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Abstract— Testing constraints for real-time systems are usually 1.k = 1; SP, = SP; SA; = SA;
verified through the satisfiability of propositional formulae. In 2 \while ( SP, — SA4, is not a tautology {

this paper, we propose an alternative where the verification .
of timing constraints can be done by counting the number of 3. let SPye, andSAye, be new constraints
SPk+1 = SPlc ©® SPnew;

truth assignments instead of boolean satisfiability. This number 4.

can also tell us how “far away” is a given specification from 5. SAp,1 = SA, ® SApew;
satisfying its safety assertion. Furthermore, specifications and g 1. = 1 1 1; }

safety assertions are often modified in an incremental fashion, 7.5pP - SP SA = SA,:
where problematic bugs are fixed one at a time. To support this - new — ks new — ks

development, we propose an incremental algorithm for counting The satisfiability of the formulaSP,.; — SAj.1 can

satisfiability. Our proposed incremental algorithm is optimalas no . P

unnecessary nodes are created during each counting. This works be expressed incrementally from the satisfiability.SF -
for the class of pathRTL ( [1], [5]). To illustrate this application, 5 A%- The total cost of the new methOdl can be more efficiently
we show how incremental satisfiability counting can be applied achieved through computing the satisfiability of the newly

to a well-known rail-road crossing example, particularly when added or subtracted clauses, according to the operatahen

its specification is still being refined. compared to the old formula, and not from the satisfiability of
Index Terms— Real-time infrastructure and development, tim- the entire new formula. Our method requires the debugging
ing constraint, #SAT problem, incremental computation of the real-time system at step. We correlate this with

the incremental computation for the satisfiability £, —
SAi. Our approach does not require us to re-compile the
) ) ) whole system, as we could incorporate the new constraints
Real-time systems can be defined either by a Structug) re-using most of the older formula. In general, automatic
specification (how its components work) or by a behaviorgbpygging is hard. To assist in this direction, we will provide
specification (showing the response of each component 4nsystematic way of debugging with the help of incremental
response of an internal or external event). A behavioral spegiynting satisfiability. We illustrate this with the well-known
fication often suffices for verifying the timing properties of,j10ad crossing example, used in [2], [3], as case study.
the system. Given the behavioral speciﬁcation of a systempagtime logic (RTL), which is based on a first-order logic
(denoted bySP) and a safety assertion (denoted By) 10 \yith restricted features, was introduced in [4] to capture the
be analysed, the goal is to relate a given safety assertion Wjlfling requirements of real-time systems. The problem of
the system specification [1]. 164 is a theorem derivable o ing the safety assertion from its specification is in general
from SP, then the system isafe If SA is unsatisfiable, \njecidable for the full set of RTL formulas based on the
then the system is inherently unsafe. 454 is satisfiable preghrger Arithmetic. The correctness of a real-time system
under certain conditions, additional constraints may be addeg, pe achieved by computing the satisfiability of an associated
to ensure its safety. Our work is targetted to this scenario Wh_‘?ft%positional formula. We shall consider an RTL class of

we introduce an incremental approach to obtain a modifiggmyas (invented in [1]), with the following restrictions:
safety assertion as theorem, as outlinedlgorithm A below. a) each arithmetic inequalities may involve only two terms

I. INTRODUCTION

Input: SP, SA such that-S A is satisfiable; and an integer constant, where a term is either a variable or a
Output: SP,cw, SA,ew Such that the system is safe; function and
Method: b) no arithmetic expressions that have a function taking an

instance of itself as an argument.
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Despite this, Wang and Mok mentioned that the refutation s behavioral specification (denoted &%) is described in
positive cycles method is believed to be a natural technignatural language [3] as follows:

for reasoning about timing inequalities. Furthermore, they “When the train approaches the sensor, a signal will initiate
presented a polynomial time algorithm for the positive cyclthe lowering of the gate’and “Gate is moved to the down po-
detection. To get the decidability and completeness of the paitlion within 30s from being detected by the sensant “The

RTL, more restrictions have to be added, so that is the cagate needs at least 15s to lower itself to the down position

of semi-periodicaRTL [5]. Informally, this subclass requires The goal of this real-time system is described by the
that the occurrence of every event type exhibits a periodidallowing safety assertions (denoted 8sl):

behavior and has infinitely many occurrences. The advantagesIf the train needs at least 45s to travel from the sensor to the
of this subclass are that the satisfiability problem is decidabigilroad crossing”and “the train crossing is completed within
and the positive cycle detection is complete for the probler0s from being detected by the senstihén “we are assured

In our paper, we consider the refutation by positive cyclhat at the start of the train crossing, the gate has moved down
for the path RTL. Of course, if the real-time system exhibitand that the train leaves the railroad crossing within 45s from
a periodical behavior for every event occurrence, then otire time the gate has completed moving dawn

technique may benefit from the completeness of the positiveLet LP be the propositional logicover the finite set of
cycle detection technique. atomic formulae(known also aspropositional variablgsde-

The class of path RTL formulas is very practical andoted byl = {A;, Ao, ..., A, }. A literalis an atomic formula
expressive ( [1], [3]). For example, it was used to describe tljeositiveliteral), and so is its negatiomégativeliteral). For
timing properties of a moveable control rods in a reactor [Hny literal L, we putL = -Aif L =AandL = Aif L =
and of the X-38, an autonomous spacecraft designed and built. If A is the atomic formula corresponding foor L, then
by NASA as a prototype of the International Space Statiome denoteV(L) = V(L) = A.

