
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2013-006 April 11, 2013

Task-Structured Probabilistic I/O Automata
Ran Canetti, Ling Cheung, Dilsun Kaynar, Moses
Liskov, Nancy Lynch, Olivier Pereira, and Roberto Segala

Task-Structured Probabilistic I/O Automata ∗

Ran Canetti
IBM T.J. Watson Research Center

Ling Cheung
MIT and Radboud University of Nijmegen

Dilsun Kaynar
Carnegie Mellon University

dilsunk@cmu.edu

Moses Liskov
College of William and Mary

Nancy Lynch
MIT

Olivier Pereira
Université catholique de Louvain

Roberto Segala
University of Verona

May 28, 2009

Abstract

Modeling frameworks such as Probabilistic I/O Automata (PIOA) and Markov Decision Processes per-
mit both probabilistic and nondeterministic choices. In order to use these frameworks to express claims
about probabilities of events, one needs mechanisms for resolving nondeterministic choices. For PIOAs,
nondeterministic choices have traditionally been resolved by schedulers that have perfect information about
the past execution. However, these schedulers are too powerful for certain settings, such as cryptographic
protocol analysis, where information must sometimes be hidden.

Here, we propose a new, less powerful nondeterminism-resolution mechanism for PIOAs, consisting of
tasks and local schedulers. Tasks are equivalence classes of system actions that are scheduled by oblivious,
global task sequences. Local schedulers resolve nondeterminism within system components, based on
local information only. The resulting task-PIOA framework yields simple notions of external behavior and
implementation, and supports simple compositionality results. We also define a new kind of simulation
relation, and show it to be sound for proving implementation. We illustrate the potential of the task-PIOA
framework by outlining its use in verifying an Oblivious Transfer protocol.

∗This paper presents an extension of the task-PIOA theory first introduced in [CCK+05a]. This extension is used in [CCK+05b,
CCK+06c] to carry out a computational analysis of an Oblivious Transfer protocol. An earlier version of the current paper appears
as [CCK+06a] and an extended abstract appears as [CCK+06b].

1

1 INTRODUCTION 2

1 Introduction
The Probabilistic I/O Automata (PIOA) modeling framework [Seg95, SL95] is a simple combination of
I/O Automata [LT89] and Markov Decision Processes (MDP) [Put94]. As demonstrated in [LSS94, SV99,
PSL00], PIOAs are well suited for modeling and analyzing distributed algorithms that use randomness as a
computational primitive. In this setting, distributed processes use random choices to break symmetry, in solv-
ing problems such as choice coordination [Rab82] and consensus [BO83, AH90]. Each process is modeled
as an automaton with randomized transitions, and an entire protocol is modeled as the parallel composition
of process automata and automata representing communication channels.

This modeling paradigm combines nondeterministic and probabilistic choices in a natural way. Nondeter-
minism is used here to model uncertainties in the timing of events in an unpredictable distributed environment.
It is also used for modeling distributed algorithms at high levels of abstraction, leaving many details unspec-
ified. This in turn facilitates algorithm verification, because results proven for nondeterministic algorithms
apply automatically to an entire family of algorithms, obtained by resolving the nondeterministic choices in
particular ways.

In order to formulate and to prove probabilistic properties of distributed algorithms, one needs mecha-
nisms for resolving nondeterministic choices. The most common mechanism is a perfect-information event
scheduler, which has access to local state and history of all system components and has unlimited compu-
tational power. Thus, probabilistic properties of distributed algorithms are typically asserted with respect to
worst-case, adversarial schedulers who can choose the next event based on complete knowledge of the past
(e.g., [PSL00, Seg95, SL95, BK98]).

One would expect that a similar modeling paradigm, including both probabilistic and nondeterministic
choices, would be similarly useful for modeling cryptographic protocols, which are special kinds of dis-
tributed algorithms that use cryptographic primitives and that guarantee properties such as secrecy and au-
thentication. However, the traditional probabilistic and nondeterministic modeling paradigm does not readily
apply to cryptographic protocols. One major reason is that the perfect-information scheduler mechanism used
for distributed algorithms is too powerful for this setting. In the presence of nondeterminism (or entropy) the
schedulers that are used to resolve nondeterminism may be exploited to create additional channels of in-
formational flow. A scheduler that has perfect information of the history would be able to access sensitive
information in the states of the non-corrupted protocol participants such as their random choices, and be able
to “divulge” that information to adversarial entities by encoding it in the ordering of events.

Most existing works on cryptographic protocol verification address this issue by requiring that all entities
are fully specified up to inputs and coin tosses. This solution does not scale well to large protocols that
handle implementation issues explicitly, because a full specification would involve many details that are
irrelevant in the security analysis. In this paper, we take a different approach: instead of restricting the
presence of nondeterminism, we try to find less powerful mechanisms for resolving nondeterminism. The
result is an adaptation of PIOAs called task-PIOAs. In this new framework, cryptographic protocols may
be specified with nondeterminism, yet without the danger of introducing semantic inconsistencies such as
hidden information flow. Using this flexibility, one can simplify the description of practical protocols by
leaving inessential choices unspecified. Furthermore, with the help of proof techniques such as probabilistic
simulation, these inessential choices may remain unspecified throughout the entire correctness analysis.

Task-PIOAs A task-PIOA is simply a PIOA augmented with a partition of non-input actions into equiva-
lence classes called tasks.1 A task is typically a set of related actions that perform the “same kind of activity”
in a protocol. For example, in a protocol with several rounds of message exchange, all the actions that send a
round 1 message (with possibly different message contents) would constitute a task. Similarly, if a protocol
involves a step in which a random choice is made from a particular domain, we could group all the actions
that make a random choice from that domain (yielding possibly different values) into a task.

Tasks are units of scheduling, as for I/O automata; they are scheduled by oblivious, global task schedule

1The terminology of “tasks” and “task partition” traces back to the original I/O Automata framework of Lynch and Tuttle [LT89].

1 INTRODUCTION 3

sequences. We think of a task schedule as simply a way of representing the order in which different system
activities happen to occur. This order can be determined, for example, by variations in speeds of different
system components, or by unpredictable network delays, rather than by a purposeful scheduler entity. This
simple, non-adaptive task schedule mechanism eliminates the problem of creating undesirable channels of
information flow through schedulers. At first sight, it may seem that our task schedules are insufficient to
describe adversarial scheduling patterns of the kind that occur in security protocols. However, we model such
patterns in a different way, which we explain in detail later in the paper.

For task-PIOAs, we define notions of external behavior and implementation, by adapting the trace dis-
tribution semantics of Segala [Seg95] to task-based scheduling. We define parallel composition in the usual
way and show that our implementation relation is compositional. We also define a new type of simulation re-
lation, which incorporates the notion of tasks, and show that it is sound for proving implementation relations
between task-PIOAs. This new definition differs from simulation relations studied earlier [SL95, LSV03], in
that it relates probability measures rather than states.

In many cases, including our work on cryptographic protocols (see below), tasks alone suffice for re-
solving nondeterminism. However, for extra expressive power, we define a second mechanism called local
schedulers, which uses local information only to resolve nondeterminism within system components. This
mechanism is based on earlier work in [CLSV06].

Task-PIOAs are clearly suitable for modeling and analyzing cryptographic protocols; they may also be
useful for other kinds of distributed algorithms in which the perfect information assumption is unrealistically
strong.

Adversarial Scheduling The standard scheduling mechanism in the cryptographic community is an adver-
sarial scheduler, namely, a resource-bounded algorithmic entity that determines the next move adaptively,
based on its own view of the computation so far. Clearly, this is weaker than the perfect-information sched-
uler used for distributed algorithms. It is however stronger than our notion of global task schedule sequences,
which are essentially oblivious schedulers that fix the entire schedule nondeterministically in advance.

In order to capture the adaptivity of adversarial schedulers within our framework, we separate scheduling
concerns into two parts.

1. The adaptive adversarial scheduler is modeled as a system component represented as a task-PIOA,
for example, a message delivery service that can eavesdrop on the communications and control the
order of message delivery. Such a system component has access to partial information about the exe-
cution: it sees information that other components communicate to it during execution, but not “secret
information” that is found only in the internal state of these components.

2. Low-level scheduling choices are resolved by a task schedule sequence that is chosen nondeterministi-
cally in advance. For example, in a typical protocol, many different parties make independent random
choices, and it is inconsequential which of them does so first. Each of these coin tosses would corre-
spond to a single task, which does not contain any information about the actual outcome of the coin
toss. A task schedule then fixes a particular order in which the different coin tosses occur.

In short, the high-level adversarial scheduler is responsible for choices that are essential in security anal-
ysis, while the low-level schedule of tasks resolves inessential choices. We believe this separation is concep-
tually meaningful and we illustrate it with a small example in Section 3, where an adaptive adversary uses
eavesdropped information to gain advantage. This confirms that adaptive adversarial scheduling can indeed
be captured in the task-PIOA framework.

Cryptographic Protocol Analysis In [CCK+05b, CCK+06c], we apply the task-PIOA framework to an-
alyze the Oblivious Transfer (OT) protocol of Goldreich et al. [GMW87]. This framework can be decom-
posed into two “layers”: (i) a general foundational layer, not specific to security protocols and (ii) a security
layer that follows the general outline of simulation-based security [GMR85, GMW87, GL90, Bea91, MR91,

2 PRELIMINARIES 4

PW94, Can95]. Task-PIOAs serve as the basis of the foundational layer. To express computational limita-
tions, we augment task-PIOAs with additional structures, such as probabilistic Turing machines responsible
for computing a next state from any given source state and action. This leads to the notions of time-bounded
task-PIOAs and approximate implementation with respect to time-bounded environments. These are used, for
example, to express computational indistinguishability assumptions for cryptographic primitives. Detailed
definitions involving time bounds are beyond the scope of this paper. However, for those readers interested in
our modeling, we provide a summary of the OT case study in Section 5. An abstract of our general approach
to cryptographic protocol modeling can be found in [CLK+06].

We observe that, although our correctness proofs for OT are somewhat lengthy, most of the complexity
lies in the establishment of simulation relations between specifications at various levels of abstraction. This is
consistent with the fact that we use nondeterminism to model implementation freedom (e.g., whether to toss a
coin before or after an expected input arrives). Our correctness claims are guaranteed to hold, no matter how
an implementer chooses to resolve such choices. Therefore, our modeling is more general than typical models
in the literature, where low-level nondeterministic choices are fixed and hard-coded into specifications (e.g.
the OT model of [MMS03]).

The correctness theorem that we used in our analysis of OT, stated in terms of our approximate imple-
mentation relation, follows the idea of simulation-based security. For that analysis, we use a composition
theorem that applies to a constant number of substitutions. In [CCK+07] we generalize this composition
theorem to any polynomial number (in the security parameter) of substitutions.2 This result complements
the fundamental theory of task-PIOAs presented in this paper in that it allows modular (and hence scalable)
analysis of cryptographic protocols.

Aside from the OT case study, we have also proposed a novel approach for verifying statistical zero-
knowledge (SZK) properties [CMP07]. This approach uses recently developed techniques based on approx-
imate simulation relations [ML07]. Specifically, statistical indistinguishability is formulated as an imple-
mentation relation in the Task-PIOA framework, which can then be proven using approximate simulation
relations. This technique separates proof obligations into two categories: those requiring probabilistic rea-
soning, as well as those that do not. The latter is a good candidate for mechanization. We illustrate the
general method by verifying the SZK property of the well-known identification protocol proposed by Girault,
Poupard and Stern [GPS06].

The Task-PIOA framework was also used by Nagao et al. [NMO08] in order to compare three crypto-
graphic channels. While these channels were proven to be equivalent in a purely probabilistic communication
model widely used in cryptography, the analysis of Nagao et al. [NMO08] shows that this equivalence only
holds under a very specific subclass of schedulers as soon as nondeterminism is considered.

1.1 Road Map
Section 2 presents mathematical preliminaries, as well as basic definitions and results for PIOAs. Section 3
defines task-PIOAs, task schedules, composition, and implementation, and presents a compositionality result
for implementation. Section 4 presents our simulation relation definition and the associated soundness the-
orem, as well as an example that illustrates the use of simulation relations. Section 5 summarizes our OT
protocol case study. Section 6 discusses local schedulers and Section 7 treats related work in greater detail.
Concluding remarks follow in Section 8.

2 Preliminaries

2.1 Notation for Sets and Sequences
We write R≥0 and R+ for the sets of nonnegative real numbers and positive real numbers, respectively.

2The polynomial composition is proven for a slightly stronger variant of our approximate implementation relation ≤neg,pt.

2 PRELIMINARIES 5

Let X be a set. We denote the set of finite sequences and infinite sequences of elements from X by X∗

and Xω , respectively. If γ is a sequence, then we write |γ| to denote the length of γ. We write λ to denote
the empty sequence (over any set).

If γ ∈ X∗ and γ′ ∈ X∗ ∪ Xω , then we write γ _ γ′ for the concatenation of the sequences γ and
γ′. Sometimes, when no confusion seems likely, we omit the _ symbol, writing just γγ′. We also write
γ1γ2 . . . γi for the concatenation of i sequences and we extend the notation to infinite concatenations.

2.2 Probability Measures
Basic Definitions A σ-field over a set X is a set F ⊆ 2X that contains the empty set and is closed under
complement and countable union. For a set C ⊆ 2X , we call the σ-field generated by C the smallest σ-field
F ⊆ 2X that includes C, that is, such that C ⊆ F . A pair (X,F) where F is a σ-field over X , is called a
measurable space. A measure on a measurable space (X,F) is a function µ : F → [0,∞] that is countably
additive: for each countable family {Xi}i of pairwise disjoint elements of F , µ(∪iXi) =

∑
i µ(Xi). A

probability measure on (X,F) is a measure on (X,F) such that µ(X) = 1. A sub-probability measure on
(X,F) is a measure on (X,F) such that µ(X) ≤ 1.

A discrete probability measure on a set X is a probability measure µ on (X, 2X), such that, for each
C ⊆ X , µ(C) =

∑
c∈C µ({c}). A discrete sub-probability measure on a set X , is a sub-probability measure

µ on (X, 2X), such that for each C ⊆ X , µ(C) =
∑
c∈C µ({c}). We define Disc(X) and SubDisc(X) to

be, respectively, the set of discrete probability measures and discrete sub-probability measures on X . In the
sequel, we often omit the set notation when we refer to the measure of a singleton set.

A support of a sub-probability measure µ on (X,F) is a measurable set C such that µ(X − C) = 0. If
µ is a discrete sub-probability measure, then we denote by supp(µ) the set of elements that have non-zero
measure (thus supp(µ) is a support of µ). We let δ(x) denote the Dirac measure for x, the probability measure
that assigns probability 1 to {x}.

Given two discrete measures µ1, µ2 on (X, 2X) and (Y, 2Y), respectively, we denote by µ1 × µ2 the
product measure, that is, the measure on (X × Y, 2X×Y) such that µ1 × µ2(x, y) = µ1(x) · µ2(y) for each
x ∈ X , y ∈ Y .

Measurable Functions A function f : X → Y is said to be measurable from (X,FX) → (Y,FY) if the
inverse image of each element of FY is an element of FX ; that is, for each C ∈ FY , f−1(C) ∈ FX where
f−1(C) is the set of elements x such that f(x) ∈ C. Note that, if FX is 2X , then any function f : X → Y
is measurable from (X,FX)→ (Y,FY) for any FY .

Given measurable function f from (X,FX)→ (Y,FY) and a measure µ on (X,FX), the function f(µ)
defined on FY by f(µ)(C) = µ(f−1(C)) for each C ∈ FY is a measure on (Y,FY) and is called the image
measure of µ under f . If FX = 2X , FY = 2Y , and µ is a sub-probability measure, then the image measure
f(µ) is a sub-probability measure satisfying f(µ)(Y) = µ(X).

Combination of Measures, Flattening If {µi}i∈I is a countable family of measures on (X,FX) and
{pi}i∈I is a family of non-negative values, then the expression

∑
i∈I piµi denotes a measure µ on (X,FX)

such that, for each C ∈ FX , µ(C) =
∑
i∈I pi · µi(C). In particular, if all the µi’s are sub-probability

measures and
∑
i∈I pi ≤ 1, then

∑
i∈I piµi is a sub-probability measure; furthermore, if all the µi’s are

probability measures and
∑
i∈I pi = 1, then

∑
i∈I piµi is a probability measure. We state and prove an

elementary property of measurable functions and summation.

Proposition 2.1 Let {µi}i∈I be a family of sub-probability measures on (X,FX), and let {pi}i∈I be a family
of non-negative values. Let f be a measurable function from (X,FX) to (Y,FY). Then f(

∑
i∈I piµi) =∑

i∈I pif(µi).

Proof. Let C be an element of FY . Then

f(
∑
i∈I

piµi)(C) = (
∑
i∈I

piµi)(f−1(C)) =
∑
i∈I

piµi(f−1(C)) =
∑
i∈I

pif(µi)(C),

2 PRELIMINARIES 6

where the first and last steps follow by definition of image measure, and the second step follows by definition
of
∑
i∈I piµi. 2

Sometimes, rather than denoting explicitly all µi’s and pi’s, we consider a discrete probability measure η
on the set of measures on (X,FX), and define a new measure flatten(η), called the flattening of η, as

flatten(η) :=
∑

µ∈supp(η)

η(µ)µ.

We also say that η is a decomposition of flatten(η), in the sense that flatten(η) can be expressed as the
convex combination of the measures in supp(η). Observe that, since the η-measure of any element outside
supp(η) is 0, we can take the sum over arbitrarily larger sets. Thus, in the specific case where FX = 2X , we
can compute safely flatten(η) as

∑
µ∈Disc(X) η(µ)µ. When we need to reason with flattened measures, we

choose the expression that appears to be most useful for.
A useful property of the flattening operator is that it commutes with image measures. We state and prove

the result explicitly for discrete probability measures.

Proposition 2.2 Let η be a discrete probability measure on Disc(X) and let f be a function from X to Y .
Then f(flatten(η)) = flatten(f(η)).

Proof. By definition of flattening and Proposition 2.1,

f(flatten(η)) = f

 ∑
µ∈supp(η)

η(µ)µ

 =
∑

µ∈supp(η)

η(µ)f(µ).

Let µ ∈ supp(η). Then µ ∈ f−1(f(µ)) and f(µ) ∈ supp(f(η)). Thus, supp(η) ⊆ ∪ρ∈supp(f(η))f
−1(ρ),

where the f−1(ρ) sets are pairwise disjoint since f is a function. Thus,∑
µ∈supp(η)

η(µ)f(µ) =
∑

ρ∈supp(f(η))

∑
µ∈f−1(ρ)∩supp(η)

η(µ)f(µ).

Observe that f(µ) = ρ in the right-hand expression above. Furthermore, since η(µ) = 0 outside supp(η), the
condition on supp(η) can be removed from the inner sum. Thus, the right-hand expression can be rewritten
into

∑
ρ∈supp(f(η))

∑
µ∈f−1(ρ) η(µ)ρ. Since

∑
µ∈f−1(ρ) η(µ) = η(f−1(ρ)) = f(η)(ρ), we obtain

f(flatten(η)) =
∑

ρ∈supp(f(η))

f(η)(ρ)ρ = flatten(f(η)),

where the last equality follows by definition of flattening. 2

We also state and prove distributivity of flattening over summation.

