
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2015-006 March 2, 2015

Consensus using Asynchronous Failure Detectors
Nancy Lynch and Srikanth Sastry

Consensus using Asynchronous Failure Detectors

Nancy Lynch
CSAIL, MIT

Srikanth Sastry∗

CSAIL, MIT

Abstract

The FLP result shows that crash-tolerant consensus is impossible to solve in asynchronous
systems, and several solutions have been proposed for crash-tolerant consensus under alterna-
tive (stronger) models. One popular approach is to augment the asynchronous system with
appropriate failure detectors, which provide (potentially unreliable) information about process
crashes in the system, to circumvent the FLP impossibility.

In this paper, we demonstrate the exact mechanism by which (sufficiently powerful) asyn-
chronous failure detectors enable solving crash-tolerant consensus. Our approach, which borrows
arguments from the FLP impossibility proof and the famous result from [2], which shows that
Ω is a weakest failure detector to solve consensus, also yields a natural proof to Ω as a weakest
asynchronous failure detector to solve consensus. The use of I/O automata theory in our ap-
proach enables us to model execution in a more detailed fashion than [2] and also addresses the
latent assumptions and assertions in the original result in [2].

1 Introduction

In [5, 6] we introduced a new formulation of failure detectors. Unlike the traditional failure detectors
of [3, 2], ours are modeled as asynchronous automata, and defined in terms of the general I/O
automata framework for asynchronous concurrent systems. To distinguish our failure detectors
from the traditional ones, we called ours “Asynchronous Failure Detectors (AFDs)”.

In terms of our model, we presented many of the standard results of the field and some new
results. Our model narrowed the scope of failure detectors sufficiently so that AFDs satisfy several
desirable properties, which are not true of the general class of traditional failure detector. For
example, (1) AFDs are self-implementable; (2) if an AFD D′ is strictly stronger than another AFD
D, then D′ is sufficient to solve a strict superset of the problems solvable by D. See [6] for details.
Working entirely within an asynchronous framework allowed us to take advantage of the general
results about I/O automata and to prove our results rigorously without too much difficulty.

In this paper, we investigate the role of asynchronous failure detectors in circumventing the im-
possibility of crash-tolerant consensus in asynchronous systems (FLP) [7]. Specifically, we demon-
strate exactly how sufficiently strong AFDs circumvent the FLP impossibility. We borrow ideas
from the important related result by Chandra, Hadzilacos, and Toueg [2] that says that the failure
detector Ω is a “Weakest Failure Detector” that solves the consensus problem. Incidentally, the
proof in [2] make certain implicit assumptions and assertions which are entirely reasonable and true,
respectively. However, for the purpose of rigor, it is desirable that these assumptions be explicit
and these assertions be proved. Our demonstration of how sufficiently strong AFDs circumvent
FLP dovetails effortlessly with an analogous proof of “weakest AFD” for consensus.
∗The author is currently affiliated with Google Inc.

1

While our proof generally follows the proof in [2], we state the (implicit) assumptions and
assertions from [2] explicitly. Since our framework is entirely asynchronous and all our definitions
are based on an established concurrency theory foundation, we are able to provide rigorous proofs
for the (unproven) assertions from [2]. In order to prove the main result of this paper, we modified
certain definitions from [6]. However, these modifications do not invalidate any of the results from
[5, 6].

The rest of this paper is organized as follows. Section 2 outlines the approach that we use in
this paper and its major contributions. In section 3, we compare our proof with the original CHT
proof in [2]. Sections 4 through 7 introduce I/O automata and the definitions of a problem, of
an asynchronous system, and of AFDs; much of the material is summarized from [5, 6]. Section
8 introduces the notion of observations of AFD behavior, which are a key part of showing that Ω
is a weakest AFD to solve consensus; this section proves several useful properties of observations
which are central to the understanding of the proof and are a contribution of our work. In Section
9, we introduce execution trees for any asynchronous system that uses an AFD; we construct such
trees from observations introduced in Section 8. We also prove several properties of such execution
trees, which may be of independent interest and useful in analysis of executions in any AFD-based
system. In Section 10, we formally define the consensus problem and use the notions of observations
and execution trees to demonstrate how sufficiently strong AFDs enable asynchronous systems to
circumvent the impossibility of fault tolerant consensus in asynchronous systems [7]; Section 10
defines and uses decision gadgets in an execution tree to demonstrate this; it also shows that the
set of such decision gadgets is countable, and therefore, any such execution tree contains a “first”
decision gadget. Furthermore, Section 10 also shows that each decision gadget is associated with
a location that is live and never crashes; we call it the critical location of the decision gadget.
In Section 11, we show that Ω is a weakest AFD to solve consensus by presenting a distributed
algorithm that simulates the output of Ω. The algorithm constructs observations and execution
trees, and it eventually identifies the “first” decision gadget and its corresponding critical location;
the algorithm outputs this critical location as the output of the simulated Ω AFD, thus showing
that Ω is a weakest AFD for consensus.

2 Approach and contributions

To demonstrate our results, we start with a complete definition of asynchronous systems and AFDs.
Here, we modified the definitions of AFD from [5, 6], but we did so without invalidating earlier
results. We argue that the resulting definition of AFDs is more natural and models a richer class
of behaviors in crash-prone asynchronous systems. Next, we introduce the notion of observations
of AFD behavior (Section 8), which are DAGs that model a partial ordering AFD outputs are
different processes; importantly, the knowledge of this partial order can be gained by any process
through asynchronous message passing alone. Observations as a tool for modeling AFD behavior
is of independent interest, and we prove several important properties of observations that are used
in our later results.

From such observations, we construct trees of executions of arbitrary AFD-based systems; again,
such trees are of independent interest, and we prove several important properties of such trees that
are used later.

Next, we define the consensus problem and the notion valence. Roughly speaking, a finite
execution of a system is univalent if all its fair extensions result in the same decision value and
the execution is bivalent if some fair extension results in a decision value 1 and another fair ex-
tension results in a decision value 0. We present our first important result using observations and

2

execution trees; we show that a sufficiently powerful AFD guarantees that in the execution tree
constructed from any viable1 observation of AFD outputs, the events responsible for the transition
from a bivalent execution to a univalent execution must occur at location that does not crash. Such
transitions to univalent executions correspond to so-called “decision gadgets”, and the live location
corresponding to such transitions is called the “critical location” of the decision gadgets.

Next, we use the aforementioned result to show that Ω is a weakest AFD to solve consensus.
In order to do so, we first define a metric function that orders all the decision gadgets. This
metric function satisfies an important stability property which guarantees the following. Given the
decision gadget with the smallest metric value in a given infinite execution tree, for any sufficiently
large, but finite, subtree, the same decision gadget will have the smallest metric value within that
subtree. Note that the original proof in [2] did not provide such a metric function, and we contend
that this is an essential compoenent for completing this proof. We then construct an emulation
algorithm (similar to the one in [2]) that uses an AFD sufficiently powerful to solve consensus
and simulates the output of Ω. In this algorithm processes exchange AFD outputs and construct
finite observations and corresponding finite execution trees. The aforementioned stability property
ensures that eventually forever, each process that does not crash identifies the same decision gadget
as the one with the smallest metric value. Recall that the critical location of any decision gadget is
guaranteed to not crash. Therefore, eventually forever, each process that does not crash identifies
the same correct process and outputs that correct process as the output of the simulated Ω AFD.

3 Comparisons with the original CHT proof

Our proof has elements that are very similar to the the original CHT proof from [2]. However,
despite the similarity in our arguments, our proof deviates from the CHT proof in some subtle, but
significant ways.

3.1 Observations

In [2], the authors introduce DAGs with special properties that model the outputs of a failure
detector at different processes and establishes partial ordering of these outputs. In our proof, the
analogous structure is an observation (See Section 8). However, our notion of an observation is
much more general than the DAG introduced in [2].

First, the DAG in [2] is an infinite graph and cannot model failure detector outputs in finite
executions. In contrast, observations may be finite or infinite. Second, we also introduce the
notion of a sequence of finite observations that can be constructed from progressively longer finite
executions that enable us to model the evolution of observations and execution trees as failure
detector outputs become available. Such detailed modeling and analysis does not appear in [2].

3.2 Execution trees

In [2], each possible input to consensus gives rise to a unique execution tree from the DAG. Thus,
for n processes, there are 2n possible trees that constitute a forest a trees. In contrast, our proof
constructs exactly one tree that models the executions of all possible inputs to consensus. This
change is not merely cosmetic. It simplifies analysis and makes the proof technique more general
in the following sense.

The original proof in [2] cannot be extended to understanding long-lived problems such as
iterative consensus or mutual exclusion. The simple reason for this is that the number of possible

1Informally, an observation is viable if it can be constructed from an AFD trace.

3

inputs for such problems can be uncountably infinite, and so the number of trees generated by
the proof technique in [2] is also uncountably infinite. This introduces significant challenges in
extracting any structures within these trees by a distributed algorithm. In contrast, in our approach,
the execution tree will remain virtually the same; only the rules for determining the action tag values
at various edges change.

3.3 Determining the “first” decision gadget

In [2] and in our proof, a significant result is that there are infinite, but countable number of
decision gadgets, and therefore there exists a unique enumeration of the decision gadgets such that
one of them is the “first” one. This result is then used in [2] to claim that all the emulation
algorithms converge to the same decision gadget. However, [2] does not provide any proof of this
claim. Furthermore, we show that this proving this claim in non-trivial.

The significant gap in the original proof in [2] is the following. During the emulation, each
process constructs only finite DAGs, that are subgraphs of some infinite DAG with the required
special properties. However, since the DAGs are finite, the trees of executions constructed from
this DAG could incorrectly detect certain parts of the trees as being decision gadgets, when in the
execution tree of the infinite DAG, these are not decision gadgets. Each such pseudo decision gadget,
is eventually deemed to not be a decision gadget, as the emulation progresses. However, there can
be infinitely many such pseudo gadgets. Thus, given any arbitrary enumeration of decision gadgets,
it is possible that such pseudo decision gadgets appears infinitely often, and are enumerated ahead
of the “first” decision gadget. Consequently, the emulation never stabilizes to the first decision
gadget.

In our proof, we address is gap by carefully defining metric functions for nodes and decision
gadgets so that eventually, all the pseudo decision gadgets are ordered after the eventual “first”
decision gadget.

4 I/O Automata

We use the I/O Automata framework [8, 9, 10] for specifying the system model and failure detectors.
Briefly, an I/O automaton models a component of a distributed system as a (possibly infinite) state
machine that interacts with other state machines through discrete actions. This section summarizes
the I/O-Automata-related definitions that we use in this paper. See [10, Chapter 8] for a thorough
description of I/O Automata.

4.1 Automata Definitions

An I/O automaton, which we will usually refer to as simply an “automaton”, consists of five
components: a signature, a set of states, a set of initial states, a state-transition relation, and a set
of tasks. We describe these components next.

Actions, Signature, and Tasks. The state transitions of an automaton are associated with
named actions; we denote the set of actions of an automaton A by act(A). Actions are classified
as input, output, or internal, and this classification constitutes the signature of the automaton. We
denote the sets of input, output, and internal actions of an automaton A by input(A), output(A),
and internal(A), respectively. Input and output actions are collectively called the external actions,
denoted external(A), and output and internal actions are collectively called the locally controlled

4

actions. The locally controlled actions of an automaton are partitioned into tasks. Tasks are used
in defining fairness conditions on executions of the automaton, as we describe in Section 4.4.

Internal actions of an automaton are local to the automaton itself whereas external (input and
output) actions are available for interaction with other automata. Locally controlled actions are
initiated by the automaton itself, whereas input actions simply arrive at the automaton from the
outside, without any control by the automaton.

States. The states of an automaton A are denoted by states(A); some (non-empty) subset
init(A) ⊆ states(A) is designated as the set of initial states.

Transition Relation. The state transitions of an automaton A are defined by a state-transition
relation trans(A), which is a set of tuples of the form (s, a, s′) where s, s′ ∈ states(A) and a ∈
act(A). Each such tuple (s, a, s′) is a transition, or a step, of A. Informally speaking, each step
(s, a, s′) denotes the following behavior: automaton A, in state s, performs action a and changes
its state to s′.

For a given state s and action a, if trans(A) contains some step of the form (s, a, s′), then a
is said to be enabled in s. We assume that every input action in A is enabled in every state of A;
that is, for every input action a and every state s, trans(A) contains a step of the form (s, a, s′). A
task C, which is a set of locally controlled actions, is said to be enabled in a state s iff some action
in C is enabled in s.

Deterministic Automata. The general definition of an I/O automaton permits multiple locally
controlled actions to be enabled in any given state. It also allows the resulting state after performing
a given action to be chosen nondeterministically. For our purposes, it is convenient to consider a
class of I/O automata whose behavior is more restricted.

We define an action a (of an automaton A) to be deterministic provided that, for every state
s, trans(A) contains at most one transition of the form (s, a, s′). We define an automaton A to be
task deterministic iff (1) for every task C and every state s of A, at most one action in C is enabled
in s, and (2) all the actions in A are deterministic. An automaton is said to be deterministic iff it
is task deterministic, has exactly one task, and has a unique start state.

4.2 Executions, Traces, and Schedules

Now we define how an automaton executes. An execution fragment of an automaton A is a finite
sequence s0, a1, s1, a2, . . . , sk−1, ak, sk, or an infinite sequence s0, a1, s1, a2, . . . , sk−1, ak, sk, . . ., of
alternating states and actions of A such that for every k ≥ 0, (sk, ak+1, sk+1) is in trans(A). A
sequence consisting of just a state is a special case of an execution fragment and is called a null
execution fragment. Each occurrence of an action in an execution fragment is called an event.

An execution fragment that starts with an initial state (that is, s0 ∈ init(A)) is called an
execution. A null execution fragment consisting of an initial state is called a null execution. A state
s is said to be reachable if there exists a finite execution that ends with s. By definition, any initial
state is reachable.

We define concatenation of execution fragments. Let α1 and α2 be two execution fragments of
an I/O automaton such that α1 is finite and the final state of α1 is also the starting state of α2, and
let α′2 denote the sequence obtained by deleting the first state in α2. Then the expression α1 · α2

denotes the execution fragment formed by appending α′2 after α1.
It is sometimes useful to consider just the sequence of events that occur in an execution, ignoring

the states. Thus, given an execution α, the schedule of α is the subsequence of α that consists of all

5

the events in α, both internal and external. The trace of an execution includes only the externally
observable behavior; formally, the trace t of an execution α is the subsequence of α consisting of
all the external actions.

More generally, we define the projection of any sequence on a set of actions as follows. Given
a sequence t (which may be an execution fragment, schedule, or trace) and a set B of actions, the
projection of t on B, denoted by t|B, is the subsequence of t consisting of all the events from B.

We define concatenation of schedules and traces. Let t1 and t2 be two sequences of actions of
some I/O automaton where t1 is finite; then t1 · t2 denotes the sequence formed by appending t2
after t1.

To designate specific events in a schedule or trace, we use the following notation: if a sequence
t (which may be a schedule or a trace) contains at least x events, then t[x] denotes the xth event
in the sequence t, and otherwise, t[x] = ⊥. Here, ⊥ is a special symbol that we assume is different
from the names of all actions.

4.3 Operations on I/O Automata

Composition. A collection of I/O automata may be composed by matching output actions of
some automata with the same-named input actions of others.2 Each output of an automaton may
be matched with inputs of any number of other automata. Upon composition, all the actions with
the same name are performed together.

Let α = s0, a1, s1, a2, . . . be an execution of the composition of automata A1, . . . , AN . The
projection of α on automaton Ai, where i ∈ [1, N], is denoted by α|Ai and is defined to be the
subsequence of α obtained by deleting each pair ak, sk for which ak is not an action of Ai and
replacing each remaining state sk by automaton Ai’s part of sk. Theorem 8.1 in [10] states that if
α is an execution of the composition A1, . . . , AN , then for each i ∈ [1, N], α|Ai is an execution of
Ai. Similarly, if t is a trace of of A1, . . . , AN , then for each i, t|Ai is an trace of Ai.

Hiding. In an automaton A, an output action may be “hidden” by reclassifying it as an internal
action. A hidden action no longer appears in the traces of the automaton.

4.4 Fairness

When considering executions of an I/O automaton, we will often be interested in those executions in
which every task of the automaton gets infinitely many turns to take steps; we call such executions
“fair”. When the automaton represents a distributed systems, the notion of fairness can be used
to express the idea that all system components continue to get turns to perform their activities.

Formally, an execution fragment α of an automaton A is said to be fair iff the following two
conditions hold for every task C in A. (1) If α is finite, then no action in C is enabled in the final
state of α. (2) If α is infinite, then either (a) α contains infinitely many events from C, or (b) α
contains infinitely many occurrences of states in which C is not enabled.

A schedule σ of A is said to be fair if it is the schedule of a fair execution of A. Similarly, a
trace t of A is said to be fair if it is the trace of a fair execution of A.

2Not all collections of I/O automata may be composed. For instance, in order to compose a collection of I/O
automata, we require that no two automata have a common output action. See [10, chapter 8] for details.

6

5 Crash Problems

In this section, we define problems, distributed problems, crash problems, and failure-detector
problems. We also define a particular failure-detector problem corresponding to the leader election
oracle Ω of [2].

5.1 Problems

We define a problem P to be a tuple (IP , OP , TP), where IP and OP are disjoint sets of actions and
TP is a set of (finite or infinite) sequences over these actions such that there exists an automaton
A where input(A) = IP , output(A) = OP , and the set of fair traces of A is a subset of TP . In this
case we state that A solves P . We include the aforementioned assumption of solvability to satisfy
a non-triviality property, which we explain in Section 7.

Distributed Problems. Here and for the rest of the paper, we introduce a fixed finite set Π of
n location IDs; we assume that Π does not contain the special symbol ⊥. We assume a fixed total
ordering <Π on Π. We also assume a fixed mapping loc from actions to Π ∪ {⊥}; for an action a,
if loc(a) = i ∈ Π, then we say that a occurs at i. A problem P is said to be distributed over Π if,
for every action a ∈ IP ∪OP , loc(a) ∈ Π. We extend the definition of loc by defining loc(⊥) = ⊥.

Given a problem P that is distributed over Π, and a location i ∈ Π, IP,i and OP,i denote the set of
actions in IP andOP , respectively, that occur at location i; that is, IP,i = {a|(a ∈ IP) ∧ (loc(a) = i)}
and OP,i = {a|(a ∈ OP) ∧ (loc(a) = i)}.

Crash Problems. We assume a set Î = {crashi|i ∈ Π} of crash events, where loc(crashi) = i.
That is, crashi represents a crash that occurs at location i. A problem P = (IP , OP , TP) that is
distributed over Π is said to be a crash problem iff Î ⊆ IP . That is, crashi ∈ IP,i for every i ∈ Π.

Given a (finite or infinite) sequence t ∈ TP , faulty(t) denotes the set of locations at which a
crash event occurs in t. Similarly, live(t) = Π \ faulty(t) denotes the set of locations at which a
crash event does not occur in t. A location in faulty(t) is said to be faulty in t, and a location in
live(t) is said to be live in t.

5.2 Failure-Detector Problems

Recall that a failure detector is an oracle that provides information about crash failures. In our
modeling framework, we view a failure detector as a special type of crash problem. A necessary
condition for a crash problem P = (IP , OP , TP) to be an asynchronous failure detector (AFD)
is crash exclusivity, which states that IP = Î; that is, the actions IP are exactly the crash ac-
tions. Crash exclusivity guarantees that the only inputs to a failure detector are the crash events,
and hence, failure detectors provide information only about crashes. An AFD must also satisfy
additional properties, which we describe next.

Let D = (Î , OD, TD) be a crash problem satisfying crash exclusivity. We begin by defining a
few terms that will be used in the definition of an AFD. Let t be an arbitrary sequence over Î∪OD.

Valid sequence. The sequence t is said to be valid iff (1) for every i ∈ Π, no event in OD,i (the
set of actions in OD at location i) occurs after a crashi event in t, and (2) if no crashi event occurs
in t, then t contains infinitely many events in OD,i.

Thus, a valid sequence contains no output events at a location i after a crashi event, and
contains infinitely many output events at each live location.

7

Sampling. A sequence t′ is a sampling of t iff (1) t′ is a subsequence of t, (2) for every location
i ∈ Π, (a) if i is live in t, then t′|OD,i

= t|OD,i
, and (b) if i is faulty in t, then t′ contains the first

crashi event in t, and t′|OD,i
is a prefix of t|OD,i

.
A sampling of sequence t retains all events at live locations. For each faulty location i, it may

remove a suffix of the outputs at location i. It may also remove some crash events, but must retain
the first crash event.

Constrained Reordering. Let t′ be a valid permutation of events in t; t′ is a constrained
reordering of t iff the following is true. For every pair of events e and e′, if (1) e precedes e′ in t,
and (2) either (a) e, e′ ∈ OD and loc(e) = loc(e′), or (b) e ∈ Î and e′ ∈ OD, then e precedes e′ in t′

as well.3

A constrained reordering of sequence t maintains the relative ordering of events that occur at
the same location and maintains the relative order between any crash event and any subsequent
event.

Crash Extension. Assume that t is a finite sequence. A crash extension of t is a (possibly
infinite) sequence t′ such that t is a prefix of t′ and the suffix of t′ following t is a sequence over Î.

In other words, a crash extension of t is obtained by extending t with crash events.

Extra Crashes. An extra crash event in t is a crashi event in t, for some i, such that t contains
a preceding crashi.

An extra crash is a crash event at a location that has already crashed.

Minimal-Crash Sequence. Let mincrash(t) denote the subsequence of t that contains all the
events in t, except for the extra crashes; mincrash(t) is called the minimal-crash sequence of t.

Asynchronous Failure Detector. Now we are ready to define asynchronous failure detectors.
A crash problem of the form D = (Î , OD, TD) (which satisfies crash exclusivity) is an asynchronous
failure detector (AFD, for short) iff D satisfies the following properties.

1. Validity. Every sequence t ∈ TD is valid.

2. Closure Under Sampling. For every sequence t ∈ TD, every sampling of t is also in TD.

3. Closure Under Constrained Reordering. For every sequence t ∈ TD, every constrained
reordering t is also in TD.

4. Closure Under Crash Extension. For every sequence t ∈ TD, for every prefix tpre of t,
for every crash extension t′ of tpre, the following are true. (a) If t′ is finite, then t′ is a prefix
of some sequence in TD. (b) If faulty(t′) = Π, then t′ is in TD.

5. Closure Under Extra Crashes. For every sequence t ∈ TD, every sequence t′ such that
mincrash(t) = mincrash(t′) is also in TD.

3Note that the definition of constrained reordering is less restrictive than the definition in [5, 6]; specifically,
unlike in [5, 6], this definition allow crashes to be reordered with respect to each other. However, this definition is
“compatible” with the earlier definition in the sense that the results presented in [5, 6] continue to be true under this
new definition.

8

Of the properties given here, the first three—validity and closure under sampling and con-
strained reordering—were also used in our earlier papers [5, 6]. The other two closure properties—
closure under crash extension and extra crashes—are new here.

A brief motivation for the above properties is in order. The validity property ensures that (1)
after a location crashes, no outputs occur at that location, and (2) if a location does not crash,
outputs occur infinitely often at that location. Closure under sampling permits a failure detector
to “skip” or “miss” any suffix of outputs at a faulty location. Closure under constrained reordering
permits “delaying” output events at any location. Closure under crash extension permits a crash
event to occur at any time. Finally, closure under extra crashes captures the notion that once a
location is crashed, the occurrence of additional crash events (or lack thereof) at that location has
no effect.

We define one additional constraint, below. This contraint is a formalization of an implicit
assumption made in [2]; namely, for any AFD D, any “sampling” (as defined in [4]) of a failure
detector sequence in TD is also in TD.

Strong-Sampling AFDs. Let D be an AFD, t ∈ TD. A subsequence t′ of t is said to be a strong
sampling of t if t′ is a valid sequence. AFD D is said to satisfy closure under strong sampling if,
for every trace t ∈ TD, every strong sampling of t is also in TD. Any AFD that satisfies closure
under strong sampling is said to be a strong-sampling AFD.