Crew Return Vehicle [6]. Any functionS : V — {0, 1} is a structure(known also as

Section Il presents a motivating example in path RTlassignment, substitution, instance, and model) and it can be
Section Il presents preliminary results regardi#§AT prob- unigquely extended ifLlP to F' (this extension will be denoted
lem. Section IV developed our approach for computing thaso byS). The binary vecto(y, ..., y,) is a truth assignment
value of the determinant in an incremental way. This sectidar F overV = {Ay, ..., A, } iff S(F') = 1 such thatS(4;) =
contains the main results (Theorem 4.1, Corollaries 4.1 apd V i € {1, ..., n}. The formula F|},, 4, denotesF' for
4.2), AlgorithmB together with some practical improvementswhich all the occurrences of variabl¢; are replaced byj;.
Subsection V solves the railroad crossing problem throudfhF1, F» € LP then Iy = F, (F; is strongly equivalenvith
an incremental approach. Take note that the debugging If) if S(F1) = S(Fs) for any structureS. We say thatF;
the specification can be achieved by analysing the constraiweakly equivalentvith F, (Fy =,, F5) iff there exists a
graph. The last two sections present related work and concfiructureS such asS(Fy) = S(F»). A formula F' is called
sions. tautologyiff for any structureS, it follows that S(F) = 1.

A formula F' is calledsatisfiableiff there exists a structur&
for which S(F') = 1. A formula F' is called unsatisfiablgor
contradictiol iff F' is not satisfiable.

Real-Time Logic provides a uniform way for the specifica- Any propositional formulag” € LPP can be translated into
tion of relative and uniform timing of events. It is an extenthe conjunctive normal forr{CNF): F' = (L1 1V ... VL1 5, )A
sion of integer arithmetic without multiplication (Presburger.. A(L; 1V ... VL., ), whereL, ; are literals. In this paper,
arithmetic) that adds a single uninterpreted binacgurrence we shall use a set representatibn= {{L1 1, ..., Lin, }, ...,
function, denoted by@ to represent the relationship betweed L, ;, ..., L;,,}} to denote CNF. Any finite disjunction of
events of a system, and their times of occurrence. The equatiiterals is aclause The set of atomic formulae whose literals
@e, i) = t states that the time of the-th occurrence of belong to claus&’ and formulaF are denoted by (C) and
evente is ¢. Let us denoteZ, N and N, the set of integers, V(F), respectively. A formula in CNF (finite set of clauses) is
positive integers, and strict positive integers, respectively. Tballed aclausal formulaSo, the above formula can be denoted
time occurrence function is a mappir@ £ x N — N, asF ={Cy, ..., C;}, whereC; = {L;1, ..., L; »,} (from now
where E is a domain of events, and such th@tis strictly on, ! > 1 is assumed). In this paper, onlyon-tautological
monotonically increasing in its second argument, {@E, clauses (which have no simultaneous occurrences of a literal
i) < @E, i+ 1), for anyi € N. There are no event variables,I, and L) are considered. We say that a cla@eis included
or uninterpreted predicate symbols. So, RTL formulas aiethe clauseC, (denoted byC; C C») iff ¥V L € C; we have
boolean combinations of equality and inequality predicatdsc C,. A finite non-tautological claus€ constructed over
of standard integer arithmetic, where the arguments of theis maximaliff V(C) = V. A clausal formula ismaximal
relations are integer valued expressions involving variablé#, it contains only maximal clauses. We denote thmpty
constants, and applications of the function sym@oUsually, clause the one without any literal, by. A clause with only
there are four classes of events, namely: stop and start evermis literal is called anit clauseA clauseC is calledpositive
(1A and | A denote the start and stop events of the acdon (or negativé iff C contains only positive (or negative) literals.
transition events and external events (prefixed wWijh Coming back to the problem of railroad crossing, we can

To illustrate this, consider the railroad crossing examplexpress it in terms of path RTL, as follows:

Il. MOTIVATING EXAMPLE IN RTL



SP :Vz ( @TrainApproach, ) < @DownGate, ) A |iff there is a finite unsatisfiable set of ground instances of
@| DownGate, ) < @TrainApproach, x)+ 30) A Vy (S and—P; V i € 1,n, where eachP; is the conjunction
@1DownGate, y)+ 15 < @|DownGate, y) ) of inequalities corresponding to the edges in a positive cycle
SA : ¥Vt Yu ( @TrainApproach, t)+ 45 < @7 detected inthe constraint graph fot. The above formulation
TrainCrossing, u) A @] TrainCrossing, w) < permits one to use any method in propositional logic to check
@T'rainApproach, t)+ 60 — @TTrainCrossing, u) > @] for unsatisfiability as positive cycles are detected and the
DownGate, t) N @|TrainCrossing, u) < @|DownGate, appropiate clauses are added to the existing set of clauses.

