is particularly resistant to input
noise. The remaining differences among the models do not lead to immediate support for one model over any other
due to the lack of sufficient experimental data.

This work gives rise to a number of potential directions of future theoretical research. One obvious extension of
the current work is to analyze neurophysiologically more detailed and more realistic models, which could involve
more stochastic descriptions of network dynamics, or biophysiologically more realistic neurons. Another interesting
question is how any of these models may be learned through experience or wired up during development. Mechanisms
similar to those proposed by Fukushima to explain learning in the Neocognitron may be explored (Fukushima, 1980).
The details of these future studies are, however, contingent upon the availability of relevant experimental data that are
yet to be obtained. The simulations and mathematical results from our analysis give rise to a number of predictions,
which can be used to guide future experimental investigations on the MAX operation: where it occurs in the brain,
and which of the four circuits, if any, is actually implemented by the biological system. Although the experimental
demonstration of the different properties predicted by the models is non-trivial, this preliminary theoretical analysis
should be a helpful first step for the preparation of more detailed neurophysiological experiments.
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Appendix

The mathematical discussions in this section are intended to help explain and support the experimental results pre-
sented in section 4. We are mainly interested in how well the networks satisfy the selectivity and linearity properties
of the MAX operation, and the relationship between the hidden layer population activities and the final output.

A Divisive Feedforward Network

Here, we only give a detailed analysis of the case where f(x) = e
qx, since it is a highly tractable model. But the

insight we gain from this example generalize to other examples of f(x).
Without loss of generality, first assume x1 � xi, for all 1 < i � N . Let ai � x1 � xi and assume c� 1, then we

have the following:

z � x1 �

P
i>1 aie

�qai

1 +
P

j>1 e
�qaj

(13)

Let L =
P

i>1
aie

�qai

1+
P

j>1
e
�qaj

, then finding the worst-case performance or the lower-bound on z is equivalent to finding

the maximum for L. Setting the partial derivative of L with respect to each a i to 0, we obtain the following:

qai =

P
j>1 qaje

qaj

1 +
P

j>1 e
�qaj

+ 1 (14)

Notice the right hand side does not depend on i. Therefore the worst case scenario is when all of the sub-maximal
inputs are equal to each other. Let b denote the quantity qa i, and b� denote the value of b that solves Equation 14, then
we have the following:

b
� =

(N � 1)be�b
�

1 + (N � 1)e�b
�

+ 1 (15)

After re-arranging the terms, it turns out b� � 1 is equal to the Lambert W function of (N � 1)e�1. Let a denote the
magnitude of all the non-maximal inputs, such that qa = b

� for a given q, and let L�(q) denote the corresponding
maximal value of L as a function of q, then we have the following:

z
� = x1 � L

�(q) = x1 �
q
�1

1 + (N � 1)�1eb
(16)

Note L�(q) is proportional to a or inversely proportional to q.
Equation 16 implies that both the selectivity and the linearity properties of the ideal MAX operation are better

approximated as q becomes large. More precisely, as q ! 1, L(x; q) ! 0, and z ! xmax, achieving perfect
selectivity and unit-gain linearity. This is the trend we see in Figure 4(b). At the other extreme, if q is small, so that 1
dominates in the denominator of the fraction in L, then L is linear in a. If then a scales with the input amplitude x 1, as
may well be the case, then z is linear in x1. Therefore, even though selectivity monotonically deteriorates with smaller
q, good linearity can still be achieved. Notice how this agrees with simulation results shown in Figure 2(c) and 3(a).
Figure 2(c) shows that the FFN model achieves good linearity with q as small as 3. Figure 3(a) shows that even with q

as large as 20, the model is significantly affected by non-maximal inputs valued around 0:8. The phenomenon that the
dip increases in size and expands toward smaller magnitudes of non-maximal inputs with smaller q is also explained
by the the relationship between the maximal value of L and the product qa. In Figure 5, the slight dip and then the
stabilization or z as a function of N is also explained by equation 16.

To analyze the exact relationship between the maximal response in the hidden layer and the final output, we
examine the following form of y1 in the worst-case scenario:

y
�
i
=

xi

1 + (N � 1) � e�b
�

(17)

We see from this equation that the relative order of the inputs are preserved in the hidden layer: y i � yj if and only if
xi > xj , and yi = yj if xi = xj . Also, since z � x1 and y1 � z, z is always a better estimate of x1 than y1. Equation
17 also explains the sigmoidal decay of y1 as a function of magnitude of non-maximal inputs in Figure 3 and its decay
as a function of N in Figure 5.
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