Lemma 2.3 Let {ηi}i∈I be a countable family of probability measures on Disc(X), and let {pi}i∈I be a
family of probabilities such that

∑
i∈I pi = 1. Then we have flatten(

∑
i∈I piηi) =

∑
i∈I piflatten(ηi).

Proof. Let η denote
∑
i∈I piηi. By definition of flattening and definition of summation, flatten(η) =∑

µ∈supp(η) η(µ)µ =
∑
µ∈supp(η)

∑
i∈I piηi(µ)µ. By exchanging sums and rearranging terms, flatten(η) =∑

i∈I pi
∑
µ∈supp(η) ηi(µ)µ. Observe that, for each i, if pi = 0 then the inner sum has no influence on the

result, and if pi > 0, then supp(ηi) ⊆ supp(η). Thus, flatten(η) =
∑
i∈I pi

∑
µ∈supp(ηi)

ηi(µ)µ. Finally,
since by definition of flattening the inner sum is flatten(ηi), we obtain flatten(η) =

∑
i∈I∈I piflatten(ηi) as

needed. 2

2 PRELIMINARIES 7

2.3 Relations on Probability Measures
We define here two operators on relations that deal with probabilities. The first operator is taken from [Seg95]
and is a generalization of a similar operator of [JL91], though it has strong connections with work of Kan-
torovitch [Kan58]. It lifts one relation on sets to a relation on probability measures. The second operator is
a closure operator for relations on probability measures. The reasons for the need of these operators will be-
come clear later in the paper. Yet, we can give a few hints here. A probabilistic automaton is like an ordinary
automaton, except that transitions lead to probability measures on states rather than to single states. Proba-
bilistic automata are compared by defining relations on states that are “preserved” by transitions. However,
given two related states, the outcomes of transitions are probability measures. Thus we need some ways to
lift a relation on states to a relation on probability measures. The operators are presented here because they
can be of independent interest; however, the reader may as well skim through this section and get back to it
when the operators are used for the first time.

Lifting Given a relation R between two domains X1 and X2, the question is whether it is possible to define
a meaningful lifting of R on Disc(X1) and Disc(X2). The approach we follow here is to state that a measure
µ1 on X1 is related to a measure µ2 on X2 if µ2 can be obtained by “redistributing” the probability masses
assigned by µ1 in an R-respecting way.

Definition 2.4 The lifting of a relation R from a set X1 to a set X2, denoted by L(R), is the relation from
Disc(X1) to Disc(X2) defined by: µ1 L(R) µ2 iff there exists a function w : X × Y → R≥0 such that the
following hold:

1. For each x1 ∈ X1 and x2 ∈ X2, w(x1, x2) > 0 implies x1 R x2.

2. For each x1 ∈ X1,
∑
x2∈X2

w(x1, x2) = µ1(x1).

3. For each x2 ∈ X2,
∑
x1∈X1

w(x1, x2) = µ2(x2).

We call w a weighting function for µ1 L(R) µ2, or alternatively, a weighting function for L(R).

The weight w(x1, x2) represents the probability (mass) that is transferred from x1 to x2. Condition 1 states
that probability is transferred only between R-related states; Condition 2 states that the total probability
transferred from from x1 is µ1(x1); Condition 3 states that the total probability transferred to x2 is µ2(x2).
The weighting function can also be seen as a joint probability measure on X1 × X2 that is supported on
R and whose marginal measures are µ1 and µ2, respectively. If R is an equivalence relation, then we can
represent it as a metric on the disjoint union of X1 and X2 where two related elements are at distance 0 and
two unrelated elements are at distance ∞. In such case, the lifting operator is exactly the metric (relation)
defined by Kantorovitch in [Kan58].

Closure under Convex Combination If we are given a relation from Disc(X1) to Disc(X2), we can use
the lifting operator of the previous paragraph to obtain a relation from Disc(Disc(X1)) to Disc(Disc(X2)).
Given two measures η1, η2 such that η1 L(R) η2, it is not necessarily the case that flatten(η1) R flatten(η2),
though in several cases we are interested in relations that are closed under such operation.

We define here a closure operator, called expansion, that given a relation R from Disc(X1) to Disc(X2)
returns the smallest relation that includes R and is closed under the construction above: two measures are
related whenever they can be decomposed into two L(R)-related measures.

Definition 2.5 Let R be a relation from Disc(X1) to Disc(X2). The expansion of R, denoted by E(R), is a
relation from Disc(X1) to Disc(X2) defined as follows: µ1 E(R) µ2 iff there exist two discrete measures η1

and η2 on Disc(X1) and Disc(X2), respectively, such that the following hold:

1. µ1 = flatten(η1).

2 PRELIMINARIES 8

2. µ2 = flatten(η2).

3. η1 L(R) η2.

We say that η1 and η2 are witnesses for µ1 E(R) µ2 or for E(R). If w is a weighting function for η1 L(R) η2,
then we say as well that η1, η2, and w are witnesses for µ1 E(R) µ2 or for E(R).

In other words, we enlarge R by adding pairs of measures that can be “decomposed” into weighted sums
of measures so that the weights can be “redistributed” in an R-respecting manner. Taking this intuition one
step further, the following proposition provides a useful characterization of the expansion relation.

Proposition 2.6 Let R be a relation on Disc(X1)× Disc(X2). Then µ1 E(R) µ2 iff there exists a countable
index set I , a discrete probability measure p on I , and two collections of probability measures, {µi,1}I and
{µi,2}I , such that

1. µ1 =
∑
i∈I p(i)µi,1.

2. µ2 =
∑
i∈I p(i)µi,2.

3. For each i ∈ I , µi,1 R µi,2.

Proof. Let µ1 E(R) µ2 with witnesses η1, η2 and w. Let {(µi,1, µi,2)}i∈I be an enumeration of the
pairs for which w(µi,1, µi,2) > 0, and let p(i) be w(µi,1, µi,2). Then p, {(µi,1)}i∈I , and {(µi,2)}i∈I satisfy
Items 1, 2, and 3.

Conversely, let p, {(µi,1)}i∈I , and {(µi,2)}i∈I satisfy Items 1, 2, and 3. Define η1(µ) to be the sum∑
i|µ=µi,1

p(i) and η2(µ) to be
∑
i|µ=µi,2

p(i). Moreover, define w(µ′1, µ
′
2) to be

∑
i|µ′1=µi,1,µ′2=µi,2

p(i).
Then, η1, η2 and w are witnesses for µ1 E(R) µ2. 2

The next, rather technical lemma gives us a sufficient condition for showing that a pair of functions f and
g preserve the relation E(R); that is, if µ1 E(R) µ2, then f(µ1) E(R) g(µ2). The required condition is that,
when µ1 and µ2 are decomposed into weighted sums of measures as in the definition of µ1 E(R) µ2, f and
g convert each pair (ρ1, ρ2) of R-related probability measures to E(R)-related probability measures. We will
use this lemma in the soundness proof for our new kind of simulation relation (Lemma 4.6), where the two
functions f and g apply corresponding sequences of tasks to corresponding measures on executions.

We say that a function f from Disc(X) to Y distributes over convex combinations if for each countable
family {ρi}i of discrete measures onX and each countable family of probabilities {pi}i such that

∑
i pi = 1,

f(
∑
i piρi) =

∑
i pif(ρi).

Lemma 2.7 Let R be a relation from Disc(X1) to Disc(X2), and let f, g be two endo-functions on Disc(X1)
and Disc(X2), respectively, that distribute over convex combinations. Let µ1 and µ2 be measures on X1 and
X2, respectively, such that µ1 E(R) µ2. Let η1, η2, and w be witnesses for µ1 E(R) µ2. Suppose further
that, for any two distributions ρ1 ∈ Disc(X1) and ρ2 ∈ Disc(X2), w(ρ1, ρ2) > 0 implies f(ρ1) E(R) g(ρ2).
Then f(µ1) E(R) g(µ2).

Proof. Let W denote the set of pairs (ρ1, ρ2) such that w(ρ1, ρ2) > 0. Then f(ρ1) E(R) g(ρ2) when-
ever (ρ1, ρ2) ∈ W . For each (ρ1, ρ2) ∈ W , choose a pair of measures (η1)ρ1,ρ2 , (η2)ρ1,ρ2 and a weighting
function wρ1ρ2 that witness f(ρ1) E(R) g(ρ2). Let

η′1 :=
∑

(ρ1,ρ2)∈W
w(ρ1, ρ2)(η1)ρ1,ρ2

η′2 :=
∑

(ρ1,ρ2)∈W
w(ρ1, ρ2)(η2)ρ1,ρ2

w′ :=
∑

(ρ1,ρ2)∈W
w(ρ1, ρ2)wρ1,ρ2 .

2 PRELIMINARIES 9

We show that η′1, η′2, and w′ are witnesses for f(µ1) E(R) g(µ2) by verifying the three conditions of
Definition 2.5.

• f(µ1) = flatten(η′1).

By definition of η′1, flatten(η′1) = flatten(
∑

(ρ1,ρ2)∈W w(ρ1, ρ2)(η1)ρ1,ρ2). By Lemma 2.3, this is in
turn equal to

∑
(ρ1,ρ2)∈W w(ρ1, ρ2)flatten((η1)(ρ1,ρ2)). By the choice of (η1)(ρ1,ρ2) and Item 1 of Def-

inition 2.5, flatten((η1)(ρ1,ρ2)) = f(ρ1), so we obtain that flatten(η′1) =
∑

(ρ1,ρ2)∈W w(ρ1, ρ2)f(ρ1).

We claim that the right-hand side is equal to f(µ1). Since, by Item 1 of Definition 2.5, µ1 =
flatten(η1), by the definition of flattening, µ1 =

∑
ρ1∈Disc(X1) η1(ρ1)ρ1. Then, by distributivity of

f , f(µ1) =
∑
ρ1∈Disc(X) η1(ρ1)f(ρ1). By definition of lifting, Item 2 of Definition 2.4, η1(ρ1) =∑

ρ2∈Disc(X2) w(ρ1, ρ2). Therefore, f(µ1) =
∑
ρ1∈Disc(X1)

∑
ρ2∈Disc(X2) w(ρ1, ρ2)f(ρ1), which in

turn is equal to
∑

(ρ1,ρ2)∈W w(ρ1, ρ2)f(ρ1) since w(ρ1, ρ2) is non-zero only in W .

• g(µ2) = flatten(η′2).

Analogous to the previous case.

• η′1 L(R) η′2 with weighting function w′.

We verify that w′ satisfies the three conditions of Definition 2.4:

1. Let w′(ρ′1, ρ
′
2) > 0. By definition of w′, there exists at least one pair (ρ1, ρ2) ∈R such that

wρ1,ρ2(ρ′1, ρ
′
2) > 0. Since wρ1,ρ2 is a weighting function for L(R), ρ′1 R ρ′2 as needed.

2. By definition of w′,∑
ρ′2∈Disc(X2)

w′(ρ′1, ρ
′
2) =

∑
ρ′2∈Disc(X2)

∑
(ρ1,ρ2)∈W

w(ρ1, ρ2)wρ1,ρ2(ρ′1, ρ
′
2)

=
∑

(ρ1,ρ2)∈W

∑
ρ′2∈Disc(X2)

w(ρ1, ρ2)wρ1,ρ2(ρ′1, ρ
′
2)

=
∑

(ρ1,ρ2)∈W

w(ρ1, ρ2) ·
∑

ρ′2∈Disc(X2)

wρ1,ρ2(ρ′1, ρ
′
2)

 .

Since wρ1,ρ2 is a weighting function for (η1)ρ1,ρ2 L(R) (η2)ρ1,ρ2 , by Item 1 of Definition 2.4,∑
ρ′2∈Disc(X2) wρ1,ρ2(ρ′1, ρ

′
2) = (η1)ρ1,ρ2(ρ′1). Continuing the derivation above,∑

ρ′2∈Disc(X2)

w′(ρ′1, ρ
′
2) =

∑
(ρ1,ρ2)∈W

w(ρ1, ρ2)(η1)ρ1,ρ2(ρ′1) = η′1(ρ′1)

since the middle expression above is precisely the definition of η′1(ρ′1).

3. Symmetric to the previous case.

2

2.4 Probabilistic I/O Automata
In this subsection, we review basic definitions for Probabilistic I/O Automata and prove several properties
that will be needed in the rest of the paper.

2 PRELIMINARIES 10

PIOAs A probabilistic I/O automaton (PIOA), P , is a tuple (Q, q̄, I, O,H,D) where:

• Q is a countable set of states, with start state q̄ ∈ Q;

• I , O and H are countable and pairwise disjoint sets of actions, referred to as input, output and internal
(hidden) actions, respectively; and

• D ⊆ (Q × (I ∪ O ∪ H) × Disc(Q)) is a transition relation, where Disc(Q) is the set of discrete
probability measures on Q.

An action a is enabled in a state q if (q, a, µ) ∈ D for some µ. The set A := I ∪ O ∪H is called the action
alphabet of P . If I = ∅, then P is closed. The set of external actions of P is E := I ∪ O, and the set of
locally controlled actions is L := O ∪H .

We assume that P satisfies the following conditions:

• Input enabling: For every state q ∈ Q and input action a ∈ I , a is enabled in q.

• Transition determinism: For every q ∈ Q and a ∈ A, there is at most one µ ∈ Disc(Q) such that
(q, a, µ) ∈ D.

A probabilistic I/O automaton is a special case of a probabilistic automaton [Seg95] where the In-
put/Output distinction and the input enabling restriction of I/O automata [LT89] are introduced. Transition
determinism is the classical automata theoretical notion of determinism, though a deterministic automaton
would not have any internal actions. It is used in this paper to make sure that an action name denotes a unique
transition. In this respect, actions here may assume as well a role similar to the role they play in Markov
Decision Processes [Der70]. The restriction to countably many states and actions is just technical to avoid
unnecessary and potentially misleading complications with measure theory. Yet, the theory presented here
works with uncountable spaces as well.

A (non-probabilistic) execution fragment of P is a finite or infinite sequence α = q0 a1 q1 a2 . . . of
alternating states and actions, such that:

• If α is finite, then it ends with a state.

• For every non-final i, there is a transition (qi, ai+1, µ) ∈ D with qi+1 ∈ supp(µ).

We write fstate(α) for q0, and, if α is finite, we write lstate(α) for the last state of α. We use Frags(P)
(resp., Frags∗(P)) to denote the set of all (resp., all finite) execution fragments of P . An execution of P is an
execution fragment beginning from the start state q̄. Execs(P) (resp., Execs∗(P)) denotes the set of all (resp.,
finite) executions of P . The trace of an execution fragment α, written trace(α), is the restriction of α to the
set of external actions of P . We say that β is a trace of P if there is an execution α of P with trace(α) = β.
The symbol ≤ denotes the prefix relation on sequences, which applies in particular to execution fragments
and traces.

Notational Conventions We denote the generic elements of a PIOA P by Q, q̄, I, O,H,D and propagate
primes and indices as well. Thus, the elements of a PIOA P ′i are Q′i, q̄

′
i, I
′
i, O
′
i, H

′
i, D

′
i, and the set of actions

of P ′i is A′i.
For a transition relation D, we denote by D(q) the set of transitions that leave from state q, by D(a)

the set of transitions labeled by a, and by D(q, a) the set of transitions labeled by a that leave from q. We
also write D(α) for D(lstate(α)) and D(α, a) for D(lstate(α), a). By transition determinism, D(q, a) and
D(α, a) contain at most one transition. We denote such transition, if it exists, by trqa or trαa, and denote its
target measure by µqa or µαa, respectively.

We let s and q range over generic states, and let a range over generic actions. We denote a generic
transition by tr , and we refer to the three elements of tr by qtr , atr , and µtr , respectively.

2 PRELIMINARIES 11

Schedulers and Probabilistic Executions Nondeterministic choices in P are resolved using a scheduler,
which is a function that chooses a transition to schedule, possibly randomly, based on the knowledge of the
whole past history. Formally, a scheduler for P is a function σ : Frags∗(P) −→ SubDisc(D) such that
(q, a, µ) ∈ supp(σ(α)) implies q = lstate(α).

Thus, σ decides (probabilistically) which transition (if any) to take after each finite execution fragment
α. Since this decision is a discrete sub-probability measure, it may be the case that σ chooses to halt after α
with non-zero probability: 1− σ(α)(D) > 0.

Once we fix a starting point, that is a state of P , a scheduler can be used to choose the transitions to
schedule at each point. Once a transition is chosen, the outcome of the transition is determined by the target
probability measure of the transition. Thus, a scheduler together with a starting point induce a probability
measure on execution fragments, which we call probabilistic execution fragments in general, and proba-
bilistic executions whenever the starting point is the start state of P . We define first a σ-field over execution
fragments, following the cone construction of [Seg95], which has strong connections with product probability
spaces.

The cone of a finite execution fragment α, denoted by Cα, is the set {α′ ∈ Frags(P) |α ≤ α′}. Then FP
is the σ-field generated by the set of cones of finite execution fragments of P .

A cone Cα represents the event that α has occurred, possibly followed by something else. The set {α},
instead, represents the fact that α has occurred and the computation terminated immediately afterwards.
Thus, the set of finite execution fragments represents termination. Since the sets of states and actions of
PIOAs are countable, the set of finite execution fragments is countable, and thus measurable if we can show
that each singleton is measurable. Furthermore, each union of cones is measurable. Each set {α}, for α a
finite execution fragment, is indeed measurable because it can be expressed as Cα − ∪α′|α<α′Cα′ .

Observe that the discrete σ-field over finite execution fragments is a sub-σ-field of FP , whose cones
are just the cones of FP intersected with the set of finite execution fragments of P . Thus, whenever a sub-
probability measure is supported on the set of finite execution fragments, we can safely work with it as if it
is a discrete sub-probability measure. We also say that a sub-probability measure ε is finite if Frags∗(P) is a
support for ε. This is consistent with the fact that finite execution fragments capture termination.

We now fix a scheduler σ and a state s. We denote the sub-probability measure induced by σ and s by
εσ,s and define it recursively on cones first. The measure of a cone is defined as:

εσ,s(Cα) :=


0 if fstate(α) 6= s
1 if α = s;
εσ,s(Cα̃)

∑
tr∈D(a) σ(α̃)(tr)µtr (q) if fstate(α) = s and α = α̃ a q.

(1)

Standard applications of the measure extension theorem ensure that the measure defined on cones, which
is indeed σ-additive, extends uniquely to FP . Details can be found in [Seg95] also for the uncountable case,
though here we are slightly more general since in [Seg95] definitions are given just for starting states rather
than starting finite execution fragments.

Observe that, by definition of σ, the range of the sum in Equation (1) can be restricted to D(α̃, a).
Furthermore, by transition determinism, the set D(α̃, a) contains at most one element. This leads to a simple
and useful property.

Proposition 2.8 Let σ be a scheduler for PIOA P , and s be a state of P . Let α be a finite execution fragment
of P . If α = α̃aq and a is enabled from lstate(α̃), then

εσ,s(Cα) = εσ,s(Cα̃) · σ(α̃)(D(α̃, a)) · µα̃a(q).