Although the set of strong-sampling AFDs are a strict subset of all AFDs, we conjecture that
restricting our discussion to strong sampling AFDs does not weaken our result. Specifically, we
assert without proof that for any AFD D, we can construct an “equivalent” strong-sampling AFD
D′. This notion of equivalence is formally discussed in Section 7.3.

5.3 The Leader Election Oracle.

An example of a strong-sampling AFD is the leader election oracle Ω [2]. Informally speaking, Ω
continually outputs a location ID at each live location; eventually and permanently, Ω outputs the
ID of a unique live location at all the live locations. The Ω failure detector was shown in [2] to be
a “weakest” failure detector to solve crash-tolerant consensus, in a certain sense. We will present
a version of this proof in this paper.

We specify our version of Ω = (Î , OΩ, TΩ) as follows. The action set OΩ = ∪i∈ΠOΩ,i, where, for
each i ∈ Π, OΩ,i = {FD-Ω(j)i|j ∈ Π}. TΩ is the set of all valid sequences t over Î ∪OΩ that satisfy
the following property: if live(t) 6= ∅, then there exists a location l ∈ live(t) and a suffix tsuff of t
such that tsuff |OΩ

is a sequence over the set {FD-Ω(l)i|i ∈ live(t)}.
Algorithm 1 shows an automaton whose set of fair traces is a subset of TΩ; it follows that Ω

satisfies our formal definition of a “problem”. It is easy to see that Ω = (Î , OΩ, TΩ) satisfies all the
properties of an AFD, and furthermore, note that Ω also satisfies closure under strong sampling.
The proofs of these observations are left as an exercise.

AFD Ωf . Here, we introduce Ωf , where f ≤ n is a natural number, as a generalization of Ω.
In this paper, we will show that Ωf is a weakest strong-sampling AFD that solves fault-tolerant
consensus if at most f locations are faulty. Informally speaking, Ωf denotes the AFD that behaves
exactly like Ω in traces that have at most f faulty locations. Thus, Ωn is the AFD Ω.

Precisely, Ωf = (Î , OΩ, TΩf
), where TΩf

is the set of all valid sequences t over Î ∪OΩ such that,
if |faulty(t)| ≤ f , then t ∈ TΩ. This definition implies that TΩf

contains all the valid sequences
over Î ∪OΩ such that |faulty(t)| > f .

It is easy to see that Ωf is a strong-sampling AFD.

9

Algorithm 1 Automaton that implements the Ω AFD
The automaton FD-Ω
Signature:

input crashi, i ∈ Π
output FD-Ω(j)i, i, j ∈ Π

State variables:
crashset, a subset of Π, initially ∅

Transitions:
input crashi

effect
crashset := crashset ∪ {i}

output FD-Ω(j)i

precondition
(i /∈ crashset) ∧ (j = min(Π \ crashset))

effect
none

Tasks:
One task per location i ∈ Π defined as follows:
{FD-Ω(j)i|j ∈ Π}

6 System Model and Definitions

We model an asynchronous system as the composition of a collection of I/O automata of the
following kinds: process automata, channel automata, a crash automaton, and an environment au-
tomaton. The external signature of each automaton and the interaction among them are described
in Section 6.1. The behavior of these automata is described in Sections 6.2—6.5.

For the definitions that follow, we assume an alphabet M of messages.

6.1 System Structure

A system contains a collection of process automata, one for each location in Π. We define the
association with a mapping Proc, which maps each location i to a process automaton Proci.
Automaton Proci has the following external signature. It has an input action crashi, which is an
output from the crash automaton, a set of output actions {send(m, j)i|m ∈M∧ j ∈ Π \ {i}}, and
a set of input actions {receive(m, j)i|m ∈M∧ j ∈ Π \ {i}}. A process automaton may also have
other external actions with which it interacts with the external environment or a failure detector;
the set of such actions may vary from one system to another.

For every ordered pair (i, j) of distinct locations, the system contains a channel automaton Ci,j ,
which models the channel that transports messages from process Proci to process Procj . Channel
Ci,j has the following external actions. The set of input actions input(Ci,j) is {send(m, j)i|m ∈M},
which is a subset of outputs of the process automaton Proci. The set of output actions output(Ci,j)
is {receive(m, i)j |m ∈M}, which is a subset of inputs to Procj .

The crash automaton C models the occurrence of crash failures in the system. Automaton C
has Î = {crashi|i ∈ Π} as its set of output actions, and no input actions.

The environment automaton E models the external world with which the distributed system
interacts. The automaton E is a composition of n automata {Ei|i ∈ Π}. For each location i, the set
of input actions to automaton Ei includes the action crashi. In addition, Ei may have input and
output actions corresponding (respectively) to any outputs and inputs of the process automaton
Proci that do not match up with other automata in the system.

We assume that, for every location i, every external action of Proci and Ei, respectively, occurs

10

at i, that is, loc(a) = i for every external action a of Proci and Ei.
We provide some constraints on the structure of the various automata below.

6.2 Process Automata

The process automaton at location i, Proci, is an I/O automaton whose external signature satisfies
the constraints given above, and that satisfies the following additional properties.

1. Every internal action of Proci occurs at i, that is, loc(a) = i for every internal action a of
Proci. We have already assumed that every external action of Proci occurs at i; now we are
simply extending this requirement to the internal actions.

2. Automaton Proci is deterministic, as defined in Section 4.1.

3. When crashi occurs, it permanently disables all locally controlled actions of Proci.

We define a distributed algorithm A to be a collection of process automata, one at each location;
formally, it is simply a particular Proc mapping. For convenience, we will usually write Ai for the
process automaton Proci.

6.3 Channel Automata

The channel automaton for i and j, Ci,j , is an I/O automaton whose external signature is as
described above. That is, Ci,j ’s input actions are {send(m, j)i|m ∈M} and its output actions are
{receive(m, i)j |m ∈M}.

Now we require Ci,j to be a specific I/O automaton—a reliable FIFO channel, as defined in [10].
This automaton has no internal actions, and all its output actions are grouped into a single task.
The state consists of a FIFO queue of messages, which is initially empty. A send input event can
occur at any time. The effect of an event send(m, j)i is to add m to the end of the queue. When a
message m is at the head of the queue, the output action receive(m, i)j is enabled, and the effect
is to remove m from the head of the queue. Note that this automaton Ci,j is deterministic.

6.4 Crash Automaton

The crash automaton C is an I/O automaton with Î = {crashi|i ∈ Π} as its set of output actions,
and no input actions.

Now we require the following constraint on the behavior of C: Every sequence over Î is a fair
trace of the crash automaton. That is, any pattern of crashes is possible. For some of our results,
we will consider restrictions on the number of locations that crash.

6.5 Environment Automaton

The environment automaton E is an I/O automaton whose external signature satisfies the con-
straints described in Section 6.1. Recall that E is a composition of n automata {Ei|i ∈ Π}. For
each location i, the following is true.

1. Ei has a unique initial state.

2. Ei has tasks Envi,x, where x ranges over some fixed task index set Xi.

3. Ei is task-deterministic.

11

4. When crashi occurs, it permanently disables all locally controlled actions of Ei.
In addition, in some specific cases we will require the traces of E to satisfy certain “well-formedness”
restrictions, which will vary from one system to another. We will define these specifically when
they are needed, later in the paper.

se
n

d(
*,

*)
j

se
nd

(*
,*

) i

se
nd

(*
,*

) z

re
ce

iv
e(

*,
*)

i

re
ce

iv
e(

*,
*)

j

re
ce

iv
e(

*,
*)

z

...

A
sy

nc
h

ro
no

us
 F

ai
lu

re

D
et

e
ct

or

Reliable FIFO Channels

i j z

Environment Automaton
Crash

Automaton

crash
i

crash
j

crash
i

crash
z

crash
i

crash
j

crash
z

...

crash
i

crash
j

crash
z ...

Figure 1: Interaction diagram for a message-passing asynchronous distributed system augmented
with a failure detector automaton.

7 Solving Problems

In this section we define what it means for a distributed algorithm to solve a crash problem in
a particular environment. We also define what it means for a distributed algorithm to solve one
problem P using another problem P ′. Based on these definitions, we define what it means for an
AFD to be sufficient to solve a problem.

7.1 Solving a Crash Problem

An automaton E is said to be an environment for P if the input actions of E are OP , and the
output actions of E are IP \ Î. Thus, the environment’s inputs and outputs “match” those of the
problem, except that the environment doesn’t provide the problem’s crash inputs.

If E is an environment for a crash problem P = (IP , OP , TP), then an I/O automaton U is said
to solve P in environment E provided that the following conditions hold:

1. input(U) = IP .

2. output(U) = OP .

3. The set of fair traces of the composition of U , E , and the crash automaton is a subset of TP .

A distributed algorithm A solves a crash problem P in an environment E iff the automaton Â,
which is obtained by composing A with the channel automata, solves P in E . A crash problem P

12

is said to be solvable in an environment E iff there exists a distributed algorithm A such that A
solves P in E . If crash problem P is not solvable in environment E , then it is said to be unsolvable
in E .

7.2 Solving One Crash Problem Using Another

Often, an unsolvable problem P may be solvable if the system contains an automaton that solves
some other (unsolvable) crash problem P ′. We describe the relationship between P and P ′ as
follows.

Let P = (IP , OP , TP) and P ′ = (IP ′ , OP ′ , TP ′) be two crash problems with disjoint sets of
actions (except for crash actions). Let E be an environment for P . Then a distributed algorithm
A solves crash problem P using crash problem P ′ in environment E iff the following are true:

1. For each location i ∈ Π, input(Ai) = ∪j∈Π\{i}output(Cj,i) ∪ IP,i ∪OP ′,i.

2. For each location i ∈ Π, output(Ai) = ∪j∈Π\{i}input(Ci,j) ∪OP,i ∪ IP ′,i \ {crashi}.

3. Let Â be the composition of A with the channel automata, the crash automaton, and the
environment automaton E . Then for every fair trace t of Â, if t|IP ′∪OP ′ ∈ TP ′ , then t|IP∪OP

∈
TP .

In effect, in any fair execution of the system, if the sequence of events associated with the
problem P ′ is consistent with the specified behavior of P ′, then the sequence of events asso-
ciated with problem P is consistent with the specified behavior of P .

Note that requirement 3 is vacuous if for every fair trace t of Â, t|IP ′∪OP ′ /∈ TP ′ . However, in
the definition of a problem P ′, the requirement that there exist some automaton whose set of fair
traces is a subset of TP ′ ensures that there are “sufficiently many” fair traces t of Â, such that
t|IP ′∪OP ′ ∈ TP ′ .

We say that a crash problem P ′ = (IP ′ , OP ′ , TP ′) is sufficient to solve a crash problem P =
(IP .OP , TP) in environment E , denoted P ′ �E P iff there exists a distributed algorithm A that
solves P using P ′ in E . If P ′ �E P , then also we say that P is solvable using P ′ in E . If no such
distributed algorithm exists, then we state that P is unsolvable using P ′ in E , and we denote it as
P ′ 6�E P .

7.3 Using and Solving Failure-Detector Problems

Since an AFD is simply a kind of crash problem, the definitions above automatically yield definitions
for the following notions.

1. A distributed algorithm A solves an AFD D in environment E .

2. A distributed algorithm A solves a crash problem P using an AFD D in environment E .

3. An AFD D is sufficient to solve a crash problem P in environment E .

4. A distributed algorithm A solves an AFD D using a crash problem P in environment E .

5. A crash problem P is sufficient to solve an AFD D in environment E .

6. A distributed algorithm A solves an AFD D′ using another AFD D.

7. An AFD D is sufficient to solve an AFD D′.

13

Note that, when we talk about solving an AFD, the environment E has no output actions
because the AFD has no input actions except for Î, which are inputs from the crash automaton.
Therefore, we have the following lemma.

Lemma 7.1. Let P be a crash problem and D an AFD. If P �E D in some environment E (for
D), then for any other environment E ′ for D, P �E ′ D.

Consequently, when we refer to an AFD D being solvable using a crash problem (or an AFD)
P , we omit the reference to the environment automaton and simply say that P is sufficient to solve
D; we denote this relationship by P � D. Similarly, when we say that an AFD D is unsolvable
using P , we omit mention of the environment, and write simply P 6� D.

Finally, if an AFD D is sufficient to solve another AFD D′ (notion 7 in the list above), then
we say that D is stronger than D′, and we denote this by D � D′. If D � D′, but D′ 6� D, then
we say that D is strictly stronger than D′, and we denote this by D � D′. Also, if D � D′ and
D′ � D, then we say that D is equivalent to D′.

We conjecture that for any AFD D, there exists a strong sampling AFD D′ such that D is
equivalent to D′; thus, if a non-strong-sampling AFD D is a weakest to solve consensus, then there
must exist an equivalent AFD D′ that is also a weakest to solve consensus. Therefore, it is sufficient
to restrict our attention to strong-sampling AFDs.

8 Observations

In this section, fix D to be an AFD. We define the notion of an observation G of D and present
properties of observations. Observations are a key part of the emulation algorithm used to prove
the “weakest failure detector” result, in Section 11.

8.1 Definitions and Basic Properties

An observation is a DAG G = (V,Z), where the set V of vertices consists of triples of the form
v = (i, k, e) where i ∈ Π is a location, k is a positive integer, and e is an action from OD,i; we refer
to i, k, and e as the location, index, and action of v, respectively. Informally, a vertex v = (i, k, e)
denotes that e is the k-th AFD output at location i, and the observation represents a partial
ordering of AFD outputs at various locations. We say that an observation G is finite iff the set V
(and therefore the set Z) is finite; otherwise, G is said to be infinite.

We require the set V to satisfy the following properties.

1. For each location i and each positive integer k, V contains at most one vertex whose location
is i and index is k.

2. If V contains a vertex of the form (i, k, ∗) and k′ < k, then V also contains a vertex of the
form (i, k′, ∗).

Property 1 states that at each location i, for each positive integer k, there is at most one k-th AFD
output. Property 2 states that for any i and k, if the k-th AFD output occurs at i, then the first
(k − 1) AFD outputs also occur at i.

The set Z of edges imposes a partial ordering on the occurrence of AFD outputs. We assume
that it satisfies the following properties.

3. For every location i and natural number k, if V contains vertices of the form v1 = (i, k, ∗)
and v2 = (i, k + 1, ∗), then Z contains an edge from v1 to v2.

14

4. For every pair of distinct locations i and j such that V contains an infinite number of vertices
whose location is j, the following is true. For each vertex v1 in V whose location is i, there
is a vertex v2 in V whose location is j such that there is an edge from v1 to v2 in Z.

5. For every triple v1, v2, v3 of vertices such that Z contains both an edge from v1 to v2 and an
edge from v2 to v3, Z also contains an edge from v1 to v3. That is, the set of edges of G is
closed under transitivity.

Property 3 states that at each location i, the k-th output at i occurs before the (k+1)-st output at
i. Property 4 states that for every pair of locations i and j such that infinitely many AFD outputs
occur at j, for every AFD output event e at i there exists some AFD output event e′ at j such that
e occurs before e′. Property 5 is a transitive closure property that simply captures the notion that
if event e1 happens before event e2 and e2 happens before event e3, then e1 happens before e3.

Given an observation G = (V,Z), if V contains an infinite number of vertices of the form (i, ∗, ∗)
for some particular i, then i is said to be live in G. We write live(G) for the set of all the locations
that are live in G.

Lemma 8.1. Let G = (V,Z) be an observation, i a location in live(G). Then for every positive
integer k, V contains exactly one vertex of the form (i, k, ∗).
Proof. Follows from Properties 1 and 2 of observations.

Lemma 8.2. Let i and j be distinct locations with j ∈ live(G). Let v be a vertex in V whose
location is i. Then there exists a positive integer k such that for every positive integer k′ ≥ k, Z
contains an edge from v to some vertex of the form (j, k′, ∗).
Proof. Follows from Lemma 8.1, and Properties 3, 4, and 5 of observations.

Lemma 8.3. Let i and j be distinct locations with j ∈ live(G) and i /∈ live(G); that is, V contains
infinitely many vertices whose location is j and only finitely many vertices whose location is i. Then
there exists a positive integer k such that for every k′ ≥ k, there is no edge from any vertex of the
form (j, k′, ∗) to any vertex whose location is i.

Proof. Fix i and j as in the hypotheses. Let v1 be the vertex in V whose location is i and whose
index is the highest among all the vertices whose location is i. From Lemma 8.2 we know that
there exists a positive integer k such that for every positive integer k′ ≥ k, Z contains an edge from
v1 to some vertex of the form (j, k′, ∗). Since G is a DAG, there is no edge from any vertex of the
form (j, k′, ∗), k′ ≥ k to v1. Applying Properties 3 and 5 of observations, we conclude that there is
no edge from any vertex of the form (j, k′, ∗) to any vertex whose location is i.

Lemma 8.4. Let G = (V,Z) be an observation. Every vertex v in V has only finitely many
incoming edges in Z.

Proof. For contradiction, assume that there exists a vertex v with infinitely many incoming edges,
and let i be the location of v. Then there must be a location j 6= i such that there are infinitely
many vertices whose location is j that have an outgoing edge to v. Fix such a location j. Note
that j must be live in G.

Since there are infinitely many vertices whose location is j, by Property 4 of observations, we
know that v has an outgoing edge to some vertex (j, k, ∗). Since infinitely many vertices of the form
(j, k′, ∗) have an outgoing edge to v, fix some such k′ > k. By Properties 3 and 5 of observations,
we know that there exists a edge from (j, k, ∗) to (j, k′, ∗). Thus, we see that there exist edges from
v to (j, k, ∗), from (j, k, ∗) to (j, k′, ∗), and from (j, k′, ∗) to v, which yield a cycle. This contradicts
the assumption that G is a DAG.

15

8.2 Viable Observations

Now consider an observation G = (V,Z). If V is any sequence of vertices in V , then we define the
event-sequence of V to be the sequence obtained by projecting V onto its second component.

We say that a trace t ∈ TD is compatible with an observation G provided that t|OD is the event
sequence of some topological ordering of the vertices of G. G is a viable observation if there exists
a trace t ∈ TD that is compatible with G.

Lemma 8.5. Let G be a viable observation, and suppose that t ∈ TD is compatible with G. For
each location i, i is live in G iff i ∈ live(t).

We now consider paths in an observation DAG, and their connection with strong sampling, as
defined in Section 5.2. A path in a observation is a sequence of vertices, where for each pair of
consecutive vertices u, v in a path, (u, v) is an edge of the observation.

A branch of an observation G is a maximal path in G. A fair branch b of G is a branch of
G that satisfies the additional property that, for every i in Π, if i is live in G, then b contains an
infinite number of vertices whose location is i.

Lemma 8.6. Let G be a viable observation, and suppose that t ∈ TD is compatible with G. Suppose
b is a fair branch of G, and let ε be the event sequence of b. Then

1. There exists a strong sampling t′ of t such that t′|OD
= ε.

2. If D is a strong-sampling AFD, then there exists t′ ∈ TD such that t′ is a strong sampling of
t and t′|OD

= ε.

Proof. Fix G, t, b, ε and D from the hypotheses of the Lemma statement.
Proof of Part 1. Since b is a fair branch of G, for each location i that is live in t, ε contains an

infinite number of outputs at i. Furthermore, for each location i, the projection of ε on the events
at i is a subsequence of the projection of t on the AFD outputs at i. Therefore, by deleting all the
AFD output events from t that do not appear in ε, we obtain a strong-sampling t′ of t such that
t′|OD

= ε.
Proof of Part 2. In Part 2, assume D is a strong-sampling AFD. From Part 1, we have already

established that there exists a strong-sampling t′ of t such that t′|OD
= ε. Fix such a t′. By closure

under strong-sampling, since t ∈ TD, we conclude that t′ ∈ TD as well.

Lemma 8.6 is crucial to our results. In Section 11, we describe an emulation algorithm that
uses outputs from an AFD to produce viable observations, and the emulations consider paths of
the observation and simulate executions of a consensus algorithm with AFD outputs from each
path in the observation. Lemma 8.6 guarantees that each fair path in the observation corresponds
to an actual sequence of AFD outputs from some trace of the AFD. In fact, the motivation for
closure-under-strong-sampling property is to establish Lemma 8.6.

8.3 Relations and Operations on Observations

The emulation construction in Section 11 will require processes to manipulate observations. To
help with this, we define some relations and operations on DAGs and observations.

Prefix. Given two DAGs G and G′, G′ is said to be a prefix of G iff G′ is a subgraph of G and
for every vertex v of G′, the set of incoming edges of v in G′ is equal to the set of incoming edges
of v in G.

16

Union. Let G = (V,Z) and G′ = (V ′, Z ′) be two observations. Then the union G′′ of G and
G′, denoted G ∪ G′, is the graph (V ∪ V ′, Z ∪ Z ′). Note that, in general, this union need not
be another observation. However, under certain conditions, wherein the observations are finite
and “consistent” in terms of the vertices and incoming edges at each vertex, the union of two
observations is also an observation. We state this formally in the following Lemma.

Lemma 8.7. Let G = (V,Z) and G′ = (V ′, Z ′) be two finite observations. Suppose that the
following hold:

1. There do not exist (i, k, e) ∈ V and (i, k, e′) ∈ V ′ with e 6= e′.

2. If v ∈ V ∩ V ′ then v has the same set of incoming edges (from the same set of other vertices)
in G and G′.

Then G ∪G′ is also an observation.

Proof. Straightforward.

Insertion. Let G = (V,Z) be a finite observation, i a location, and k the largest integer such that
V contains a vertex of the form (i, k, ∗). Let v be a triple (i, k+ 1, e). Then insert(G, v), the result
of inserting v into G, is a new graph G′ = (V ′, Z ′), where V ′ = V ∪{v} and Z ′ = Z∪{(v′, v)|v′ ∈ V }.
That is, G′ is obtained from G by adding vertex v and adding edges from every vertex in V to v.

Lemma 8.8. Let G = (V,Z) be a finite observation, i a location. Let k be the largest integer such
that V contains a vertex of the form (i, k, ∗). Let v be a triple (i, k + 1, e). Then insert(G, v) is a
finite observation.

8.4 Limits of Sequences of Observations

Consider an infinite sequence G1 = (V1, Z1), G2 = (V2, Z2), . . . of finite observations, where each is
a prefix of the next. Then the limit of this sequence is the graph G∞ = (V,Z) defined as follows:

• V =
⋃

y Vy.

• Z =
⋃

y Zy.

Lemma 8.9. For each positive integer y, Gy is a prefix of G∞.

Under certain conditions, the limit of the infinite sequence of observations G1, G2, . . . is also an
observation; we note this in Lemma 8.10.

Lemma 8.10. Let G∞ = (V,Z) be the limit of the infinite sequence G1 = (V1, Z1), G2 = (V2, Z2), . . .
of finite observations, where each is a prefix of the next. Suppose that the sequence satisfies the
following property:

1. For every vertex v ∈ V and any location j ∈ live(G∞), there exists a vertex v′ ∈ V with
location j such that Z contains the edge (v, v′).

Then G∞ is an observation.

Proof. All properties are straightforward from the definitions, except for Property 4 of observations,
which follows from the assumption of the lemma.

We define an infinite sequence G1 = (V1, Z1), G2 = (V2, Z2), . . . of finite observations, where each
is a prefix of the next, to be to be convergent if the limit G∞ of this sequence is an observation.

17

9 Execution Trees

In this section, we define a tree representing executions of a system S that are consistent with
a particular observation G of a particular failure detector D. Specifically, we define a tree that
describes executions of S in which the sequence of AFD outputs is exactly the event-sequence of
some path in observation G.

Section 9.1 defines the system S for which the tree is defined. The tree is constructed in two
parts: Section 9.2 defines a “task tree”, and Section 9.3 adds tags to the nodes and edges of the
task tree to yield the final execution tree. Additionally, Sections 9.2 and 9.3 prove certain basic
properties of execution trees, and they establish a correspondence between the nodes in the tree
and finite executions of S. Section 9.4 defines that two nodes in the execution tree are “similar”
to each other if they have the same tags, and therefore correspond to the same execution of S; the
section goes on to prove certain useful properties of nodes in the subtrees rooted at any two similar
nodes. Section 9.5 defines that two nodes in the execution tree are “similar-modulo-i” to each
other if the executions corresponding to the two nodes are indistinguishable for process automata
at any location except possibly the the process automaton at i; the section goes on to prove certain
useful properties of nodes in the subtrees rooted at any two similar-modulo-i nodes. Section 9.6
establishes useful properties of nodes that are in different execution trees that are constructed using
two observations, one of which is a prefix of another. Finally, Section 9.7 proves that a “fair branch”
of infinite execution trees corresponds to a fair execution of system S. The major results in this
section are used in Sections 10 and 11, which show that Ωf is a weakest strong-sampling AFD to
solve consensus if at most f locations crash.