t)+45) Therefore, F; is satisfiable iff ;4 A {=F; | for all positive
In order to translate into an equivalent Presburger arithmegycle i} is satisfiable.
formula, each@F, 1) is replaced by a functiorfz (7). For ex- The clausal formulaF; contains only positive clauses

ample, @T'rainApproach, ) will be f(x), @ DownGate, corresponding to all edges of the constraint graph, and only
z) will be g1(z), @] DownGate, x) will be go(z), @7 negative clauses corresponding to a positive cycle. Even if
TrainCrossing, u) will be hi(u), @] TrainCrossing, e€ach clause is positive or negative, the CNF satisfiability is
u) will be hs(u), etc. So, the complete translation into théNP-complete [1]. We make the following notations for the

Presburger arithmetic formula becomes: literals: A1 = f(z) < g1(z), Az = g2(z)— 30 < f(z), A3 =
SP:Vx (f(z) <gi1(x) A ga(z) < f(2)+30) AVy (g1(y)+  91(y)+ 15 < ga(y), As = f(T)+ 45 < hy(U), A5 = ha(U)—
15 < ga2(y) ) 59 < f(T), As = ha(U)+ 1 < g2(T), A7 = g2(T)+ 46 <
SA Yt Vu ( f()+ 45 < hi(u) A ha(u) < f(t)+ 60 — h2(U). Therefore,F has the positive clause$A, }, {4},
g2(t) < hy(u) A ha(u) < go(t) +45 ) {As}, {Ad}, {45}, {46, A7}

To show thatSP — SA is a tautology is equivalent to  To use the positive cycles, we have two methoddymamic
proving thatSP A —SA is unsatisfiable. The corresponding®ne and aglobalone. The dynamic algorithm [1] means that
formula for SPA—SA can be translated into CNF and denote@S each new cycle is detected, the corresponding clause is
by Fi, where every literal has the general form=+ I < v,, added to the set of existing ones, and is then checked for
wherevy, v, are function occurrences adde N a constant. unsatisfiability. It if is shown to be unsatisfiable, we can stop
Here is the equivalent CNF form after skolemisififj{¢][U /=] immediately. Otherwise, it is necessary to continue the node

correspond to the-SA part): removal operation until another positive cycle is found. An
SP:VaVy ( f(z) < g1(z) A ga(z)— 30 < f(x) A g1(y)+ €quivalent approach says that we may identify all the positive

15 < ga(y) ) cycles and add all of them tB; from the beginning (no node
~SA ¢ f(T)+ 45 < hi(U) A ha(U)— 59 < f(t) A ( removal is required).

hi(U)+ 1< go(T) V go(T)+ 46 < ho(U) ) Using the second above approach, three positive cycles in

Next, the constraint graph is constructed (Figure 1). F&§i€ constraint graph have been identified (Figure 1) Fgo
each literalv;+ I < vs, two nodes labelled with; andv, has the negative clausefdy, Ay, As}, {As, As, 4g, A7},
are linked by an edgén, v) with weight-+1. Thus, a set of 141, 43, A5, A7}. Of course, the unification of the first-order
inequalities represented by such a graph is unsatisfiable iffegic is applied, e.g. the nodes labelled wiffw) and f(T')
cycle is present in the graph with a positive total weight on &€ considered as one using the substitufibf] ( [1], [3]).

[1]. It is straightforward to show that if all edges involved inf\t the end of Section 1ll, we shall see thaf is unsatisfiable,

a positive cycle in the constraints graph correspond to liter&8 S A ~SA is too. Thus,SP — SA is a theorem, i.e. the
(inequalities) which belong to unit clauses, then must be real-ime system is safe.

unsatisfiable. However, if an edge in the cycle corresponds toVe propose to embed the incremental computation of the
a literal that belongs to a non-unit clause, then it is necesséi§terminant of a clausal formula in the verification of timing
to show that each of the remaining literals in this claugenstraints of a real-time system. This will tell us how “far

corresponds to an edge in a different positive cycle. away” is the current specification from satisfying the safety
assertion. The modification of the specification and/or safety

/ =30 assertions is useful for incremental debugging, in which bugs

in problematic areas are fixed one at a time until the system

f(@) 0 > 91(z) 15 > ga(x) is safe [7]. We choose this approach in order to benefit from

incremental debugging, which includes not re-computing the

f(T) \ 4)6/ 92(T) satisfiability of the whole problem every time.
45 -59 I1l. PRELIMINARY RESULTS

ha(U)
The basic incremental satisfiability problem of propositional
7 (U) logic has been introduced in [8], as followsGiven a propo-
! 1 sitional formulaF, check whethelF’ U {C'} is satisfiable for

a given claus&€”. The algorithm presented in [8] solves the

SAT problem using the Davis-Logemann-Loveland’s proce-
A variation of Herbrand’s Theorem for this approach wadure [9] combined with a backtracking strategy that adds one

presented in [1]. It says thata“setS of clauses is unsatisfiableclause at a time. In [10], a SAT solver able to handle non-