Proof. By definition of measure of a cone, εσ,s(Cα) = εσ,s(Cα̃)
∑

tr∈D(a) σ(α̃)(tr)µtr (q). By action-
determinism, there is only one transition enabled from lstate(α̃) and labeled by a. Such transition is denoted
by tr α̃a, and its target probability measure is denoted by µα̃a. Thus, εσ,α(Cα′) = εσ,s(Cα̃)σ(α̃)(tr α̃a)µα̃a(q).
Since tr α̃a is the only element of D(α̃, a), the result follows. 2

2 PRELIMINARIES 12

We extend our cone notation also to finite execution fragments extended with an action, that is, to alter-
nating sequences of states and actions that start with a state and end with an action. The cone Cαa is the set
of execution fragments that start with the sequence αa. This is a measurable set since it can be seen as the
union of the cones Cα′ such that αa is a prefix of the sequence α′. An equivalent of Proposition 2.8 can be
stated for these new cones as well.

Proposition 2.9 Let σ be a scheduler for PIOA P , and s be a state of P . Let α be a finite execution fragment
of P and a be an action of P that is enabled in lstate(α). Then

εσ,ε(Cαa) = εσ,ε(Cα) · σ(α)(D(α, a)).

Proof. Since Cαa is the disjoint union of cones ∪qCαaq , εσ,s(Cαa) =
∑
q εσ,s(Cαaq). By Proposi-

tion 2.8, εσ,s(Cαaq) = εσ,s(Cα) · σ(α)(D(α, a)) · µαa(q). Since µαa is a probability measure on states, the
result follows by replacing

∑
q µαa(q) by 1. 2

We extend the cone construction to traces as well and note that the trace function is a measurable function
from FP to the σ-field generated by cones of traces. Just observe that the inverse image under the trace
function of a cone of traces is a union of cones of executions. Thus, given a probability measure ε on FP , we
define the trace distribution of ε, denoted tdist(ε), to be the image measure of ε under trace. We extend the
tdist() notation to arbitrary measures on execution fragments of P . We denote by tdists(P) the set of trace
distributions of (probabilistic executions of) P .

Notational Conventions We denote by σ(α)(⊥) the probability 1 − σ(α)(D) that scheduler σ induces
termination after α.

Recall that a measurable function can be applied to probability measures as well, leading to image mea-
sures. Function fstate is trivially measurable, and in particular, when applied to a probabilistic execution frag-
ment, always leads to a Dirac probability measure. We will often abuse of notation and write fstate(ε) = s
instead of fstate(ε) = δ(s).

Function lstate is defined on finite execution fragments only and is a measurable function when we work
in the σ-field of finite execution fragments. In the sequel we will use several times the notation lstate(ε)
for a finite execution fragment ε, meaning the image measure under lstate of ε viewed as a measure on
finite execution fragments. In essence, lstate(ε)(q) = ε({α | lstate(α) = q}). Alternatively, we can define
arbitrarily lstate on infinite executions to be q̄ and view lstate as a measurable function on the σ-field of all
execution fragments. The final result is the same.

Prefixes We extend the notion of prefix to probabilistic execution fragments, and even more generally to
probability measures on execution fragments. Let ε and ε′ be measures on execution fragments of PIOA
P . Then we say that ε is a prefix of ε′, denoted by ε ≤ ε′, if, for each finite execution fragment α of P ,
ε(Cα) ≤ ε′(Cα).

Informally speaking, an execution fragment α is a prefix of an execution fragment α′ if α terminates not
later than α′. When we add probabilities, we say that ε is a prefix of ε′ if for every finite execution fragment
α the probability that ε terminates at α or afterwards is not higher than the probability that ε′ terminates at
α or afterwards. In other words, ε always terminates not later than ε′. Observe that the ordering is imposed
only on cones, which allows us to have a non-trivial notion of prefix.

The next proposition states that the ordering on cones of execution fragments holds for cones of execution
fragments extended with actions as well.

Proposition 2.10 If ε ≤ ε′, then, for each finite execution fragment α and each action a, ε(Cαa) ≤ ε′(Cαa).

Proof. ε(Cαa) =
∑
q ε(Cαaq) ≤

∑
q ε
′(Cαaq) = ε′(Cαa). 2

2 PRELIMINARIES 13

Chains and Limits We prove here a few results about chains of probabilistic execution fragments and
their limits. This allows us to define constructions on infinite probabilistic executions based on their finite
approximations. Again, we work with generic probability measures on execution fragments, and prove later
that in our cases we obtain probabilistic execution fragments.

A chain of probability measures on execution fragments of a PIOA P is an infinite sequence, ε1, ε2, · · · of
probability measures on execution fragments of P such that, for each i ≥ 0, εi ≤ εi+1. The limit limi→∞ εi
of the chain is defined to be the unique probability measure ε such that, for each finite execution fragment α,

ε(Cα) = lim
i→∞

εi(Cα).

Proposition 2.11 The limit ε = limi→∞ εi is a well defined probability measure. Furthermore, for each
i > 0, εi ≤ ε.

Proof. For each finite execution fragment α, ε(Cα) is well defined, non-negative, and bounded by 1 by
the monotone convergence theorem since ε1(Cα), ε2(Cα), . . . is a monotone sequence of non-negative reals
bounded by 1. Furthermore, for each i > 0, εi(Cα) ≤ ε(Cα), thus showing that for each i > 0, εi ≤ ε.

Observe that Execs(P) = ∪q∈QCq . Thus, for each i, εi(∪q∈QCq) = 1, and consequently, for each i and
each state q, ε1(Cq) = εi(Cq). This implies that, for each state q, ε(Cq) = ε1(Cq). Thus, ε(∪q∈QCq) = 1.

We show that ε is σ-additive on the cones. Let Cα = ∪jCαj
, where the Cαj

sets are pairwise disjoint.
Then ε(Cα) = limi→∞ εi(Cα) = limi→∞

∑
j εi(Cαj), where the first step follows by definition of ε and the

second step by σ-additivity of εi. Since all limits are suprema (the εi’s form a chain), limits commute with
sums. Thus, ε(Cα) =

∑
j limi→∞ εi(Cαj

) =
∑
j ε(αj) as needed.

Finally, we show monotonicity of ε. Let Cα ⊇ ∪jCαj
, where the Cαj

sets are pairwise disjoint. Then
ε(Cα) = limi→∞ εi(Cα) ≥ limi→∞

∑
j εi(Cαj

), where the first step follows by definition of ε and the
second step by monotonicity of εi. Since limits commute with sums, ε(Cα) ≥ ∑

j limi→∞ εi(Cαj) =∑
j ε(αj) as needed. 2

The next proposition states that the limit of a chain of probabilistic execution fragments is also a proba-
bilistic execution fragment.

Proposition 2.12 Let ε1 ≤ ε2 ≤ . . . be a chain of probabilistic execution fragments of a PIOA P . Then
limi→∞ εi is a probabilistic execution fragment of P .

Proof. Let ε denote limi→∞ εi, and let s be fstate(ε). Then s is also the first state of each of the εi’s.
For each i ≥ 1, let σi be a scheduler such that εi = εσi,s. By Proposition 2.9,

εσi,s(Cαa) = εσi,s(Cα) · σi(α)(D(α, a)). (2)

Thus,

σi(α)(D(α, a)) =
εσi,s(Cαa)
εσi,s(Cα)

if εσi,s(Cα) 6= 0. (3)

Define

σ(α)(tr) :=


ε(Cαatr)
ε(Cα)

if ε(Cα) > 0;

0 otherwise.

(4)

Informally, if we ever arrive at α, a transition labeled by a is scheduled from α with the probability that α is
extended with a.

We show that σ is a scheduler and that εσ,s = ε. To show that σ is a scheduler, we must show that, for
each finite execution fragment α, σ(α) is a sub-probability measure. By Proposition 2.11, ε is a probability
measure on execution fragments. Thus, since Cαa ⊆ Cα, ε(Cαa) ≤ ε(Cα), which implies σ(α)(tr) ∈ [0, 1]
for each tr . We need to show also that σ(α)(D) ≤ 1.

2 PRELIMINARIES 14

Given a finite execution fragment α and an action a, we know by action-determinism that D(α, a) con-
tains at most one element. Thus, from (4) we get

σ(α)(D(α, a)) =


ε(Cαa)
ε(Cα)

if ε(Cα) > 0;

0 otherwise.

(5)

Observe that σ(α)(D) =
∑
a σ(α)(D(α, a)). If ε(Cα) = 0, then trivially σ(α)(D) = 0 by Equation (6).

Otherwise, ∑
a

σ(α)(D(α, a)) =
∑
a ε(Cαa)
ε(Cα)

=
ε(∪aCαa)
ε(Cα)

≤ 1,

where the first step follows by Equation (5), the second step follows by σ-additivity of ε, and the third step
follows by ∪aCαa ⊆ Cα.

Before showing that εσ,s = ε, we prove an auxiliary fact. Suppose that ε(Cα) > 0. Then,

σ(α)(D(α, a)) = ε(Cαa)/ε(Cα)
= lim

i→∞
εσi,s(Cαa)/ lim

i→∞
εσi,s(Cα)

= lim
i→∞

σi(α)(D(α, a)),

where the first step follows by Equation (5), the second step follows by definition of ε, and the third step
follows by Equation (3) and the fact that εσi,s(Cα) > 0 definitely, that is, from some point onwards. Thus,
from Equation (5),

σ(α)(D(α, a)) =

 limi→∞ σi(α)(D(α, a)) if ε(Cα) > 0;

0 otherwise.
(6)

To show that εσ,s = ε, we show by induction on the length of a finite execution fragment α that
εσ,s(Cα) = ε(Cα). For the base case, let α consist of a single state q. By definition of measure of a cone,
Equation (1), the probability of Cq does not depend on the scheduler. Thus, εσ,s(Cα) = ε(Cα) trivially.

For the inductive step, let α = α̃aq. By Proposition 2.8,

εσ,s(Cα) = εσ,s(Cα̃) · σ(α̃)(D(α̃, a)) · µα̃a(q) (7)

and

lim
i→∞

εσi,s(Cα) = lim
i→∞

(
εσi,s(Cα̃) · σi(α̃)(D(α̃, a)) · µα̃a(q)

)
.

By definition of ε, the left-hand side of the equation above is ε(Cα), and limi→∞ εσi,s(Cα̃) = ε(Cα̃). By
induction, ε(Cα̃) = εσ,s(Cα̃). Therefore,

ε(Cα) = lim
i→∞

(
εσ,s(Cα̃) · σi(α̃)(D(α̃, a)) · µα̃a(q)

)
. (8)

We claim that the right-hand sides of Equations (7) and (8) are equal, which leads to εσ,s(Cα) = ε(Cα), as
needed. We distinguish two cases. If ε(Cα̃) > 0, then, by Equation (6), the right-hand side of Equation (8)
can be rewritten as the right-hand side of Equation (7). If, on the other hand, ε(Cα̃) = 0, then by induction,
εσ,s(Cα̃) = 0 as well. Hence the two right-hand sides are both 0, and thus equal. 2

The notion of finiteness, prefix, and chain can be defined on trace distributions as well. In particular, we
say that a probability measure τ on traces of P is finite if the set of finite traces is a support for τ , and we say
that τ is a prefix of τ ′, denoted by τ ≤ τ ′, if, for each finite trace β of P , τ(Cβ) ≤ τ ′(Cβ).

3 TASK-PIOAS 15

A chain of probability measures on traces of PIOA P is an infinite sequence, τ1, τ2, · · · of probability
measures on traces of P such that, for each i ≥ 0, τi ≤ τi+1. The limit limi→∞ τi of the chain is defined to
be the unique probability measure τ such that, for each finite trace β,

τ(Cβ) = lim
i→∞

τi(Cβ).

The interesting property is that the trace function commutes with limits of chains.

Lemma 2.13 Let ε1, ε2, · · · be a chain of measures on execution fragments. Then limi→∞ tdist(εi) =
tdist(limi→∞ εi).

Proof. Let ε denote limi→∞ εi. It suffices to show that, for any finite trace β, limi→∞ tdist(εi)(Cβ) =
tdist(ε)(Cβ). Fix a finite trace β, and let Θ be the set of minimal execution fragments whose trace is in
Cβ . Then trace−1(Cβ) = ∪α∈ΘCα, where all the cones are pairwise disjoint. Therefore, for i ≥ 0,
tdist(εi)(Cβ) =

∑
α∈Θ εi(Cα), and tdist(ε)(Cβ) =

∑
α∈Θ ε(Cα). Since we have monotone limits here

(that is, our limit are also suprema), limits commute with sums and our goal can be restated as showing:∑
α∈Θ

lim
i→∞

εi(Cα) =
∑
α∈Θ

ε(Cα).

Since limi→∞ εi = ε, we have limi→∞ εi(Cα) = ε(Cα) for each finite execution fragment α. Therefore, the
two sums above are in fact equal. 2

Composition We define composition of PIOAs as follows.

Definition 2.14 Two PIOAs Pi = (Qi, q̄i, Ii, Oi, Hi, Di), i ∈ {1, 2}, are said to be compatible if Ai ∩Hj =
Oi ∩ Oj = ∅ whenever i 6= j. In that case, we define their composition P1‖P2 to be the PIOA (Q1 ×
Q2, (q̄1, q̄2), (I1∪I2)\(O1∪O2), O1∪O2, H1∪H2, D), whereD is the set of triples ((q1, q2), a, µ1×µ2)
such that

1. a is enabled in some qi.

2. For every i, if a ∈ Ai then (qi, a, µi) ∈ Di, otherwise µi = δ(qi).

Given a state q = (q1, q2) in the composition and i ∈ {1, 2}, we use qdPi to denote qi.

The definition of composition can be extended to any finite or countable number of PIOAs rather than
just two. Note that if an input of one PIOA is an output of another, then it becomes an output action of the
composed automaton.

Hiding We define a hiding operation for PIOAs, which hides output actions.

Definition 2.15 Let P = (Q, q̄, I, O,H,D) be a PIOA and let S ⊆ O. Then hide(P, S) is the PIOA P ′ that
is the same as P except that OP′ = OP − S and HP′ = HP ∪ S.

3 Task-PIOAs
In this section, we present our definition for task-PIOAs. We introduce task schedules, which are used to
generate probabilistic executions. We define composition and hiding operations. We define an implemen-
tation relation, which we call ≤0. And finally, we state and prove a simple compositionality result. In the
next section, Section 4, we define our new simulation relation for task-PIOAs and prove that it is sound for
showing implementation relationships.

3 TASK-PIOAS 16

3.1 Task-PIOA definition
We now augment the PIOA framework with task partitions, our main mechanism for resolving nondetermin-
ism.

Definition 3.1 A task-PIOA is a pair T = (P, R) where

• P = (Q, q̄, I, O,H,D) is a PIOA (satisfying transition determinism).

• R is an equivalence relation on the locally-controlled actions (O ∪H).

For clarity, we sometimes write RT for R.
The equivalence classes of R are called tasks. A task T is enabled in a state q if some a ∈ T is enabled

in q. It is enabled in a set S of states provided it is enabled in every q ∈ S.

Unless otherwise stated, technical notions for task-PIOAs are inherited from those for PIOAs. Exceptions
include the notions of probabilistic executions and trace distributions.

For now, we impose the following action-determinism assumption, which implies that tasks alone are
enough to resolve all nondeterministic choices. We will remove this assumption when we introduce local
schedulers, in Section 6. To make it easier to remove the action-determinism hypothesis later, we will indicate
explicitly, before Section 6, where we are using the action-determinism hypothesis.

• Action determinism: For every state q ∈ Q and task T ∈ R, at most one action a ∈ T is enabled in q.

Definition 3.2 If T = (P, R) is a task-PIOA, then a task schedule for T is any finite or infinite sequence
γ = T1T2 . . . of tasks in R.

Thus, a task schedule is static (or oblivious), in the sense that it does not depend on dynamic information
generated during execution. Under the action-determinism assumption, a task schedule can be used to gener-
ate a unique probabilistic execution, and hence, a unique trace distribution, of the underlying PIOA P . One
can do this by repeatedly scheduling tasks, each of which determines at most one transition of P .

In general, one could define various classes of task schedules by specifying what dynamic information
may be used in choosing the next task, and this is definitely an interesting topic to investigate in further work.
Here, however, we opt for the oblivious version because we intend to model system dynamics separately, via
high-level nondeterministic choices as highlighted in Section 1. This is indeed the typical approach followed
in the literature on cryptographic protocols, and thus we know that we are already sufficiently general.

The effect of a task schedule on a finite probabilistic execution fragment is described by a function apply
that we define below (Definition 3.3). Informally, if the next task to schedule is T , then from each finite
execution fragment α we schedule the only transition labeled by an action from T enabled from lstate(α),
if it exists, and we schedule no transition otherwise. The definition described above is not the only possible
one. For example, we could consider α as deadlocked whenever task T is not enabled from lstate(α), and
yet have a reasonable definition. We choose not to consider α as deadlocked because we find our proposed
definition more elegant and also more adequate to describe a scheduler such as a Round Robin scheduler,
where a process that has nothing to do during one of its turns simply skips the turn.

Observe that a task schedule does not give us any ability to schedule any input action of a task-PIOA.
This is not a problem since we will use task schedules only on closed task-PIOAs, that is, task-PIOAs with
no input actions.

We give the formal definition of function apply on arbitrary probability measures on execution fragments
since we will prove only later that the outcome of apply is a probabilistic execution fragment whenever it is
applied to a finite probabilistic execution fragment.

Definition 3.3 Let T = (P, R) be an action-deterministic task-PIOA where P = (Q, q̄, I, O,H,D). Let ε
be a probability measure on finite execution fragments of P , and γ be a task schedule. Then apply (ε, γ) is
the probability measure on Frags(P) defined recursively by:

3 TASK-PIOAS 17

1. If γ = λ, then apply (ε, γ) := ε. (recall that λ denotes the empty sequence.)

2. If γ = T, T ∈ R, then, for each α ∈ Frags∗(P), apply (ε, T) (α) := p1(α, T) + p2(α, T), where:

p1(α, T) =
{
ε(α̃)µ(q) if α is of the form α̃aq, with a ∈ T and (lstate(α̃), a, µ) ∈ D;
0 otherwise.

p2(α, T) =
{
ε(α) if T is not enabled in lstate(α);
0 otherwise.

3. Ifγ = γ′ T , T ∈ R, then apply (ε, γ) := apply (apply (ε, γ′), T).

4. If γ is infinite, then apply (ε, γ) := limi→∞ apply (ε, γi), where γi denotes the length-i prefix of γ.

The first three cases handle finite schedules, while the fourth case handles infinite schedules. The first
three cases work only on finite execution fragments, and it is indeed easy to see by induction that the outcome
of a finite schedule is a measure supported on finite execution fragments (cf. Lemma 3.5). Case (1) handles
the empty schedule, Case (2) describes the outcome of a single task, and Case (3) provides a recursive
definition of the outcome of a finite schedule. In Case (2) above, the probability of a finite execution fragment
α is computed as the sum of two pieces: the probability of being in α already and not moving from it (term
p2), which is relevant only if T is not enabled after α, and the probability of reaching α by performing a
transition from T from a prefix α̃ of α (term p1). The term p1 is well defined since, by transition-determinism
and action-determinism, the transition (lstate(α̃), a, η) is unique.

Before showing in Section 3.3 that apply (ε, γ) is a well defined probabilistic execution fragment of P ,
we illustrate an example of an adaptive adversary within task-PIOAs.

3.2 Example: An Adaptive Adversary
In this example, we illustrate how nondeterminism in task-PIOAs is resolved by oblivious task schedules
(called low-level scheduling in Section 1) and how system components can act as purposeful, adaptive sched-
ulers by ordering their actions based on the information they see during execution (called high-level adver-
sarial scheduling in Section 1).