9.1 The System

Fix S to be a system consisting of a distributed algorithm A, channel automata, and an environment
automaton E such that A solves a crash problem P using D in E .

The system S contains the following tasks. The process automaton at i contains a single task
Proci. Each channel automaton Chani,j , where j ∈ Π \ {i} contains a single task, which we also
denote as Chani,j ; the actions in task Chani,j are of the form receive(∗, i)j , which results in a
message received at location j. Each automaton Ei has tasks Envi,x, where x ranges over some
fixed task index set Xi. Let T denote the set of all the tasks of S.

Each task has an associated location, which is the location of all the actions in the task. The
tasks at location i are Proci, Chanj,i|j ∈ Π \ {i}, and Envi,x|x ∈ Xi.

Recall from Section 6 that each process automaton, each channel automaton, and the environ-
ment automaton have unique initial states. Therefore, the system S has a unique initial state.
From the definitions of the constituent automata of S, we obtain the following lemma.

Lemma 9.1. Let α be an execution of system S, and let t = tpre · tsuff be the trace of α such that
for some location i, tsuff does not contain any locally-controlled actions at Proci and Ei. Then,
there exists an execution α′ of system S such that t′ = tpre · crashi · tsuff is the trace of α′.

Proof. Fix α, t = tpre · tsuff and i as in the hypothesis of the claim. Let αpre be the prefix of α
whose trace is tpre. Let s be the final state of αpre. Let α′pre be the execution αpre · crashi · s′,
where s′ is the state of S when crashi is applied to state s.

Note that crashi disables all locally-controlled actions at Proci and Ei, and it does not change
the state of any other automaton in S. Therefore, the state of all automata in S except for Proci
and Envi are the same in state s and s′. Also, note that tsuff does not contain any locally-
controlled action at Proci or Envi, and tsuff can be applied to state s. Therefore, tsuff can also

18

be applied to s′, thus extending α′pre to an execution α′ of S. By construction, the trace t′ of α′ is
tpre · crashi · tsuff .

9.2 The Task Tree

For any observation G = (V,Z), we define a tree RG that describes all executions of S in which
the sequence of AFD output events is the event-sequence of some path in G.

We describe our construction in two stages. The first stage, in this subsection, defines the
basic structure of the tree, with annotations indicating where particular system tasks and obser-
vation vertices occur. The second stage, described in the next subsection, adds information about
particular actions and system states.

The task tree is rooted at a special node called “>” which corresponds to the initial state of the
system S. The tree is of height |V |; if |V | is infinite, the tree has infinite height.4 Every node N in
the tree that is at a depth |V | is a leaf node. All other nodes are internal nodes. Each edge in the
tree is labeled by an element from T ∪ {FDi|i ∈ Π}. Intuitively, the label of an edge corresponds
to a task being given a “turn” or an AFD event occurring. An edge with label l is said to be an
l-edge, for short. The child of a node N that is connected to N by an edge labeled l is said to be
an l-child of N .

In addition to labels at each edge, the tree is also augmented with a vertex tag, which is a vertex
in G, at each node and edge. We write vN for the vertex tag at node N and vE for the vertex tag
at edge E. Intuitively, each vertex tag denotes the latest AFD output that occurs in the execution
of S corresponding to the path in the tree from the root to node N or the head node of edge E (as
appropriate). The set of outgoing edges from each node N in the tree is determined by the vertex
tag vN .

We describe the labels and vertex tags in the task tree recursively, starting with the > node.
We define the vertex tag of > to be a special placeholder element (⊥, 0,⊥), representing a “null
vertex” of G. For each internal node N with vertex tag vN , the outgoing edges from N and their
vertex tags are as follows.

• Outgoing Proc, Chan, and Env edges. For every task l in T , the task tree contains exactly
one outgoing edge E from N with label l from N , i.e., an l-edge. The vertex tag vE of E is
vN .

• Outgoing FD-edges. If vN = (⊥, 0,⊥), then for every vertex (i, k, e) of G, the task tree
includes an edge E from N with label FDi and vertex tag vE = (i, k, e). For every location i
such that G contains no vertices with location i, the task tree includes a single outgoing edge
E from N with label FDi and vertex tag (⊥, 0,⊥).

Otherwise, (vN is a vertex of G) for every vertex (say) (i, k, e) of G that has an edge in G
from vertex vN , the task tree includes an outgoing edge E from N with label FDi and vertex
tag vE = (i, k, e). For every location i such that there is no edge in G from vN to any vertex
whose location is i, the task tree includes an outgoing edge E from N with label FDi and
vertex tag vE = vN .

For each node N̂ that is a child of N and whose incoming edge is E, vN̂ = vE .

4The intuitive reason for limiting the depth of the tree to |V | is the following. If G is a finite observation, then
none of the locations in Π are live in G. In this case, we want all the branches in the task tree to be finite. On the
other hand, if G is an infinite observation, then some location in Π is live in G, and in this case we want all the
branches in the task tree to be infinite. On way to ensure these properties is to restrict the depth of the tree to |V |.

19

A path in a rooted tree is an alternating sequence of nodes and edges, beginning and ending
with a node, where (1) each node is incident to both the edge that precedes it and the edge that
follows it in the sequence, and (2) the nodes that precede and follow an edge are the end nodes of
that edge.

A branch in a rooted tree is a maximal path in the tree that starts at the root.
The following two Lemmas follow from the construction of the task tree.

Lemma 9.2. For each label l, each internal node N in RG has at least one outgoing l-edge.

Lemma 9.3. Let q be a path in the tree that begins at the root node. Let V be the sequence of
distinct non-(⊥, 0,⊥) vertex tags of edges in path q. Then there exists some path p in G such that
V is the sequence of vertices along p.

9.3 The Augmented Tree

Now we augment the task tree produced in the previous section to include additional tags —
configuration tags cN at the nodes, which are states of the system S, and action tags aE at the
edges, which are actions of S or ⊥. However, the action tags cannot be crash actions. The resulting
tagged tree is our execution tree RG. Intuitively, the configuration tag cN of a node N denotes a
state of system S, and the action tag aE for an edge E with label l from node N denotes an action
aE from task l that occurs when system S is in state cN . It is easy to see that for any path in
the execution tree, the sequence of alternating configuration tags and action tags along the path
represents an execution fragment of S.

We define the tags recursively, this time starting from the already-defined task tree. For the >
node, the configuration tag is the initial state of S. For each internal node N with configuration
tag cN and vertex tag vN , the new tags are defined as follows:

• Outgoing FD-edges. For every edge E from node N with label FDi, the action tag aE is
determined as follows. If the vertex tag vE = (i, k, e) 6= vN , then aE = e. If vE = vN , then
aE = ⊥.

Essentially, if vE = (i, k, e) 6= vN , then this corresponds to the action e of vE occurring when
S is in state cN ; we model this by setting aE to e. Otherwise, vE = vN and no event from
FDi occurs when S is in state cN ; we mode this by setting aE to ⊥.

• Outgoing Proc and Env edges. For every edge E from node N with label l ∈ {Proci} ∪
{Envi,x|x ∈ Xi} for some location i, the action tag aE is determined as follows. If (1) some
action a in task l is enabled in state cN , and (2) either (a) vN is a vertex of G and G contains
an edge from vN to a vertex with location i, or (b) vN = (⊥, 0,⊥) and G has a vertex with
location i, then aE is a; otherwise aE is ⊥. Note that since each process automaton and each
constituent automaton of the environment automaton in S is task-deterministic, for each
location i at most one action in the Proci task is enabled in cN and, for each location i and
each x ∈ Xi, at most one action in the Envi,x task is enabled in cN . Therefore, at most one
action a in task l is enabled in state cN , and thus aE is well-defined.

Fix node N in RG and a location i. Observe that if the action tag of an FDi edge from N
is ⊥, then for all FDi edges that are descendants of N , their action tag is ⊥. The condition
(2) above for determining aE for a Proci or Envi edge E from N implies that, if no AFD
output events at i follow N in the maximal subtree of RG rooted at N , then no Proci event
of Envi event follows N in that subtree either; we formalize this claim is Lemma 9.14.

20

• Outgoing Chan edges. For every edge E from nodeN with label l ∈ {Chani,j |i ∈ Π ∧ j ∈ Π \ {i}},
the action tag aE is determined as follows: If some action a in task l is enabled in state cN ,
then aE = a; otherwise aE = ⊥. Note that since all automata in S are task deterministic, at
most one action in task l is enabled in cN . Informally, we state that if some action in task l
is enabled in state cN , then that event occurs along the edge E; otherwise, no event occurs
along the edge E.

Each node N̂ that is a child of N and whose incoming edge is E is tagged as follows. If the
action tag aE = ⊥ then cN̂ = cN . Otherwise, cN̂ is the state of S resulting from applying the
action aE to state cN .

The following Lemmas establish various relationships between nodes, paths, and branches in
RG. Note that these Lemmas following immediately from the construction.

For each node N , let path(N) be the path from the root node > to N in the tree RG. Let
exe(N) be the sequence of alternating config tags and action tags along path(N) such that exe(N)
contains exactly the non-⊥ action tags and their preceding config tags in path(N) and ends with
the config tag cN .

Lemma 9.4. For each node N in RG, the sequence exe(N) is a finite execution of the system S
that ends in state cN and if exe(N)|OD

is non-empty (and therefore, vN is a vertex of G), then
exe(N)|OD

is the event-sequence of the vertices in G for some path to vN .

Lemma 9.5. Let N be a node, let N̂ be a child of N , and let E be the edge from N to N̂ in RG.
Then the following are true.

1. If aE = ⊥, then cN = cN̂ , exe(N) = exe(N̂) and vN = vN̂ .

2. If aE 6= ⊥, then exe(N̂) = exe(N) · aE · cN̂ .

Lemma 9.6. For each node N in RG and any descendant N̂ of N , exe(N) is a prefix of exe(N̂)
and exe(N)|OD

is a prefix of exe(N̂)|OD
.

Proof. Follows from repeated application of Lemmas 9.5 along the path from N to N̂ .

Lemma 9.7. For each node N in RG, each child node N̂ of N is uniquely determined by the label
l of the edge from N to N̂ and the vertex tag vN̂ .

Proof. The proof follows from the construction of RG. Fix N . If two outgoing edges E1 and E2

from N have the same label, then that label must be from {FDi|i ∈ Π}. However, for each location
i, each of the outgoing FDi-edges from N have a different vertex tag, and the vertex tag of an
FDi-child N̂ of N is the same as the vertex tag of the edge from N to N̂ . Hence, for any no two
child nodes of N , either the label of the edge from N to each of the child nodes is distinct, or the
vertex tag of each of the child nodes is distinct.

Lemma 9.8. For each node N in RG and any child N̂ of N such that the edge E from N to N̂
has the label FDi (for some location i) and the action tag aE of the edge is non-⊥, the following
is true. (1) vN̂ 6= vN , (2) aE is the action of vN̂ , and (3) if vN 6= (⊥, 0,⊥), then there is an edge
from vN to vN̂ in G.

Lemma 9.9. For each node N in RG and any descendant N̂ of N such that there is no FD-edge
in the path from N to N̂ , vN = vN̂ .

Proof. The proof is by induction on the length of the path from N to N̂ .

21

Lemma 9.10. For each node N in RG and for any descendant N̂ of N , either vN = vN̂ , or if
vN 6= (⊥, 0,⊥), then there is an edge from vN to vN̂ in G.

Proof. Fix N and N̂ as in the hypothesis of the lemma. Let the path from N to N̂ contain d edges.
We prove the lemma by strong induction on d.

Inductive hypothesis. For any pair of nodes N1 and N2 such that N2 is a descendant of N1 in
RG, and the path from N1 to N2 contains d edges, either vN1 = vN2 , or if vN1 6= (⊥, 0,⊥), then
there is an edge from vN1 to vN2 in G.

Inductive step. Fix N1 and N2. If d = 0, note that N1 = N2, and therefore vN1 = vN2 ; therefore
the lemma is satisfied. For d = 1, N2 is a child of N1, and let E1,2 be the edge from N1 to N2.
If vN1 = vN2 , the the lemmas is satisfied. Assume vN1 6= vN2 and vN1 6= (⊥, 0,⊥); note that if
vN1 6= vN2 , then by construction E1,2 is an FD-edge and aE1,2 6= ⊥. Invoking Lemma 9.8, we know
that there is an edge from vN1 to vN2 in G.

For any d > 1, there exists at least one node N1.5 in the path from N1 to N2. Fix N1.5. By
construction, the path from N1 to N1.5 contains fewer than d edges, and the path from N1.5 to N2

contains fewer than d edges. Invoking the inductive hypothesis for nodes N1 and N1.5, we know
that either vN1 = vN1.5 or, if vN1 6= (⊥, 0,⊥), then there is an edge from vN1 to vN1.5 in G. Similarly,
invoking the inductive hypothesis for nodes N1.5 and N2, we know that either vN1.5 = vN2 or, if
vN1.5 6= (⊥, 0,⊥), there is an edge from vN1.5 to vN2 in G. Therefore, either (1) vN1 = vN2 , or (2)
if vN1 6= (⊥, 0,⊥), then vN1.5 6= (⊥, 0,⊥), and there is a path from vN1 to vN2 in G. In case (1)
the induction is complete. In case (2), invoking the transitive closure property of G, we know that
there is an edge from vN1 to vN2 in G, and the induction is complete.

Lemma 9.11. For each label FDi where i is live in G, every FDi-edge in RG has a non-⊥ action
tag.

Lemma 9.12. For every branch b of RG, exe(b) is an execution of system S.

Proof. Fix a branch b of RG. Let >, E1, N1, E2, N2, . . ., where each Ex is an edge in RG and
each Nx is a node in RG, denote the sequence of nodes that constitute b. By definition, exe(b)
is the limit of the prefix-ordered sequence exe(>), exe(N1), exe(N2), . . .; note that this sequence
might be infinite. Note that exe(>)|OD

is a prefix of exe(N1)|OD
, and from Lemma 9.6, we know

that exe(Nx)|OD
is a prefix of exe(Nx+1)|OD

for any positive integer x. Therefore, the limit of the
prefix-ordered sequence exe(>)|OD

, exe(N1)|OD, exe(N2)|OD
, . . . exists, and this limit is exe(b)|OD

.
By Lemma 9.4, we know that exe(>) and each exe(Nx), where x is a positive integer, is a finite
execution of S, and therefore, exe(b) is an execution of S.

Lemma 9.13. For any node N in RG, any location i and any FDi-edge E outgoing from N , if
aE = ⊥, then for each outgoing Proci-edge or Envi-edge E′ from N , aE′ = ⊥.

Proof. Fix N , i, and E as in the hypothesis of the Lemma; thus, aE = ⊥. From the construction
of RG, we know that aE = ⊥ iff either vN is not a vertex in G and there is no vertex in G whose
location is i, or there is no edge in G from vN to any vertex whose location is i.

Fix E′ to be either a Proci-edge or Envi-edge outgoing from N . From the construction of RG,
we know that if either (a) vN is a vertex of G and G contains no edges from vN to a vertex with
location i, or (b) vN = (⊥, 0,⊥) and G has a no vertex with location i, then aE′ is ⊥.

For any node N in RG, let RG|N denote the maximal subtree of RG rooted at N .

22

Lemma 9.14. For any node N in RG, any location i and any FDi-edge E outgoing from N , if
aE = ⊥, then for each Proci-edge or Envi-edge E′ in RG|N , aE′ = ⊥.

Proof. Fix N and i as in the hypothesis of the Lemma; thus, an outgoing FDi-edge E from N ,
aE = ⊥. From the construction of RG, we know that aE = ⊥ iff either vN is not a vertex in G and
there is no vertex in G whose location is i, or there is no edge in G from vN to any vertex whose
location is i.

FixN ′ to be any node inRG|N . By construction, N ′ is a descendant ofN . From the construction
ofRG, note that for every descendant N ′ of N inRG, if vN is a vertex in G, then vN ′ is a descendant
of vN . Thus, either there is no vertex in G whose location is i, or vN ′ does not have any outgoing
edges to a vertex in G whose location is i. From the construction of RG, we see that aE′′ = ⊥ for
an outgoing FDi-edge E′′ from N ′. From Lemma 9.13, we know that for each outgoing Proci-edge
or Envi-edge E′ from N , aE′ = ⊥.

Next, we establish the relationship between traces compatible with G and the action tags of
FD-edges in RG. Specifically, we show that the following is true. For any node N in RG such that
the vertex tag vN is a vertex in G, let a be the event of vN , and assume that some FDi-edge of N
has a non-⊥ action tag. Then in any trace t compatible with G, and for any location i, no crashi

event precedes a in t.

Lemma 9.15. Let N be any node in RG such that G contains vN . Let there exist an FDi-edge E
in RG|N such that aE 6= ⊥. Then for any arbitrary trace in t ∈ TD that is compatible with G, no
crashi event precedes the event of vN in t.

Proof. Fix N , i, and E as in the hypotheses of the lemma. Let N ′ denote the upper endpoint of
E. Since N ′ is in RG|N , N ′ is a descendant of N , and consequently, there exists a path from vN

to vN ′ in G. Since aE 6= ⊥, we know that vN ′ has an outgoing edge to some vertex v in G, fix v;
note that aE is the event of v. Since we have a path from vN to v′N in G and an edge from v′N to
v in G, we have a path from vN to v in G. Therefore, in every topological sort of G, v follows vN .

Now consider t, and assume for contradiction that crashi precedes the event of vN in t. Since
t|OD

is a topological sort of G, the event aE of v follows the event of vN in t. Then crashi precedes
the event aE of v in t. Recall that E is an FDi edge and therefore aE ∈ OD,i. In other words,
crashi precedes an OD,i event in t; thus, t is not a valid sequence. This contradicts our assumption
that t is a trace in TD, because all traces in TD are valid.

We define a non-⊥ node. A node N in RG is said to be a non-⊥ node iff the path from the root
to N does not contain any edges whose action tag is ⊥. In the subsequent sections, non-⊥ nodes
play a significant role, and so we prove some useful properties about non-⊥ nodes next.

Lemma 9.16. Suppose N and N ′ are a non-⊥ nodes in RG such that (1) N and N ′ are at the
same depth d, (2) the projection of the paths from > to N and > to N ′ on the set of labels are
equal, (3) the projection of the paths from > to N and > to N ′ on the vertex tags are also equal.
Then N = N ′.

Proof. The proof is a straightforward induction on d.

The inductive extension of Lemma 9.7 is that each non-⊥ node N in RG is uniquely determined
by the sequence of labels and vertex tags of the edges from > to N . We prove this next.

Lemma 9.17. Each non-⊥ node N in RG is uniquely determined by the sequence of labels and
vertex tags of the edges from > to N .

23

Proof. The proof is by induction the depth dN of N .
Base case. d> = 0, and there is unique > node in RG.
Inductive Hypothesis. For some positive integer d, each non-⊥ node N in RG at depth d is

uniquely determined by the sequence of labels and vertex tags of the edges from > to N .
Inductive step. Fix N ′ to be any non-⊥ node in RG at depth d+1. By construction, there is an

edge whose lower endpoint is N ′ and whose upper end point is a node N ′′ at depth d. By Lemma
9.7, we know that given N ′′, N ′ is uniquely determined by the label l of the edge from N ′ to N ′′

and the vertex tag vN ′′ . However, by the inductive hypothesis, N ′′ is uniquely determined by the
sequence of labels and vertex tags of the edges from > to N ′′. Therefore, N ′ is uniquely determined
in RG by the sequence of labels and vertex tags of the edges from > to N ′. This completes the
induction.

9.4 Properties of “Similar” Nodes in Execution Trees

For any two nodes N and N ′ in RG such that cN = cN ′ and vN = vN ′ , the following lemmas
establish a relationship between the descendants of N and N ′. Informally, these lemmas establish
that the maximal subtrees of RG rooted at N and N ′ are in some sense similar to each other.
Lemma 9.18 establishes that for every child N̂ of N there exists a child N̂ ′ of N ′ that is “similar”
to N̂ . Lemma 9.19 extends such similarity to arbitrary descendants of N ; that is, for any descendant
N̂ of N , there exist “similar” descendants of N ′. Lemma 9.20 states that for any descendant N̂ of
N , there exists a descendant N̂6⊥ of N that is “similar” to N̂ , but the path from N to N̂6⊥ does not
contain any edges with a ⊥ action tag.

The proofs use the notion of “distance” between a node and its descendant as defined next.
The distance from a node N to its descendant N̂ is the number of edges in the path from N to N̂ .
Note that if the distance from N to N̂ is 1, then N̂ is a child of N .

Lemma 9.18. Let N and N ′ be two nodes in RG such that cN = cN ′ and vN = vN ′. Let l be
an arbitrary label in T ∪ {FDi|i ∈ Π}. Let Ê and N̂ be an l-edge and the corresponding l-child of
N , respectively. There exists an l-edge E′ of N ′ and the corresponding l-child N̂ ′ of N ′ such that
aÊ = aÊ′, vÊ = vÊ′, cN̂ = cN̂ ′, and vN̂ = vN̂ ′.

Proof. Fix N , N ′, l, Ê, and N̂ as in the hypotheses of the lemma. We consider two cases: l is in
T , and l is in {FDi|i ∈ Π}.

Case 1. l ∈ T . Since cN = cN ′ , vN = vN ′ , and the system is task deterministic, we know
that there exists an outgoing l edge Ê′ from N ′ such that aÊ = aÊ′ . Let N̂ ′ be the l-child of N ′

connected by edge Ê′. Since cN̂ is obtained by applying aÊ to cN , and cN̂ ′ is obtained by applying
aÊ′ to cN ′ , we see that cN̂ = cN̂ ′ . Also, by construction, vN̂ = vN = vÊ and vN̂ ′ = vN ′ = vÊ′ ;
therefore, vÊ = vÊ′ and vN̂ = vN̂ ′ .

Case 2. l is of the form FDi, for some particular i. Then we consider two subcases: (a) aÊ = ⊥
and (b) aÊ 6= ⊥.

Subcase 2(a). aÊ = ⊥. Then either (i) vN = (⊥, 0,⊥) and G has no vertices with location i, or
(ii) vN is a vertex of G and G has no vertices with location i to which vN has an outgoing edge.
In both cases (i) and (ii), by construction, vN̂ = vN = vÊ . Since vN = vN ′ , from the construction
of RG, we know that there is an l-edge Ê′ of N ′ such that aÊ′ = ⊥, and we also know that for
the l-child N̂ ′ of N ′ that is connected to N ′ by Ê′, vN̂ ′ = vN ′ = vÊ′ . Therefore, vÊ = vÊ′ and
vN̂ = vN̂ ′ .

Subcase 2(b). aÊ 6= ⊥. Then either (i) vN = (⊥, 0,⊥) and G has a vertex v′ of the form
(i, ∗, aÊ), or (ii) vN is a vertex of G and G has a vertex v′ of the form (i, ∗, aÊ) to which vN has

24

an outgoing edge such that vN̂ = vÊ = v′. Since vN = vN ′ , in both cases (i) and (ii), from the
construction of RG, we know that there is an l-edge Ê′ of N ′ such that aÊ′ = aÊ and vÊ′ = vÊ ,
and we also know that for the l-child N̂ ′ of N ′ that is connected to N ′ by Ê′, vN̂ ′ = v′. Therefore,
vÊ = vÊ′ and vN̂ = vN̂ ′ .

In both subcases, since cN̂ is obtained by applying aÊ to cN , and cN̂ ′ is obtained by applying
aÊ′ to cN ′ , we see that cN̂ = cN̂ ′ .

Lemma 9.19. Let N and N ′ be two nodes in RG such that cN = cN ′ and vN = vN ′, and let N̂ be
a descendant of N . There exists a descendant N̂ ′ of N ′ such that the following is true.

1. vN̂ = v
N̂ ′.

2. cN̂ = c
N̂ ′.