Figure 1. Railroad crossing constraint graph (1)



conjunctive normal form constraints and incremental satisfia-2) the first level contains, in order from the left to right
bility was presented. For efficiency reasons, our techniqueti® sequence of nodes labelled wittC, dify (Cy)), ...,
applied incrementally. The incrementgdSAT problem says (Cj, dify (CY));
that “Knowing the number of truth assignmentsiof what is 3) for a given nodev on the levelk labelled with (C;, ,
the number of truth assignmentsiBfu {C}, for any arbitrary difv(C;,, ..., C;,.)), the levelk + 1 has the following direct
clauseC™. descendants in this order, from the left to the rigid;, +1,

In this section we fix some concepts and notations [11] t& fv (C;,, ..., Ci,, Civ+1)), -, (C1, dify (Cyy,s ...y Cipy C)).
allow the text to be self contained, by including some results The number of nodes of the full clausal tr€@(F), without

and examples. For a finite sef, || denoﬁta.s the number Oftaking into account the “dummy” root, is the total number of
elements ofA. The number of all sets with elements from elements of the sum which occur dfaty (F). This number is

a set withn elements is denoted b§l’), and it is equal to exponential inl, namely(})+ (4) + () = 2/— 1.

(n—niz')‘z” wheren! = 2. 3. ... - n. Remark 3.1:Since dify(C;,, ..., Ci.) = 0 implies
Notation 3.1: Let C1, ..., Cs be clauses ove¥ (s > 1). We dify(Ciy, ...y Ci., Ci..,) = 0, then only the nodes labelled

denote: with (Ciy 41, dify(Ciy, ooy Ciy, Ci)), wheredify (Ciy, ...,

a) WV(Clv oy Cs) = [{A] A eV =V(C1U ... UCy)}; Ci., Ci;) # 0andj € {k +1, ..., I}, are enough to be

b) difv(Ch, ..., Cs) = generated for computing the determinant.

_bD0if (34, j€{l,..,s},i#jsuchasi L e€C;and ~ The tree for which the nodes labelled with are not

LeCyorif(3ie{l,..s} suchasC; =) generated is called therdered labelled reduced clausal tree
b2) 2mv(C1.--Cs) otherwise; . and it is denoted a€'T}.q(F) = (Nyeq, Ereq). The reduced

c) dety(Cy,...,Cs) = oI — S (=1)iFt . > clausal tree has equal or fewer nodes that the full clausal tree.
_ ] j=1 ) 1<i1 <. <45 <s The next example points out an ordered labelled reduced

difv(Ciy, ..., Ci,) is called thedeterminant of the set of ¢j5,s4] tree attached to a particular clausal formula useful for

clauses{C, ..., Cs}. = . computing the determinant.
Because the arguments @ty () can be permuted in any Example 3.1:Let F = {Cy, Cs, Cs3, Cy, C5} be a clausal

order, we may denotécty (F) = dety(Ci, ..., C1), Where tormula overV = {p, ¢, r, t}, whereCy = {p, q}, Cs = {p,

F = {Ci, ..., Ci}. Next, some useful properties of then t}, Cy = {p, 7, 1}, Cy = {q, 7}, andCs = {p, g, 7}. Then
determinant of a clausal formula will be presented. We ShQ‘iVTr(,d(F) is in Figure 2:

how the determinant of a clausal formula will be affected if _

we consider some particular forms of clauses/rules such asp' m

the empty clause, the unnecessary variables rule, the inclusion
rule. Lemma 3.1 will be intensively used in Algorithi® 1: C1,2° Oy, 2| (C3,2'| (C4, 22| [Cs, 2"
described in the next section. \
Lemma 3.1:Let F = {C4, ..., C;} be a clausal formula
over V. Then: 2:(C,2°| C5,2°| (Cy, 2" | (C4, 2°

a) if 34 € {1,...,1}, such asC; =g, thendety (F) = 0;
b) if A is a new atomic variabled ¢ V, and {i4, ..., i5} a
subset of{1, ..., 1}, s € N, then: 31Cy,2°
bl) detVU{A}(Oiu ceey Cis, {A}) = detv(ch, ceey Cz )
C.).

Figure 2. The ordered labeled reduced clausal tree

c) if Ay, ..., A, are atomic variablesp € N, Ay, ..., A

bZ) detVU{A} (Ci17 ceey Cis, {Z}) = detv(0~ ceey
¢ Adding the labels of the even levels and subtracting the

V, thendetyuga,,.. a,}(F) = 2™ dety (F); labels of the odd ones, we obtadiaty (F) = 24— (22+ 21+
d) if C; andC, are two clauses fronf for which C; C Cy, 21+ 224 21)+ (204 204 214 29)— 20 = 6. According to
thendety (F) = dety (F — Cy). Theorem 3.1F' is satisfiable with6 truth assignments

The next result makes the link between the determinant of aIn [13], it is mentioned that the algorithms for counting truth

: e : ssignments have something in common: the more variables
clausal formula and its satisfiability [11]. An equivalent resul .
. i ave both negated and unnegated occurrences, the better is

but proved differently, has also been presented in [12].