Protocol Consider a toy protocol with one sender Sender and two receivers Rec0 and Rec1 who exchange
messages via an adversarial entity Adv (cf. Figure 1). In addition to sending messages to Rec0 and Rec1, the
party Sender chooses two random bits b and s independently. The first bit b is announced to the adversary
Adv and the second bit s is kept secret until Sender receives an acknowledgment from either Rec0 or Rec1.
If the acknowledgment from Recb arrives before the acknowledgment from Rec1−b, that is, if it arrives when
the acknowledgment from Rec1−b has not arrived yet, then Sender reveals s to Adv, otherwise s remains
secret. A detailed description of Sender is given in Figure 2.

The adversary Adv acts as a message delivery system between Sender, Rec0 and Rec1. The messages
from Sender to Reci are delivered whenever they are available, while the acknowledgments from Reci to
Sender are not delivered until Sender announces b. Then Adv delivers ackSb before delivering ackS(1−b). A
detailed description of Adv is given in Figure 3.

Finally, a receiver Reci simply accepts the message from Sender and responds with an acknowledgment.
This is described in Figure 4.3

Informally speaking, the nondeterminism in this toy protocol is used for mainly three purposes:

• To allow implementation freedom. For example, Sender can choose to send its messages in any order.
3In our descriptions of task-PIOAs in Figures 2, 3, and 4, we use the set notation to specify the tasks explicitly. In the discussion,

we follow the notational convention of omitting the parentheses for singletons and use expressions of the form a(∗) to denote a task
consisting of those actions that can be obtained by replacing ∗ with a valid argument to a, as specified in the detailed task-PIOA
description.

3 TASK-PIOAS 18

�� ��
�� ��Rec0

ackR0

qq
�� ��
�� ��Sender

announce(b),sendSi,reveal(s)
--
�� ��
�� ��Adv

sendR0

11

ackSi

mm

sendR1

))�� ��
�� ��Rec1

ackR1

ii

Figure 1: A Toy Protocol

• To allow modeling of different speeds for processes. For example, if ackR1 of Rec1 and ackR2 of Rec2

are simultaneously enabled then either of them can happen first.

• To model unknown input behavior for components. For example, it is not specified a priori whether
Sender will input ackS1 or ackS2 first. It depends on the behavior of the component that provides these
inputs to Sender, which is Adv in our example.

Adaptive Scheduling by the Adversary Adv can be viewed as resolving the nondeterminism that is used
for modeling unknown input behavior for the components with which it interacts. We take a closer look at
the output actions of Adv, namely, sendR0,sendR1, ackS0, and ackS1. The first two of these actions are used
by Adv to relay messages received from Sender to Reci. The messages can be delivered in any order by Adv
once they are received from the Sender. Note, however, that Adv imposes a finer control on the order of
occurrence of the actions ackS0 and ackS1. These are the actions that are directly relevant to Adv’s ability to
learn the secret value s. The conditions that determine whether Adv will send to Sender the acknowledgment
from Rec0 or Rec1 first, depend on b, which is generated dynamically by Sender and obtained by Adv as
a result of the input announce(x). Adv waits until it learns the value of b as a result of announce(x), and
then it delivers the acknowledgment from Recb. This ensures that Sender will reveal s if the task reveal(∗) is
scheduled subsequently. In fact, it is easy to check that the task schedule

γ = choose. announce(∗). sendS0 . sendS1 . sendR0. sendR1.ackR0. ackR1 . ackS0 . ackS1. reveal(∗)
allows Adv to learn s with probability 1: if b = 0 then tasks ackS0 and ackS1 are performed in the expected
order, and if b = 1, then ackS0 is not performed when scheduled since it is not enabled, and thus ackS1 occurs
first as expected.

The fact that Adv determines the order in which acknowledgments are sent, which affects security, shows
that we use Adv to model an adversarial scheduler. Also, the fact that Adv uses b in its scheduling decision
shows Adv is adaptive. In general, modeling adversarial schedulers as a system component yields a natural
way of modeling adaptiveness. That is, we model the adversary as a task-PIOA that can interact with protocol
parties and can compute based on what it sees during execution.

Low-level scheduling by task schedules Task schedules constitute a natural way of resolving the non-
determinism due to unknown conditions such as the relative speeds of processors or network delays. Task
schedules were also designed to resolve nondeterminism due to implementation freedom; with the axiom that
at most one action in a task is enabled in a given state, specifying a task in turn specifies which action is to
be performed if enabled at all.

For instance, the ordering between sendS0 and sendS1 is inessential in the security analysis, provided they
are both performed by Sender. Similarly, the ordering between announce(∗) and sendSi is also inessential.

3 TASK-PIOAS 19

Sender

Signature

Input:
ackS0, ackS1

Output:
sendS0, sendS1

announce(x), x ∈ {0, 1}
reveal(x), x ∈ {0, 1}

Internal:
choose

Tasks
{sendS0}, {sendS1}, {choose}
{announce(x)|x ∈ {0, 1}}
{reveal(x)|x ∈ {0, 1}}
States
b, s ∈ {0, 1,⊥}, initially ⊥
c ∈ {0, 1,⊥}, initially ⊥

Transitions

choose
Precondition:

b = ⊥ ∧ s = ⊥
Effect:

b := unif({0, 1})
s := unif({0, 1})

announce(b)
Precondition:

b 6= ⊥
Effect:

None

sendSi

Precondition:
True

Effect:
None

ackSi

Effect:
if c = ⊥ then c := i

reveal(s)
Precondition:

s 6= ⊥ ∧ c 6= ⊥ ∧ b = c
Effect:

None

Figure 2: Code for Task-PIOA Sender

All of these are examples that represent implementation freedom in Sender. That is, an actual implementation
of Sender may perform announce(∗), sendS0 and sendS1 in any order.

Consider the following task schedules, that only differ by the order of the last two tasks.

γ1 = sendS0 . choose. sendR0 . sendS1 . sendR1 . ackR1 . announce(∗). ackR0 . ackS0 . ackS1 . reveal(∗)

γ2 = sendS0 . choose. sendR0 . sendS1 . sendR1 . ackR1 . announce(∗). ackR0 . ackS0 . reveal(∗). ackS1 .

It is interesting to note that Adv learns the secret s with probability 1 under γ1, but with probability 1
2 under

γ2. This is because, if b = 1, reveal(∗) is not enabled in the state resulting from the performance of ackS0,
so Adv can only guess what b is. Nonetheless, Adv is considered to have high advantage in learning s since
we define the behavior of automata and the “security” of a protocol that they represent by quantifying over
all possible schedulers (see Sections 3.4 and 3.7).

Note that task schedules can also be viewed as resolving nondeterminism due to unknown input behavior,
albeit in a non-adaptive way. If an action a is an input of A and an output of B, and a task schedule dictates
the performance of a by B then the task schedule also resolves the nondeterminism in A due to unknown
input behavior. However, since task schedulers are oblivious, this kind of nondeterminism resolution is not
adaptive on its own. Our modeling approach allows the incorporation of adaptiveness into scheduling by using
adversarial components such as Adv above. Note also that since components that do adversarial scheduling
can be any task-PIOA, our approach gives us the flexibility to model a wide range of adversarial power.

3 TASK-PIOAS 20

Adv

Signature

Input:
sendS0, sendS1, ackR0, ackR1

announce(x), x ∈ {0, 1}
reveal(x), x ∈ {0, 1}

Output:
sendR0, sendR1, ackS0, ackS1

Internal:
None

Tasks
{sendR0}, {sendR1}, {ackS0}, {ackS1}
States
b, s ∈ {0, 1,⊥}, initially ⊥
c0, c1 ∈ {0, 1, 2, 3}, initially 0

Transitions

announce(x)
Effect:

b := x

sendSi

Effect:
if ci = 0 then ci := 1

sendRi

Precondition:
ci = 1

Effect:
None

ackRi

Effect:
ci := 2

ackSi

Precondition:
b 6= ⊥ ∧ ci = 2 ∧ (b = i ∨ c1−i = 3)

Effect:
c0 := 3

reveal(x)
Effect:

s := x

Figure 3: Code for Task-PIOA Adv

3.3 Properties of the apply Function
In this section we prove several properties of the apply function, and in particular we show that it is a well
defined function and that its outcome is a probabilistic execution fragment. Our first lemma states a simple
property of functions p1 and p2 in the definition of apply, that is, the measure ε of a finite execution fragment
α is distributed by p1(·, T) and p2(·, T) onto α and its immediate successors.

Lemma 3.4 Let T = (P, R) be an action-deterministic task-PIOA. Let ε be a probability measure on finite
execution fragments of P , and let T be a task. Then:

1. for each state q, p1(q, T) = 0;

2. for each finite execution fragment α,

ε(α) = p2(α, T) +
∑

(a,q):αaq∈Frags∗(P)

p1(αaq, T).

Proof. Item (1) follows trivially from the definition of p1(q, T). For Item (2), we distinguish two cases.

• If T is not enabled from lstate(α), then, by definition of p2, ε(α) = p2(α, T). Furthermore, for each
action a and each state q such that αaq is an execution fragment, we claim that p1(αaq, T) = 0.
Indeed, if a /∈ T , then the first case of the definition of p1(α, T) trivially does not apply; if a ∈ T , then,
since T is not enabled from lstate(α), there is no µ such that (lstate(α), a, µ) ∈ D, and thus, again,
the first case of the definition of p1(α, T) does not apply.

3 TASK-PIOAS 21

Reci

Signature

Input:
sendRi

Output:
ackRi

Internal:
None

Tasks
{sendRi}, {ackRi}
States
c ∈ {0, 1}, initially 0

Transitions

sendRi

Effect:
c := 1

ackRi

Precondition:
c 6= 0

Effect:
None

Figure 4: Code for Task-PIOA Reci

• If T is enabled from lstate(α), then trivially p2(α, T) = 0. Furthermore, we claim that ε(α) =∑
(a,q) p1(αaq, T). By action determinism, only one action b ∈ T is enabled from lstate(α). By

definition of p1, p1(αaq, T) = 0 if a 6= b (either a /∈ T or a is not enabled from lstate(α)). Thus,∑
(a,q)

p1(αaq, T) =
∑
q

p1(αbq, T) =
∑
q

ε(α)µαb(q).

This in turn is equal to ε(α) since
∑
q µαb(q) = 1.

In each case, we get ε(α) = p2(α, T) +
∑

(a,q) p1(αaq, T), as needed. 2

The next lemmas shows that indeed apply induces a probability measure on finite execution fragments
when applied to finite task schedules.

Lemma 3.5 Let T = (P, R) be an action-deterministic task-PIOA. Let ε be a probability measure on finite
execution fragments of P , and γ be a finite task schedule. Then apply (ε, γ) is a probability measure on finite
execution fragments.

Proof. The proof is by induction, where we consider the three cases of Definition 3.3.

• If γ = λ, then apply (ε, γ) = ε, and the result follows trivially.

• If γ = T for some task T , then let ε′ be apply (ε, T). We show that
∑
α∈Frags∗(P) ε

′(α) = 1. By
Item (2) of Definition 3.3, ∑

α∈Frags∗(P)

ε′(α) =
∑

α∈Frags∗(P)

(p1(α, T) + p2(α, T)).

Rearranging terms, we obtain

∑
α∈Frags∗(P)

ε′(α) =
∑
q

p1(q, T) +
∑

α∈Frags∗(P)

p2(α, T) +
∑

(a,q):αaq∈Frags∗(P)

p1(αaq, T)

 .

By Lemma 3.4, the right side becomes
∑
α∈Frags∗(P) ε(α), which equals 1 since ε is by assumption a

probability measure. Therefore
∑
α∈Frags∗(P) ε

′(α) = 1, as needed.

3 TASK-PIOAS 22

• If γ = γ′T , then, by Item (2) of Definition 3.3, apply (ε, γ) = apply (apply (ε, γ), T). By induction,
apply (ε, γ) is a probability measure on finite execution fragments. Then the result follows by the
previous case.

2

The next lemma compares the probabilities of cones before and after the application of a single task.
An immediate consequence, stated in the two subsequent lemmas, is that the starting probability measure on
execution fragments is always a prefix of the outcome of apply, at least for finite task schedules.

Lemma 3.6 Let T = (P, R) be an action-deterministic task-PIOA. Let ε be a probability measure on finite
execution fragments of P , and T be a task in R. Let ε′ be apply (ε, T). Then, for each finite execution
fragment α:

1. If α consists of a single state q, then ε′(Cα) = ε(Cα).

2. If α = α̃aq and a /∈ T , then ε′(Cα) = ε(Cα).

3. If α = α̃aq and a ∈ T , then ε′(Cα) = ε(Cα) + ε(α̃)µα̃a(q).

Proof. By Lemma 3.5, ε′ is a discrete probability measure. By definition of a cone and of ε′,

ε′(Cα) =
∑

α′|α≤α′
ε′(α′) =

∑
α′|α≤α′

(p1(α′, T) + p2(α′, T)).

By definition of a cone and Lemma 3.4,

ε(Cα) =
∑

α′|α≤α′
ε(α′)

=
∑

α′|α≤α′

p2(α′, T) +
∑

(a,q):α′aq∈Frags∗(P)

p1(α′aq, T)


=

∑
α′|α≤α′

(p1(α′, T) + p2(α′, T))− p1(α, T),

where the last step is just an algebraic manipulation. Thus, ε′(Cα) = ε(Cα) + p1(α, T). We distinguish the
three cases. If α consists of a single state, then p1(α, T) = 0 by Lemma 3.4, yielding ε′(Cα) = ε(Cα). If
α = α̃aq and a /∈ T , then p1(α, T) = 0 by definition, yielding ε′(Cα) = ε(Cα). Finally, if α = α̃aq and
a ∈ T , then p1(α, T) = ε(α̃)µα̃a(q) by definition, yielding ε′(Cα) = ε(Cα) + ε(α̃)µα̃a(q). 2

Lemma 3.7 Let T = (P, R) be an action-deterministic task-PIOA. Let ε be a probability measure on finite
execution fragments of P , and T be a task. Then ε ≤ apply (ε, T).

Proof. Follows directly by Lemma 3.6. 2

Lemma 3.8 Let T = (P, R) be an action-deterministic task-PIOA. Let ε be a probability measure on finite
execution fragments of P , and let γ1 and γ2 be two finite task schedules such that γ1 is a prefix of γ2. Then
apply (ε, γ1) ≤ apply (ε, γ2).

Proof. Simple inductive argument using Lemma 3.7 for the inductive step. 2

Another important consequence of Lemma 3.7 is that Item (4) of Definition 3.3 is well defined, in the
sense that the measures ε1, ε2, . . . used in the definition form a chain, and thus the limit is well defined. We
prove below even a stronger result, which implies our claim above if all γi’s are of length 1.

3 TASK-PIOAS 23

Lemma 3.9 Let T = (P, R) be an action-deterministic task-PIOA. Let γ1, γ2, · · · be a finite or infinite
sequence of finite task schedules, and let γ = γ1γ2 · · · (where juxtaposition denotes concatenation of finite
sequences). Let I be the length of the sequence. Let ε be a probability measure on finite execution fragments
of P . For each integer i, 1 ≤ i ≤ I , let εi = apply (ε, γ1γ2 · · · γi). Let ε = apply (ε, γ). Then the εi’s form a,
possibly finite, chain and if I =∞, ε = limi→∞ εi.

Proof. The fact that the εi’s form a chain follows from Lemma 3.7. For the limit property, simply
observe that the sequence ε1, ε2, . . . is a subsequence of the sequence used in the definition of apply (ε, γ),
and therefore, they have the same limit. 2

At this stage we know that apply is well defined and that it produces a probability measure on execution
fragments. What is left to show is that the outcome of apply is indeed a probabilistic execution fragment (that
is, induced by some scheduler from a state) whenever we start from a finite probabilistic execution fragment.
We prove first two other properties of apply. The first property states that apply does not increase the prob-
abilities of cones of states; the second property states distributivity of apply with respect to combinations of
probability measures.

Lemma 3.10 Let T = (P, R) be an action-deterministic task-PIOA. Let ε be a probability measure on finite
execution fragments of P , γ a task schedule for T , and q a state of T . Then apply (ε, γ) (Cq) = ε(Cq).

Proof. We prove the result for finite γ’s by induction on the length of γ. The infinite case then follows
immediately by definition of limit. The base case is trivial since, by definition, apply (ε, γ) = ε. For the
inductive step, let γ = γ′T , and let ε′ be apply (ε, γ′). By Definition 3.3, apply (ε, γ) = apply (ε′, T). By
induction, ε′(Cq) = ε(Cq). Therefore, it suffices to show apply (ε′, T) (Cq) = ε′(Cq).

Let ε′′ be apply (ε′, T). By definition of cone, ε′′(Cq) =
∑
α:q≤α ε

′′(α). By Lemma 3.5, both ε′ and ε′′

are measures on finite execution fragments; therefore we can restrict the sum to finite execution fragments.
Then, using Item (2) of Definition 3.3, ε′′(Cq) =

∑
α∈Execs∗(P):q≤α(p1(α, T) + p2(α, T)). By rearranging

terms, we get ε′′(Cq) = p1(q, T) +
∑
α∈Execs∗(P):q≤α(p2(α, T) +

∑
(a,s) p1(Cαas, T)). By Lemma 3.4, the

right-hand side of the equation above is
∑
α:q≤α ε

′(α), which is precisely ε′(Cq). 2

To prove that apply (·, γ) distributes over convex combinations of probability measures we consider first
the case of a single task.

Lemma 3.11 Let T = (P, R) be an action-deterministic task-PIOA. Let {εi}i∈I be a countable family of
probability measures on finite execution fragments ofP , and let {pi}i∈I be a countable family of probabilities
such that

∑
i∈I pi = 1. Let T be a task. Then apply

(∑
i∈I piεi, T

)
=
∑
i∈I pi apply (εi, T).

Proof. Let p1 and p2 be the functions used in the definition of apply
(∑

i∈I piεi, T
)
, and let, for each i,

pi1 and pi2 be the functions used in the definition of apply (εi, T). Let α be a finite execution fragment. We
show later that p1(α, T) =

∑
i∈I pip

i
1(α, T) and p2(α, T) =

∑
i∈I pip

i
2(α, T). Then

apply

(∑
i∈I

piεi, T

)
(α) = p1(α, T) + p2(α, T) definition of apply

(∑
i∈I piεi, T

)
=

∑
i∈I

pip
i
1(α, T) +

∑
i∈I

pip
i
2(α, T) claims proved below

=
∑
i∈I

pi(pi1(α, T) + pi2(α, T)) algebraic manipulation

=
∑
i∈I

pi apply (εi, T) (α) definition of apply (εi, T).

To prove our claim about p1 we distinguish two cases. If α can be written as α̃ a q, where α̃ ∈
supp(ε), a ∈ T , and (lstate(α̃), a, ε) ∈ DP , then, by Definition 3.3, p1(α, T) = (

∑
i∈I piεi)(α̃)µ(q),

3 TASK-PIOAS 24

and, for each i, pi1(α) = εi(α̃)µ(q). Thus, p1(α, T) =
∑
i∈I pip

i
1(α, T) by definition of combination

of measures. Otherwise, again by Definition 3.3, p1(α, T) = 0, and, for each i, pi1(α, T) = 0. Thus,
p1(α, T) =

∑
i∈I pip

i
1(α, T) trivially.