3. Let the path from N to N̂ be p and the path from N ′ to N̂ ′ be p′. Then, p and p′ are of the
same length.

4. The suffix of exe(N̂) following exe(N) is identical to the suffix of exe(N̂ ′) following exe(N ′).

Proof. The lemma is a simple inductive extension of Lemma 9.18. The proof follows from a straight-
forward induction on the length of the path from N to N̂ .

Next, we show that for any node N and any descendant N̂ of N , there exists a node N̂6⊥ of N
that is “similar” to N̂ , and the path from N to N̂ 6⊥ does not contain any edges with a ⊥ action tag.

Lemma 9.20. Let N be an arbitrary node in RG. For every descendant N̂ of N , there exists a
descendant N̂6⊥ of N such that vN̂ = vN̂ 6⊥

, the suffix of exe(N̂) following exe(N) is identical to the

suffix of exe(N̂6⊥) following exe(N), and the path from N to N̂6⊥ does not contain any edges whose
action tag is ⊥.

Proof. Fix N and N̂ as in the hypothesis of the lemma. Let p be the path from N to N̂ . If p does
not contain any edges whose action tag is ⊥, then the lemma is satisfied when N̂6⊥ = N̂ . Otherwise,
the following arguments hold.

Let α be the suffix of exe(N̂) following exe(N), starting with the state cN . Let αt denote the
trace of α, and let αl denote the sequence of tasks in S such that for each x, αt[x] is an action in
task αl[x]. By construction, there exists a path from N whose projection on the labels is αl, and
furthermore, since αt is the trace of α, and the starting state of α is cN , there exists path p̂ from
N whose projection on action tags is αt; fix such a path p̂. Note that, by construction, αt does not
contain any ⊥ elements. Thus, path p̂ has no edges with ⊥ action tag, and the suffix of exe(N̂)
following exe(N) is identical to the suffix of exe(N̂6⊥) following exe(N).

Corollary 9.21. For each node N in RG, there exists a non-⊥ node N ′ in RG such that exe(N) =
exe(N ′), vN = vN ′.

Proof. Follows by applying Lemma 9.20 to the root node and noting that N is a descendant of the
root node.

25

9.5 Properties of Similar-Modulo-i Nodes in Execution Trees

Next, we establish properties of RG with respect to nodes whose configuration tags and vertex tags
are indistinguishable at all process automata except one. The aforementioned relation between
nodes is formalized as the similar-modulo-i relation (where i is a location). Intuitively, we say that
node N is similar-modulo-i to N ′ if the only process automaton that can distinguish state cN from
state cN ′ is the process automaton at i. The formal definition follows.

Given two nodes N and N ′ in RG and a location i, N is said to be similar-modulo-i to N ′

(denoted N ∼i N
′) if the following are true.

1. vN = vN ′ .

2. For every location j ∈ Π \ {i}, the state of Procj is the same in cN and cN ′ .

3. For every location j ∈ Π \ {i}, the state of Ej is the same in cN and cN ′ .

4. For every pair of distinct locations j, k ∈ Π \ {i}, the state of Chanj,k is the same in cN and
cN ′ .

5. For every location j ∈ Π \ {i}, the contents of the queue in Chani,j in state cN is a prefix of
the contents of the queue in Chani,j in state cN ′ .

Note that due to property 5, the ∼i relation is not symmetric; that is, N ∼i N
′ does not imply

N ′ ∼i N . However, the relation is reflexive; that is, N ∼i N for any node N .
Also note that if N ′ ∼i N , then the states of Proci, Ei, and Chanj,i for all j 6= i may be different

in cN ′ and cN . Furthermore, the states of Chani,j for all j 6= i may also be different in cN ′ and cN ,
but it is required that the messages in transit from i to j in state cN form a prefix of the messages
in transit from i to j in state cN ′ .

We define a node N to be a post-crashi node, where i is a location, if the following property is
satisfied. If vN = (⊥, 0,⊥), then there are no vertices in G whose location is i. Otherwise, there
are no outgoing edges in G from vN to any vertex whose location is i. Note that if RG contains
any post-crashi node, then i is not live in G. Furthermore, if a node N in RG is a post-crashi

node, and there exists a node N ′ such that N ∼i N
′, then N ′ is also a post-crashi node.

Lemma 9.22. Let N and N ′ be two post-crashi nodes in RG for some location i in Π, such that
N ∼i N

′. Let l be any label, and let N l be an l-child of N . Then, one of the following is true: (1)
N l ∼i N

′, or (2) there exists an l-child N ′l of N ′ such that N l and N ′l are post-crashi nodes and
N l ∼i N

′l.

Proof. Fix N , N ′, i, l, and N l as in the hypotheses of the lemma. Let E be the l-edge from N to
N l, and let aE be the action tag of E.

If aE = ⊥, then by Lemma 9.5, we know that cN = cN l and vN = vN l . Therefore, N l ∼i N
′,

and the lemma is satisfied. For the remainder of this proof, we assume aE 6= ⊥.
Note that label l is an element of {Proci} ∪ {Envi,x|x ∈ Xi} ∪ {FDi} ∪ {Procj |j ∈ Π \ {i}} ∪

{Envj,x|j ∈ Π \ {i} ∧ x ∈ Xj} ∪ {FDj |j ∈ Π \ {i}} ∪ {Chanj,k|j ∈ Π ∧ k ∈ Π \ {j}}.
Case 1. l ∈ {Proci} ∪ {Envi,x|x ∈ Xi}. From the definition of a post-crashi node, we know

that there are no vertices with location i that have an incoming edge from vN (= vN ′). Therefore,
from the construction of RG, we see that aE = aE′ = ⊥. In this case, we have already established
that N l ∼i N

′.
Case 2. l = FDi. We know that there are no vertices with location i that have an incoming edge

from vN , and therefore, aE = aE′ = ⊥. In this case, we have already established that N l ∼i N
′.

26

For the remainder of the cases, let N ′l be the l-child of N ′ connected to N ′ by edge E′. Note
that since vN = vN ′ , we know that vN l = vN ′l .

Case 3. l ∈ {Procj |j ∈ Π \ {i}} ∪ {Envj,x|j ∈ Π \ {i} ∧ x ∈ Xj}. From the definition of the ∼i

relation, we know that the state of Procj is the same in states cN and cN ′ , and similarly, the state
of Ej is the same in states cN and cN ′ . Therefore, aE = aE′ . Consequently, the state of Procj is
the same in cN l and cN ′l , and the state of Ej is the same in cN l and cN ′l .

Also, from the definition of the ∼i relation, we know that for every location k ∈ Π \ {i, j}, the
state of Chanj,k is the same in cN and cN ′ . Therefore, from state cN , if aE changes the state of
Chanj,k for some k 6= i, then we know that the state of Chanj,k is the same in cN l and cN ′l .

Thus, the states of all other automata in S are unchanged. We have already established that
vN l = vN ′l , and we can verify that N l ∼i N

′l.
Case 4. l ∈ {FDj |j ∈ Π \ {i}}. Since vN = vN ′ , we see that aE = aE′ . Applying aE to cN and

applying aE′ to cN ′ , and recalling that we have already established vN l = vN ′l , we can verify that
N l ∼i N

′l.
Case 5. Let l be Chanj,k where j ∈ Π and k ∈ Π \ {j}. Recall that we have already established

vN l = vN ′l . We consider three subcases: (a) k = i, (b) j 6= i and k 6= i, (c) j = i.
Case 5(a). Let l be Chanj,i where j ∈ Π \ {i}. Since the definition of ∼i does not restrict the

state of Chanj,i or the state of the process automaton at i, we see that N l ∼i N
′l.

Case 5(b). Let l be Chanj,k where j ∈ Π \ {i} and k ∈ Π \ {i, j}. From the definition of the ∼i

relation, we know that the state of Chanj,k is the same in cN and cN ′ . Therefore, aE = aE′ .
Thus, we see that the state of Chanj,k is the same in cN l and cN ′l . Similarly, since N ∼i N

′

and aE = aE′ , we see that the state of the process automaton at k is also the same in cN l and cN ′l .
The states of all other automata in S are unchanged. Thus, we can verify that N l ∼i N

′l.
Case 5(c). Let l be Chani,k where k ∈ Π\{i}. Since we have assumed aE 6= ⊥, aE must be the

action receive(m, i)k for some message m ∈ M. From the definition of the ∼i relation, we know
that the queue of messages in Chani,k in state cN is a prefix of the queue of messages in Chani,k in
state cN ′ , and the state of the process automaton at k is also the same in cN and cN ′ . Therefore,
action aE is enabled in state cN ′ , and aE is in task l; therefore aE = aE′ .

Consequently, the queue of messages in Chani,k in state cN l is a prefix of the queue of messages
in Chani,k in state cN ′l . Recall that the state of the process automaton at k is the same in cN and
cN ′ . Therefore, the state of the process automaton at k is the same in states cN l and cN ′l . The states
of all other automata in S are unchanged. Thus, we can verify that N l ∼i N

′l. Furthermore, note
that by construction, if a node N0 is a post-crashi node, then all its descendants are post-crashi

nodes. Therefore, N l and N ′l are post-crashi nodes.

Theorem 9.23. Let N and N ′ be two post-crashi nodes in RG for some location i in Π such that
N ∼i N

′. For every descendant N̂ of N , there exists a descendant N̂ ′ of N ′ such that N̂ and N̂ ′
are post-crashi nodes and N̂ ∼i N̂ ′.

Proof. Fix N , N ′, and i as in the hypothesis of the lemma; thus, N and N ′ are post-crashi nodes
and N ∼i N

′. The proof is by induction on the distance from N to N̂ .
Base Case. Let the distance from N to N̂ be 0. That is, N = N̂ . Trivially, we see that N̂ ′ = N ′

satisfies the lemma.
Inductive Hypothesis. For every descendant N̂ of N at a distance k from N , there exists a

descendant N̂ ′ of N ′ such that N̂ and N̂ ′ are post-crashi nodes and N̂ ∼i N̂ ′.
Inductive Step. Fix N̂ to be a descendant of N at a distance k+1 from N . Let N̂k be the parent

of N̂ . Note that, by construction, N̂k is a descendant of N at a distance k from N . Let l be the
label of edge E that connects N̂k and N̂ . By the inductive hypothesis, there exists a descendant

27

N̂ ′k of N ′ such that N̂k and N̂ ′k are post-crashi nodes and N̂k ∼i N̂ ′k. Invoking Lemma 9.22, we
know that at least one of the following is true. (1) N̂ ∼i N̂ ′k. (2) there exists an l-child N̂ ′ of N̂ ′k
such that N̂ and N̂ ′ are post-crashi nodes and N̂ ∼i N̂ ′. In other words, there exists a descendant
N̂ ′ of N ′ such that N̂ and N̂ ′ are post-crashi nodes and N̂ ∼i N̂ ′.

This completes the induction and the proof.

9.6 Properties of Task Trees from Different Observations

Next, we present the properties of task trees from two observations G and G′, where G′ is a prefix
of G. Lemma 9.24 states that for every path in RG′ that does not contain any edges with ⊥ action
tags, a corresponding path of the same length with the same tags and labels on the corresponding
nodes and edges exists in RG. Corollaries 9.25 and 9.26 state that for every node in RG′ , there
exist nodes in RG such that both nodes represent the same execution of the system S. Lemma
9.27 proves a stronger property about non-⊥ nodes; specifically, it shows that for every non-⊥ node
in G′, there is a corresponding node, called a “replica”, in G′ such that both the nodes have the
identical paths from the > node in their respective execution trees.

Lemma 9.28 states that for every path p in RG such that the sequence of distinct non-(⊥, 0,⊥)
vertex labels in p is a path in G′, there exists a corresponding path in RG′ of the same length with
the same tags and labels on the corresponding nodes and edges.

We extend the result from Lemma 9.27 to execution trees constructed from a sequence of
observations, where each is a prefix of the next observation in the sequence; in Lemma 9.29, we
show that non-⊥ nodes persist from one execution tree to the next, and in Lemma 9.30, we show
that they persist in an infinite suffix of the execution trees.

Lemma 9.24. Let an observation G′ be a prefix of an observation G. Fix any path p′ in RG′ that
starts at the root node and does not contain edges with ⊥ action tags. Let the length of p′ be k
edges. Then there exists a “corresponding” path p in RG of length k such that the following is true.
(1) For every positive integer x ≤ k + 1, let N ′x be the x-th node in p′ and let Nx be the x-th node
in p. Then the tags of N ′x are identical to the tags of Nx. (2) For any positive integer x ≤ k, let E′x
be the x-th edge in p′, and let Ex be the x-th edge in p. Then the tags and labels of E′x are identical
to the tags and labels of Ex.

Proof. Fix G′ and G as in the hypothesis of the lemma. The proof follows from a simple induction
on the length k of path p′.

Base case. k = 0. There exists a single path p′ consisting of k edges that starts at the root
node of RG′ . Let N ′0 be the root node of RG′ with vertex tag vN ′0 = (⊥, 0,⊥) and config tag cN ′0
is the start state of system S. Similarly, there exists a single path p consisting of k edges that
starts at the root node of RG and contains no edges. N0 is the root node of RG with vertex tag
vN0 = (⊥, 0,⊥) and config tag cN0 is the start state of system S.

Inductive hypothesis. For some non-negative integer k, for every path p′ consisting of k edges in
RG′ that starts at the root node and does not contain edges with ⊥ action tags. Then there exists
a “corresponding” path p in RG consisting of k edges such that the following is true. (1) For every
positive integer x ≤ k + 1, let N ′x be the x-th node in p′ and let Nx be the x-th node in p. Then
the tags of N ′x are identical to the tags of Nx. (2) For any positive integer x ≤ k, let E′x be the
x-th edge in p′, and let Ex be the x-th edge in p. Then the tags and labels of E′x are identical to
the tags and labels of Ex.

Inductive step. Fix any path p′ consisting of k + 1 edges that starts at the root node of RG′

and does not contain edges with ⊥ action tags. Let p′pre be the prefix of p′ that consists of k edges.
By the inductive hypotheses, there exists a “corresponding” path ppre in RG consisting of k edges

28

such that the following is true. (1) For every positive integer x ≤ k+ 1, let N ′x be the x-th node in
p′pre and let Nx be the x-th node in ppre. Then the tags of N ′x are identical to the tags of Nx. (2)
For any positive integer x ≤ k, let E′x be the x-th edge in p′pre, and let Ex be the x-th edge in ppre.
Then the tags and labels of E′x are identical to the tags and labels of Ex.

The last node of p′pre and ppre are N ′k+1 and Nk+1, respectively. By the inductive hypotheses,
cN ′k+1

= cNk+1
and vN ′k+1

= vNk+1
. Consider the node N ′′ that is the last node of path p′. By

construction, there is an edge E′′ from N ′k+1 to N ′′, and furthermore, aE′′ 6= ⊥. Let the label of E′′

be l′′. Note that either (1) l′′ is of the form FD∗, or (2) l′′ ∈ T is a task in system S. We consider
each case separately.

Case 1. l′′ is of the form FD∗. Since aE′′ 6= ⊥, we know from the construction of the task tree
that the vertex tags vE′′ = vN ′′ , vE′′ is of the form (i, k, aE′′), where i is a location and k is a positive
integer. Furthermore, we know that vE′′ is a vertex in G’, and either (a) vN ′k+1

= (⊥, 0,⊥) or (b) G′

contains an edge from vN ′k+1
to vE′′ . From the inductive hypothesis we know that vN ′k+1

= vNk+1
.

Since G′ is a prefix of G, we know that G contains the vertex vE′′ .
If vN ′k+1

= (⊥, 0,⊥), then vNk+1
= (⊥, 0,⊥). Otherwise, G′ contains an edge from vN ′k+1

to vE′′ ,
and since G′ is a prefix of G, G contains an edge from vN ′k+1

to vE′′ . In both cases, we see that, from

the construction of the task tree, RG contains an l′′-edge Ê′′ from Nk+1 to a node N̂ ′′ such that
a

Ê′′ = aE′′ and v
Ê′′ = v

N̂ ′′ = vE′′ . From the inductive hypothesis, we know that cN ′k+1
= cNk+1

.
Since cN ′′ is obtained by applying aE′′ to cN ′k+1

, and c
N̂ ′′ is obtained by applying a

Ê′′ to cNk+1
, we

see that cN ′′ = c
N̂ ′′ .

Case 2. l′′ ∈ T . Since cN ′k+1
= cNk+1

, vN ′k+1
= vNk+1

, and the system is task deterministic,

we know that there exists an outgoing l′′ edge Ê′′ from Nk+1 to a node N̂ ′′ such that a
Ê′′ = aE′′ .

Since cN ′′ is obtained by applying aE′′ to cN ′k+1
, and c

N̂ ′′ is obtained by applying a
Ê′′ to cNk+1

, we
see that cN ′′ = c

N̂ ′′ . Also, by construction, vN ′′ = vNk+1
= vE′′ and v

N̂ ′′ = vN ′k+1
= v

Ê′′ ; therefore,
vE′′ = v

Ê′′ and vN ′′ = v
N̂ ′′ .

Therefore, in all cases there exists an l′′-edge Ê′′ of Nk+1 to a node N̂ ′′ in RG such that the
tags of N ′′ and N̂ ′′ are identical, and the tags and labels of E′′ and Ê′′ are identical. Recall that
E′′ is an l′′-edge from N ′k+1 to N ′′.

Recall that p′ is a path consisting of k + 1 edges whose prefix is path p′pre consisting of k edges
starting from the root node in RG′ and does not contain edges with ⊥ action tags, and ppre is a
path consisting of k edges starting from the root node in RG and does not contain edges with ⊥
action tags. Furthermore, the last node of p′pre is N ′k+1 and the last node of ppre is Nk+1. Also
recall that, (1) for every positive integer x ≤ k + 1, the tags of N ′x are identical to the tags of Nx,
and (2) for every positive integer x ≤ k, the tags and labels of E′x are identical to the tags and
labels of Ex. Therefore, we extend ppre by edge Ê′′ to obtain a path p such that the following is
true.

(1) For every positive integer x ≤ k + 2, let N ′x be the x-th node in p′ and let Nx be the x-th
node in p. Then the tags of N ′x are identical to the tags of Nx. (2) For any positive integer x ≤ k+1,
let E′x be the x-th edge in p′, and let Ex be the x-th edge in p. Then the tags and labels of E′x are
identical to the tags and labels of Ex.

This completes the induction.

Corollary 9.25. If an observation G′ is a prefix of an observation G, then for every node N ′ in
RG′, there exists a node N in RG such that exe(N ′) = exe(N) and vN ′ = vN .

Proof. Fix a node N ′ in RG′ . By Lemma 9.20, we know that there exists a node N ′6⊥ in RG′ such
that vN ′ = vN ′6⊥ and exe(N ′) = exe(N ′6⊥), and the path from the root to N ′6⊥ does not contain any

29

edges with ⊥ action tag. Invoking Lemma 9.24, we know that there exists a node N in RG such
that the path from the root to N in RG and the path from root to N ′6⊥ in RG′ contain the same
sequence of action tags and vertex tags. Therefore, exe(N) = exe(N ′6⊥) and vN = vN ′6⊥ . Therefore,
exe(N ′) = exe(N) and vN ′ = vN .

Corollary 9.26. If an observation G′ is a prefix of an observation G, then for every node N ′ in
RG′, there exists a non-⊥ node N in RG such that exe(N ′) = exe(N) and vN ′ = vN .

Proof. Fix G′, G and N ′ as in the hypotheses of the corollary. Invoking Lemma 9.25, we know
there exists a node N0 in RG such that exe(N ′) = exe(N0) and vN ′ = vN0 . Invoking Corollary 9.21
on node N0, we know that there exists a non-⊥ node N in RG such that exe(N0) = exe(N) and
vN0 = vN . In other words, there exists a non-⊥ node N in RG such that exe(N ′) = exe(N) and
vN ′ = vN .

Lemma 9.27. If an observation G′ is a prefix of an observation G, then for every node non-⊥
node N ′ in RG′, there exists a unique non-⊥ node N in RG such that the sequence of labels and
vertex tags of the edges from > to N ′ in RG′ is identical to the sequence of labels and vertex tags
of the edges from > to N in RG.

Proof. Fix G, G′, and N as in the hypothesis of the lemma. Applying Lemma 9.24 to the path in
RG′ from > to N we conclude at least one non-⊥ node N ′ in RG such that the sequence of labels
and vertex tags of the edges from > to N ′ in RG′ is identical to the sequence of labels and vertex
tags of the edges from > to N in RG. Fix any such node N . Applying Lemma 9.17 to N , we
conclude that N is unique.

Lemma 9.28. Let an observation G′ be a prefix of an observation G. Fix any path p in RG such
that (1) p starts at the root node and (2) the sequence of distinct non-(⊥, 0,⊥) vertex tags in p is
the sequence of vertices in some path in G′. Let the length of p be k edges. Then there exists a
“corresponding” path p′ in RG′ of length k such that the following is true. (1) For every positive
integer x ≤ k + 1, let N ′x be the x-th node in p′ and let Nx be the x-th node in p. Then the tags of
N ′x are identical to the tags of Nx. (2) For any positive integer x ≤ k, let E′x be the x-th edge in
p′, and let Ex be the x-th edge in p. Then the tags and labels of E′x are identical to the tags and
labels of Ex.

Proof. The proof follows from a simple induction on the length k of path p.

Given any pair of observations G and G′ such that G′ is a prefix of G, and given a non-⊥ node
N ′ in G′, we define the replica of N ′ from G′ in G to be the unique node N in G that satisfies
Lemma 9.27. We use this notion of a replica node to talk about a non-⊥ node “persisting” over
task trees constructed from a sequence observations such that each observation in the sequence is
a prefix of each succeeding observation.

Given a non-⊥ node N in a tree RG and its replica N ′ in a tree RG′ , since the sequence of
labels and vertex tags of the edges from > to N in RG is identical to the sequence of labels and
vertex tags of the edges from > to N ′ in RG′ , we refer to any non-⊥ node N and its replicas as N .

Let G = G1, G2, . . . be an infinite sequence of finite observations such that (1) for any positive
integer x, Gx is a prefix of Gx+1, and (2) the sequence of observations converge to some observation
G∞.

Lemma 9.29. Fix a positive integer x and suppose N is a non-⊥ node RGx. Then RGx+1 contains
N .

30

Proof. Follows from Lemma 9.27.

Lemma 9.30. Fix a positive integer x and suppose N is a non-⊥ node RGx. Then for any x′ > x,
RGx′ contains N .

Proof. The proof follows from a simple induction on x− x′.

9.7 Fair Branches of Execution Trees

In this subsection, we define fair branches of execution trees, and we establish the correspondence
between fair branches in the execution trees and fair traces of system S.5

We define a branch of an infinite task tree RG of the observation G to be a fair branch if, for
each label l, the branch contains an infinite number of edges labeled l. Therefore, a fair branch
satisfies the following properties.

Lemma 9.31. For each location i, and each fair branch b of RG, the following are true.

1. Branch b contains infinitely many FDi, Proci and Envi,x edges (for all x ∈ Xi) (regardless
of whether i is live or not live in G).

2. If i is live in G, then (a) every FDi edge in b has a non-⊥ action tag and (b) some infinite
subset of the OD,i events contained in G occur in b.6

3. If i is not live in G, then there exists a suffix of b such that the action tag of each FDi, Proci,
and Envi,x edge (for all x ∈ Xi) is ⊥.

For any location i and fair branch b of RG, b may contain a Proci or an Envi,x edge E such
that aE = ⊥ for either of two reasons. (1) If i is not live in G, then it may be the case that there
is no outgoing edge from vE to any vertex whose location is i. (2) There is no enabled action from
the corresponding task in cN , where N is the node immediately preceding E in b; this is regardless
of whether i is live in G or otherwise.

The main result of this subsection is Theorem 9.34, which says that, if D is a strong-sampling
AFD, then for any viable observation G of D and for every fair branch b in RG, (1) the projection
of b on the actions of the system S corresponds to a fair trace of system S, and (2) the projection
of b on the AFD actions corresponds to a trace in TD. We use multiple helper lemmas to prove the
main result, which we summarize after the following definitions.