Theorem 3.1:(Inverse Resolution Theorem) Lat € LP fche perfo_rmance of t_he algorithms on claus_al formulae. This
: is approximately equivalent to say th@at;..; will have much
over V. Then: fewer nodes tharC'T' (because many nodes in the full tree
() F is unsatisfiable<= dety (F) = 0; y

(i) F is satisfiable < dety (F) # 0. Much more, in this will have their dify, labelled by0). So, the computation of

; . the determinant will be faster in this case.
case there existety (I) number of truth assignments fgr Reconsidering the problem of railroad crossing described

For a systematic computation of the determinant of a clausal Section I, we get thatlety, (F;) = 0, and 91 nodes are
formulafF = {C, ..., C;} overV, itis better to usen ordered generated folCT,.q(F1), whereV; = {A;, ..., A7}.
labelled clausal treeThe full clausal treeCT(F) = (N, E)
associated with” may be inductively constructed: IV. INCREMENTAL COMPUTING OF THEDETERMINANT

1) the zero (ground) level contains only a “dummy” root, SinceCT,..(F) may have an exponential number of nodes
that is an unlabelled node; depending on the number of clausesof whenever a new



clauseC is added, it is better to computenly the nodes which (1) dety(F U F') = dety(F)+ incy(Ciy1, F)+
containC' and not the whole tre€'T,..,(F U {C}). But, the incy (Ciio, FU{Cit1 )+ ... +incy (Ciyr, FU{Ci11}U ...
clausal treeCT,.q(F) attached toF' = {C1, ..., C;} cannot U{Cj;r_1}).
be used directly for incremental computing &ty (F') since b) let us denote byN, N’ the number of nodes of the
the most recent clause (thatds) is spreaded as a leaf in allreduced clausal trees correspondingdty (F), dety (FUF'),
clausal sub-trees @¥'7,..4(F'). Therefore, we need a procedureespectively, and by, 1, Niyo, ..., N;+x the number of nodes
to move the nodes of'T,..q(F) such thatC; appears as a of the reduced clausal incremental trees corresponding to
label only in the most recent clausal sub-tree, and to use they (Ci11, F), incy (Ciyo, FU{Ci+1}), ..., andincy (Ci4k,
(old) value ofdety (F'). Next, the increment of a given clausalF"U{Cj;1}U ... U{Ci+r-1}), respectively. Then the following
formula F' with an arbitrary claus€’ is defined. identity holds:

Notation 4.1: If F' = {C4, ..., C;} is an arbitrary clausal (2) N' = N+ Nj;1+ Nijo+ oo +Npyp.

formula overV and C' is an arbitrary clause ovev’, then Because of the efficiency reasons, the incremental comput-

l
incy (C,F) = > (=1)%+1. > dify(C, Cy, ..., ing theorem is better to be applied only if the clauses from
_ =0 1<i; <. <is <l F’ are new, that i N F = ().
Ci,) is called theincrement of I with clauseC'. Similarly to Theorem 4.1, the decremental computing of the
It returns an integer number representing the number a)é erminant can be proved.
truth assignments which have to be added or substracte orollary 4.1: (decremental computing) Lef = {C;
from the previous value of the determinant. Similar to the ’

. X <., Ci} be a clausal formula oveV and F' = {C;,
determinant, the increment of any clauSeand any clausal C.} be any subset ofF. Then dety(F — F') =

formula F = {Cy, ..., C;} over V can be represented byé;tv(F)_ iney (Cu, F— F')— iney (Cy,, F— F'U{Cy. })—
an ordered labelled clausal incremental tréke full clausal ", " (., F ey (Ci U U {6'2",1}). !
incremental treeCIT(C, F) = (N, E) associated withC' o o b Y
and ' may be inductively constructed:

1) the first level contains the claugéas root, labelled with

The addition of a new claus€ to a given clausal formula
F over the same set of variabl®s will decrease the number
of true assignments, i.éncy (C, F) < 0. The next corollar

(C, difV(C),); points out some situations when the computation of the
2) for a given node on the levelk, wherek > 1, labelled increment can be speed up.

with (Cy, difv(C, Ciy, ..., Cy)), the levelk +1 has the — cogiary 4.2: Let F — {Cy, ..., C}} be a clausal formula
following direct descendants in this order, from the left to th erV. Then:

Aght: (Ciyt1, difv(C, Ciy,s wory Gy, Cin1)), - (CL difv (Cy gy i 4 s an atomic variabled ¢ V, then incygay ({A},
Cir: s Cins C1))- F) = incyoa) ({4}, F) = —dety (F);

The number of nodes of the full clausal incremental trd® If V' is an alphabet such that C V/ and C an arbitrary
CIT(F), is the total number of elements of the sum whichlause ovelt/, thenincy (C, F) = 2IV'I=IVI. iney (C, F);
occur ininey (C, F), thatis1+ ())+ (5) + (1) = 2. c) If C; C Cy theniney (Cq, {Cy, Cs, ..., Ci}) = 0 and