To prove our claim about p2 we also distinguish two cases. If T is not enabled in lstate(α), then,
by Definition 3.3, p2(α, T) = (

∑
i∈I piεi)(α), and, for each i, pi2(α, T) = εi(α). Thus, p2(α, T) =∑

i∈I pip
i
2(α, T) by definition of combination of measures. Otherwise, again by Definition 3.3, p2(α, T) =

0, and, for each i, pi2(α, T) = 0. Thus, p2(α, T) =
∑
i∈I pip

i
2(α, T) trivially. 2

Proposition 3.12 Let T = (P, R) be an action-deterministic task-PIOA. Let {εi}i∈I be a countable family of
probability measures on finite execution fragments ofP , and let {pi}i∈I be a countable family of probabilities
such that

∑
i∈I pi = 1. Let γ be a finite schedule. Then, apply

(∑
i∈I piεi, γ

)
=
∑
i∈I pi apply (εi, γ).

Proof. We proceed by induction on the length of γ. If γ = λ, then the result is trivial since apply (·, λ)
is defined to be the identity function, which distributes over convex combinations of probability measures.
For the inductive step, let γ be γ′T . By Definition 3.3 and the induction hypothesis,

apply

(∑
i∈I

piεi, γ
′T

)
= apply

(
apply

(∑
i∈I

piεi, γ
′
)
, T

)
= apply

(∑
i∈I

pi apply (εi, γ′), T

)
.

By Lemma 3.5, each apply (εi, γ′) is a discrete probability measure on finite execution fragments. By
Lemma 3.11, apply

(∑
i∈I pi apply (εi, γ′), T

)
=
∑
i∈I pi apply (apply (εi, γ′), T), and by Definition 3.3,

for each i, apply (apply (εi, γ′), T) = apply (εi, γ′T). Thus, apply
(∑

i∈I piεi, γ
′T
)

=
∑
i∈I pi apply (εi, γ′T)

as needed. 2

Distributivity of apply holds for infinite task schedules as well; however, we refrain from proving the
result here since it is not needed in the rest of the paper.

We now turn to the proof that apply returns probabilistic execution fragments when we start from finite
probabilistic execution fragments. We first prove separately the result for the empty task schedule and for
single tasks. Essentially the proof builds a scheduler that induces the outcome of apply.

Lemma 3.13 Let T = (P, R) be an action-deterministic task-PIOA. Let ε be a finite probabilistic execution
fragment of P . Then apply (ε, λ) is a probabilistic execution fragment of P .

Proof. Follows directly from the definitions since apply (ε, λ) = ε. 2

Lemma 3.14 Let T = (P, R) be an action-deterministic task-PIOA. If ε is a finite probabilistic execution
fragment of P , and T is a task, then apply (ε, T) is a finite probabilistic execution fragment of P .

Proof. Let s be fstate(ε), ε′ be apply (ε, T), and σ be a scheduler such that ε = εσ,s. We define a new
scheduler σ′ and prove that ε′ = εσ′,s. For a finite execution fragment α and a transition tr ∈ D,

σ′(α)(tr) :=



0 if ε′(Cα) = 0

ε(Cα)
ε′(Cα)

σ(α)(tr) if ε′(Cα) 6= 0 and atr /∈ T

ε(Cα)
ε′(Cα)

(σ(α)(tr) + σ(α)(⊥)) if ε′(Cα) 6= 0 and atr ∈ T

We give an informal explanation of the definition of σ′. Recall that ε(Cα) is the probability of ever arriving
at α. If we never arrive at α, then there is no need to schedule anything (first case). If we arrive at α, then we
should do whatever σ was doing and in addition schedule a transition of task T if it is enabled. The additional
probability to give to the transition of task T is the probability with which σ stopped at α while inducing ε.

3 TASK-PIOAS 25

Yet, scheduling T may increase the probability of arriving at α. Our scheduler should act only on the fraction
of the ε′-probability of arriving at α that was contributed already by ε. This is the motivation for the factor
ε(Cα)/ε′(Cα).

We first prove that σ′ is a scheduler, that is, that σ′(α) is a sub-probability measure for each finite execu-
tion fragment α. If the first clause applies, then σ′(α) is 0 everywhere, hence is a sub-probability measure.
Assume otherwise. By Lemma 3.7, ε ≤ ε′. Thus, ε(Cα) ≤ ε′(Cα), and in particular ε(Cα)/ε′(Cα) ≤ 1.
Since σ is a scheduler, then, by definition of σ′, σ′(α)(tr) ≤ 1 for each tr . By action- and transition-
determinism, there is at most one transition tr ∈ D(α) with atr ∈ T . Let Y denote {tr} if such tr exists and
∅ otherwise. Then we have the following.

∑
tr 6∈Y

σ(α)(tr) +
∑
tr∈Y

(
σ(α)(tr) + σ(α)(⊥)

) ≤ (∑
tr∈D

σ(α)(tr)

)
+ σ(α)(⊥) = 1,

where the first step follows from the fact that Y has at most one element and the second step follows from
the fact that σ is a scheduler. Putting the pieces together, we have

σ′(α)(D) =
ε(Cα)
ε′(Cα)

∑
tr 6∈Y

σ(α)(tr) +
∑
tr∈Y

(σ(α)(tr) + σ(α)(⊥))

 ≤ 1.

Next, we prove by induction on the length of a finite execution fragment α that εσ′,s(Cα) = ε′(Cα). For the
base case, let α = q. Then εσ′,s(Cq) = ε′(Cq) trivially since, by Equation (1), the measure of a cone of a
state does not depend on the scheduler. For the inductive step, let α = α̃aq. By Proposition 2.8

εσ′,s(Cα) = εσ′,s(Cα̃) · σ′(α̃)(tr α̃a) · µα̃a(q). (9)

where we recall that tr α̃a is the only transition ofD(α̃, a) and µα̃a is the target measure of tr α̃a. By induction,
εσ′,s(Cα̃) = ε′(Cα̃). Thus,

εσ′,s(Cα) = ε′(Cα̃) · σ′(α̃)(tr α̃a) · µα̃a(q). (10)

We distinguish three cases.

1. ε′(Cα̃) = 0.

By induction, εσ′,s(Cα̃) = ε′(Cα̃) = 0. Then εσ′,s(Cα) = 0 = ε′(Cα) trivially since Cα̃ ⊆ Cα.

2. ε′(Cα̃) > 0 and a 6∈ T .

By replacing σ′ with its definition in Equation (10), and simplifying the factors ε′(Cα̃),

εσ′,s(Cα) = ε(Cα̃)σ(α̃)(tr α̃a) · µα̃a(q). (11)

Recall that ε = εσ,s. By Proposition 2.8 the right-hand side of the equation above is εσ,s(Cα). Thus,
εσ′,s(Cα) = ε(Cα). By Lemma 3.6, Item (3), ε(Cα) = ε′(Cα). Hence, εσ′,s(Cα) = ε′(Cα).

3. ε′(Cα̃) > 0 and a ∈ T .

By replacing σ′ with its definition in Equation (10), and simplifying the factors ε′(Cα̃),

εσ′,s(Cα) = ε(Cα̃)(σ(α̃) · (tr α̃a) + σ(α̃)(⊥)
) · µα̃a(q). (12)

Recall that ε = εσ,s. By Proposition 2.8, the equation above can be rewritten as

εσ′,s(Cα) = ε(Cα) + ε(Cα̃) · σ(α̃)(⊥) · µα̃a(q). (13)

Observe that ε(Cα̃) · σ(α̃)(⊥) = ε(α̃). By Lemma 3.6, Item (3), ε(Cα) + ε(α̃)µα̃a(q) = ε′(Cα).
Hence, εσ′,s(Cα) = ε′(Cα).

3 TASK-PIOAS 26

2

By combining the previous two lemmas we get that the outcome of any finite schedule is a probabilistic
execution fragment.

Lemma 3.15 Let T = (P, R) be an action-deterministic task-PIOA. Let ε be a finite probabilistic execution
fragment of P , and γ be a finite schedule. Then, apply (ε, γ) is a finite probabilistic execution fragment of P .

Proof. By induction on the length of γ. If γ = λ, then the result follows by Lemma 3.13. If γ = γ′T ,
then, by definition, apply (ε, γ) = apply (apply (ε, γ′), T). By induction, apply (ε, γ′) is a finite probabilistic
execution fragment of P . By Lemma 3.14, apply (apply (ε, γ′), T) is a finite probabilistic execution fragment
of P . 2

Finally, we deal with infinite task schedules.

Lemma 3.16 Let T = (P, R) be an action-deterministic task-PIOA. Let ε be a finite probabilistic execution
fragment of P , and γ be an infinite schedule. Then, apply (ε, γ) is a probabilistic execution fragment of P .

Proof. For each i ≥ 0, let γi denote the length-i prefix of γ and let εi be apply (ε, γi). By Lemmas 3.15
and 3.8, the sequence ε0, ε1, . . . is a chain of probabilistic execution fragments of P . By Proposition 2.12,
limi→∞ εi is a probabilistic execution fragment of P . This suffices, since apply (ε, γ) is limi→∞ εi by defi-
nition. 2

Theorem 3.17 Let T = (P, R) be an action-deterministic task-PIOA. Let ε be a finite probabilistic execution
fragment of P , and γ be a schedule. Then, apply (ε, γ) is a probabilistic execution fragment of P .

Proof. Follows by Lemma 3.15 if γ is finite and by Lemma 3.16 if γ is infinite 2

3.4 Trace Distributions
We write tdist(ε, γ) as shorthand for tdist(apply (ε, γ)), the trace distribution obtained by applying task
schedule γ starting from the measure ε on execution fragments. We write tdist(γ) for tdist(apply (δ(q̄), γ))
the trace distribution obtained by applying γ from the unique start state. (Recall that δ(q̄) denotes the Dirac
measure on q̄.) A trace distribution of T is any tdist(γ). We use tdists(T) to denote the set {tdist(γ) :
γ is a task schedule for T }.

3.5 Composition
We define composition of task-PIOAs:

Definition 3.18 Two task-PIOAs Ti = (Pi, Ri), i ∈ {1, 2}, are said to be compatible provided the underlying
PIOAs are compatible. Then we define their composition T1‖T2 to be the task-PIOA (P1‖P2, R1 ∪ R2).

It is easy to see that T1‖T2 is in fact a task-PIOA. In particular, since compatibility ensures disjoint sets of
locally-controlled actions, R1 ∪ R2 is an equivalence relation on the locally-controlled actions of P1‖P2. It
is also easy to see that action determinism is preserved under composition. Note that, when two task-PIOAs
are composed, no new mechanisms are required to schedule actions of the two components—the tasks alone
are enough.

3.6 Hiding
We also define a hiding operator for task-PIOAs. It simply hides output actions:

Definition 3.19 Let T = (P, R) be any task-PIOA, where P = (Q, q̄, I, O,H,D), and let S ⊆ O. Then
hide(T , S) is the task-PIOA (hide(P, S), R), that is, the task-PIOA obtained by hiding S in the underlying
PIOA P , without any change to the task equivalence relation.

Note that, in the special case where tasks respect the output vs. internal action classification, one can also
define a hiding operation that hides all output actions in a set of tasks. We omit the details here.

3 TASK-PIOAS 27

3.7 Implementation
We now define the notion of external behavior for a task-PIOA and the induced implementation relation
between task-PIOAs. Unlike previous definitions of external behavior, the one we use here is not simply a set
of trace distributions. Rather, it is a mapping that specifies, for every possible “environment” E for the given
task-PIOA T , the set of trace distributions that can arise when T is composed with E .

Definition 3.20 Let T be any action-deterministic task-PIOA and E be an action-deterministic task-PIOA.
We say that E is an environment for T if the following hold:

1. E is compatible with T .

2. The composition T ‖E is closed.

Note that E is allowed to have output actions that are not inputs of T .

Definition 3.21 The external behavior of T , denoted by extbeh(T), is the total function that maps each
environment E to the set of trace distributions tdists(T ‖E).

Thus, for each environment, we consider the set of trace distributions that arise from all task schedules.
Note that these traces may include new output actions of E , in addition to the external actions already present
in T .

Our definition of implementation says that the lower-level system must “look like” the higher-level sys-
tem from the perspective of every possible environment. The style of this definition is influenced by common
notions in the security protocol literature (e.g., [LMMS98, Can01, PW01]). An advantage of this style of def-
inition is that it yields simple compositionality results (Theorem 3.24). In our case, “looks like” is formalized
in terms of inclusion of sets of trace distributions, that is, of external behavior sets.

Definition 3.22 Let T1 = (P1, R1) and T2 = (P2, R2) be task-PIOAs, and Ii and Oi the input and output
actions sets for Pi, i ∈ {1, 2}. Then T1 and T2 are comparable if I1 = I2 and O1 = O2.

Definition 3.23 Let T1 and T2 be comparable action-deterministic task-PIOAs. Then we say that T1 imple-
ments T2, written T1 ≤0 T2, if extbeh(T1)(E) ⊆ extbeh(T2)(E) for every environment E for both T1 and T2.
In other words, we require tdists(T1||E) ⊆ tdists(T2||E) for every E .

The subscript 0 in the relation symbol ≤0 refers to the requirement that every trace distribution in
tdists(T1||E) must have an identical match in tdists(T2||E). For security analysis, we also define another
relation ≤neg,pt, which allows “negligible” discrepancies between matching trace distributions [CCK+05b,
CCK+06c].

3.8 Compositionality
Because external behavior and implementation are defined in terms of mappings from environments to sets
of trace distributions, a compositionality result for ≤0 follows easily:

Theorem 3.24 Let T1, T2 be comparable action-deterministic task-PIOAs such that T1 ≤0 T2, and let T3 be
an action-deterministic task-PIOA compatible with each of T1 and T2. Then T1‖T3 ≤0 T2‖T3.

Proof. Let T4 = (P4, R4) be any environment (action-deterministic) task-PIOA for both T1‖T3 and
T2‖T3. Fix any task schedule γ1 for (T1‖T3)‖T4. Let τ be the trace distribution of (T1‖T3)‖T4 generated by
γ1. It suffices to show that τ is also generated by some task schedule γ2 for (T2‖T3)‖T4.

Note that γ1 is also a task schedule for T1‖(T3‖T4), and that γ1 generates the same trace distribution τ in
the composed task-PIOA T1‖(T3‖T4).

Now, T3‖T4 is an (action-deterministic) environment task-PIOA for each of T1 and T2. Since, by assump-
tion, T1 ≤0 T2, we infer the existence of a task schedule γ2 for T2‖(T3‖T4) such that γ2 generates trace
distribution τ in the task-PIOA T2‖(T3‖T4). Since γ2 is also a task schedule for (T2‖T3)‖T4 and γ2 generates
τ , this suffices. 2

4 SIMULATION RELATIONS 28

4 Simulation Relations
Simulation relations provide sufficient conditions for proving that one automaton implements another, ac-
cording to some precise notion of implementation such as ≤0 from Definition 3.23. Typically, simulation
relations reduce the proof obligations for implementation into conditions relating the start states and condi-
tions relating individual algorithm steps. Checking these individual conditions is generally much easier, and
more systematic, than reasoning about entire executions.

In this section, we define a new notion of simulation relation for closed, action-deterministic task-PIOAs,
and show that it is sound for proving≤0. Our definition is based on the three operations defined in Section 2.2:
flattening, lifting, and expansion.

4.1 Simulation relation definition
We begin with two auxiliary definitions. The first expresses consistency between a probability measure on
finite executions and a task schedule. Informally, a measure ε on finite executions is said to be consistent
with a task schedule γ if it assigns non-zero probability only to those executions that are possible under the
task schedule γ. We use this condition to avoid extraneous proof obligations in our definition of simulation
relation.

Definition 4.1 Let T = (P, R) be a closed, action-deterministic task-PIOA and let ε be a discrete probability
measure on finite executions of P . Also, let a finite task schedule γ for T be given. Then ε is consistent with
γ provided that supp(ε) ⊆ supp(apply (δ(q̄), γ)), where q̄ is the start state of P .

For the second definition, suppose we have two task-PIOAs T1 and T2, and a mapping c that takes a finite
task schedule γ and a task T of T1 to give a task schedule of T2. The idea is that c(γ, T) describes how T2

matches task T , given that it has already matched the task schedule γ. Using c, we define a new function
full(c) that, given a task schedule γ, iterates c on all the elements of γ, thus producing a “full” task schedule
of T2 that matches all of γ.

Definition 4.2 Let T1 = (P1, R1) and T2 = (P2, R2) be two task-PIOAs, and let c : (R1
∗ ×R1)→ R2

∗ be
given. Define full(c) : R1

∗ → R2
∗ recursively as follows: full(c)(λ) := λ, and full(c)(γ T) := full(c)(γ) _

c(γ, T) (that is, the concatenation of full(c)(γ) and c(γ, T)).

Next, we define our new notion of simulation for task-PIOAs. Note that our simulation relations are
relations between probability measures on executions, as opposed to relations between states. Here the use
of measures on executions is motivated by certain cases that arise in our OT protocol proof. For example, we
wish to match random choices that are made at different points in the low-level and high-level models (see
Section 4.3).

5points/measures and states/executions. Overall we end up with four simulation relation. However,
language inclusion is not implied.

Definition 4.3 Let T1 = (P1, R1) and T2 = (P2, R2) be two comparable task-PIOAs that are closed and
action-deterministic. Let R be a relation from Disc(Execs∗(P1)) to Disc(Execs∗(P2)), such that, if ε1 R ε2,
then tdist(ε1) = tdist(ε2). (That is, the two measures on finite executions yield the same measure on traces.)
Then R is a simulation from T1 to T2 if there exists c : (R1

∗ ×R1)→ R2
∗ such that the following properties

hold:

1. Start condition: δ(q̄1) R δ(q̄2).

2. Step condition: If ε1 R ε2, γ1 ∈ R1
∗, ε1 is consistent with γ1, ε2 is consistent with full(c)(γ1), and

T ∈R1, then ε′1 E(R) ε′2 where ε′1 = apply (ε1, T) and ε′2 = apply (ε2, c(γ1, T)).

4 SIMULATION RELATIONS 29

Intuitively, ε1 R ε2 means that it is possible to simulate from ε2 anything that can happen from ε1.
Furthermore, ε′1 E(R) ε′2 means that we can decompose ε′1 and ε′2 into pieces that can simulate each other,
and so we can also say that it is possible to simulate from ε′2 anything that can happen from ε′1. This rough
intuition is at the base of the proof of our soundness result, Theorem 4.7.

Recall from Proposition 2.6 that the expansion of a relation can be characterized in other operational ways
that may simplify proofs in practical applications. Since in the examples of this paper we take advantage of
the characterization given by Proposition 2.6 (cf. Example 4.3), we provide below an alternative definition of
simulation relation that combines all pieces together.

Lemma 4.4 Let T1 = (P1, R1) and T2 = (P2, R2) be two comparable closed action-deterministic task-
PIOAs. Let R be a relation from Disc(Execs∗(P1)) to Disc(Execs∗(P2)), such that, if ε1 R ε2, then
tdist(ε1) = tdist(ε2). Let c : (R1

∗ ×R1)→ R2
∗. Suppose further that the following conditions hold:

1. Start condition: δ(q̄1) R δ(q̄2).

2. Step condition: If ε1 R ε2, γ1 ∈ R1
∗, ε1 is consistent with γ1, ε2 is consistent with full(c)(γ1), and

T ∈ R1, then there exist

• a probability measure p on a countable index set I ,

• probability measures ε′1j , j ∈ I , on finite executions of P1, and

• probability measures ε′2j , j ∈ I , on finite executions of P2,

such that:

• for each j ∈ I , ε′1j R ε′2j ,

• ∑j∈I p(j)(ε
′
1j) = apply (ε1, T), and

• ∑j∈I p(j)(ε
′
2j) = apply (ε2, c(γ1, T)).