For the remainder of this section, fix D to be a strong-sampling AFD and fix G to be an infinite
observation of D. Consider a branch b in RG; since G is an infinite observation, b must also be of
infinite length. Let the sequence of nodes in b be >, N1, N2, . . . in that order. The sequence exe(b)
is the limit of the prefix-ordered infinite sequence exe(>), exe(N1), exe(N2),7 Note that exe(b)
may be a finite or an infinite sequence. Let trace(b) denote the trace of the execution exe(b). Recall
that for any node N in RG, RG|N denotes the maximal subtree of RG rooted at N .

In Lemma 9.32, we show that for any fair branch b in RG, exe(b)|OD
is the event-sequence of

some fair branch in G. However, note that even if b is a fair branch of RG, exe(b) need not be a
fair execution of S; also, even if G is viable for D, the projection of exe(b) on OD ∪ Î need not be
in TD. The primary reason for these limitations is that the tree RG does not contain any crash

5Recall that S consists of the process automata, the environment automaton, and the the channel automata.
6Note that b is not guaranteed to contain all the OD,i events contained in G.
7Note that we have overloaded the function exe to map both nodes and branches to sequences of alternating states

and actions. Since the domains of all the instances of the exe() function are disjoint, we can refer to exe(N) or exe(b)
without any ambiguity.

31

events. We rectify this omission in Lemma 9.33; we insert crash events in trace(b) to obtain a
trace tS of S such that tS is a fair trace of S, and if G is viable for D, then tS |OD∪Î is compatible
with G. Lemma 9.33 implies Theorem 9.34.

Lemma 9.32. For every fair branch b of RG, exe(b)|OD
is the event-sequence of some fair branch

in G.

Proof. Fix b to be a fair branch of RG. Let b = >, E1, N1, E2, N2, . . ., where for each natural
number x, Nx is a node in RG and Ex is an edge with lower endpoint Nx in RG. Applying
Lemma 9.4, we know that for any positive integer x, if vNx = (⊥, 0,⊥), then exe(Nx)|OD

is the
empty sequence, and otherwise, exe(Nx)|OD

ends with the event of vNx . Note that since G is
an infinite observation and b is a fair branch of RG, there exists a positive integer x such that
for all x′ ≥ x, vNx′ 6= (⊥, 0,⊥)8. Applying Lemma 9.6, we know that for any positive integer x,
exe(Nx)|OD

is a prefix of exe(Nx+1)|OD
. Therefore, exe(b)|OD

is the limit of the event-sequence of
vN1 , vN2 , By the construction of RG, this means that, exe(b)|OD

is the event-sequence of some
branch b′ = vN1 , vN2 , . . . in G. It remains to show that b′ is a fair branch in G. Recall that b′ is a
fair branch if for every location i that is live in G, b contains an infinite number of vertices whose
location is i.

Fix a location i ∈ live(G). Since b is a fair branch of RG, there are infinitely many edges in b
whose label is FDi; for each such FDi-edge, applying Lemma 9.11, we know that the action tag
of the FDi-edge is non-⊥. Therefore, the sequence vN1 , vN2 , . . . contains infinitely many vertices
whose location is i. Thus, by definition, b′ is a fair branch in G. Therefore, exe(b)|OD

is the
event-sequence of b′, which is a fair branch in G.

Next, we assume that G is a viable observation for D. In Lemma 9.33, for each fair branch b
of RG, we insert crash events in trace(b) to get a trace tS of the system S such that trace(b) =
tS |act(S)\Î and tS |OD∪Î ∈ TD.

Lemma 9.33. For every fair branch b of RG, there exists a fair execution αz of the system S such
that trace(b) = αz|act(S)\Î and αz|OD∪Î ∈ TD.

Proof. Fix a fair branch b of RG. Let b = >, E1, N1, E2, N2, . . ., where for each natural number x,
Nx is a node in RG and Ex is an edge with lower endpoint Nx in RG. By Lemma 9.12, we know
that exe(b) is an execution of system S. We construct a new execution αz of system S by starting
with exe(b), and inserting crash events as permitted by Lemma 9.1; we then define αz to be an
execution whose trace tz. In order to invoke Lemma 9.1 we must ascertain the specific positions
within exe(b) where we may insert crash events. We determine these positions, by deriving a trace
t′G ∈ TD such that the sequence of AFD output events in t′G is the projection of exe(b) on AFD
output events. We then use the positions of crash events in t′G to determine the positions in exe(b)
where crash events are inserted.

Recall that G is a viable observation for D. By Lemma 9.32, we know that exe(b)|OD
is the

event-sequence of some fair branch b′G in G. Let tG ∈ TD be compatible with G, and we assume
that tG has no extra crashes.9 By Lemma 8.6, we know that there exists t′G ∈ TD such that t′G|OD

8We know such a positive integer x exists for the following reason. Since G is an infinite observation, G has some
live location i. By Lemma 9.31, we know that every FDi edge in RG has a non-⊥ action tag, and this can happen
only if for each FDi edge, the vertex tag of the node preceding that edge is not (⊥, 0,⊥). Since b is a fair branch, b
contains infinitely many such nodes; fix any such a node N . By Lemma 9.8, we know that for each descendant N̂ of
N in b, vN̂ is a vertex in G and therefore, vN̂ 6= (⊥, 0,⊥).

9Note that for any trace tG that is compatible with G, the trace mincrash(tG) is also compatible with G and does
not contain any extra crashes. So, it is reasonable to assume that tG does not contain any extra crashes.

32

is a strong sampling of tG and t′G is the event sequence of b′G. Fix such a trace t′G. By construction,
t′G|OD

= exe(b)|OD
= trace(b)|OD

and live(t′G) = live(G). Note that t′G does not contain any extra
crashes.

For each location i that is not live in G, let ei+ be the earliest event from OD that follows the
crashi event in t′G.

We construct αz by iteratively applying Lemma 9.1 to exe(b), once for each location i that is
not live in G, as follows. Starting with trace(b), for each location i that is not live in G, insert
crashi immediately before event ei+ . If more than one crash event is inserted in the same position
in trace(b), order these crash events in the order in which they appear in t′G. Let the trace, thus
obtained, be tz.

Note that by construction tz|Î∪OD
= t′G. Therefore, tz|Î∪OD

is a strong sampling of tG. For
each location i that is not live in G, let vertex vi+ be the vertex corresponding to event ei+ ; since
tz|Î∪OD

is a strong sampling of tG, crashi precedes ei+ in tG, and therefore, there are no edges from
vi+ to any vertex whose location is i. Therefore, by construction of RG, for any node N whose
vertex tag is vi+ , and for any outgoing FDi-edge E from N , aE = ⊥. Therefore, by Lemma 9.13,
we know that for outgoing Proci, Envi and FDi edges from the descendants of N , their action
tags are also ⊥. Therefore, in trace(b), for each location i that is not live in G, there are no Proci,
OD,i, or Ei events following ei+ . Therefore, starting with trace(b) and iteratively applying Lemma
9.1 for each crash event inserted, we conclude that there exists an execution αz of S whose trace
is tz.

It remains to show that (1) αz|OD∪Î ∈ TD and (2) αz is a fair execution of S. We prove each
part separately.

Claim 1. αz|Î∪OD
∈ TD.

Proof. Note that by construction αz|Î∪OD
= t′G and therefore, αz|Î∪OD

∈ TD.

Claim 2. αz is a fair execution of S.

Proof. By construction, αz is an execution of S. In order to show that αz is a fair execution of
S, we have to show the following. (a) If αz is finite, then for each task l ∈ T , l is not enabled in
the final state of αz; and (b) if αz is infinite, then for each task l ∈ T , αz contains either infinitely
many events from l or infinitely many occurrences of states in which l is not enabled. (Recall that
T is the set of tasks in S.)

Case (a) αz is finite. We show that this is impossible as follows. Assume for contradiction
that αz is finite. Since G is an infinite observation, there exists a location j such that there are
infinitely many vertices in G whose location is j. Since b is a fair branch of RG, we know that
b contains infinitely many FDj edges. Applying Lemma 9.11, we conclude that the action tag of
each FDi-edge in b is non-⊥, and therefore, exe(b) is infinite. Therefore, trace(b) is infinite. Since
tz is obtained by inserting events into trace(b), tz is infinite, and consequently αz is infinite. Thus,
we have a contradiction.

Case (b) αz is infinite. For contradiction, assume that αz is not a fair execution. Therefore,
there must exist a task l such that αz contains only finitely many events from l and only finitely
many occurrences of states in which l is not enabled. Fix such an l. We consider each possible
value of l.

• l ∈ {Chanj,k|j ∈ Π, k ∈ Π \ {j}}. From the construction of RG, we know that for each l-edge
E from a node N ′ in b, if some action a in l is enabled in cN ′ , then aE = a. Furthermore, note
that in any execution α of S, if some action a in l is enabled in a state s of α, a remains enabled
in the suffix of α following s until a occurs. By assumption, since there are only finitely many

33

events from l in αz, and tz (the trace of αz) is constructed by inserting events into trace(b),
it follows that in some infinite suffix of b, for each node N ′, no action from l is enabled in cN ′ .
Since inserting crash events does not change the state of the channel automata, it follows
that no action from l is enabled in some infinite suffix of αz. This contradicts our assumption
that αz contains only finitely many occurrences of states in which l is not enabled.

• l ∈ {Procj , Envj,x|j ∈ Π, x ∈ Xj}. Fix the location of l to be k. We consider two subcases:
(i) k is not live in G, and (ii) k is live in G.

– k is not live in G. By construction, b contains only finitely many l-edges whose action
tags are non-⊥, and by construction of αz, we know that αz contains a crashk event,
following which there are no events from task l. In other words, αz contains only finitely
many events from l. However, recall that a crashk event disables all the actions from l
forever thereafter. Therefore, in the suffix of αz following a crashi event, no action from
l is enabled. This contradicts our assumption that αz contains only finitely many events
from l and only finitely many occurrences of states in which l is not enabled.

– k is live in G. Therefore G contains infinitely many vertices whose location is k. Note
that in b, l-edges occur infinitely often. By construction of the tree RG, we know that
for each node N ′ in b that immediately precedes an l-edge E′, either vN ′ is not a vertex
in G and G contains infinitely many vertices whose location is k, or vN ′ has an outgoing
edge to some vertex in G whose location is k; consequently, if some action in l is enabled
in N ′, then aE′ 6= ⊥. Therefore, if exe(b) contains only finitely many events from l,
then it must have only finitely many occurrences of states in which l is enabled; in other
words, exe(b) contains infinitely many occurrences of states in which l is not enabled.
By construction of αz, we know that αz does not contain a crashk event. Since tz (the
trace of αz) is obtained from trace(b) by inserting only crash events and trace(b) does
not contain any crashk events, we know that the projection of exe(b) on the states of
Prock and Ek is equal to the projection of αz on the states of Prock and Ek. Therefore,
if exe(b) contains infinitely many occurrences of states in which l is not enabled, then αz

contains infinitely many occurrences of states in which l is not enabled. Thus we have a
contradiction.

Thus, we have proved that αz is a fair execution of S.

The proof follows from Claims 1 and 2.

Theorem 9.34. Let D be a strong-sampling AFD. Let G be a viable observation for D. For
every fair branch b of RG, there exists a fair trace tS of S such that trace(b) = tS |act(S)\Î and
tS |OD∪Î ∈ TD.

Proof. Fix D and G as in the hypotheses of the theorem statement. The proof follows directly from
Lemma 9.33.

10 Consensus Using Strong-Sampling AFDs

In this section, we show how a strong-sampling AFD sufficient to solve crash-tolerant consensus
circumvents the impossibility of consensus in asynchronous systems. We use this result in the next
section to demonstrate that Ωf is a weakest strong-sampling AFD to solve f -crash-tolerant binary
consensus, which is defined next.

34

10.1 Crash-Tolerant Binary Consensus

For any f in [0, . . . , n − 1], the f -crash-tolerant binary consensus problem P = (IP , OP , TP,f) is
specified as follows. The set IP is {propose(v)i|v ∈ {0, 1} ∧ i ∈ Π} ∪ {crashi|i ∈ Π}, and the set
OP is {decide(v)i|v ∈ {0, 1} ∧ i ∈ Π}. Before defining the set of sequences TP,f , we provide the
following auxiliary definitions.

Let t be an arbitrary (finite or infinite) sequence over IP ∪OP . The following definitions apply
to the sequence t.

Decision value. If an event decide(v)i occurs for some i ∈ Π in sequence t, then v is said to be
a decision value of t.

Environment well-formedness: The environment well-formedness property states that (1) the
environment provides each location with at most one input value, (2) the environment does not
provide any input values at a location after a crash event at that location, and (3) the environment
provides each live location with exactly one input value. Precisely, (1) for each location i ∈ Π at
most one event from the set {propose(v)i|v ∈ {0, 1}} occurs in t, (2) for each location i ∈ faulty(t)
no event from the set {propose(v)i|v ∈ {0, 1}} follows a crashi event in t, and (3) for each location
i ∈ live(t) exactly one event from the set {propose(v)i|v ∈ {0, 1}} occurs in t.

f-crash limitation: The f -crash limitation property states that at most f locations crash. Pre-
cisely, there exist at most f locations i such that crashi occurs in t.

Crash validity: The crash validity property states that no location decides after crashing. That
is, for every location i ∈ crash(t), no event from the set {decide(v)i|v ∈ {0, 1}} follows a crashi

event in t.

Agreement: The agreement property states that no two locations decide differently. That is, if
two events decide(v)i and decide(v′)j occur in t, then v = v′.

Validity: The validity property states that any decision value at any location must be an input
value at some location. That is, for each location i ∈ Π, if an event decide(v)i occurs in t, then
there exists a location j ∈ Π such that the event propose(v)j occurs in t.

Termination: The termination property states that each location decides at most once, and each
live location decides exactly once. That is, for each location i ∈ Π, at most one event from the set
{decide(v)i|v ∈ {0, 1}} occurs in t, and for each location i ∈ live(t), exactly one event from the set
{decide(v)i|v ∈ {0, 1}} occurs in t.

Using the above definitions, we define the set TP,f for f -crash-tolerant binary consensus as
follows.

The set TP,f . TP,f is the set of all sequences t over IP ∪OP such that, if t satisfies environment
well-formedness and f -crash limitation, then t satisfies crash validity, agreement, validity, and
termination. Note that TP,f contains all the sequences over IP ∪OP in which more than f locations
crash; informally, f -crash-tolerant consensus provides no guarantees if more than f locations crash.

35

10.2 A Well-formed Environment Automaton for Consensus

Given an environment automaton E whose set of input actions is OP ∪ Î and set of output actions
is IP \ Î, E is said to be a well-formed environment iff every fair trace t of E satisfies environment
well-formedness. For our purpose, we assume a specific well-formed environment EC defined next.

The automaton EC is a composition of n automata {EC,i|i ∈ Π}. Each automaton EC,i has two
output actions propose(0)i and propose(1)i, three input actions decide(0)i, decide(1)i, and crashi,
and no internal actions. Each output action constitutes a separate task. Action propose(v)i, where
v ∈ {0, 1}, permanently disables actions propose(v)i and propose(1− v)i. The crashi input action
disables actions propose(v)i and propose(1− v)i. The automaton EC,i is shown in Algorithm 2.

Next, we show that EC is a well-formed environment automaton. Observe that the automaton
EC satisfies the following Lemma.

Algorithm 2 Automaton EC,i, where i ∈ Π. The composition of {EC,i|i ∈ Π} constitutes the
environment automaton EC for consensus.
Signature:

input crashi, decide(0)i, decide(1)i

output propose(0)i, propose(1)i

Variables:
stop: Boolean, initially false

Actions:
input crashi

effect
stop := true

input decide(b)i, b ∈ {0, 1}
effect

none

output propose(b)i, b ∈ {0, 1}
precondition

stop = false
effect

stop := true

Tasks:
Envi,0 = {propose(0)i}, Envi,1 = {propose(1)i}

Note that for each location i, each action propose(v)i (where v ∈ {0, 1} and i ∈ Π) in EC
constitutes a separate task Envi,v in EC,i.

Lemma 10.1. In EC , action propose(v)i (where v ∈ {0, 1} and i ∈ Π) permanently disables the
actions propose(v)i and propose(1− v)i.

Proof. Fix v ∈ {0, 1} and i ∈ Π. From the pseudocode in Algorithm 2, we know that the precon-
dition for actions propose(v)i and propose(1− v)i is (stop = false). We also see that the effect of
action propose(v)i is to set stop to false. Thus, the Lemma follows.

Theorem 10.2. Automaton EC is a well-formed environment.

Proof. To establish the theorem, we have to prove the following three claims for every fair trace t of
EC . (1) For each location i ∈ Π, at most one event from the set {propose(v)i|v ∈ {0, 1}} occurs in t.
(2) For each location i ∈ faulty(t), no event from the set {propose(v)i|v ∈ {0, 1}} follows a crashi

36

event in t. (3) For each location i ∈ live(t), exactly one event from the set {propose(v)i|v ∈ {0, 1}}
occurs in t.

Claim 1. For each location i ∈ Π, at most one event from the set {propose(v)i|v ∈ {0, 1}}
occurs in t.

Proof. Fix i. If no event from {propose(v)i|v ∈ {0, 1}} occurs in t, then the claim is satisfied. For
the remainder of the proof of this claim, assume some event from {propose(v)i|v ∈ {0, 1}} occurs in
t; let e be the earliest such event. Let tpre be the prefix of t that ends with e. After event e occurs,
we know from Lemma 10.1 that e disables all actions in {propose(v)i|v ∈ {0, 1}}. Therefore, the
suffix of t following tpre, no event from {propose(v)i|v ∈ {0, 1}} occurs.

Claim 2. For each location i ∈ faulty(t), no event from the set {propose(v)i|v ∈ {0, 1}} follows
a crashi event in t.

Proof. Fix i to be a location in faulty(t). From the pseudocode in Algorithm 2, we know that
action crashi sets stop to true. Furthermore, no action sets stop to false. Also, observe that
the precondition for actions in {propose(v)i|v ∈ {0, 1}} is stop = false. Therefore, actions in
{propose(v)i|v ∈ {0, 1}} do not follow a crashi event in t.

Claim 3. For each location i ∈ live(t), exactly one event from the set {propose(v)i|v ∈ {0, 1}}
occurs in t.

Proof. Fix i to be a location in live(t). In Algorithm 2, we see that stop is initially false,
and is not set to true until either crashi occurs or an event from {propose(v)i|v ∈ {0, 1}} oc-
curs. Since i ∈ live(t), we know that crashi does not occur in t. Since t is a fair trace,
actions in {propose(v)i|v ∈ {0, 1}} remain enabled until one of the actions occur. After one
event from {propose(v)i|v ∈ {0, 1}} occurs, from Claim 1, we know that no more events from
{propose(v)i|v ∈ {0, 1}} occur.

The theorem follows from Claims 1, 2, and 3.

10.3 System Definition

For the remainder of this section, fix a strong-sampling AFD D, a distributed algorithm A, and a
natural number f (f < n) such that A solves f -crash-tolerant binary consensus using AFD D in
environment EC . Let S be a system that is composed of distributed algorithm A, channel automata,
and the well-formed environment automaton EC .

Based on the properties of f -crash-tolerant binary consensus and system S, we have the following
Lemma which restricts the number of decision values in an execution of S.

Lemma 10.3. For every fair execution α of S, where α|Î∪OD
∈ TD and α|IP∪OP

satisfies f -crash-
limitation, α|IP∪OP

has exactly one decision value.

Proof. Fix α to be a fair execution of S such that α|Î∪OD
∈ TD and α|IP∪OP

satisfies f -crash-
limitation. Recall that S consists of a distributed algorithm A that solves f -crash-tolerant binary
consensus using AFD D, the channel automata, and E . Since α|Î∪OD

∈ TD, we know from the
definition of “solving a problem using an AFD” that α|IP∪OP

∈ TP,f .
Recall that TP,f is the set of all sequences t over IP ∪ OP such that if t satisfies environment

well-formedness and f -crash limitation, then t satisfies crash validity, agreement, validity, and
termination. We assumed that α|IP∪OP

satisfies f -crash limitation.

37

From Theorem 10.2, we know that EC is a well-formed environment. Therefore, α|IP∪OP
satisfies

environment well-formedness. Consequently, α|IP∪OP
satisfies agreement and termination. By the

agreement property we know that α|IP∪OP
contains at most one decision value. Since f < n, we

know that there is at least one location for which no crash event occurs, and therefore, by the
termination property, we know that at least one location decides. In other words, α|IP∪OP

has
exactly one decision value.

10.4 Trees of Executions

For the remainder of this section, fix G to be an arbitrary viable observation of D such that at
most f locations are not live in G. Recall the construction of the execution trees from Section 9;
construct the tree RG for system S.

The primary reasons for fixing G to be a viable observation are the following. Lemmas 10.4,
10.5, and 10.6, which talk about possible decision values in branches of RG, are true only for
viable observations. Furthermore, the notion of “valence” defined in Section 10.5 is applicable only
when Lemmas 10.4, 10.5, and 10.6 hold, and consequently, “valence” makes sense only for viable
observations. Since the rest of Section 10 discusses the properties of branches of the execution trees
and their valences, we must fix G to be a viable observation for the remainder of the section.

Since G is a viable observation of D, by definition, there exists a trace tD ∈ TD such that tD|OD

is the event sequence of some topological ordering of the vertices in G. Fix such a trace tD for the
remainder of this section.

The set L of labels in RG is {FDi|i ∈ Π} ∪ {Proci|i ∈ Π} ∪ {Envi,v|i ∈ Π ∧ v ∈ {0, 1}} ∪
{Chani,j |i ∈ Π ∧ j ∈ Π \ {i}}.

Recall from Section 10.1 that in any sequence t over IP ∪ OP , if an event decide(v)i occurs,
then v is said to be a decision value of t. We extend this definition to arbitrary sequences; for any
sequence t, if t contains an element decide(v)i (where v ∈ {0, 1} and i ∈ Π), then v is said to be a
decision value of t.

The next Lemma follows immediately from Theorem 9.34 and Lemma 10.3.

Lemma 10.4. For each fair branch b in RG, exe(b) has exactly one decision value.

Proof. Fix a fair branch b inRG. Invoking Theorem 9.34, we know that there exists a fair trace tS of
S such that trace(b) = tS |act(S)\Î and tS |Î∪OD

∈ TD. Let αS be an execution of S whose trace is tS ,
and let t′D = tS |Î∪OD

. Since trace(b) = tS |act(S)\Î , we know that t′D|OD
= trace(b)|OD

= exe(b)|OD
.

Invoking Lemma 9.12, we know that exe(b)|OD
is the event-sequence of some fair branch in G.

Therefore, t′D|OD
is the event-sequence of some fair branch in G.

Since at most f locations are not live in G, there are at most f locations i such that t′D has
only finitely many events from OD,i. Since t′D ∈ TD, we know that t′D has at most f locations that
are not live in t′D. Recall that t′D = tS |Î∪OD

, and therefore, there are at most f locations that are
not live in αS . In other words, αS |IP∪OP

satisfies f -crash-limitation. Thus, invoking Lemma 10.3,
we know that αS |IP∪OP

has exactly one decision value. Since trace(b) = αS |act(S)\Î , we know that
trace(b), and therefore exe(b), has exactly one decision value.

Lemma 10.5. For each node N in RG, exe(N) has at most one decision value.

Proof. Fix node N of RG. Fix b to be a fair branch that contains node N . By construction
exe(N) is a prefix of exe(b). Invoking Lemma 10.4 yields that exe(b) has exactly one decision
value. Therefore, exe(N) must have at most one decision value.

38

Fix a convergent sequence of finite observations G1, G2, G3, . . . that converge to G; that is, for
each positive integer x, Gx is a prefix of Gx+1, and limx→∞Gx = G. Construct the sequence of
trees RG1 ,RG2 , . . . for system S
Lemma 10.6. For each observation G′ ∈ {G,G1, G2, . . .}, for each node N in RG′, exe(N) has at
most one decision value.

Proof. Fix an observation G′ and a node N as in the hypothesis of the lemma. For contraction,
assume that exe(N) has more than one decision value.

Recall that every observation in {G,G1, G2, . . .} is a prefix of G, and therefore, G′ is a prefix
of G. Therefore, by Lemma 9.26, we know that RG has a node NG such that exe(N) = exe(NG).
Since exe(N) has more than one decision value, exe(NG) must also have more than one decision
value. However, this contradicts Lemma 10.5.