Again, the nodes whoséif are 0 need not be generateddety (C1, Cs, ..., C;) = dety(Cq, Cs, ..., C))+ incy (Ch,
anymore. In other words, at step 2) of the above inductif&s, Cs, ..., Ci});
construction, only the nodes labelled withy;, .1, dify (C, d) If dety(F) = 0 and C an arbitrary clause ovey’, then
Ci,, ..., Gy, Cy;)) are generated, wheree {k +1, ..., I} incy(C, F) =0.
anddifv (C, Cy,, ..., Cy,, Cy;) # 0. We call this tree without

X In the following, we put together all the previous results,
these nodes therdered labelled reduced clausal lncrementﬁ - - C

roviding AlgorithmB which is able to compute the value
tree associated withC' and F' and denote it as’'IT,..q4(C, 9p g /vd P

of the determinant in an incremental manner.
F) - (Nreda E'r‘ed)~

Before presenting the main result of this section, a result Algorithm B
which allows the permutation of the argumentsiofy,, dety

anI(_jch is4n1e'cessary. o Lot — 1O oy Output dety(F) computed in an incremental way and
emma 4.1:(permutation emma). eF - {Cy, th “No/Yes” corresponding to (un)/satisfiability df.
be a clausal formula oveV" and (i1, ..., i) an arbitrary . iboq-

permutation of 1, ...,1}. Thendi fy (C;, , ..., Ci,) = difv (C4, main() {

. Cl), detv(Cil, . C”) = detV(Ch . Cl) andincv(Q l.det=1 F 1 = 0 Vo = 0

Ciyy o Ciy) = iney (C, G, ..., C1), whereC' is an arbitrary ¢ - (int’ o1 i em o Z.’++) {
clause over. 3' if ( C;==n0) ,{ ,

Input: F ={C1,...,C;} a clausal formula (oveV);

In the following, the main result is presented. It allows thé. det = 0; printf( “No, F'is unsatisfiable),Exit}
computation of the determinant of a new clausal formula usitg  Frew = Foia U{Ci}i Vaew = Vora UV(Cy);
the already computed determinant of the old clausal formuB. if ( View '= Vya) det = dets 21V(Ci)=Voual:

Theorem 4.1:(incremental computing) LeF = {C, ..., 7. det =det—dify,., (Ci);
C;} be a clausal formula oveV and letF’ = {Cj;4, ..., 8. if ( i>1&&C; € C;,Vje{l,..,i—1})
Ciyr}, k > 1, be a clausal formula ovér. Then: nc( 1,[C;],2);

a) the following identity holds: 9. Foa = Foew: Void = Vaew: }



10.if ( det > 0) printf( “Yes, F' is satisfiable and has ", at most 10 seconds to cross the railroad” and at the safety

det, " truth assignments); assertion: If the train starts crossing the railroad crossing,
11. else printf( “No, F'is unsatisfiable}; } there were no cars crossing neither from leéir from the
L . . right in the last 5 seconds”. In path RTL, this is expresses as:
St ey e D U gucer, s s @1cet, s v @leck
13. if ( dify,.(le, C;) 1= 0) { .2:2)— 10 < @1CCR, 29). The othe.r sentenpe is translated
14. it odd(evel) det = det — dify,. . (e, C;); into: Yoy @|CCL, v1)+ 5 S @TTra.mC'rossmg, u) A Yoy
15. else det = det + dify,, . (lc, C;); @|CCR, v2)+ 5 < @1TrainCrossing, u).

16. inc(j, lle, C;, level +1) } } This time we denotg the newly obtainﬁa‘P/\ﬂSA with Fs.

i . . As we can see from Figure 3, the new constraint graph has the

Let us point out (informally) the correctness and finitenesg,me positive cycles as the one from Figure 1. Summarizing,
of Algorithm B. First, the value ofdet is 1 and the set of p _ {{A}, {As), {As), {Ad}, {45}, {Ag, A7, Ajo, A},

clauses will be processed one by one according tofthe (4.1 1Ay}, {4, Ay, Ag), {44, A3, Ag, A7}, {A7, A3, A5,
statement between lingsand9. The lines3 and4 underline A7} ) over the set of variableB; = {41, ..., A1 }.

item a) of Lemma 3.1. If the new clause contains more

variables, themet will be multiplied with 2!V (€i)—Voudl at line o
6 (this is due to item b) of Lemma 3.1). Then, at linkand8,
we add théncrement at the old value of the determinant (this | f(x) g1(x) g2()
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is correct due to Theorem 4.1). Actually, li®ecorresponds 0 15

to item c) of Corollary 4.2. f(T) a6 A 92(T)
The proceduranc (i, lc, level) computes thancrement \ /

value of the corresponding clausal sub-tree with ragt 45 _59 ho(U)

starting from the currentevel. The correctness follows from 2

Notation 4.1 (lines12 to 16) and Remark 3.1 (linel3).