Then R is a simulation relation from T1 to T2 using c.

Proof. By Proposition 2.6, the probability measure p and the probability measures ε′1j and ε′2j , j ∈ I ,
exist iff apply (ε1, T) E(R) apply (ε2, c(γ1, T)). 2

4.2 Soundness
In this section, we state and prove two soundness results. The first result, Theorem 4.7, says that, for closed
task-PIOAs, the existence of a simulation relation implies inclusion of sets of trace distributions. The second
soundness result, Corollary 4.8, asserts soundness for (not necessarily closed) task-PIOAs, with respect to
the ≤0 relation.

The proof is based on two lemmas. Recall that the definition of simulation relations requires that any two
R-related probability measures on executions must have the same trace distribution. Lemma 4.5 shows that
the same continues to hold for any two E(R) probability measures on executions. For the proof, the only
property of simulation relations we need is that any two R-related probability measures on executions have
the same trace distribution.

Lemma 4.5 Let T1 and T2 be comparable closed action-deterministic task-PIOAs and let R be a simulation
from T1 to T2. Let ε1 and ε2 be discrete probability measures on finite executions of T1 and T2, respectively,
such that ε1 E(R) ε2. Then tdist(ε1) = tdist(ε2).

4 SIMULATION RELATIONS 30

Proof. Since ε1 E(R) ε2, we may choose measures η1, η2 and a weighting functions w as in the defi-
nition of expansion. Then for all ρ1 ∈ supp(η1), we have η1(ρ1) =

∑
ρ2∈supp(η2) w(ρ1, ρ2). Moreover, we

have ε1 = flatten(η1), therefore

tdist(ε1) =
∑

ρ1∈supp(η1)

η1(ρ1) tdist(ρ1) =
∑

ρ1∈supp(η1)

∑
ρ2∈supp(η2)

w(ρ1, ρ2) tdist(ρ1).

Now consider any ρ1 and ρ2 with w(ρ1, ρ2) > 0. By the definition of a weighting function, we may conclude
that ρ1 R ρ2. SinceR is a simulation relation, we have tdist(ρ1) = tdist(ρ2). Thus we may replace tdist(ρ1)
by tdist(ρ2) in the summation above. This yields:

tdist(ε1) =
∑

ρ1∈supp(η1)

∑
ρ2∈supp(η2)

w(ρ1, ρ2) tdist(ρ2) =
∑

ρ2∈supp(η2)

∑
ρ1∈supp(η1)

w(ρ1, ρ2) tdist(ρ2).

Using again the fact that w is a weighting function, we can simplify the inner sum above to obtain

tdist(ε1) =
∑

ρ2∈supp(η2)

η2(ρ2) tdist(ρ2).

This equals tdist(ε2) because, by the choice of η2, we know that ε2 = flatten(η2). 2

The second lemma provides the inductive step needed in the proof of soundness (Theorem 4.7).

Lemma 4.6 Let T1 and T2 be two comparable action-deterministic closed task-PIOAs and let R be a sim-
ulation relation from T1 to T2. Furthermore, let c be a mapping witnessing the fact that R is a simulation
relation. Let a finite task schedule γ1 of T1 be given and set γ2 = full(c)(γ1). (Then γ2 is a finite task
schedule of T2.) Let ε1 denote apply (δ(q̄1), γ1) and let ε2 denote apply (δ(q̄2), γ2). Suppose that ε1 E(R) ε2.

Now let T be a task of T1. Let ε′1 = apply (δ(q̄1), γ1T) and let ε′2 = apply (δ(q̄2), γ2 c(γ1, T)).
Then ε′1 E(R) ε′2.

Proof. Let η1, η2 and w be the measures and weighting function that witness ε1 E(R) ε2. Observe that
ε′1 = apply (ε1, T) and ε′2 = apply (ε2, c(γ1, T)).

We apply Lemma 2.7: define the function f on discrete distributions on finite executions of T1 by
f(ε) = apply (ε, T), and the function g on discrete distributions on finite executions of T2 by g(ε) =
apply (ε, c(γ1, T)). We show that the hypothesis of Lemma 2.7 is satisfied, so we can invoke Lemma 2.7
to conclude that ε′1 E(R) ε′2.

Distributivity of f and g follows directly by Proposition 3.12. Let µ1, µ2 be two measures such that
w(µ1, µ2) > 0. We must show that f(µ1) E(R) g(µ2). Since w is a weighting function for ε1 E(R) ε2,
µ1 R µ2. Observe that supp(µ1) ⊆ supp(ε1) and supp(µ2) ⊆ supp(ε2); thus, µ1 is consistent with γ1 and
µ2 is consistent with γ2. By the step condition for R, apply (µ1, T) E(R) apply (µ2, c(γ1, T)). Observe that
apply (µ1, T) = f(µ1) and that apply (µ2, c(γ1, T)) = g(µ2). Thus, f(µ1) E(R) g(µ2), as needed. 2

The following theorem is the main soundness result. The proof simply puts the pieces together, using
Lemma 3.9 (which says that the probabilistic execution generated by an infinite task scheduler can be seen
as the limit of the probabilistic executions generated by some of the finite prefixes of the task scheduler),
Lemma 4.6 (the step condition), Lemma 4.5 (related probabilistic executions have the same trace distribution),
and Lemma 2.13 (limit commutes with tdist).

Theorem 4.7 Let T1 and T2 be comparable task-PIOAs that are closed and action-deterministic. If there
exists a simulation relation from T1 to T2, then tdists(T1) ⊆ tdists(T2).

Proof. Let R be the assumed simulation relation from T1 to T2. Let ε1 be the probabilistic execution
of T1 generated by q̄1 and a (finite or infinite) task schedule, T1T2 · · · . For each i > 0, define γi to be

4 SIMULATION RELATIONS 31

c(T1 · · ·Ti−1, Ti). Let ε2 be the probabilistic execution generated by q̄2 and the concatenation γ1γ2 · · · . It is
sufficient to prove tdist(ε1) = tdist(ε2).

For each j ≥ 0, let ε1,j = apply (q̄1, T1 · · ·Tj), and ε2,j = apply (q̄2, γ1 · · · γj). Then by Lemma 3.9, for
each j ≥ 0, ε1,j ≤ ε1,j+1 and ε2,j ≤ ε2,j+1; moreover, limj→∞ ε1,j = ε1 and limj→∞ ε2,j = ε2. Also, for
every j ≥ 0, apply (ε1,j , Tj+1) = ε1,j+1 and apply (ε2,j , γj+1) = ε2,j+1.

Observe that ε1,0 = δ(q̄1) and ε2,0 = δ(q̄2). The start condition for a simulation relation and a trivial
expansion imply that ε1,0 E(R) ε2,0. Then by induction, using Lemma 4.6 for the definition of a simulation
relation in proving the inductive step, for each j ≥ 0, ε1,j E(R) ε2,j . Then, by Lemma 4.5, for each j ≥ 0,
tdist(ε1,j) = tdist(ε2,j).

By Lemma 2.13, tdist(ε1) = limj→∞ tdist(ε1,j), and tdist(ε2) = limj→∞ tdist(ε2,j). Since for each
j ≥ 0, tdist(ε1,j) = tdist(ε2,j), we conclude that tdist(ε1) = tdist(ε2), as needed. 2

Corollary 4.8 Let T1 and T2 be two comparable action-deterministic task-PIOAs. Suppose that, for every
environment E for both T1 and T2, there exists a simulation relation R from T1‖E to T2‖E . Then T1 ≤0 T2.

Proof. Immediate by Theorem 4.7 and the definition of ≤0. 2

4.3 Example: Trapdoor vs. Rand

The following example, taken from our Oblivious Transfer case study, is a key motivation for generalizing
prior notions of simulation relations. We consider two closed task-PIOAs, Trapdoor and Rand. Rand simply
chooses a number in {1, . . . , n} randomly, from the uniform distribution (using a choose internal action), and
then outputs the chosen value k (using a report(k) output action). Trapdoor, on the other hand, first chooses
a random number, then applies a known permutation f to the chosen number, and then outputs the result.
(The name Trapdoor refers to the type of permutation f that is used in the OT protocol.)

More precisely, neither Rand nor Trapdoor has any input actions. Rand has output actions report(k),
k ∈ [n] = {1, . . . , n} and an internal action choose. It has tasks Report = {report(k) : k ∈ [n]}, and
Choose = {choose}. Its state contains one variable zval, which assumes values in [n] ∪ {⊥}, initially ⊥.
The choose action is enabled when zval = ⊥, and has the effect of setting zval to a number in [n], chosen
uniformly at random. The report(k) action is enabled when zval = k, and has no effect on the state (so it
may happen repeatedly). Precondition/effect code for Rand appears in Figure 5, and a diagram appears in
Figure 6.

Rand

Signature

Input:
None

Output:
report(k), k ∈ {1, . . . , n}

Internal:
choose

Tasks
Report = {report(k) : k ∈ {1, . . . , n}}
Choose = {choose}
States
zval ∈ {1, . . . , n} ∪ {⊥}, initially ⊥

Transitions

choose
Precondition:

zval = ⊥
Effect:

zval := random(unif({1, . . . , n}))

report(k)
Precondition:

zval = k
Effect:

None

Figure 5: Code for Task-PIOA Rand

4 SIMULATION RELATIONS 32

choose

report(1)

report(2)

report(n)

report(2)

report(1)

report(n)

z = 1

z = n

z = 2

Figure 6: Task-PIOA Rand

Trapdoor has the same actions as Rand, plus internal action compute. It has the same tasks as Rand, plus
the task Compute = {compute}. Trapdoor’s state contains two variables, y and z, each of which takes on
values in [n] ∪ {⊥}, initially ⊥. The choose action is enabled when y = ⊥, and sets y to a number in [n],
chosen uniformly at random. The compute action is enabled when y 6= ⊥ and z = ⊥, and sets z := f(y).
The report(k) action behaves exactly as in Rand. Precondition/effect code for Trapdoor appears in Figure 7,
and a diagram appears in Figure 8.

Trapdoor

Signature

Input:
None

Output:
report(k), k ∈ {1, . . . , n}

Internal:
choose, compute

Tasks
Report = {report(k) : k ∈ {1, . . . , n}}
Choose = {choose}, Compute = {compute}
States
yval ∈ {1, . . . , n} ∪ {⊥}, initially ⊥
zval ∈ {1, . . . , n} ∪ {⊥}, initially ⊥

Transitions

choose
Precondition:

yval = ⊥
Effect:

yval := random(unif({1, . . . , n}))

compute
Precondition:

yval 6= ⊥; zval = ⊥
Effect:

zval := f(yval)

report(k)
Precondition:

zval = k
Effect:

None

Figure 7: Code for Task-PIOA Trapdoor

We want to use a simulation relation to prove that tdists(Trapdoor) ⊆ tdists(Rand). To do so, it is
natural to allow the steps that define z to correspond in the two automata, which means the choose steps
of Trapdoor (which define y) do not have corresponding steps in Rand. Note that, between the choose and
compute in Trapdoor, a randomly-chosen value appears in the y component of the state of Trapdoor, but no
such value appears in the corresponding state of Rand. Thus, the desired simulation relation should allow the
correspondence between a probability measure on states of Trapdoor and a single state of Rand.

Simulation relation: We are able to express this correspondence using a simulation relation in the sense
of Definition 4.3. Let ε1 ∈ Disc(Execs∗(Trapdoor)) and ε2 ∈ Disc(Execs∗(Rand)) such that tdist(ε1) =

4 SIMULATION RELATIONS 33

choose

y = 1

y = 2

y = n

compute

compute

compute

z = f (1)

z = f (2)

z = f (n)

report(f (1))

report(f (2))

report(f (n))

report(f (1))

report(f (2))

report(f (n))

Figure 8: Task-PIOA Trapdoor

tdist(ε2).4 Then we say that ε1 and ε2 are related by R whenever the following conditions hold:

1. For every s ∈ supp (lstate(ε1)) and u ∈ supp (lstate(ε2)), s.zval = u.zval.

2. For every u ∈ supp (lstate(ε2)), if u.zval = ⊥ then either

(a) lstate(ε1).yval is the Dirac distribution on ⊥, or else

(b) lstate(ε1).yval is the uniform distribution on [n].

We define the task correspondence mapping c as follows.5

• c(γ,Choose) = λ.

• If γ contains Choose, then c(γ,Compute) = Choose; otherwise, c(γ,Compute) = λ.

• c(γ,Report) = Report.

Proving the simulation relation: We now prove that the relation R defined above is a simulation relation
in the sense of Definition 4.3. We do this by showing that R satisfies the two conditions, namely the start
condition and the step condition, in Lemma 4.4. Note that Property 1 ofR requires that for any ε1 and ε2 such
that ε1 R ε2, the last states of executions in supp(ε1)∪ supp(ε2) have the same value for zval. This property
is used mainly to argue about the uniform enabling or disabling of tasks in the last states of executions in
supp(ε1) ∪ supp(ε2). The proof case where T = Compute and Choose ∈ γ1 is an interesting case; the
probability measure p that we use to show the step condition (cf. Lemma 4.4) is not simply a Dirac measure
on a singleton I . We need to use an index set I which is not a singleton, and define ε′1j and ε′2j for j ∈ I such
that each j corresponds to a particular value in [n]. This ensures that we can preserve R in the step condition.

The following two invariant properties are used in the simulation proof. They both follow from easy
inductive arguments.

Lemma 4.9 In every reachable state s of Trapdoor, if s.zval 6= ⊥ then s.yval 6= ⊥.

Lemma 4.10 Suppose γ is a finite task schedule for Trapdoor, and ε is a discrete distribution on finite
executions of Trapdoor that is consistent with γ. Let s ∈ supp(lstate(ε)) be given. Suppose further that
Choose ∈ γ, that is, the task Choose occurs in the schedule γ. Then s.yval 6= ⊥. If Choose 6∈ γ, then
s.yval = ⊥.

Lemma 4.11 The relation R is a simulation relation from Trapdoor to Rand using the mapping

c : R∗Trapdoor ×RTrapdoor → R∗Rand

defined above.

4In the extended abstract [CCK+06b], this condition is missing.
5In the extended abstract [CCK+06b], the definition of c contains a small error. Namely, in the second clause, c(γ,Compute) is set

to Choose even if γ does not contain Choose.

4 SIMULATION RELATIONS 34

Proof. We show that R satisfies the two conditions in Lemma 4.4.
Start condition: The Dirac measures on executions consisting of the unique start states s and u of, respec-
tively, Trapdoor and Rand are R-related. Properties 1 and 2 of R hold since for every s ∈ supp (lstate(ε1))
and u ∈ supp (lstate(ε2)), s.yval = s.zval = u.zval = ⊥.
Step condition: Suppose ε1 R ε2, γ1 ∈ R1

∗, ε1 is consistent with γ1, ε2 is consistent with full(c)(γ1). Let
ε′1 = apply (ε1, T) and ε′2 = apply (ε1, c(γ1, T)). We now successively consider each task T in R1.

1. T = Choose.

Fix any pair of states s ∈ supp(lstate(ε1)) and u ∈ supp(lstate(ε2)). We consider two cases, according
to the value of s.zval.

(a) s.zval 6= ⊥. By Property 1 of R, for every v ∈ supp(lstate(ε1)), we have that v.zval 6= ⊥. By
the invariant expressed in Lemma 4.9, for every v ∈ supp(lstate(ε1)), we have that v.yval 6= ⊥.
As a result, T is disabled in every state in supp(lstate(ε1)).
Let I be the singleton index {1}, let p be the Dirac measure on 1 and let ε′11 = ε′1 and ε′21 = ε′2. By
Definition 3.3 we have ε′1 = ε1, ε′2 = ε2. Since ε1 R ε2, we have ε′11 R ε′21, as needed. The trace
distribution equivalence condition tdist(ε′1) = tdist(ε′2) also holds since tdist(ε1) = tdist(ε2).
The summations in the step condition of Lemma 4.4 clearly hold.

(b) s.zval = ⊥. By Property 1 of R, for every v ∈ supp(lstate(ε1))∪ supp(lstate(ε2)), we have that
v.zval = ⊥. Following Property 2 of R, we distinguish two cases.

i. lstate(ε1).yval is the Dirac distribution on ⊥. In this case, T is enabled in every state in
supp(lstate(ε1)).
Let I be the singleton index {1}, let p be the Dirac measure on 1 and let ε′11 = ε′1 and
ε′21 = ε′2 = ε2. We now show that (ε′1, ε2) ∈ R. By Definition 3.3 and by the effect of
the unique action in T , we observe that supp(lstate(ε′1)) is equal to supp(lstate(ε1)), except
that supp(lstate(ε′1)) projected on yval is now the uniform distribution on [n]. As a result,
Property 1 of R holds since the zval component is not modified by the application of T to
ε1 and λ to ε2, and Property 2b of R holds since the effect of the choose action in Trapdoor
is to select yval according to a uniform distribution. The summations in the step condition
clearly hold.

ii. lstate(ε1).yval is uniformly distributed on [n]. In this case, T is disabled in every state in
supp(lstate(ε1)), and the treatment is similar to that of Case 1a.

In all cases, the only action that may take place is the choose action, and it is an internal action.
So, the trace condition of R is trivially satisfied.

2. T = Compute and Choose ∈ γ1.

Fix any pair of states s ∈ supp(lstate(ε1)) and u ∈ supp(lstate(ε2)). Lemma 4.10 guarantees that
s.yval 6= ⊥. We consider two cases, according to the value of s.zval.

(a) s.zval 6= ⊥. Property 1 of R guarantees that v.zval 6= ⊥ for every v in supp(lstate(ε1)) ∪
supp(lstate(ε2)). As a result T is disabled in every state in supp(lstate(ε1)), and c(γ1, T) is
disabled in every state supp(lstate(ε2)). The treatment of this case is then the same as the one of
Case 1a of the Choose task.

(b) s.zval = ⊥. By the same observation as in the previous paragraph, we obtain that T is enabled in
every state in supp(lstate(ε1)), and c(γ, T) is enabled every state in supp(lstate(ε2)). Also, using
Property 2 of R, we obtain that the projection of lstate(ε1) on yval is the uniform distribution on
[n].
We define the probability measures needed to show the step correspondence. Let p be the uniform
probability measure on the index set I = {1 · · ·n}. That is, p(j) = 1

n for each j ∈ I . For each j,
we define the probability measure ε′1j as follows. The support supp(ε′1j) is the set of executions

5 APPLICATION TO SECURITY PROTOCOLS 35

α ∈ supp(ε′1) such that lstate(α).zval = j. For each α ∈ supp(ε′1j) of the form α′ computeq, let
ε′1j(α) = ε1(α′). We define ε′2j analogously from ε′2, except that we now consider α ∈ supp(ε′2j)
of the form α′ choose q.
Now fix j ∈ I; we show that (ε′1j , ε

′
2j) ∈ R. To do this, we establish the properties of R for ε′1j

and ε′2j , and show trace distribution equivalence for ε′1j and ε′2j .
Consider any pair of states s′ ∈ supp(lstate(ε′1j)) and u′ ∈ supp(lstate(ε′2j)). By definition of
ε′1j and ε′1j , we know that Property 1 of R holds. Also, since u′.zval 6= ⊥, Property 2 of R holds
too. Since choose and compute are internal actions, trace distribution equivalence holds.
Since the projection of lstate(ε1) on yval is the uniform distribution on [n], since f is a permuta-
tion, and since the effect of the choose action of Rand is to select zval according to the uniform
distribution on [n], the summations of the step condition of Lemma 4.4 hold.