10.5 Valence

For any arbitrary observation G′ ∈ {G,G1, G2, . . .} and any arbitrary node N in RG′ , we define
the notion of “valence” as follows. From Lemma 9.4, we know that exe(N) is a finite execution of
system S. Node N is said to be bivalent in RG′ if there exist two descendants N0 and N1 of N such
that exe(N0) has a decision value 0 and exe(N1) has a decision value 1; recall from Lemma 10.6
that every node has at most one decision value. Similarly, N is said to be v-valent in RG′ if there
exists a descendant Nv of N such that v is a decision value of exe(Nv), and for every descendant
Nv′ of N , it is not the case that 1 − v is a decision value of exe(Nv′). If N is either 0-valent or
1-valent, then it is said to be univalent.

10.5.1 Valence of nodes in execution trees of {G,G1, G2, . . .}
Here we show the following properties related to valence for any arbitrary observation G′ ∈
{G,G1, G2, . . .} and any arbitrary node N in RG′ . If N is bivalent in RG′ , then it does not
have a decision value (Lemma 10.7). If a non-⊥ node N is bivalent in RGx for some x, then for
all x′ ≥ x, N remains a non-⊥ bivalent node in RGx′ and in RG (Lemma 10.8 and Corollaries 10.9
and 10.10). If a non-⊥ node N is bivalent in RG, then for some positive integer x and all x′ ≥ x,
N remains a non-⊥ bivalent node in RGx′ (Lemma 10.11 and Corollary 10.12). Finally, if a non-⊥
node N is univalent in RG, then for some positive integer x and all x′ ≥ x, N remains a non-⊥
univalent node in RGx′ (Lemma 10.13).

Lemma 10.7. Fix G′ to be an arbitrary observation in {G,G1, G2, . . .}. Then, for every bivalent
node N in RG′, exe(N) does not have a decision value in RG′.

Proof. Fix N be a bivalent node in RG′ . By Lemma 10.6, exe(N) has at most one decision value.
For contradiction, let exe(N) have a decision value (say) v. Then, every descendant N̂ of N also
has exactly one decision value v. However, since N is bivalent, some descendant N̂ of N must have
a decision value 1− v. Thus, we have a contradiction.

Applying Lemma 9.30 to the sequence G1, G2, . . ., we conclude the following. For each positive
integer x, for each non-⊥ node N in RGx , for each positive integer x′ ≥ x, RGx′ contains node N .

Lemma 10.8. For each positive integer x, if a non-⊥ node N is bivalent in RGx, then node N in
RGx+1 is a non-⊥ node and is bivalent.

39

Proof. Fix x and N as in the hypotheses of the lemma. Since N is bivalent, there exists some
descendant N1 of N in RGx such that the decision value of exe(N1) is 1, and there exists some
descendant N0 of N in RGx such that the decision value of exe(N0) is 0. Applying Lemma 9.21, we
know that there exist descendants N6⊥.1 and N6⊥.0 such that decision value of exe(N 6⊥.1) is 1, and
the decision value of exe(N 6⊥.0) is 0, and in the paths from N to N6⊥.1 and from N to N 6⊥.0, there
is no edge whose action tag is ⊥. In other words, N6⊥.1 and N6⊥.0 are non-⊥ nodes.

Thus, in RGx , the path from root to N , from root to N6⊥.1, and from root to N6⊥.0 does not
contain any edge whose action tag is ⊥. Recall that Gx is a prefix of Gx+1. Applying Lemma 9.24,
we know that RGx+1 contains the non-⊥ nodes N , N6⊥.1, and N6⊥.0. That is, node N in RGx+1 is
bivalent.

Corollary 10.9. For each positive integer x, if a non-⊥ node N is bivalent in RGx, then for all
positive integers x′ ≥ x, node N in RGx′ is a non-⊥ node and is bivalent.

Proof. The Corollary is an inductive extension of Lemma 10.8, where the induction is on x′−x.

Corollary 10.10. For each positive integer x, if a non-⊥ node N is bivalent in RGx, then N is a
non-⊥ node and is bivalent in RG.

Lemma 10.11. If a non-⊥ node N is bivalent in RG, then there exists a positive integer x such
that N is a non-⊥ node and is bivalent in RGx.

Proof. Fix N as in the hypotheses of the lemma. Since N is bivalent in RG, there exist descendants
N0 and N1 of N such that exe(N0) has a decision value 0 and exe(N1) has a decision value 1 in
RG.

Let d0 be the depth of node N0 in RG, and let d1 be the depth of node N1 in RG. Let d denote
max(d0, d1). Since G is the limit of Gx as x tends to∞, we know that there exists a positive integer
x1 such that Gx1 contains vertices vN0 and vN1 . Since i is live in tD, there exists a positive integer
x2 such that Gx2 contains at least d vertices. Let x be max(x1, x2), and therefore, both Gx1 and
Gx2 are prefixes of Gx. Therefore, Gx contains vertices vN0 and vN1 ; therefore, Gx contains at least
d vertices, and hence, the sequence of distinct non-(⊥, 0,⊥) vertex tags in the paths from the root
to N0 and from the root to N1 in RG is also a path in Gx. By Lemma 9.28, we know that RGx

contains nodes N , N1, and N0. Furthermore, we conclude that N is bivalent in RGx .

Corollary 10.12. For each non-⊥ bivalent node N in RG, there exists a positive integer x such
that for all positive integers x′ ≥ x, node N is non-⊥ bivalent in RG

x′.

Proof. Fix N as in the hypothesis of the corollary. From Lemma 10.11 , we know that there exists
a positive integer x such that N is a non-⊥ bivalent node in RG

x . For any x′ ≥ x, we know that Gx

is a prefix of Gx′ . Applying Lemma 9.24, we conclude that N is a non-⊥ bivalent node in RG
x′ .

Lemma 10.13. If a node N is univalent in RG, then there exists a positive integer x such that for
all positive integers x′ ≥ x, node N is univalent in RGx′ .

Proof. Fix N as in the hypotheses of the lemma. Let N be c-valent for some c ∈ {0, 1}. Let d be
the smallest positive integer such that there exists some some descendant Nc of N in RG such that
Nc is at depth d and exe(Nc) has a decision value c. Since N is c-valent, we know that d exists.

Let x be the smallest positive integer such that the following is true. (1) Gx contains the
vertices vN and vNc . (2) For each location j that is live in tD, Gx contains at least d vertices whose
location is j. (3) For each location j that is not live in tD, the set of vertices of Gx whose location

40

is j is identical to the set of vertices of G whose location is j. Therefore, the sequence of distinct
non-(⊥, 0,⊥) vertex tags in the paths from the root to Nc is also a path in Gx.

Fix a positive integer x′ ≥ x. Recall that Gx is a prefix of Gx′ , and invoking Lemma 9.28, we
know that RGx′ contains nodes N , and Nc.

Note that since N is c-valent in RG, there exists no descendant N ′ of N such that exe(N ′)
has a decision value (1− c). By the contrapositive of Corollary 9.25, we know that RGx′ does not
contain any descendant N ′ of N such that exe(N ′) has a decision value (1 − c). By definition, N
is c-valent in RGx′ .

10.5.2 Valence of nodes in RG

Now consider only the viable observation G. For every fair branch b in RG, we know from Lemma
10.4 that exe(b) has exactly one decision value. Since every node N is a node in some fair branch
b, we conclude the following.

Lemma 10.14. Every node N in RG is either bivalent or univalent.

Lemma 10.15. The root node >, of RG, is bivalent.

Proof. Let Π = i1, i2, . . . , in. Note that by construction there exists a path p0 = Envi1,0, Envi2,0, . . . , Envin,0

of edges from >. Let b0 be a fair path that contains p0 as its prefix. By Lemma 10.4, we know b0
contains a single decision value. By Theorem 9.34, we know that there exists a fair trace t0,S of
S such that trace(b) = t0,S |act(S)\Î . By the validity property we know that the decision value of
trace(b0) must be 0.

Similar to the above construction, there exists a path p1 = Envi1,1, Envi2,1, . . . , Envin,1 of
edges from >. Let b1 be a fair path whose prefix is p1. By Lemma 10.4, we know b1 contains a
single decision value. By Theorem 9.34, we know that there exists a fair trace t1,S of S such that
trace(b1) = t1,S |act(S)\Î . By the validity property we know that the decision value of trace(b1) must
be 1.

In other words, > contains two nodes N0 (in b0) and N1 (b1) such that exe(N0) has a decision
value 0 and exe(N1) has a decision value 1. By definition, > is bivalent.

Based on the properties of the f -crash-tolerant binary consensus problem, we have the following
lemma.

Lemma 10.16. For each node N in RG, if N is v-valent, then for every descendant N̂ of N , N̂
is also v-valent.

Proof. Fix N and v as in the hypothesis of the lemma. Let N̂ be an arbitrary descendant of N .
By construction, every descendant of N̂ is also a descendant of N . Since N is v-valent, for every
descendant N ′ of N , it not the case that 1 − v is the decision value of vN ′ ; therefore, for every
descendant N ′ of N̂ , it not the case that 1− v is the decision value of vN ′ . Fix some fair branch b
in RG that contains the node N̂ . By Lemma 10.4, we know that exe(b) has exactly one decision
value. Let N ′′ be a node in b that occurs after N̂ such that exe(N ′′) has a decision value. We have
already established that this decision value cannot be 1 − v; therefore the decision value must be
v. In other words, N̂ is v-valent.

41

10.6 Gadgets

Consider the system S, which consists of a distributed algorithm A, the channel automata, and
the environment automaton EC such that solves f -crash-tolerant consensus using D in EC . In
this section, we define “gadgets” and “decision gadgets”, which are structures within RG that
demonstrate how executions of a system S evolve from being bivalent to becoming univalent.

A gadget is a tuple of the form (N, l, El, E′`) or (N, l, r, El, Er, Erl), where N is a node, l and r
are distinct labels, El, E′`, Er, and Erl are edges, such that the following properties are satisfied.

1. El and E′` are l-edges of N .

2. Er is an r-edge of N .

3. Erl is an l-edge of N r, where N r is the node to which Er is the incoming edge.

Let Y be a decision gadget; Y , which is either of the form (N, l, El, E′`) or of the form
(N, l, r, El, Er, Erl), said to be a non-⊥ gadget if N is a non-⊥ node.10

A gadget is said to be a decision gadget iff the gadget is either a “fork” or a “hook”: Section
10.6.1 defines a “fork” and establishes properties of a fork, Section 10.6.2 defined a “hook” and the
establishes properties of a hook. In both cases, we show that a decision gadget must have what we
call a “critical location”, which is guaranteed to be live in G.

10.6.1 Forks

In the tree RG, a fork is a gadget (N, l, El, E′`) such that the following are true.

1. N is bivalent.

2. For some v ∈ {0, 1}, the lower endpoint N l of El is v-valent and the lower endpoint N ′` of
E′` is (1− v)-valent.

Lemma 10.17. For every fork (N, l, El, E′`) in RG, l ∈ {FDj |j ∈ Π}.
Proof. Fix a fork (N, l, El, E′`) in RG. From the construction of RG, we know that for each label
l′ in T , node N has exactly one l′-edge. For each label l′ in {FDj |j ∈ Π}, node N has at least one
l′-edge. Therefore, l ∈ {FDj |j ∈ Π}.

Any fork (N, l, El, E′`) in RG satisfies three properties: (1) the action tags aEl and aE′` are not
⊥, (2) the locations of the action tags aEl and aE′` are the same location (say) i, and (3) location
i, called the critical location of the hook, must be live in G. We prove each property separately.

For the remainder of this subsection fix a fork (N, l, El, E′`) from RG,;we use the following
convention from the definition of a fork: N l denotes the l-child of N connected by the edge El, and
N ′` denotes the l-child of N connected by the edge E′`.

Lemma 10.18. The action tags aEl and aE′` are not ⊥.

Proof. Without loss of generality, assume, for contradiction, that the action tag aEl is ⊥. From
Lemma 10.17, we know l ∈ {FDj |j ∈ Π}; fix a location i such that l = FDi. From the definition
of a fork we know that N has at least two FDi edges. From the construction of RG, we know that
an FDi-edge of N has an action tag ⊥ iff either G has no vertices whose location is i or vN has
no outgoing edge in G to a vertex whose location is i. In both cases, N has exactly one FDi edge.
However, this contradicts our earlier conclusion that N has at least two FDi edges.

10Recall that a node N is a non-⊥ node iff the path from > to node N in RG does not contain an edge whose
action tag is ⊥.

42

Lemma 10.19. The locations of the action tags aEl and aE′` are the same.

Proof. Note that for any label l′, the actions associated with l′ occur in a single location. Since El

and E′` have the same label l, and from Lemma 10.18 we know that the action tags aEl and aE′`

are not ⊥, we conclude that the location of aEl and aE′` must be the same location.

Next, we present the third property of a fork. Before stating this property, we have to define a
critical location of a fork. The critical location of the fork (N, l, El, E′`) is the location of aEl and
aE′` ; from Lemma 10.19, we know that this is well-defined.

Next, we show that the critical location of the fork (N, l, El, E′`) must be live. We use the
following helper lemma.

Lemma 10.20. N l ∼i N
′`, where i is the critical location of (N, l, El, E′`).

Proof. By construction, the following is true of states of automata in system S. For each location
x ∈ Π \ {i}, the state of the process automaton Ax is the same in states cN l and cN ′` ; similarly,
the state of the environment automaton EC,x is the same in states cN l and cN ′` . For every pair of
distinct locations x, y ∈ Π, the state of the channel automaton Chanx,y is the same in states cN l

and cN ′` . Therefore, we conclude that N l ∼i N
′`.

Lemma 10.21. The critical location of (N, l, El, E′`) is in live(G).

Proof. Let i be the critical location of (N, l, El, E′`). Applying Lemma 10.17 we conclude that l is
FDi. Since N l and N ′` are l-children of N , we note that the states of all automata in system S in
states cN l and cN ′` are the same, except for the state of the process automaton at i. Recall that
vN l and vN ′` are the vertex tags of N l and N ′`, respectively. From Lemma 10.18 we know that
the action tags aEl and aE′` are not ⊥. Therefore, vN l and vN ′` are vertices in G. Note that N l

is v-valent for some v ∈ {0, 1} and N ′` is (1 − v)-valent. In order to show that i is in live(G), we
have to show that G contains infinitely many vertices whose location is i.

For contradiction assume that the critical location i of (N, l, El, E′`) is not in live(G). Then
by definition, G contains only finitely many vertices whose location is i. Recall that G is a viable
observation of D such that at most f locations are not live in G. Since f < n, we conclude that at
least one location is live in G. Fix such a location j.

From Lemma 8.3 we know that there exists a positive integer k such that for every positive
integer k′ ≥ k, there is no edge from any vertex of the form (j, k′, ∗) to any vertex whose location
is i. Fix such a positive integer k, and fix the corresponding vertex (j, k, ∗).

From Lemma 8.2, we know that there exists a positive integer k′ ≥ k such that there are
outgoing edges from vN l and vN ′` to a vertex (j, k′, ∗); fix such a vertex v1 = (j, k′, e′).

From the construction of RG, we know that there exist FDj-edges EFDj and E′FDj from N l

and N ′`, respectively, whose action tag is e′ and vertex tag is v1. Let NFDj and N ′FDj be the
FDj-children of N l and N ′`, respectively, connected to their parent by edges EFDj and E′FDj ,
respectively. By construction, v

NFDj = v
N ′FDj = v1.

By Lemma 10.20 we know that N l ∼i N
′`. Since the action tags of EFDj and E′FDj are the

same, we conclude that the states of all automata in system S in states c
NFDj and c

N ′FDj are the
same, except for the state of the process automaton Ai. Therefore, NFDj ∼i N

′FDj . We have
already established that v

NFDj = v
N ′FDj = v1, and there are no outgoing edges from v1 to vertices

whose location is i. Thus, by definition, NFDj and N ′FDj are post-crashi nodes11

11Recall from Section 9.5 that a node N is a post-crashi node if the following property is satisfied. If vN = (⊥, 0,⊥),
then there are no vertices in G whose location is i. Otherwise, there are no outgoing edges in G from vN to any
vertex whose location is i.

43

Recall that N l is v-valent and N ′` is (1−v)-valent. Therefore, applying Lemma 10.16, we know
that NFDj is v-valent and N ′FDj is (1−v)-valent. Let b be a fair branch of RG that contains nodes
N , N l and NFDj .

Since N is bivalent, from Lemma 10.7, we know that exe(N) does not have a decision value.
Since l is FDi, we know that exe(N l) and exe(NFDj) do not have decision values. From Lemma
10.4 we know that exe(b) has exactly one decision value, and since NFDj is v-valent, the decision
value is v. That is, there exists an edge Ev and a node Nv such that Ev occurs in b after NFDj ,
aEv is decide(v)j , and Nv is the node that precedes Ev in b.

Since NFDj and N ′FDJ are post-crashi nodes, NFDj ∼i N
′FDj , and Nv is a descendant of

NFDj , we apply Theorem 9.23 to conclude that there exists a descendant N (1−v) of N ′FDj such
that Nv ∼i N

(1−v). From the definition of ∼i we know that the state of the process automaton
at j is the same in cNv and cN(1−v) . Since the action aEv = decide(v)j is enabled at the process
automaton at j in state cNv , we know that action decide(v)j is enabled in state cN1−v . Therefore,
the Procj-child N ′(1−v) of N (1−v) has a decision value v. However, since N ′FDj is (1−v)-valent and
N (1−v) is a descendant of N ′FDj , by Lemma 10.16, we know that N (1−v) is (1 − v)-valent. Thus,
we have contradiction.

10.6.2 Hooks

In the tree RG, a hook is a gadget (N, l, r, El, Er, Erl) such that the following is true.

1. N is bivalent.

2. For some v ∈ {0, 1}, the lower endpoint N l of El is v-valent and the lower endpoint N rl of
Erl is (1− v)-valent.

3. aEr 6= ⊥.

Any hook (N, l, r, El, Er, Erl) in RG satisfies three properties. (1) the action tags of aEl and
aEr cannot be ⊥, (2) the locations of the action tags aEl and aEr must be the same location (say)
i, and (3) location i, called the critical location of the hook, must be live in G. We prove each
property separately.

For the remainder of this subsection, fix a hook (N, l, r, El, Er, Erl) in RG; we use the following
convention from the definition of a hook: N l denotes the l-child of N connected by the edge El, N r

denotes the r-child of N connected by the edge Er, and N rl denotes the l-child of N r connected
by the edge Erl.

Lemma 10.22. The action tags aEl and aEr are not ⊥.

Proof. From the definition of a hook, we know that aEr 6= ⊥. It remains to show that aEl 6= ⊥.
For contradiction, assume aEl is ⊥. Then, by construction, cN = cN l and vN = vN ′ . Recall

that N is bivalent and its descendant N rl is (1−v)-valent. From the definition of valence, we know
there exists a descendant N(1−v) of N rl (and therefore a descendant of N) such that the decision
value of exe(N(1−v)) is 1− v.

Applying Lemma 9.19 to N and N l, we know that there exists a descendant N l
(1−v) of N l such

that the suffix of exe(N l
(1−v)) following exe(N l) is identical to the suffix of exe(N(1−v)) following

exe(N). Since exe(N) is bivalent, by Lemma 10.7 it does not have a decision value; it follows that
some event in the suffix of exe(N(1−v)) following exe(N) must be of the form decide(1− v)i (where
i ∈ Π). Therefore, the decision value of exe(N l

(1−v)) is 1 − v. But since N l is v-valent, we have a
contradiction.

44

Lemma 10.23. The locations of the action tags aEl and aEr are the same.

Proof. For the purpose of contradiction, we assume that the location i of the action tag aEl is
different from the location j of the action tag aEr ; that is, i 6= j. This assumption implies
that l ∈ {FDi, P roci} ∪ {Chank,i|k ∈ Π \ {i}} ∪ {Envv,i|v ∈ {0, 1}} and r ∈ {FDj , P rocj} ∪
{Chank,j |k ∈ Π \ {j}} ∪ {Envv,j |v ∈ {0, 1}}. From Lemma 10.22, we know that aEl and aEr are
both enabled actions in state cN .

A simple case analysis for all possible values of l and r (while noting that i 6= j) establishes
the following. Extending exe(N) by applying aEl followed by aEr will yield the same final state
as applying aEr , followed by aEl , to exe(N). Intuitively, the reason is that aEl and aEr occur
at different locations, and therefore, may be applied in either order to exe(N) and result in the
same final state. The above observation implies that N l has an r-edge Elr whose action tag aElr

is the action aEr ; let N lr be the r-child of N l connected by Elr. Observe that cN lr = cNrl and
vN lr = vNrl .

Recall that since (N, l, r, El, Er, Erl) is a hook, N l is v-valent and N rl is (1− v)-valent for some
v ∈ {0, 1}. Since N lr is a descendant of N l, by Lemma 10.16, N lr is also v-valent. Let N lr

v be a
descendant of N lr such that exe(N lr

v) has a decision value v. Applying Lemma 9.19, we know that
there exists a descendant N rl

v of N rl such that cN lr
v

= cNrl
v

and the suffix of exe(N lr
v) following

exe(N lr) is identical to the suffix of exe(N rl
v) following exe(N rl).

Note that since N is bivalent, by Lemma 10.7, exe(N) has no decision value.
Claim 1. aEl is not a decide action.

Proof. For contradiction, assume aEl is a decide action. Since exe(N l) contains the event aEl

and exe(N l) is v-valent, it follows that aEl is a decide(v) action. However, recall that aErl = aEl ,
exe(N rl) contains the event aErl ; therefore, exe(N rl) contains a decide(v) event. However, exe(N rl)
is (1− v)-valent. Thus, we have a contradiction.

Claim 2. aEr is not a decide action.

Proof. Similar to the proof of Claim 1.

From Claims 1 and 2, we know that for each of N ’s l-edge, N ’s r-edge, N l’s r-edge, and N r’s
l-edge, their action tags cannot be a decide. Therefore, since exe(N lr

v) has a decision value v, the
suffix of exe(N lr

v) following exe(N lr) contains an event of the form decide(v). In other words, the
suffix of exe(N rl

v) following exe(N rl) contains an event of the form decide(v). However, this is
impossible because N rl is (1− v)-valent.

Next, we present the third property of a hook. Before stating this property, we have to define
a critical location of a hook. Given the hook (N, l, r, El, Er, Erl), the critical location of the hook
is the location of aEl and aEr ; from Lemma 10.23, we know that this is well-defined.

Lemma 10.24. The critical location of (N, l, r, El, Er, Erl) is in live(G).

Proof. Note that N l is v-valent for some v ∈ {0, 1} and N rl is (1− v)-valent. Let i be the critical
location of the hook (N, l, r, El, Er, Erl). In order to show that i is in live(G), we have to show
that G contains infinitely many vertices whose location is i.

For the purpose of contradiction, we assume that G contains only finitely many vertices whose
location is i. Recall that G is a viable observation of D such that at most f locations are not live
in G. Since f < n, we conclude that least one location is live in G. Fix such a location j.

45

From Lemma 8.3 we know that there exists a positive integer k such that for each positive
integers k′ ≥ k, there is no edge from any vertex of the form (j, k′, ∗) to any vertex whose location
is i. Fix such a positive integer k, and fix the corresponding vertex (j, k, ∗).

Next we fix a vertex v1 in G such that, roughly speaking, the event e′′ of v1 is an event at j and
“occurs” after the events of vN , vN l , vNrl and after location i is “crashed”; precisely, v1 is fixed
as follows. Let V ′ be V ∩ {vN , vN l , vNrl}; that is, V ′ is the maximal subset of {vN , vN l , vNrl} such
that each vertex in V ′ is a vertex of G. If V ′ is non-empty, then from Lemma 8.2, we know that
there exists a positive integer k′ ≥ k such that there are outgoing edges from each vertex in V ′ to
a vertex (j, k′, ∗); fix v1 to be such a vertex (j, k′, e′). If V ′ is empty, then fix v1 to be any vertex
in V of the form (j, k′, e′), where k′ ≥ k.

From the construction of RG, we know that there exist FDj-edges EFDj , El·FDj , and Erl·FDj

from N , N l and N rl, respectively, whose action tag is e′ and vertex tag is v1. Let NFDj , N l·FDj ,
and N rl·FDj be the FDj-children of N , N l and N rl, respectively, connected to their parent by
edges EFDj , El·FDj and Erl·FDj , respectively. By construction, v

NFDj = v
N l·FDj = v

Nrl·FDj = v1.
See Fig. 2 for reference.