The second argument (i.&:) is needed for keeping the path I (U) 1

between the root and the current clause. In general, this lis

is [Ci, Cj,, ..., C}.], wherej,, € {i — 1, ..., 1, 0} for any m(z1) —4% _\

k € {1, ..., s} (the cases = 0 corresponds to the list(]};]). 14 (V2)

We denoted the list data structure using square brackets, so, n2(V1) ~10

[le, C;] means the list obtained by catenating the listvith 10 1 M(z2)

). n2(21) n3(22)

The finiteness of the recursive procedune() is also
obvious, knowing that it corresponds to a depth-first traversal
of a finite tree. Actually, by joining all the clausal sub- To illustrate the idea of incremental computing of the deter-
trees corresponding to the executionin€() , we get an minant, we would like to computéety, (F») usingdety, (F}).
isomorphic tree withCT,..q(F'). This is due to Lemma 4.1 It is obvious that, compared t&}, the formulaF, has four
which allows the re-arrangement of the nodesCtf,.q(F). more variables, two new clauses, and one clause modified.
That is, the direct descendants of a node will not be labell§e may choose to do first either incremental computing or
in the ascending order (i.€}1, Cs, ..., (}) like in CT,..4(F), decremental computing. For simplicity, we apply first Corol-
but in the descending order. This is actually k& ingredient lary 4.1 and then Theorem 4.1. It follows thétty, (F») =
of the incremental computation of the determinant of a clausalty, (F;)+ incy, ( {A4s}, Fi)+ incy, ( {Ao}, F1U {{As}})+

Figure 3. Railroad crossing constraint graph (2)

formula. incv2( {AG, 1477 Alo, All}a Fu {{As}}u {{Ag}})— ichQ(
{As, A7}, F1U {{As}}U {{Ao}}U {{46, A7, A1, A1 }})
V. INCREMENTAL APPROACH FOR THEVERIFICATION OF Instead of calling procedurénc() , Corollary 4.2 will be
A REAL-TIME SYSTEM applied:

According to our notations, the conditionwhile statement ~ b1) From item c) of Lemma 3.1, it follows thatty, (F) =
of Algorithm A can be rewritten adety (SP, A ~SAy) > 0. 0. Now, applying one of the items a) or d) of Corollary 4.2,
This condition can be efficiently evaluated in an incrementéilfollows thatincy, ( {As}, F1) = 0 andincy,( {Ag}, F1U
way using AlgorithmB, based on the value @kt (SP,_1 A {{As}}) = 0;

-SAj_1), for any k > 1. The steps3, 4, 5of Algorithm A b2) Because Ag, A7} C {4s, A7, A1o, A11}, according
can be done by analysing the old and new constraints graplesjtem c) of Corollary 4.2, it follows thaincy, ( {A4s, A7,
according to the new clauses 812, A —SAy,. Avo, Aur}, Fiu {{4s}U {{A49}}) = 0;

In order to see how incremental computing is used, web3) We call procedurénc() only for incy, ( {Ag, A7},
suppose that new events can be added to a given real-tim& {{As}}U {{49}}U {{A4s, A7, A10, A11}}) getting—3
system. For our study-case, let us consider two new ever(generating267 nodes in the associated clausal tree).
CarCrossingLe ft andCarCrossingRight (denoted shortly  Sodety, (F»>) = 3, which means thak?, is satisfiable, hence
asCCL andCCR), with the following additional behavioral the real-time system is unsafe. In our attempt at a systematic
specification: “A car crossing from the lefir right needs debugging of the real-time system, it is easy to see that:



1. It is good to have at least one more negative clause, isoremental clausal trees, except the ones which would have

these correspond to at least one more positive cycle; been created in the non-incremental approach. However, in the
2. This cycle have to contain some of the new literalsyorst case, addition a new clause can double the number of
namely fromV; — V4. new nodes corresponding to the incremental tree. For instance,

Looking at Figure 3, the constraint graph has six newonsiderF = {{4;}, {4z}, ..., {A,}} overV = {44, ..,
nodes (two pairs of nodes can be considered single nodes dug, then CIT,.4({A,+1}, F) has2™ nodes. On the other
to the unification process of the first-order logic). In ordenand, if F is {C, ..., C;}, the best case for incremental
to minimize the determinant, some (negative) clauses shoaldorithm to computeinc(C, F') will be whenV ¢ € {1,
be discovered, i.e. these new nodes should be involved in.al}, 3 L; € C, such thatL; € C;. In this case, the tree
positive cycle. For instance, the starting node of the positive!/T,...(C, F') has only one node, that is the one labelled with
cycle can be considered as the one labelled &ithlV). It (C, dify(C)).
must be possible to continue the path from the nodes labelledrhe practical efficiency of the algorithm can be improved
with 1 (z1) andns(z2), respectively. Going back to the safetyby adopting the numerical coding. First, we will not actually
assertion, we may addf“the gate starts to go down, then ndcreate” any node of the trees, but all the computations needed
car from the leftand the right will start to cross the railroad”. to get the determinant will be done using the same memory.
In path RTL, this is equivalent to sayin@7CCL, v;) < The second improvement is that the computations of powers
@1DownGate, t) and @TCCR, v2) < @TDownGate, t). of 2 can be avoided, by considering just its exponents. For