3. T = Compute and Choose 6∈ γ1.

Fix any pair of states s ∈ supp(lstate(ε1)) and u ∈ supp(lstate(ε2)). Lemma 4.10 guarantees that
s.yval = ⊥. As a result, T is disabled in all states in supp(lstate(ε1)). Since c(γ1, T) = λ, the
treatment of this case is then the same as the one of Case 1a of the Choose task.

4. T = Report. Fix any pair of states s ∈ supp(lstate(ε1)) and u ∈ supp(lstate(ε2)). We consider two
cases, according to the value of s.zval.

(a) s.zval 6= ⊥. In this case, Property 1 guarantees that the projection of supp(lstate(ε1)) ∪
supp(lstate(ε2)) on zval is a unique value j. That is, for all v ∈ supp(lstate(ε1))∪supp(lstate(ε2))
we have v.zval = j. As a result, there is a unique action a = report(j) ∈ T ∪ c(γ1, T) that is
enabled in all states in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
Let I be the singleton index {1}, let p be the Dirac measure on 1 and let ε′11 = ε′1 and ε′21 = ε′2.
We show that (ε′1, ε

′
2) ∈ R. First, since the action a has no effect, Properties 1 and 2 of R trivially

hold for (ε′1, ε
′
2). Then, since the same action a is executed in both systems, trace distribution

equivalence for ε′1 and ε′2 holds.

(b) s.zval = ⊥. In this case, Property 1 guarantees that the projection of supp(lstate(ε1)) ∪
supp(lstate(ε2)) on zval is equal to ⊥. Then, T and c(γ1, T) are disabled in every state in
supp(lstate(ε1)) ∪ supp(lstate(ε2)), and the treatment of this case is the same as that of Case 1a
of the Choose task.

2

5 Application to Security Protocols
In [CCK+05b, CCK+06c], we use the task-PIOAs to model and analyze the Oblivious Transfer (OT) protocol
of Goldreich et al. [GMW87]. Our analysis takes into account computational issues such as resource-bounded
adversaries and computational indistinguishability assumptions. Therefore, it requires extensions to the task-
PIOA theory presented in this paper. These extensions, and the full details of our analysis, are beyond the
scope of this paper. Our purpose in this section is to discuss how task-PIOAs can be used in modeling and
analysis of cryptographic protocols based on a concrete, nontrivial example.

Oblivious Transfer In the OT problem, two input bits (x0, x1) are submitted to a Transmitter Trans and
a single input bit i to a Receiver Rec. After engaging in an OT protocol, Rec should output only the single
bit xi. Rec should not learn the other bit x1−i, and Trans should not learn i; moreover, an eavesdropping
adversary should not, by observing the protocol messages, be able to learn anything about the inputs or the
progress of the protocol. OT has been shown to be “complete” for multi-party secure computation, in the

5 APPLICATION TO SECURITY PROTOCOLS 36

sense that, using OT as the only cryptographic primitive, one can construct protocols that securely realize any
functionality.

The protocol of [GMW87] uses trap-door permutations (and hard-core predicates) as an underlying
cryptographic primitive. It uses three rounds of communication: First, Trans chooses a random trap-door
permutation f and sends it to Rec. Second, Rec chooses two random numbers (y0, y1) and sends (z0, z1)
to Trans, where zi = f(yi) and z1−i = y1−i (here i is the input of Rec.) Third, Trans applies the same
transformation to each of z0 and z1 and sends the results back as (b0, b1). Finally, Rec decodes and outputs
the correct bit. The protocol uses cryptographic primitives and computational hardness in an essential way,
therefore its security is inherently only computational and its analysis requires the modeling of computational
assumptions.

Our Analysis Our analysis follows the trusted party paradigm of [GMW87], with a formalization of secure
emulation that is close in spirit to [PW00, Can01]. Our modeling involves two systems of automata:

• The real system (RS) consists of two automata representing protocol parties (Trans and Rec) and one
automaton representing an adversarial communication service (Adv), which has access to all messages
sent during the execution of the protocol. In RS, typical tasks include “choose random (y0, y1)”,
“send round 1 message”, and “deliver round 1 message”, as well as arbitrary tasks of environment and
adversary automata. (The environment and adversary automata are purposely under-specified, so that
our results are as general as possible.) Note that these tasks do not specify exactly what transition
occurs. For example, the “choose” task does not specify the chosen values of (y0, y1). And the “send”
task does not specify the message contents—these are computed by Trans, based on its own internal
state.

• The ideal system (IS) consists of an ideal Oblivious Transfer functionality automaton, and a simulator
automaton, which interacts with the functionality and tries to mimic the behavior of the real system
such as the messages between the protocol parties.

Then we prove that RS implements IS. The proof consists of four cases, depending on which parties are
corrupted.6 In the two cases where Trans is corrupted, we can show that RS implements IS perfectly, using
≤0. In the cases where Trans is not corrupted, we can show implementation only in a “computational” sense,
namely, (i) for resource-bounded adversaries, (ii) up to negligible difference in probabilities, and (iii) under
computational indistinguishability assumptions. Modeling these aspects requires additions to the task-PIOA
framework of this paper, namely, defining a time-bounded version of task-PIOAs, and defining a variation,
≤neg,pt, of the ≤0 relation, which describes approximate implementation with respect to polynomial-time
environments. Similar relations were defined in [LMMS98, PW01]. Our simulation relations (extended with
time bounds on schedule lengths) are also shown to be sound for proving ≤neg,pt.

We also provide models for computational objects, namely, trap-door functions and hard-core predicates.
Part of the specification for such objects is that their behavior should look “approximately random” to outside
observers; we formalize this in terms of ≤neg,pt.

The correctness proofs proceed by levels of abstraction, relating each pair of models at successive levels
using ≤neg,pt. In the case where only Rec is corrupted, all but one of the relationships between levels are
proved using simulation relations as defined in this paper (and so, they guarantee ≤0). The only exception
is between a level in which a hard-core bit is used, and a higher level in which the hard-core bit is replaced
by a random bit. Showing this correspondence relies on our ≤neg,pt-based definition of the cryptographic
primitive, and on composition results for time-bounded task-PIOAs. Since this type of reasoning is isolated
to one correspondence, the methods of this paper in fact suffice to accomplish most of the work of verifying
OT.

Each of our system models, at each level, includes an explicit adversary component automaton, which
acts as a message delivery service that can eavesdrop on communications and control the order of message

6In [CCK+05b], only one case is treated in full detail—when only Rec is corrupted. We prove all four cases in [CCK+05a], but
using a less general definition of task-PIOAs than the one used here and in [CCK+05b], and with non-branching adversaries.

6 LOCAL SCHEDULERS 37

delivery. The behavior of this adversary is arbitrary, subject to polynomial time constraints on its computa-
tional capabilities. In our models, the adversary is the same at all levels, so our simulation relations relate
the adversary states at consecutive levels directly, using the identity function. This treatment allows us to
consider arbitrary adversaries without examining their structure in detail (they can do anything, but must do
the same thing at all levels).

The following patterns arise in our simulation relation proofs. They are the motivations for our new
definition of simulation relations, which has the expansion capability and relates measures to measures.

1. We often correspond random choices at two levels of abstraction—for instance, when the adversary
makes a random choice, from the same state, at both levels. We would like our simulation relation
to relate the individual outcomes of the choices at the two levels, matching up the states in which the
same result is obtained. Modeling this correspondence uses the expansion feature.

2. The Trapdoor vs. Rand example described in Section 4 occurs in our OT proof. Here, the low-level
system chooses a random y and then computes z = f(y) using a trap-door permutation f . The higher
level system simply chooses the value of z randomly, without using value y or permutation f . In order
to correspond the steps that define z in both automata, we need to correspond the point between random
choice of y and the computation of z in Trapdoor to the initial state of Rand. This correspondence
relates measures to measures and uses expansion.

3. In another case, a lower-level system chooses a random value y and then computes a new value by ap-
plying XOR to y and an input value. The higher level system just chooses a random value. We establish
a correspondence between the two levels using the fact that XOR preserves the uniform distribution.
This correspondence again relates measures to measures and uses expansion.

6 Local Schedulers
With the action-determinism assumption, our task mechanism is enough to resolve all nondeterminism. How-
ever, action determinism limits expressive power. Now we remove this assumption and add a second mech-
anism for resolving the resulting additional nondeterminism, namely, a local scheduler for each component
task-PIOA. A local scheduler for a given component can be used to resolve nondeterministic choices among
actions in the same task, using only information about that component. Here, we define one type of local
scheduler, which uses only the current state, and indicate how our results for the action-deterministic case
carry over to this setting.

Our notion of local scheduler is simply a “sub-automaton”: We could add more expressive power by
allowing the local scheduler to depend on the past execution. This could be formalized in terms of an explicit
function of the past execution, or perhaps in terms of a refinement mapping or other kind of simulation
relation.

Definition 6.1 We say that task-PIOA T ′ = (P ′, R′) is a sub-task-PIOA of task-PIOA T = (P, R) provided
that all components are identical except that D′ ⊆ D, where D and D′ are the sets of discrete transitions of
P and P ′, respectively. Thus, the only difference is that T ′ may have a smaller set of transitions.

Definition 6.2 A local scheduler for a task-PIOA T is any action-deterministic sub-task-PIOA of T . A prob-
abilistic system is a pairM = (T ,S), where T is a task-PIOA and S is a set of local schedulers for T .

Definition 6.3 A probabilistic execution of a probabilistic systemM = (T ,S) is defined to be any proba-
bilistic execution of any task-PIOA S ∈ S.

We next define composition for probabilistic systems. This definition requires the local scheduler of a
composition to be of the form S1‖S2, where S1 and S2 are local schedulers of its components. That is, we
require a local scheduler for a composition to project onto local schedulers of the individual components.

6 LOCAL SCHEDULERS 38

Without this condition, a choice made in one component might depend on the state of the other component,
and this would prevent us from proving compositionality properties such as Theorem 6.9. An example that
demonstrates how compositionality fails in the absence of such a condition can be found in [LSV07].

Definition 6.4 If M1 = (T1,S1) and M2 = (T2,S2) are two probabilistic systems, and T1 and T2 are
compatible, then their composition M1‖M2 is the probabilistic system (T1‖T2,S), where S is the set of
local schedulers for T1‖T2 of the form S1‖S2, for some S1 ∈ S1 and S2 ∈ S2.

Definition 6.5 If M = (T ,S) is a probabilistic system, then an environment for M is any environment
(action-deterministic task-PIOA) for T . If M = (T ,S) is a probabilistic system, then the external be-
havior of M, extbeh(M), is the total function that maps each environment task-PIOA E for M to the set⋃
S∈S tdists(S‖E).

Thus, for each environment, we consider the set of trace distributions that arise from two choices: of a
local scheduler ofM and of a global task schedule γ.

Definition 6.6 Two probabilistic systems (T1,S1) and (T2,S2) are comparable if T1 and T2 are comparable
task-PIOAs.

We define an implementation relation for comparable probabilistic systems in terms of inclusion of sets
of trace distributions for each probabilistic system based on an environment task-PIOA:

Definition 6.7 If M1 = (T1,S1) and M2 = (T2,S2) are comparable probabilistic systems (i.e., T1 and
T2 are comparable), then M1 implements M2, written M1 ≤0 M2, provided that extbeh(M1)(E) ⊆
extbeh(M2)(E) for every environment (action-deterministic) task-PIOA E for bothM1 andM2.

We obtain a sufficient condition for implementation of probabilistic systems, in which each local sched-
uler for the low-level system always corresponds to the same local scheduler of the high-level system.

Theorem 6.8 LetM1 = (T1,S1) andM2 = (T2,S2) be two comparable probabilistic systems. Suppose
there is a total function f from S1 to S2 such that, for every S1 ∈ S1, S1 ≤0 f(S1). ThenM1 ≤0 M2.

We also obtain a compositionality result for probabilistic systems. The proof is similar to that of Theo-
rem 3.24, for the action-deterministic case.

Theorem 6.9 LetM1, M2 be comparable probabilistic systems such thatM1 ≤0 M2, and letM3 be a
probabilistic system compatible with each ofM1 andM2. ThenM1‖M3 ≤0 M2‖M3.

Proof. Let T4 = (P4, R4) be any environment (action-deterministic) task-PIOA for bothM1‖M3 and
M2‖M3. LetM4 be the trivial probabilistic system (T4, {T4}). Fix any task schedule γ1 for (T1‖T3)‖T4

and local scheduler P ′13 ofM1‖M3. Let τ be the trace distribution of (T1‖T3)‖T4 generated by γ1 and P ′13.
It suffices to show that τ is also generated by some task schedule γ2 for (T2‖T3)‖T4, local scheduler P ′23 of
M2‖M3, and P4.

Note that γ1 is also a task schedule for T1‖(T3‖T4). Since P ′13 is a local scheduler of M1‖M3, it is
(by definition) of the form P ′1‖P ′3, where P ′1 ∈ S1 and P ′3 ∈ S3. Let P ′34 = P ′3‖P4. Then P ′34 is a
local scheduler ofM3‖M4. Then, γ1, P ′1, and P ′34 generate the same trace distribution τ in the composed
task-PIOA T1‖(T3‖T4).

Define T5 to be the task-PIOA T3‖T4. Note that T5 is an environment task-PIOA for each of T1 and
T2. Define the probabilistic systemM5 to be (T5, {P ′34}), that is, we consider just a singleton set of local
schedulers, containing the one scheduler we are actually interested in.

Now, by assumption, M1 ≤0 M2. Therefore, there exists a task schedule γ2 for T2‖T5 and a local
scheduler P ′2 for P2 such that γ2, P ′2, and P ′34 generate the same trace distribution τ in the task-PIOA T2‖T5.
Note that γ2 is also a task schedule for (T2‖T3)‖T4. Let P ′23 = P ′2‖P ′3. Then P ′23 is a local scheduler of
M2‖M3. Also, P ′4 is a local scheduler ofM4. Then γ2, P ′23 and P ′4 also generate τ , which suffices to show
the required implementation relationship. 2

7 RELATED WORK 39

7 Related Work
There are numerous models in the literature that combine nondeterministic and probabilistic choices (see
[SdV04] for a survey). However, very few tackle the issue of partial-information scheduling, as we do.
Exceptions include [dA99], which uses partitions on the state space to obtain partial-information schedules,
and [CH05], which models local-oblivious scheduling. The former is essentially within the framework of
partially observable MDPs (POMDPs), originally studied in the context of reinforcement learning [KLC98].
In these frameworks, basic units of scheduling are individual actions, as opposed to equivalent classes of
actions. That allows the adversary some access to random choices generated during execution, therefore
these frameworks are not suitable for cryptographic modeling.

Our general approach to cryptographic protocol verification is inspired by the Interactive Turing Machine
(ITM) framework used in [Can01]. There, protocol participants are modeled as ITMs and messages as bit
strings written on input and output tapes. ITMs are purely probabilistic and are activated sequentially via
message deliveries. This framework is well suited for computational analysis: a typical argument reduces
the correctness of a protocol to the computational hardness (or indistinguishability) assumptions associated
with the underlying cryptographic primitives. However, a complete and rigorous analysis is often imprac-
tical, because it involves too many low-level machine details. Indeed, in the community of computational
cryptography, protocols are typically described using an informal high-level language, and proof sketches are
given in terms of these informal descriptions.

Thus, our motivation is to provide a framework in which protocols can be specified clearly and concisely,
and computational proofs can be carried out formally and at a high level of abstraction. This motivation
is certainly not new: several other research groups have taken conventional concurrency modeling frame-
works and added features intended for computational cryptographic analysis. This includes the Probabilistic
Polynomial-time process Calculus (PPC) framework of Mitchell et al. [LMMS98, MMS03, MRST06] and
the Reactive Simulatability (RSIM) framework of Pfitzmann et al. [PW00, PW01, BPW07]. However, the
semantic foundations of concurrent computation used in these frameworks differ from task-PIOAs in some
fundamental ways. These differences arise in part because we aim to exploit the benefits of nondeterminism
to a greater extent. Below we give a brief summary of these two frameworks and compare them against
task-PIOAs.

PPC On a conceptual level, the PPC and task-PIOA frameworks handle concurrency and nondeterminism
in a similar way. Processes with nondeterministic choices are definable in both frameworks, and a global
scheduler is used to resolve nondeterminism.7 In [MRST06], the scheduler is a probabilistic polynomial-
time function that selects an action label from the set of enabled actions. Typically, action labels in PPC
correspond to the types of protocol messages, as opposed to the messages themselves. This is similar to our
distinction between tasks and actions.

Despite these similarities, a major difference exists between the operational semantics of PPC and our
task-scheduling mechanism. Our task schedules are oblivious sequences of tasks. Since tasks may repre-
sent either internal computations or external communications, a task schedule resolves choices involving
both types of activities with no priority restrictions. In PPC, however, internal computations are prioritized
over secure communications, which are in turn prioritized over insecure communications. The probabilistic
polynomial-time scheduler is invoked when no more internal computations are possible.

Like our task schedules, the scheduler function of PPC is an entity distinct from the adversary. To faith-
fully model adversarial scheduling, one must construct the PPC adversary contexts in such a way that message
timing is controlled by the adversary and not by the scheduler function. This point is observed in [MMS03]
and it corresponds to our proposal that high-level nondeterminism is resolved by an adversary automaton.
Thus, the real difference between PPC’s scheduling mechanism and our own lies in the handling of low-level
nondeterminism. In our view, task-based scheduling is a simple and sufficient method for that purpose.

7The authors have also developed a sequential version of PPC [DKMR05], with a semantics akin to the ITM and RSIM frameworks.

7 RELATED WORK 40

The PPC framework differs from our task-PIOA framework in another respect, namely, the use of ob-
servational equivalence and probabilistic bisimulation as the main semantic relations. Both of these are
symmetric relations, whereas our implementation and simulation relations are asymmetric, expressing the
idea that a system P can emulate another system Q but the converse is not necessarily true. The asymmetry
of our definitions arises from our quantification over schedules: we assert that “for every schedule of P ,
there is a schedule of Q that yields equivalent behavior.” This is analogous to the traditional formulation for
non-probabilistic systems, where implementation means “every behavior of P is a behavior of Q,” with no
requirement imposed in the other direction. In our experience with distributed algorithms, this asymmetry can
be used to make specifications simpler, by keeping irrelevant details unspecified in the abstract specification.
At the same time, it produces guarantees that are more general, because correctness statements will hold no
matter how an implementer chooses to fill in the unspecified details.

In PPC, symmetric semantic relations are sufficient because process expressions typically do not contain
low-level nondeterminism. For example, under the grammar of PPC, there is no natural way to express a
process P that performs actions a and b in either order and then proceeds as process P ′. This is because
PPC allows nondeterministic choices only via parallel composition, but one cannot pretend a‖b to a separate
process P ′. In contrast, this type of choices is very common in our models (cf. our OT model in [CCK+05b]).
Using a simulation relation, we are able to handle the two cases (i.e., whether a precedes b or vice versa)
separately but without duplicating any arguments involving P ′.