Also recall that in G there is no edge from the vertex of the form (j, k, ∗) to any vertex whose
location is i, and since k′ ≥ k, we know that is no edge from v1 to any vertex whose location is i.
Therefore, NFDj , N l·FDj , and N rl·FDj are post-crashi nodes12.

Nl

N

Nr

Nrl

r-edge
l-edge

l-edge

(N,l,r) is a hook

NFDj
FD

j
-edge

Vertex tag
is (j,e”,k”)

Nl.FDj

FD
j
-edge

Nrl.FDj

┬

Vertex tag
is (j,e”,k”)

Vertex tag
is (j,e”,k”)

FD
j
-edge

Figure 2: This figure shows how the nodes NFDj , N l·FDj , and N rl·FDj are determined in the proof
of Lemma 10.24.

Note that by construction, the following is true of states of automata in system S. For each
location x ∈ Π \ {i}, the state of the process automaton Ax is the same in states c

NFDj , c
N l·FDj ,

and c
Nrl·FDj ; similarly, the state of the environment automaton EC,x is the same in states c

NFDj ,
c
N l·FDj , and c

Nrl·FDj . For every pair of distinct locations x, y ∈ Π \ {i}, the state of the channel

12Recall from Section 9.5 that a node N is a post-crashi node if the following property is satisfied. If vN = (⊥, 0,⊥),
then there are no vertices in G whose location is i. Otherwise, there are no outgoing edges in G from vN to any
vertex whose location is i.

46

automaton Chanx,y is the same in states c
NFDj , c

N l·FDj , and c
Nrl·FDj . Finally, for every location

x ∈ Π \ {i}, the messages in transit in the channel automaton Chani,x from i to x in state c
NFDj

is a prefix of the messages in transit in Chani,x in state c
N l·FDj and in state c

Nrl·FDj . Therefore,
we conclude that NFDj ∼i N

l·FDj and NFDj ∼i N
rl·FDj .

Recall that N l is v-valent and N rl is (1−v)-valent. Therefore, applying Lemma 10.16, we know
that N l·FDj is v-valent and N rl·FDj is (1− v)-valent. Also recall that N is bivalent.

Let b be a fair branch of RG that contains nodes N and NFDj . By Lemma 10.4, we know that
exe(b) has exactly one decision value (say) v′; note that either v′ = v or v′ = 1 − v. We consider
each case.

Case 1. v′ = v. There exists an edge Ev in b such that, the action tag of Ev is decide(v)j . Let
Nv be the node preceding Ev in b. Note that Nv is descendant of NFDj . Recall that NFDj and
N rl·FDj are post-crashi nodes. By Theorem 9.23, we know that there exists a descendant N rl

v of
N rl·FDj such that Nv ∼i N

rlv .
From the definition of ∼i we know that the state of the process automaton at j is the same in

cNv and cNrl
v

. Since the action aEv = decide(v)j is enabled at the process automaton at j in state
cNv , we know that action decide(v)j is enabled in state cNrl

v
. Therefore, the Procj-child N ′rl

v of
N rl

v has a decision value v. However, since N rl is (1− v)-valent and N rl
v is a descendant of N rl, by

Lemma 10.16, we know that N rl
v is (1− v)-valent. Thus, we have a contradiction.

Case 2. v′ = 1−v. This is analogous to Case 1 except that we replace N rl·FDj with N l·FDj .

10.6.3 Decision Gadgets

Recall that a decision gadget is a gadget that is either a fork or a hook. We have seen that both
forks and hooks contain a critical location that must be live in G. Thus, we have seen that if a
tree RG contains a decision gadget, then we know that the critical location of that decision gadget
must be live in G.

10.7 Existence of a Decision Gadget

The previous subsection demonstrated interesting properties of decision gadgets in RG. However, it
did not demonstrate that RG, in fact, does contain decision gadgets. We address this here. Recall
that G is viable for D, and at most f locations are not live in G.

Lemma 10.25. There exists a bivalent node N in tree RG and a label l such that for every
descendant N̂ of N (including N), every l-child of N̂ is univalent.

Proof. For contradiction, assume that for every bivalent node N in the tree RG, and every label
l ∈ L, there exists a descendant N̂ of N , such that some l-child of N̂ is bivalent. Therefore, from
any bivalent node N in the tree RG, we can choose any label l and find a descendant N̂ ′ of N such
that (1) N̂ ′ is bivalent, and (2) the path between N and N̂ ′ contains an edge with label l.

Recall that the > node is bivalent (Lemma 10.15). Applying Lemma 9.2, we know that each
node in RG has an l-edge for each label l ∈ T ∪ {FDi|i ∈ Π}. Thus, by choosing labels in a round-
robin fashion, we can construct a fair branch b starting from the > node such that every node in
that branch is bivalent. Fix such a b. We will use b to get a contradiction to the fact that the
distributed algorithm A solves f -crash-tolerant consensus. using D.

By Theorem 9.34, we know that there exists a fair trace tS of S such that trace(b) = tS |act(S)\Î
and tS |Î∪OD

∈ TD. Since trace(b)|OD
= tS |OD

and tS |Î∪OD
∈ TD, we know that at most f locations

are not live in tS ; therefore, tS |IP∪OP
satisfies f -crash limitation. Let α be a fair execution of

S whose trace is tS . Since tS |IP∪OP
satisfies f -crash limitation, α|IP∪OP

also satisfies f -crash

47

limitation. Invoking Lemma 10.3, we know that α has exactly one decision value. Since trace(b) =
tS |act(S)\Î , and tS is the trace of α, we know that trace(b) has exactly one decision value. In other
words, exe(b) has exactly one decision value. Therefore, there exists a node N in b such that exe(N)
has a decision value. However, this contradicts our conclude that every node in b is bivalent.

Lemma 10.26. There exists a bivalent node N in tree RG, a descendant N̂ of N (possibly N
itself), a label l, and v ∈ {0, 1} such that (1) for every descendant N̂ ′ of N , each l-child of N̂ ′ is
univalent, (2) some l-child of N is v-valent, and (3) some l-child of N̂ is (1− v)-valent.

Proof. Invoking Lemma 10.25, we fix a pair (N, l) of node N and label l such that (1) N is bivalent,
and (2) for every descendant N̂ of N (including N), every l-child of N̂ is univalent. Let an l-child
of N be v-valent for some v ∈ {0, 1}. Since N is bivalent, there must exist some descendant N̂ of
N such that exe(N̂) has a decision value (1− v); that is, N̂ is (1− v)-valent. By Lemma 10.16, it
follows that any l-child of N̂ is (1− v)-valent.

Lemma 10.27. There exists a bivalent node N such that at least one of the following holds true.
(1) There exists a label l and a pair of edges El and E′` such that (N, l, El, E′`) is a fork. (2) There
exist a pair of labels l, r and edges El,Er, and Erl such that (N, l, r, El, Er, Erl) is a hook.

Proof. Applying Lemma 10.26, we know that there exists some node Ñ in tree RG, a descendant̂̃N of Ñ , and a label l such that (1) Ñ is bivalent, (2) for every descendant Ñ ′ of Ñ , every l-child
of Ñ ′ is univalent, (3) some l-child of Ñ (denoted uni(Ñ)) is v-valent, where v ∈ {0, 1}, and (4)

some l-child of ̂̃N (denoted uni(̂̃N)) is (1− v)-valent.

Extend the path from Ñ to ̂̃N to uni(̂̃N) yielding a path w. Let E be the first l-edge on w,
let M be the upper endpoint of E, and let M l be the lower endpoint of E. Thus, the path from
Ñ to M does not contain any l-edge. Note that following: (1) uni(̂̃N) is a descendant of ̂̃N and is

(1− v)-valent, (2) ̂̃N is either M or a descendant of M l, and (3) by Lemma 10.26, M l is univalent.
Thus, we conclude that M l is (1− v)-valent. See Figure 3 for reference.

Note that for each node N ′ from Ñ to M , each l-child N ′l of N ′ is univalent. Recall that uni(Ñ),
which is an l-child of Ñ is v-valent and M l, which is an l-child of M , is (1− v)-valent. Therefore,
there exists a label r and an r-edge Er from a node N to a node N r in the path from Ñ to M
(inclusive) such that some l-child N l of N is v-valent and some l-child N rl of N r is (1− v)-valent.
Let Erl denote the edge connecting N r and N rl. (See Figure 3.)

We consider two cases: (1) aEr 6= ⊥, and (2) aEr = ⊥.
(1) If aEr 6= ⊥, then by definition, (N, l, r, El, Er, Erl) is a hook.
(2) Otherwise, aEr = ⊥; therefore, cN = cNr and vN = vNr . Applying Lemma 9.18, we know

that there exists an l-child N ′` of N such that cN ′` = cNrl and vN ′` = vNrl . Since N rl is (1 − v)-
valent, N ′` is also (1 − v)-valent. In other words, N has two l-children N l and N ′`, and N l is
v-valent and N ′` is (1 − v)-valent. Thus, (N, l, El, E′`) is a fork, where E′` is the edge from N to
N ′`.

Thus, we arrive at the main result of this section.

Theorem 10.28. For every observation G that is viable for D such that live(G) contains at least
n−f locations, the directed tree RG contains at least one decision gadget. For each decision gadget
in RG, the critical location of the decision gadget is live in G.

Proof. Fix G. From Lemma 10.27, we know that RG has at least one decision gadget. For each
decision gadget that is a fork, from Lemma 10.21 we know that the critical location of that decision

48

┬

Nl

Nl

N

N

Nr

Nrl M
l-edge

l-edge

l-edges

l-edge

Node
is bivalent

Node is
 v-valent

r-edge

Node is
 v-valent

Node is
 (1-v)-valent

Node is
 (1-v)-valent

~

~

(N,l,r, El, Er, Erl) is a hook

El

N'l
E'l

Er

Erl

(N,l,r, El, E'l) is a fork

Node is
 (1-v)-valent

Figure 3: Construction that shows the existence of a “fork” or a “hook” in the proof for Lemma
10.27.

gadget is live in G, and for each decision gadget that is a hook, from Lemma 10.24 we know that
the critical location of that decision gadget is live in G.

Theorem 10.29. For every observation G that is viable for D such that live(G) contains at least
n− f locations, the directed tree RG contains at least one non-⊥ decision gadget.

Proof. Fix G. From Theorem 10.28 we know that RG contains at least one decision gadget. Fix Y
to be such a decision gadget. Let node N be the first element in the tuple Y . Applying Corollary
9.21, we know that there exists a non-⊥ node N6⊥ such that exe(N) = exe(N ′), vN = vN ′ . Applying
Lemma 9.20 to the descendants of N and N6⊥, we know that there exists a non-⊥ decision gadget
Y ′ whose first element is N6⊥.

Theorem 10.29 establishes an important property of any strong-sampling AFD that is sufficient
to solve consensus. It demonstrates that in any fair execution of a system that solves consensus
using an AFD, some prefix of the execution is bivalent whereas eventually, a longer prefix becomes
univalent. The transition from a bivalent to a univalent execution must be the consequence of an
event at a correct location.

10.8 Decision gadgets for execution trees in a convergent sequence of observa-
tions

Recall that G is a viable observation of D such that at most f locations are not live in G; tD ∈ TD

is a a trace that is compatible with D. Finally, G1, G2, G3, . . . is a sequence of observations that
converge to G. Next we show the “persistence” of non-⊥ decision gadgets across the sequence of
execution trees RG1 ,RG2 ,RG3 ,

Lemma 10.30. Let Y be a non-⊥ decision gadget in RG. There exists a positive integer x such
that for all positive integers x′ ≥ x, Y is a non-⊥ decision gadget in RGx′ .

49

Proof. Fix Y to be a non-⊥ decision gadget in RG. We consider two cases: (1) Y is a fork, and (2)
Y is a hook.

Case 1. Let Y be a fork (N, `,E`, E′`) in RG∞ . Let N ` be the `-child of N whose incoming
edge is E`, and let N ′` be the `-child of N whose incoming edge is E′`. Let N ` be c-valent, and let
N ′` be (1− c)-valent for some c ∈ {0, 1}.

Invoking Corollary 10.12, we know that there exists a positive integer xb such that for all
x′ ≥ xb, N is a non-⊥ bivalent node in RGx′ . Invoking Lemma 10.13, we know that there exists a
positive integer xu such that for all x′ ≥ xu, N ` is c-valent and N ′` is (1 − c)-valent in RGx′ . Let
x = max(xb, xu). By construction, for each x′ ≥ x, Y is a non-⊥ fork in RGx′ .

Case 2. Let Y be a hook (N, `, r, E`, Er, Er`) in RG∞ . Let N ` be the `-child of N whose
incoming edge is E`. Let N r be the r-child of N whose incoming edge is Er. Let N r` be the `-child
of N r whose incoming edge is Er`. Let N ` be c-valent, and let N r` be (1 − c)-valent for some
c ∈ {0, 1}.

Invoking Corollary 10.12, we know that there exists a positive integer xb such that for all
x′ ≥ xb, N isa non-⊥ bivalent node in RGx′ . Invoking Lemma 10.13, we know that there exists a
positive integer xu such that for all x′ ≥ xu, N ` is c-valent and N r` is (1− c)-valent in RGx′ . Let
x = max(xb, xu). By construction, for each x′ ≥ x, Y is a non-⊥ hook in RGx′ .

Lemma 10.31. For each gadget Y in RG that is not a non-⊥ decision gadget, the following is
true. There exists a positive integer x such that for all positive integers x′ ≥ x, Y is a gadget in
RGx′ , but Y is not a non-⊥ decision gadget in RGx′ .

Proof. Fix Y as in the hypotheses of the lemma. Since Y is a gadget in RG, by construction, there
exists a positive integer xN such that for all positive integers x′N ≥ xN , Y is a gadget in RGx′

N .
We consider two cases: (1) Y is a tuple (N, `,E`, E′`), and (2) Y is a tuple (N, `, r, E`, Er, Er`).
Case 1. Y is a tuple (N, `,E`, E′`). Let N ` and N ′` be the nodes to which E` and N ′` are the

incoming edges, respectively. Since Y is not a non-⊥ decision gadget, one of the following is true:
(1) the path from root to N contains an edge with ⊥ action tag, (2) N is univalent, or (3) at least
one of N ` and N ′` is bivalent in RG.

If the path from root to N contains an edge with ⊥ action tag, then by Lemma 9.28, we know
that exists a positive integer xN such that for every positive integer x′N ≥ xN , the path from root

to N contains an edge with ⊥ action tag in RGx′
N . Therefore, Y cannot be a non-⊥ decision gadget

in RGx′
N .

If N is univalent in RG, then by Lemma 10.13, we know that there exists a positive integer xN

such that for every positive integer x′N ≥ xN , N is univalent in RGx′
N . Therefore, for any positive

integer x′N ≥ xN , Y cannot be a decision gadget in RGx′
N .

If N ` (or N ′`, respectively) is bivalent in RG∞ , then by Corollary 10.12, we know that there a
positive integer x ≥ xN such that for all positive integers x′ ≥ x, node N ` (or N ′`, respectively) is
bivalent in RGx′ , and consequently, Y is not a decision gadget in RGx′ .

Thus, if Y is a tuple (N, `,E`, E′`), then there exists a positive integer x such that for all positive
integers x′ ≥ x, Y is a gadget in RGx′ , but Y is not a non-⊥ decision gadget in RGx′ .

Case 2. Y is a tuple (N, `, r, E`, Er, Er`). Let N ` be the node to which E` is the incoming
edge. Let N r` be the node to which Erl is the incoming edge. Since Y is not a decision gadget,
one of the following is true: (1) the path from root to N contains an edge with ⊥ action tag, (2)
N is univalent, or (3) at least one of N ` and N ′` is bivalent in RG.

If the path from root to N contains an edge with ⊥ action tag, then by Lemma 9.28, we know
that exists a positive integer xN such that for every positive integer x′N ≥ xN , the path from root

50

to N contains an edge with ⊥ action tag in RGx′
N . Therefore, Y cannot be a non-⊥ decision gadget

in RGx′
N .

If N is univalent in RG, then as in Case 1, by Lemma 10.13, we know that there exists a positive
integer xN such that for every positive integer x′N ≥ xN , N is univalent in RGx′

N . Therefore, for

any positive integer x′N ≥ xN , Y cannot be a decision gadget in RGx′
N .

Similarly, if N ` (or N r`, respectively) is bivalent in RG, then as in Case 1, there exists a positive
integer x ≥ xN such that for all positive integers x′ ≥ x, N ` (or N r`, respectively) is bivalent in
RGx′ , and Y is not a decision gadget in RGx′ .

Thus, if Y is a tuple (N, `, r, E`, Er, Er`), then there exists a positive integer x such that for all
positive integers x′ ≥ x, Y is a gadget in RGx′ , but Y is not a non-⊥ decision gadget in RGx′ .

10.9 Ordering the Decision Gadgets.

In this subsection, we show that a “first” decision gadget exists in RG. However, to define the
“first” decision gadget, we first define a metric function in four steps: (1) We order the elements
in each of the following sets: Π ∪ {⊥}, and T ∪ {FDi|i ∈ Π}. (2) We order the vertices in G. (3)
We use the aforementioned orders to define a metric function for each node N in RG and for each
edge outgoing from N . (4) Finally, we define the metric function for each gadget.

Ordering the elements in Π ∪ {⊥}. Recall that the locations in Π are totally ordered by the
<Π relation. For simplicity, we assume that Π is the set of integers in [1, n] and ⊥ = 0. Thus,
Π ∪ {⊥} is totally ordered by the < relation.

Ordering the elements in T ∪ {FDi|i ∈ Π}. Informally, we order T ∪ {FDi|i ∈ Π} as follows.
Proc1, P roc2, . . . , P rocn, Env1,0, Env1,1, . . . , Envn,0, Envn,1, Chan1,2, Chan1,3, . . . ,
Chan1,n, Chan2,1, Chan2,3, . . . , Chann,n−1, FD1, FD2, . . . , FDn.

Formally, we define m : T ∪ {FDi|i ∈ Π} → [1, n2 + 3n] to be a mapping from all the labels
in RG to the set of integers in [1, n2 + 3n] as follows. For each element l in T and each element
l′ in {FDi|i ∈ Π}, m(l) < m(l′). Note that T consists of n Proc∗ tasks, 2n Env∗,∗ tasks, and
n(n − 1) Chan∗,∗ tasks. For each Proc∗ task l, each Env∗,∗ task l′ and each Chan∗,∗ task l′′,
m(l) < m(l′) < m(l′′).

For each location i, recall that we assume i ∈ [1, n]. For a Proci task, m(Proci) = i. For an
Envi,0 task, m(Envi,0) = n + 2i − 1, and for an Envi,1 task, m(Envi,0) = n + 2i. For a Chani,j

task, m(Chani,j) = 3n+ n(i− 1) + j. It is easy to see that m is a bijection from T to [1, n2 + 2n].
We define the mapping from {FDi|i ∈ Π} as follows. m(FDi) = n2 + 2n + i. Therefore, m is a
bijection from T ∪ {FDi|i ∈ Π} to [1, n2 + 3n]. Thus, the tasks in T ∪ {FDi|i ∈ Π} are totally
ordered by the range of m and the < relation on integers.

Based on ordering the elements in T , we can order any pair of distinct sequences of labels by
their lexicographic ordering.

Ordering vertices in G. We order the vertices (i, k, e) in G first by their index k, and break
the ties among vertices with the same index by their location i. We define a mapping m : V ∪
{(⊥, 0,⊥)} → N, where G = (V,Z) as follows. Note that for any vertex v = (i, k, e), there are
potentially infinitely many vertices in G with the same location i and at most n vertices in G whose
index is k. Based on the above observation, we order all the vertices G by defining m(v) = k×n+i,
where v = (i, k, e); note that by this definition, m((⊥, 0,⊥) = 0 and for any v ∈ V , m(v) > 0.
Thus, the vertices in V are totally ordered by the range of m and the < relation on integers.

51

Ordering outgoing edges from each node in RG. Fix any node N in RG. We define a total
order over the set of edges outgoing from N as follows. Note that N has exactly one outgoing edge
for each label in T , and potentially infinitely many outgoing edges for each label in {FDi|i ∈ Π}.
Also note that | {FDi|i ∈ Π} | = n. By Lemma 9.7, we know that for each outgoing FDi-edge,
where i is a location, its vertex tag is distinct from the vertex tag of all other FDi edges. Therefore,
for a given vertex tag, there can be only finitely many outgoing edges from N : there is at most
one outgoing FDi edge for each location i with a given vertex tag, and there is at most one l-edge
outgoing from N for any non-FD label l. It follows that there is at most one outgoing edge from
N for a given vertex tag and task label.

Thus, we first order all the edges by their vertex tags, and for a given vertex tag, we order all
edges with the same vertex tag by their task label. Formally, this ordered is captured by the metric
function m for the outgoing edges E from any node N : m(E) = (m(vE),m(lE)).

Note that the range of m is N×N. The lexicographic ordering of the range of m induces a total
order on outgoing edges from each node in RG.

Ordering all the non-⊥ nodes in RG. Recall that each non-⊥ node N in RG can be uniquely
identified by the sequence of labels from > to N and the sequence of distinct vertex tags in the path
from > to N . Also, note that nodes that contain a ⊥ action tag in the path from > to N cannot
be uniquely identified using the above information. However, for our purposes, it is sufficient to
order non-⊥ nodes.

Fix a non-⊥ node N ′ in RG. Let dN ′ denote the depth of the node, and let kN ′ denote the
index of vN ′ ; that is, vN ′ = (∗, kN ′ , ∗), where kN ′ ∈ N. Let E0

N ′ , E
1
N ′ , . . . , E

dN′
N ′ denote the sequence

of edges in the path from > to N ′. We define the metric function for each node N in RG as follows:
m(N) = (dN + kN ,m(E0

N),m(E1
N), . . . ,m(EdN

N)).
Thus, given two nodes N and N ′ in RG, we say that N is ordered before N ′ if either of the

following is true.

• dN + kN < dN ′ + kN ′ .

• Assuming dN + kN = dN ′ + kN ′ , let x be the smallest integer such that at least one of Ex
N

and Ex
N ′ exists, and if Ex

N ′ also exists, then Ex
N 6= Ex

N ′ . Then, m(Ex
N) < m(Ex

N). Informally,
N is ordered before N ′ if the sequence of edges from > to N is lexicographically less than the
sequence of sequence of edges from > to N ′.

Next, we show that the metric function m imposes a total order on the non-⊥ nodes in RG,
and there exists a node with the minimum metric value among all the nodes in RG. In Lemma
10.32, we show that distinct non-⊥ nodes must have distinct metric values, which implies that the
metric function m establishes a total order over all the non-⊥ nodes in RG (Lemma 10.33). By
implication, m establishes a total order over any non-empty subset of non-⊥ nodes inRG (Corollary
10.34). In Lemma 10.36, we show that for any non-⊥ node N there are only finitely many nodes
whose metric value is lexicographically smaller than the metric value of N (we use Lemma 10.35 as
a helper lemma to prove this). Corollary 10.37 immediately follows from Lemma 10.36; Corollary
10.37 states that in any non-empty subset of non-⊥ nodes in RG, for each node N , there are only
finitely many nodes with a smaller metric value. Lemma 10.33 and Corollary 10.37 together imply
Corollary 10.38, which states that any non-empty subset N of non-⊥ nodes in RG contains a unique
node with the minimum metric value.

Lemma 10.32. For any pair N , N ′ of distinct non-⊥ nodes in RG, m(N) 6= m(N ′).

52

Proof. Fix N and N ′ as in the hypothesis of the lemma. For contradiction, assume m(N) =
m(N ′). Therefore, the sequence of labels in the path from > to N and from > to N ′ are identical
(consequently, both N and N ′ are at the same depth), and vN = vN ′ . Invoking Lemma 9.16, we
know that N = N ′. This contradicts the hypothesis that N and N ′ are distinct.

Lemma 10.33. The non-⊥ nodes in RG are totally ordered by their metric function m.

Proof. By Lemma 10.32, we know that each non-⊥ node in RG has a distinct metric value. By
definition the range of the metric function m of nodes in RG are totally ordered (by lexicographic
ordering). Therefore, the non-⊥ nodes in RG are totally ordered by their metric value.