~30 instance, the boolean formula associated to the X-38 system
/ has aboub0 variables and 00 clauses [6]. So, the variabtit
can be implemented as an integer or boolean array, knowing
f(x) 0 g1(z) 5 92(2) that its value is betwee and 2!V! (details in [14]).
£(T) 91(T) 2(T) The improvements of AlgorithnB can be considered:

a) Algorithm B refers to the addition of only one clause at
a time. According to Theorem 4.1, it is possible to deal with
the new clauses in parallel (by treating all of new clauses at
the same time, and not sequentially).

b) Algorithm B works only for adding clauses, but not for

m (Vi) their removing. However, AlgorithnB can be easily adapted
(1) to deal with the removal of the clauses using Corollary 4.1.
A (V) The clausal formulaF = {Cy, ..., C;} is said to be
% V. uniformly random generatedith the probabilityp = (p1, pa,
772( 1) 773( 2) ~10 . . L2
—10 _ ] m(z2) 1— p1— po) if in any clauseC;, any literal L appears positive
n2(21) n3(22) or (exclusive) negative, with the probabiligy, respectively
pa2, Or does not appear i@d; with the probabilityl— p;— ps.
Figure 4. Railroad crossing constraint graph (3) We have implemented the determinant and the increment

. . o computation algorithms. We did some experiments on the time
With the two new negative clauses, two new positive cycles ; . :
— — —— —— §pend by the incremental computing of the determinant. For

(Figure 4) will be generated, nameli, = {4,, 43, As, Ao, simplicity, we considered only the addition of two new clauses
- = - to the initial clausal formuld” = {C1, ..., C;} over the same
denoteCi = {Aio}, Cis = {A1s}, andVs = { Ay, o Arshy (ot o6 variabled) — {A,, ..., A,}. Moreover, we suppose that
and the new clausal formuley = FoU {C12, Ci3, C14, Ci5}. . ; ! 1
o . : ; ._the probability of the literals in the clauses equals{fg, 5,
This time, only incremental computing theorem is used sincg 10

we have only added some clauses. Applying Theorem 4.1, W helfuorcslh;rt, (ch,e de;;“g%%&fu ;r%gl}; {?é+2});g
_ TN - red 1 red\“I+1, red? red\“I4+2,

get dety, (Fs) = dety,(Fy)+ incy,(Cra, Fa)+ incy,(Cls, {Ci11}) by CITZ2 . Our testing instances refer to different
Fy U{Cr2})+ incy, (Cha, FoU {C12}U {C13})+ incy, (Cs,

red-
FU {C12}U {C13}U {C14}). According to item c) of Lemma values for(n, 1).

3.1, becauséVs| = |Va| + 2 (two new variables were added), CTS" CTyea(F)

it follows that dety, (F3) = 22 - dety, (F») = 12. Computing (n,1) Number | Time | Number | Time
the four increments involved, we gétty,(Fs) = 12— 6— of nodes| (sec.) | of nodes| (sec.)
3— 2— 1 = 0. This means thaF} is unsatisfiable, and hence | (10,20) 28831 0.16 | 12655 0.06
the safety of the revisited solution. (15,25) 70255 0.37 | 17799 0.13
(20,40) | 136714 | 3.32 | 99671 | 2.48

VI. EXPERIMENTAL RESULTS OFALGORITHM B (25,45) 78468 2.18 | 49800 1.50

This subsection is devoted to an efficient implementation, a (30,60) 178531 | 7.70 | 141663 | 6.03
well as the experimental results of our incremental approach/| (40,75) 150693 | 11.64| 111837 | 8.77
ltem b) of Theorem 4.1 says that the incremental computa4 (50,100) | 312276 | 39.26 | 268790 | 33.57
tion of the determinant of a formula containing new clauses| (100,200) | 2258144 | 2147 | 2080358 1992

is optimal That is, no new nodes are created in the new Table 1. The non-incremental approach
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n, umber | Time umber | Time

of nodes| (sec.)| of nodes| (sec.) In this paper, we embedded the incremental computation
(10, 20) 1760 0.01 | 14416 0.05 of the determinant of a clausal formula in the verification of
(15, 25) 17800 | 0.11 | 34656 | 0.21 timing constraints of a real-time system. We considered the
(20, 40) 19832 039 | 17211 041 well-known example of the railroad crossing. The debugging
(25,45) 6258 016 | 22410 071 of the new specification can be done manually. An open
(30, 60) 12700 083 | 24168 128 problem is to do this process in an automatic way when
(40, 75) 13667 142 | 25189 519 analysing the constraint graph. .
(50,100) | 3701 067 | 39785 566 We thank to the unknown referees _for _thelr very useful
(100,200) | 165867 | 144 | 11919 3048 remarks, suggestions and comments which improved the paper.

Table 2. The incremental approach
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