To sum up, the PPC and task-PIOAs frameworks share similar goals but have different features and
strengths. Having a process algebraic foundation, PPC proofs are based on formal deduction, hence very
amenable to mechanization. However, process expressions constructed from a formal syntax are less flexible
compared to our automata-based specifications. These differences are inherent and, because of them, one
framework may be more appropriate than the other for a given application.

RSIM Next we consider the RSIM framework of Pfitzmann et al. There a protocol is modeled by a network
of interrupt-driven probabilistic state machines, with special “buffer” machines to capture message delays,
and special “clock ports” to control the scheduling of message delivery. Each individual machine is purely
probabilistic; that is, it is fully-specified up to inputs and/or random choices generated during execution. In
particular, if a system of machines is closed (i.e., every input of every machine is provided by some machine
in the system), it is fully specified up to coin tosses.

For a closed RSIM system, a sequential activation scheme is used to define a unique probabilistic run for
each possible initial state of the system. Under this scheme, machines are switched one at a time, and the
current active machine M1 selects the next machine M2 by scheduling a message intended for M2. (This is
possible only when M1 “owns” the clock port to an input buffer of M2.) If no machines are active, a special
“master scheduler” machine is triggered by default.

Thus, in order to capture nondeterministic choices within the RSIM framework, one must associate ex-
plicit inputs to each schedulable event and then quantify over different machines that provide these scheduling
inputs. That is, each scheduler machine corresponds to one particular schedule. In contrast, nondetermin-
istic choices can be expressed in a task-PIOA without the use of explicit inputs, and we quantify over task
schedules to capture the possible ways of resolving nondeterminism.

These technical differences are again the result of our divergent views on nondeterminism. The RSIM
framework is designed with high-level nondeterminism in mind. Therefore, message buffering and delivery
are made explicit, while internal computations are entirely encapsulated within single-step transitions. As in
PPC, there is no natural way (aside from adding inputs and scheduler machines) to express nondeterministic
choices that correspond to implementation freedom.

Aside from practical consequences, the different treatments of nondeterminism also affect the meaning
of security definitions. For example, in the definition of reactive simulatability, the user and adversary are
fixed after all other machines are determined. Essentially, this allows the worst possible adversary for every
schedule of the system. In our security definitions [CCK+06c, CCK+05b], the environment8 and adversary

8The role of “user” in RSIM is comparable to the role of “environment” in our definitions.

8 CONCLUSIONS 41

are fixed before the task schedules. Therefore, we consider instead the worst possible schedule for each given
adversary. In light of the separation result in [CCLP07], we believe RSIM and task-PIOA definitions are not
equivalent, because RSIM is based on sequential scheduling.

8 Conclusions
We have extended the traditional PIOA model with a task mechanism, which provides a systematic way
of resolving nondeterministic scheduling choices without using dynamically generated information. In the
resulting Task-PIOA framework, we develop basic machinery for verification, including a compositional
trace-based semantics and a new kind of simulation relation that is sound for proving implementation. The
utility of these tools are demonstrated in the Oblivious Transfer case study, which is outlined in this paper and
presented in full in [CCK+05b]. We have also proposed a further extension, in which local nondeterminism
are resolved by schedulers that use local information only.

Although our development is motivated by concerns in cryptographic protocol analysis, the notion of
partial-information scheduling is interesting in its own right. For example, some distributed algorithms are
designed using partial-information scheduling assumptions, because the problems they address are prov-
ably unsolvable under perfect-information scheduling [Cha96, Asp03]. Also, one may argue that partial-
information scheduling is more realistic in models of large distributed systems, in which basic scheduling
decisions are made locally, and not by any centralized mechanism.

There are many more interesting problems in our general project of cryptographic protocol verification.
Below we discuss some of them.

Computational Assumptions We would like to express standard computational assumptions in terms of
implementation relations between task-PIOAs. Judging from our results on hard-core predicates [CCK+05b],
decisional assumptions can be formulated quite easily by comparing the accept probabilities of a distinguisher
environment. To handle hardness assumptions, we need to formalize the usual “conversion” argument: any
successful adversary can be converted into an efficient algorithm for solving a difficult problem.

Statistical Indistinguishability Another problem is to formalize the notion of statistical indistinguishabil-
ity. This yields a third type of implementation relation, in addition to perfect implementation ≤0 and the
computational approximate implementation≤neg,pt. In [ML06], metric distances between trace distributions
are used to define approximate implementations and approximate simulations for individual task-PIOAs.
These definitions are extended to families of task-PIOAs, thereby obtaining a notion of statistical approxi-
mate implementation relation [CMP07].

Simulation-Based Security Definitions Our security definition falls under the category of simulation-
based security. In [DKMR05], various simulation-based security notions, including universally composable
security [Can01] and reactive simulatability [PW00, PW01], are translated into the sequential version of PPC.
A semantic hierarchy of these notions is given, based on the placement of a master process and the ability
to forward communication between processes. Interestingly, there is no obvious way to place our notion of
security in this hierarchy. This is because there is no inherent notion of master process in our definitions.
Moreover, our task schedules are determined after the adversary, simulator, and environment automata have
been fixed. This additional quantification is not found in other security definitions. We investigate the role of
scheduling in simulation-based security and show that different choices of scheduling mechanisms give rise
to differences in the meanings of security definitions in [CCLP07].

Composition Theorem In [CCK+07], we prove that our notion of secure emulation is preserved under a
polynomial number of protocol substitutions. While the result is standard, the actual proof in our framework
requires a nontrivial adaptation of the usual hybrid argument. This reveals some interesting implications of

REFERENCES 42

our definitions. In particular, we allow a time-bounded task-PIOA to continue its computation indefinitely,
even though each individual transition is of bounded complexity. A task schedule thus takes on two roles:
resolving nondeterminism and limiting the number of individual transitions. This separation between single
step complexity and schedule length complexity is a design decision, because eventually we are interested
in proving long-term correctness properties. As a result, our definition of secure emulation involves an
additional quantification over schedule length bounds, which makes the hybrid argument more delicate than
usual.

Mechanized Proofs The simulation proofs in our OT case study are quite similar in character to typical
analysis of distributed algorithms. Namely, we establish correspondence between two specifications by ex-
amining their respective behaviors at comparable stages in the protocol. Invariant-style properties are often
invoked to prove these correspondences. This type of reasoning is a good candidate for mechanization. In
fact, we are quite confident that the (non-probabilistic) invariant properties in our proofs can be proven in a
straightforward fashion using a theorem prover such as PVS. Since our language is based on I/O automata,
translation into PVS (without probabilities) can be done systematically using the TEMPO Toolset [Too] and
the TAME interface [Arc]. It will be very interesting to explore the possibility of mechanizing a greater por-
tion of our simulation proofs. This may involve the development of new reasoning techniques to handle sets
of traces (as opposed to individual traces or trace distributions).

Acknowledgments
We thank Frits Vaandrager for collaboration in early stages of this project, and Michael Backes, Anupam
Datta, Joshua Guttman, Jon Herzog, Susan Hohenberger, Ralf Kuesters, John Mitchell, Birgit Pfitzmann and
Andre Scedrov for technical discussions that helped us in clarifying our ideas and their connections to other
work in analysis of cryptographic protocols. We thank Silvio Micali for impressing upon us the importance
of adaptive adversarial schedulers in the cryptographic setting. We thank Sayan Mitra both for technical
discussions and for help in typesetting the paper.

Canetti’s work on this project was supported by NSF CyberTrust Grant #0430450. Cheung was supported
by DFG/NWO bilateral cooperation project 600.050.011.01 Validation of Stochastic Systems (VOSS) and by
NSF Award #CCR-0326277. Part of this work was done when she was at Radboud University Nijmegen.
Kaynar and Lynch were supported by DARPA/AFOSR MURI Award #F49620-02-1-0325, MURI AFOSR
Award #SA2796PO 1-0000243658, NSF Awards #CCR-0326277 and #CCR-0121277, and USAF, AFRL
Award #FA9550-04-1-0121, and Kaynar was supported by US Army Research Office grant #DAAD19-01-1-
0485. Pereira was supported by the Belgian National Fund for Scientific Research (F.R.S.-FNRS). Segala was
partially supported by the European Project CON4COORD (C4C; contract number 223844) and the Italian
PRIN Project SOFT.

References
[AH90] J. Aspnes and M. Herlihy. Fast randomized consensus using shared memory. Journal of Algo-

rithms, 11(3):441–461, 1990.

[Arc] M. Archer. TAME support for refinement proofs. Available at http://chacs.nrl.navy.
mil/personnel/archer.html.

[Asp03] J. Aspnes. Randomized protocols for asynchronous consensus. Distributed Computing, 16(2-
3):165–175, 2003.

[Bea91] D. Beaver. Secure multiparty protocols and zero-knowledge proof systems tolerating a faulty
minority. Journal of Cryptology, 4(2):75–122, 1991.

REFERENCES 43

[BK98] C. Baier and M. Kwiatkowska. Model checking for a probabilistic branching time logic with
fairness. Distributed Computing, 11(3):125–155, 1998.

[BO83] M. Ben-Or. Another advantage of free choice: completely asynchronous agreement protocols.
In Proc. 2nd ACM Symposium on Principles of Distributed Computing, pages 27–30, Montreal,
Quebec, Canada, August 1983.

[BPW07] M. Backes, B. Pfitzmann, and M. Waidner. The reactive simulatability (RSIM) framework for
asynchronous systems. Information and Computation, 205(12):1685–1720, December 2007.

[Can95] R. Canetti. Studies in Secure Multi-Party Computation and Applications. PhD thesis, Weizmann
Institute, Israel, 1995.

[Can01] R. Canetti. Universally composable security: a new paradigm for cryptographic protocols. In
Proc. 42nd IEEE Symposium on Foundations of Computing, pages 136–145, 2001.

[CCK+05a] R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch, O. Pereira, and R. Segala. Using
probabilistic I/O automata to analyze an oblivious transfer protocol. Technical Report MIT-
LCS-TR-1001a or MIT-CSAIL-TR-2005-055, MIT CSAIL, 2005.

[CCK+05b] R. Canetti, L. Cheung, D. Kaynar, M.Liskov, N.Lynch, O. Pereira, and R. Segala. Using task-
structured probabilistic I/O automata to analyze an oblivious transfer protocol. Cryptology
ePrint Archive, Report 2005/452, 2005. Available at http://eprint.iacr.org/.

[CCK+06a] R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch, O. Pereira, and R. Segala. Task-
structured probabilistic I/O automata. Technical Report MIT-CSAIL-TR-2006-023, MIT
CSAIL, 2006.

[CCK+06b] R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch, O. Pereira, and R. Segala. Task-
structured probabilistic I/O automata. In Proceedings of the 8th International Workshop on
Discrete Event Systems (WODES’06), 2006. Ann Arbor, Michigan, July 2006.

[CCK+06c] R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch, O. Pereira, and R. Segala. Time-
bounded task-PIOAs: a framework for analyzing security protocols. In Proceedings of the 20th
International Symposium on Distributed Computing (DISC ’06), 2006. Stockholm, Sweden,
September 2006.

[CCK+07] R. Canetti, L. Cheung, D. Kaynar, N. Lynch, and Olivier Pereira. Compositional security for
Task-PIOAs. In Proceedings of the 20th IEEE Computer Security Foundations Symposium
(CSF-20), pages 125–139. IEEE Computer Society Press, July 2007.

[CCLP07] R. Canetti, L. Cheung, N. Lynch, and O. Pereira. On the role of scheduling in simulation-based
security. In R. Focardi, editor, Proceedings of the 7th International Workshop on Issues in the
Theory of Security (WITS ’07), pages 22–37, March 2007. Available at http://eprint.
iacr.org/2007/102.

[CH05] L. Cheung and M. Hendriks. Causal dependencies in parallel composition of stochastic pro-
cesses. Technical Report ICIS-R05020, Institute for Computing and Information Sciences,
University of Nijmegen, 2005.

[Cha96] T.D. Chandra. Polylog randomized wait-free consensus. In Proc. 15th ACM Symposium on
Principles of Distributed Computing, pages 166–175, 1996.

[CLK+06] R. Canetti, L.Cheung, D. Kaynar, M. Liskov, N. Lynch, O. Pereira, and R. Segala. Using
task-structured probabilistic I/O automata to analyze cryptographic protocol. In V. Cortier
and S. Kremer, editors, Proceedings of Workshop on Formal and Computational Cryptogra-
phy (FCC ’06), pages 34–39, 2006.

REFERENCES 44

[CLSV06] L. Cheung, N. Lynch, R. Segala, and F. Vaandrager. Switched PIOA: Parallel composition via
distributed scheduling. Theoretical Computer Science, 365(1–2):83–108, 2006.

[CMP07] Ling Cheung, Sayan Mitra, and Olivier Pereira. Verifying statistical zero knowledge with ap-
proximate implementations. Cryptology ePrint Archive, Report 2007/195, 2007. Available at
http://eprint.iacr.org/2007/195.

[dA99] L. de Alfaro. The verification of probabilistic systems under memoryless partial-information
policies is hard. In Proc. PROBMIV 99, pages 19–32, 1999.

[Der70] C. Derman. Finite State Markovian Decision Processes. Academic Press, 1970.

[DKMR05] A. Datta, R. Küsters, J.C. Mitchell, and A. Ramanathan. On the relationships between notions
of simulation-based security. In Proceedings TCC 2005, pages 476–494, 2005.

[GL90] S. Goldwasser and L. Levin. Fair computation of general functions in presence of immoral
majority. In Alfred J. Menezes and Scott A. Vanstone, editors, Advances in Cryptology - Crypto
’90, pages 77–93, Berlin, 1990. Springer-Verlag. Lecture Notes in Computer Science Volume
537.

[GMR85] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof sys-
tems. In Proceedings of the 17th Annual ACM Symposium on Theory of Computing (STOC’85),
pages 291–304, 1985.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In Proc. 19th ACM
Symposium on Theory of Computing (STOC), pages 218–229, 1987.

[GPS06] Marc Girault, Guillaume Poupard, and Jacques Stern. On the fly authentication and signature
schemes based on groups of unknown order. Journal of Cryptology, 19(4):463—487, 2006.

[JL91] B. Jonsson and K.G. Larsen. Specification and refinement of probabilistic processes. In Pro-
ceedings of the 6th IEEE Symposium on Logic in Computer Science, pages 266–277, 1991.

[Kan58] L. Kantorovitch. On the translocation of masses. Management Science, 5(1):1–4, 1958.

[KLC98] L.P. Kaelbling, M.L. Littman, and A.R. Cassandra. Planning and acting in partially observable
stochastic domains. Artificial Intelligence, 101:99–134, 1998.

[LMMS98] P. Lincoln, J.C. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-time framework
for protocol analysis. In ACM Conference on Computer and Communications Security, pages
112–121, 1998.

[LSS94] N.A. Lynch, I. Saias, and R. Segala. Proving time bounds for randomized distributed algorithms.
In Proc. 13th ACM Symposium on the Principles of Distributed Computing, pages 314–323,
1994.

[LSV03] N.A. Lynch, R. Segala, and F.W. Vaandrager. Compositionality for probabilistic automata. In
Proc. 14th International Conference on Concurrency Theory (CONCUR 2003), volume 2761
of LNCS, pages 208–221. Springer-Verlag, 2003.

[LSV07] N.A. Lynch, R. Segala, and F.W. Vaandrager. Observing branching structure through proba-
bilistic contexts. SIAM Journal on Computing, 37:977–1013, 2007.

[LT89] N.A. Lynch and M.R. Tuttle. An introduction to input/output automata. CWI Quarterly,
2(3):219–246, September 1989.

REFERENCES 45

[ML06] S. Mitra and N.A. Lynch. Probabilistic timed I/O automata with continuous state spaces. Pre-
liminary version available at http://theory.lcs.mit.edu/˜mitras/research/
csptioa_preprint.pdf, May 2006.

[ML07] Sayan Mitra and Nancy Lynch. Approximate implementation relations for probabilistic I/O
automata. Electr. Notes Theor. Comput. Sci., 174(8):71–93, 2007.

[MMS03] P. Mateus, J.C. Mitchell, and A. Scedrov. Composition of cryptographic protocols in a proba-
bilistic polynomial-time process calculus. In Proc. 14th International Conference on Concur-
rency Theory (CONCUR 2003), pages 323–345, 2003.

[MR91] S. Micali and P. Rogaway. Secure computation. In Joan Feigenbaum, editor, Advances in Cryp-
tology - Crypto ’91, pages 392–404, Berlin, 1991. Springer-Verlag. Lecture Notes in Computer
Science Volume 576.

[MRST06] J. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague. A probabilistic polynomial-time
process calculus for the analysis of cryptographic protocols. Theoretical Computer Science,
353:118–164, 2006.

[NMO08] Waka Nagao, Yoshifumi Manabe, and Tatsuaki Okamoto. Relationship of three cryptographic
channels in the uc framework. In Provable Security, Second International Conference, ProvSec
2008, volume 5324 of LNCS, pages 268–282. Springer, 2008.

[PSL00] A. Pogosyants, R. Segala, and N.A. Lynch. Verification of the randomized consensus algorithm
of Aspnes and Herlihy: a case study. Distributed Computing, 13(3):155–186, 2000.

[Put94] M.L. Puterman. Markov Decision Process – Discrete Stochastic Dynamic Programming. John
Wiley & Sons, Inc., New York, NY, 1994.

[PW94] Birgit Pfitzmann and Michael Waidner. A general framework for formal notions of “secure”
system. Technical report, Hildesheimer Informatik-Berichte 11/94, Institut fr Informatik, Uni-
versitt Hildesheim., April 1994.

[PW00] B. Pfitzman and M. Waidner. Composition and integrity preservation of secure reactive systems.
In Proc. 7th ACM Conference on Computer and Communications Security (CCS 2000), pages
245–254, 2000.

[PW01] B. Pfitzman and M. Waidner. A model for asynchronous reactive systems and its application to
secure message transmission. In Proc. IEEE Symposium on Research in Security and Privacy,
pages 184–200, 2001.

[Rab82] M. Rabin. The choice coordination problem. Acta Informatica, 17:121–134, 1982.

[SdV04] A. Sokolova and E.P. de Vink. Probabilistic automata: system types, parallel composition and
comparison. In Validation of Stochastic Systems, volume 2925 of LNCS, pages 1–43. Springer-
Verlag, 2004.

[Seg95] R. Segala. Modeling and Verification of Randomized Distributed Real-Time Systems. PhD
thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, June 1995. Available as Technical Report MIT/LCS/TR-676.

[SL95] R. Segala and N.A. Lynch. Probabilistic simulations for probabilistic processes. Nordic Journal
of Computing, 2(2):250–273, 1995.

[SV99] M.I.A. Stoelinga and F.W. Vaandrager. Root contention in IEEE 1394. In Proc. 5th International
AMAST Workshop on Formal Methods for Real-Time and Probabilistic Systems, volume 1601
of LNCS, pages 53–74. Springer-Verlag, 1999.

REFERENCES 46

[Too] TAME Tempo Toolset. Available at http://www.veromodo.com/Veromodo/
Tempo-Toolset.html.