Corollary 10.34. For any non-empty subset N of non-⊥ nodes in RG, the nodes in N are totally
ordered by their metric function m.

Proof. Follows from Lemma 10.33.

Lemma 10.35. For any non-⊥ node N in RG, there are only finitely many nodes N ′ such that
dN ′ + kN ′ ≤ dN + kN .

Proof. We use the following two claims to prove the main lemma.
Claim 1. For any vertex v in G, there are only finitely many paths in G that end with v.

Proof. Fix a vertex v = (i, k, e) in G. For contradiction, assume that G contains infinitely many
paths ending in v. Therefore, there are infinitely many vertices v′ in G such that there is a path
from v′ to v. By the transitive closure property of G, it implies that there are infinitely many
vertices v′ such that there is an edge in G from v′ to v. This contradicts Lemma 8.4.

Claim 2. For any pair of positive integers d and k, there are only finitely many nodes N ′′ such
that dN ′′ = d and kN ′′ = k.

Proof. Fix d and k. By construction of G, there are at most n vertices v of the form (∗, k, ∗) in G;
let Ṽ be the set of all such vertices. For each v ∈ Ṽ , by Claim 1, there are only finitely many paths
p in G that end with v; let P̃ denote all the paths in G that end with some vertex in Ṽ . For each
p ∈ P̃ , there are only finitely many sequences p′ of length d consisting of only the vertices in p; let
P̃ ′ denote the set of all sequences over the vertices in some p ∈ P̃ . Note that P̃ ′ is finite.

Let L̃ be the set of all sequences of length d over T ∪ {FDi|i ∈ Π}. Note that L̃ is finite.
For each non-⊥ node N ′′ in RG such that dN ′′ = d and kN ′′ = k; let eN ′′ denote the sequence

of edges from > to N ′′. By Lemma 9.17, we know that the projection of eN ′′ on the sequence of
vertex tags and labels is unique, and by construction, this projection is an element of P̃ ′× L̃. Since
P̃ ′ and L̃ are finite, we conclude that there are only finitely many nodes N ′′ such that dN ′′ = d and
kN ′′ = k.

Fix a non-⊥ node N in RG. Let dk = dN + kN . We apply Claim 2 for all values of d and k,
where d is in [0, dk] and k is in [0, dk−d], respectively, to conclude that there are only finitely many
nodes N ′ such that dN ′ + kN ′ ≤ dN + kN .

Lemma 10.36. For any non-⊥ node N in RG, there are only finitely many non-⊥ nodes N ′ such
that m(N ′) ≤ m(N).

Proof. Fix N as in the hypothesis of the lemma. Recall that the first element in m(N ′) of any node
N ′ is dN ′+kN ′ . Therefore, for any non-⊥ node N ′ such that m(N ′) < m(N), dN ′+kN ′ ≤ dN +kN .
Invoking Lemma 10.35, we know that there are only finitely many nodes N ′ such that dN ′ + kN ′ ≤
dN + kN . Therefore, there are only finitely many non-⊥ nodes N ′ such that m(N ′) ≤ m(N).

53

Corollary 10.37. For any non-empty subset N of non-⊥ nodes in RG, for any non-⊥ node N in
N , there are only finitely many non-⊥ nodes N ′ ∈ N such that m(N ′) ≤ m(N).

Proof. Follows from Lemma 10.36.

Corollary 10.38. For any non-empty subset N of non-⊥ nodes in RG, there exists a unique non-⊥
node N ∈ N such that for all N ′ ∈ N \ {N}, m(N) < m(N ′).

Proof. Fix N as in the hypothesis of the corollary. For contradiction, assume that for every node
N ∈ N , there exists a node N ′ ∈ N such that m(N ′) < m(N). By Corollary 10.34, we know
that the nodes in N are totally ordered by their metric value. Therefore, for any node N ∈ N ,
there must exist an infinite number of nodes N ′ ∈ N such that m(N ′) < m(N). However, this
contradicts Corollary 10.37.

Ranking non-⊥ nodes in RG. From Lemma 10.33, we know that the metric function m for
non-⊥ nodes establishes a total order over the set of non-⊥ nodes in RG. By Corollaries 10.37 and
10.38, we map the non-⊥ nodes to the set of natural numbers by a function rank defined as follows.

Let NG be the set of all non-⊥ nodes in RG. For any non-negative integer x, if Nx is node with
the x-th smallest metric value among the nodes in NG, then rank(Nx) = x.

This notion of “rank” is used to define the metric value of non-⊥ gadgets.

Metric value of non-⊥ gadgets. Given a non-⊥ gadget of the form (N, l, r, El, Er, Erl), it can
be uniquely identified by N , N l and N rl, where N l is the lower endpoint of El and N rl is the lower
endpoint of Erl. Similarly, given a non-⊥ gadget of the from (N, l, El, E′`), it can be uniquely
identified by N , N l and N ′`, where N l is the lower endpoint of El and N ′` is the lower endpoint of
E′`.

For a non-⊥ decision gadget (N, l, r, El, Er, Erl), the metric value of the gadget is defined
as m((N, l, r, El, Er, Erl)) = 〈rank(N), 〈rank(N l), rank(N rl)〉〉, where 〈·, ·〉 is the Cantor pairing
function [1]13. Similarly, for a non-⊥ decision gadget (N, l, El, E′`), the metric value of the gadget
is defined as m((N, l, El, E′`)) = 〈rank(N), 〈rank(N l), rank(N ′`)〉〉.
Lemma 10.39. For any pair of distinct non-⊥ gadgets Y1 and Y2, m(Y1) 6= m(Y2).

Proof. Follows from the properties of the Cantor pairing function.

The first non-⊥ decision gadget in RG is the non-⊥ decision gadget with the smallest metric
value among all non-⊥ decision gadgets in RG. Next, we show that such a decision gadget exists.

Lemma 10.40. For any any non-⊥ gadget Y in RG, there are only finitely many non-⊥ gadgets
Y ′ in RG such that m(Y) > m(Y ′).

Proof. The lemma follows directly from the properties of the Cantor pairing function.

Next, we show that RG has a first non-⊥ decision gadget.

Theorem 10.41. RG contains a non-⊥ decision gadget Y such that the metric value of any other
non-⊥ decision gadget Y ′ is strictly greater than the metric value of Y .

13Recall that Cantor pairing function π is a bijection from N×N to N and is defined by π(n1, n2) = 1
2
(n1 +n2)(n1 +

n2 + 1) + n2.

54

Proof. Let Y be the set of all non-⊥ decision gadgets in RG. Fix an arbitrary Y ′ ∈ Y. By
Lemma 10.40, we know that there are only finitely many Y ′′ ∈ Y such that m(Y ′′) < m(Y ′). Let
Y ′ = {Y ′′|Y ′′ ∈ Y ∧m(Y ′′) ≤ m(Y ′)}. Since Y ′ is a finite set, let Y = arg minY ∈Y ′ {m(Y)}. By
construction, Y is a non-⊥ decision gadget such that the metric value of any other non-⊥ decision
gadget Y ′ is strictly greater than the metric value of Y .

Given an observation G that is viable for D, let first(RG) denote the first non-⊥ decision
gadget in RG.

Recall that at most f locations are not live in G; tD ∈ TD is a a trace that is compatible with D,
and G1, G2, G3, . . . is a sequence of observations that converge to G. Next we show the ‘persistence’
of non-⊥ decision gadgets across the sequence of execution trees RG1 ,RG2 ,RG3 ,

Lemma 10.42. For any G′ ∈ {G,G1, G2, . . .}, for any any non-⊥ gadget Y in RG′, there are only
finitely many non-⊥ gadgets Y ′ in RG′ such that m(Y) > m(Y ′).

Proof. The lemma follows directly from the properties of the Cantor pairing function.

Let Ymin denote first(RG): this first non-⊥ decision gadget in RG.

Lemma 10.43. There exists a positive integer x such that for all positive integers x′ ≥ x, Ymin is
the first non-⊥ decision gadget in RGx′ .

Proof. Applying Lemma 10.30, we know that there exists a positive integer xY such that for all
positive integers x′Y ≥ xY , Ymin is a non-⊥ decision gadget in RGx′

Y . Fix xY .
By Lemma 10.42, we know that there are only finitely many non-⊥ gadgets Y ′ in RGxY such

that m(Y ′) < m(Ymin). Let Ŷ denote the set of all such gadgets Y ′. By construction all the
gadgets in Ŷ are not non-⊥ decision gadgets (that is, they are either ⊥ decision gadgets, or not
decision gadgets at all) in RG. By Lemma 10.31, we know that for each Y ′ ∈ Ŷ there exists a
positive integer xY ′ such that for all positive integers x′Y ′ ≥ xY ′ , Y ′ is not a non-⊥ decision gadget

in RGx′
Y ′ ; fix an xY ′ for each such Y ′. Let x denote the largest such xY ′ ; since Ŷ is a finite set, we

know that x is exists.
Thus, for all x′ ≥ x, Ymin is the first non-⊥ decision gadget in RGx′ .

11 A Weakest AFD for Consensus

In [2], Chandra et al. showed that Ω is a weakest failure detector for solving (n− 1)-crash-tolerant
consensus. We use similar arguments to show that AFD Ωf (defined in Section 5.3), which is a
generalization of the Ω AFD, is a weakest strong-sampling AFD to solve f -crash-tolerant consensus
in all well-formed environments. Although the assumption about strong-sampling AFDs seems to
weaken our result with respect to the result in [2], in fact, a similar assumption was implicitly used
in [2].

Recall that Ωf , where 0 ≤ f < n, denotes the AFD that behaves exactly like Ω in traces that
have at most f faulty locations, and in traces that have more than f faulty locations, the outputs
by Ω are unconstrained. In order to show that Ωf is weakest to solve f -crash-tolerant consensus,
first we have to show that f -crash-tolerant consensus can be solved using Ωf in any well-formed
environment. Since Ωf behaves exactly like Ω in executions where at most f locations crash, we
see that the algorithm in [3] can be modified trivially to solve f -crash-tolerant consensus using Ωf

in any well-formed environment. It remains to show that, for every strong-sampling AFD D, if D

55

is sufficient to solve f -crash-tolerant consensus in any well-formed environment, then D is stronger
than Ωf .

For the remainder of this section, fix f to be a positive integer not exceeding n.
In Section 11.1, we present an algorithm that solves Ωf using any arbitrary strong-sampling

AFD that solves f -crash-tolerant consensus, and in Section 11.2, we present the proof of correctness.
Since we know that Ωf is sufficient to solve f -crash-tolerant consensus, we thus establish that Ωf

is a weakest AFD to solve f -crash-tolerant consensus.

11.1 Algorithm for Solving Ωf

Let D be an AFD sufficient to solve f -crash-tolerant consensus, where 0 ≤ f < n, in the well-
formed environment EC from Section 10.2. By definition, there exists a distributed algorithm AP

D

that uses D to solve f -crash-tolerant consensus in EC . Using AP
D, we construct an algorithm AΩ

that uses D to solve Ωf .
In AΩ, each process automaton keeps track of the outputs provided by AFD D and exchanges

this information with all other process automata (at other locations). Each process uses this
information to maintain an observation G (a local variable), and sends this observation to the
other process automata. Initially, the observation G at each process automaton is empty, and the
local variable k, which counts the number of AFD events that have occurred at that location, is
0. Each process also maintains a local variable fdout which may be viewed as the automaton’s
current estimate of the output of the AFD Ωf that it implements; initially, at each process i, the
value of fdout is i. Next, we describe the actions of the process automaton at a location (say) i.

When an AFD output d occurs at location i, the input action d occurs in AΩ
i ; in this action, the

process automaton does the following. It increments k by 1 (which updates the number of AFD
events that have occurred at i) and inserts a new vertex (i, k, d) into its local variable G; the insert
operation is defined in Section 8.3. A copy of the updated observation G is appended to sendq for
every other location to be sent out to all other locations. The process automaton constructs the
directed tree RG for the current value of G (as described in Section 9). If RG contains a non-⊥
gadget, then it determines the first non-⊥ decision gadget in RG and updates fdout to the critical
location of that decision gadget. Finally, the automaton adds (fdout, i) to sendq.

If the front element of sendq is a pair consisting of an observation observe and location j, then
the output action send(observe, j) is enabled. When this action occurs, the front element of sendq
is deleted (and a message is send to j that contains the observation observe).

When the process automaton at i receives a message from another location j with the obser-
vation observe, the input event receive(observe, j) occurs, and the process automaton updates G
with the union of G and observe; the union operation is defined in Section 8.3.

If the front element of sendq is a pair (j, i), where j is a location, the output action FDΩ(j) is
enabled. When this action occurs, the front element of sendq is deleted.

Note that sendq contains both the observations that are sent to other locations and the value
of the Ωf AFD output events. This is because we model process automata as having a single task.
Alternatively, we could have modeled process automata as having multiple tasks and used separate
data structures to store the AFD outputs and the observations to be sent to other locations.

The pseudocode for the algorithm is given in Algorithm 3.

11.2 Correctness

Fix an arbitrary fair execution α of the system consisting of AΩ, the channel automata, the crash
automaton, and the well-formed environment EC such that α|Î∪OD

∈ TD and at most f locations

56

Algorithm 3 Algorithm for solving Ω
The automaton AΩ

i at each location i.
Signature:

input crashi

input d: OD,i

input receive(obs : Observation, j : Π \ {i})i

output send(obs : Observation, j : Π \ {i})i

output FDΩ(j : Π)

Variables:
G: a finite observation, initially empty Finite observation maintained at all locations
k: integer, initially 0 Denotes the number of AFD outputs occurred so far
sendq: queue of pairs (o, j), where o is either an observation or a location, and j is a location, initially empty.
fdout: Π, initially i Location ID output by the Ωf AFD output actions
faulty: Boolean, initially false When true, the process automaton is crashed

Actions:
input crash
effect

faulty := true

input d: d ∈ OD,i

effect
if not faulty, then

k := k + 1
insert vertex (i, k, d) into G The insert operation is defined in Section 8.3.
foreach j ∈ Π \ {i}

append (G, j) to sendq
if RG contains a non-⊥ decision gadget, then

H := first(RG) Recall that first(RG) is the first non-⊥ decision gadget in RG

fdout := critical location of H
append (fdout, i) to sendq

input receive(obs, j)
effect

if not faulty, then
G := G ∪ obs The union operation is defined in Section 8.3.

output send(obs, j)
precondition

(¬faulty ∧ ((obs, j) = head(sendq)))
effect

delete head of sendq

output FDΩ(j)
precondition

(¬faulty ∧ ((j, i) = head(sendq)))
effect

delete head of sendq

57

crash in α. Let α|Î∪OD
= tD. Recall that AFD Ωf behaves exactly like Ω if at most f locations

crash. Thus, it remains to show that α|Î∪OΩ
∈ TΩ.

The remainder of this section uses the following notation. Recall that an execution is a sequence
of alternating states and actions. In execution α, αs[k] denotes the k-th state in α, and αs[k].Gi

denotes the value of the observation Gi in state αs[k]. We assume that the initial state of α, denoted
αs[0], is the 0-th state in α.

The proof is divided into three parts. In Section 11.2.1, we prove some basic properties of the
graphs Gi, where i is a location, that are used in the remainder of the proof. In Section 11.2.2, we
show that each α[k].Gi, where k is a positive integer and i is a location, is a viable observation for
D. In Section 11.2.3, we show that for all live locations i, the limits G∞i of α[k].Gi, as k approaches
∞, are identical and a viable observation for D; therefore, we denote all G∞i (for all locations i) as
G∞. Finally, in Section 11.2.4, we identify the “first” non-⊥ decision gadget Y in G∞ and show
that for each live location i, eventually, Y is also the first non-⊥ decision gadget for Gi. Since each
live process eventually detects the same decision gadget as the “first”, each live process eventually
and permanently outputs the same live location as the output of Ωf . This completes the proof.

11.2.1 Properties of the graphs Gi at each location i

Here we present some basic properties of the Gi graphs14. Lemma 11.1 states that the value of Gi

in any state is a subgraph of its value in any later state. For a triple v = (i, k̂, e) that exists in some
αs[x′].Gj′ , let x be the smallest positive integer such that αs[x].Gj contains the vertex v for some
location j; then, vertex v said to “appear” in α at index x. Lemma 11.3 establishes that when a
new vertex v = (i, k̂, e) “appears” in α at index x, v is inserted into Gi; that is, αs[x].Gi contains
v. Lemma 11.4 establishes that when v = (i, k̂, e) first “appears” in α at index x (1) e precedes
the state αs[x] in α, (2) the value of ki is k̂ − 1, (3) e is the k̂-th OD,i event in α, (4) Gi does not
contain any other vertex of the form (i, k̂, ∗), and (5) Gi contains vertices of the form (i, k′, ∗) for
all k′ < k̂. Lemma 11.5 establish that when a vertex v “appears” in α, all the incoming edges to v
are fixed and do not change thereafter. Lemma 11.6 establishes that if v “appears” in α at index
x, then for all x′ ≥ x, αs[x].Gi is a subgraph of αs[x′].Gj . Finally, Lemma 11.7 establishes that if
an edge (v1, v2) occurs in any graph Gi, then the event of v1 precedes the event of v2 in α.

Lemma 11.1. For each positive integer x and each location i, αs[x].Gi is a subgraph of αs[x+1].Gi.

Proof. Fix i and x as in the hypotheses of the Lemma. The proof follows from the observation that
no vertex and no edge in αs[x].Gi is deleted in αs[x+ 1].Gi, by any action.

Corollary 11.2. For each positive integer x, each location i, for all positive integers x′ > x,
αs[x].Gi is a subgraph of αs[x′].Gi.

Lemma 11.3. For any vertex (i, k̂, e), let x be the smallest integer such that for some location j,
αs[x].Gj contains the vertex (i, k̂, e). Then (1) j = i and (2) event e immediately precedes αs[x] in
α.

Proof. Fix (i, k̂, e), x, and j as in the hypotheses of the lemma. Therefore, αs[x − 1].Gj does not
contain the vertex (i, k̂, e) and αs[x].Gj contains the vertex (i, k̂, e). Let a be the action that occurs
between states αs[x− 1] and αs[x] in α.

14Although Gi for each location i is an observation, we have not yet shown this to be the case. Consequently, we
refer to them merely as “graphs”. We prove that the Gis are observations in Theorem 11.11.

58

First, we prove part 1 of the lemma. From the pseudocode, we know that a is either an action
in OD,j or an action of the form receive(∗, ∗)j . In the former case, we see that j = i. We show
that the latter case is impossible.

For contradiction, assume that a is an action of the form receive(observe, j′)j . From the
pseudocode, we see that observe contains vertex (i, k̂, e). However, from the reliable FIFO behavior
of the channel automata, we know the process automaton at j′ must have sent the message observe
containing vertex (i, k̂, e) before state αs[x− 1] in α. Let this occur in state αs[x−], where x− < x.
Therefore, αs[x−].Gj′ contains vertex (i, k̂, e), which contradicts our assumption that x is the
smallest integer such that for some location j, αs[x].Gj contains the vertex (i, k̂, e); this establishes
part 1 of the lemma.

Also, we see that a must be an action in OD,j , and from the pseudocode, we conclude that
a = e; this establishes part 2 of the lemma.

Lemma 11.4. For any vertex (i, k̂, e), let x be the smallest integer such that αs[x].Gi contains the
vertex (i, k̂, e). The following are true.

1. αs[x− 1].ki = k̂ − 1.

2. e = α|OD,i
[k̂]

3. αs[x− 1].Gi does not contain any other vertex of the form (i, k̂, ∗).
4. For each positive integer k′ < k̂, αs[x− 1].Gi contains one vertex of the form (i, k′, ∗).

Proof. Fix i, v = (i, k̂, e) and x as in the hypotheses of the lemma. We prove the lemma by
induction on k̂.

Base Case. Let k̂ = 1. When the first event e from OD,i occurs in α, from the pseudocode,
we see that the vertex (i, 1, e) is added to Gi. Therefore, for vertex (i, 1, e), let x be the smallest
integer such that αs[x].Gi contains the vertex (i, 1, e). From the pseudocode, we see that (1)
αs[x− 1].ki = 0. Since e is the first event from OD,i, (2) e = α|OD,i

[1]. Note that (3) αs[x− 1].Gi

does not contain any vertex of the form (i, 1, ∗). Property 4 is satisfied vacuously.
Inductive Hypothesis. For any vertex (i, k̂, e), let x be the smallest integer such that αs[x].Gi

contains the vertex (i, k̂, e). Then the following is true.

1. αs[x− 1].ki = k̂ − 1.

2. e = α|OD,i
[k̂].

3. αs[x− 1].Gi does not contain any other vertex of the form (i, k̂, ∗).
4. For each positive integer k′ < k̂, αs[x− 1].Gi contains one vertex of the form (i, k′, ∗).
Inductive Step. Let x′ be the smallest integer such that αs[x′].Gi contains the vertex (i, k̂+1, e′)

for some e′. Applying Lemma 11.3, we know that for every other location j and all x′′ ≤ x′,
αs[x′′].Gj does not contain the vertex (i, k̂ + 1, e′) and the event preceding αs[x′] is event e′. From
the pseudocode, we see that e′ ∈ OD,i, and since any action from OD,i increments ki by 1, we
conclude that (1) αs[x′ − 1].ki = k̂. Also, since ki is updated only when an action from OD,i

occurs, e = α|OD,i
[k̂], and when e′ occurs, vertex (i, k̂ + 1, e′) is inserted to Gi, we conclude that

(2) e′ = α|OD,i
[k̂ + 1].

From the inductive hypothesis we know that αs[x − 1].ki = k̂ − 1. Since e ∈ OD,i, and any
action from OD,i increments ki, we know that αs[x].ki = k̂. We have already established that

59

αs[x′ − 1].ki = k̂. Therefore, e′ is the earliest event from OD,i that follows e. That is, (3) e =
α|OD,i

[k̂ + 1].
By the inductive hypothesis, we know that each positive integer k′ < k̂, αs[x − 1].Gi contains

one vertex of the form (i, k′, ∗). We have established that e′ is the earliest event from OD,i that
follows e. Therefore, αs[x′ − 1].Gi contains exactly one event of the form (i, k̂, ∗), which is (i, k̂, e).
Therefore, (4) for each positive integer k′ < k̂ + 1, αs[x′ − 1].Gi contains one vertex of the form
(i, k′, ∗).
Lemma 11.5. For any location j, any positive integer x, and any pair of vertices u and v = (i, k, e)
such that αs[x].Gj contains the edge (u, v), the following is true. Let x′ be the smallest positive
integer such that αs[x′].Gi contains the vertex v. Then αs[x′].Gi contains the edge (u, v).

Proof. Fix j, x, u, v = (i, k, e), and x′ as in the hypotheses of the lemma. Let xmin be the smallest
positive integer such that for some location j′, αs[xmin].Gj′ contains the edge (u, v). Applying
Lemma 11.3, we know that xmin ≥ x′. If xmin > x′, then note that the edge (u, v) is added to Gj′

by an action of the form receive(observe, j′′)j′ , where observe contains the edge (u, v). However,
this implies that for some xprev < xmin, αs[xprev].Gj′′ contains the edge (u, v), and this contradicts
the definition of xmin. Therefore, xmin = x′. Applying Lemma 11.3, we know that j′ = i. Therefore,
αs[x′].Gi contains the edge (u, v).

Lemma 11.6. For any vertex (i, k, e), let x be the smallest integer such that for some location
j, αs[x].Gj contains the vertex (i, k, e). For any location j′ and any positive integer x′ such that
αs[x′].Gj′ contains the vertex (i, k, e), αs[x].Gj is a subgraph of αs[x′].Gj′.

Proof. Fix (i, k, e), x, and j as in the hypotheses of the lemma. Applying Lemma 11.3 we know
that j = i.

For contradiction, assume there exists a location j′ and a positive integer x′ such that αs[x′].Gj′

contains the vertex (i, k, e), but αs[x].Gj is not a subgraph of αs[x′].Gj′ . Fix the smallest such x′

and the corresponding location j′ such that αs[x′].Gj′ contains the vertex (i, k, e).
From the definition of x we know that x′ ≥ x. Applying Corollary 11.2, we know that αs[x].Gi

is a subgraph of αs[x′].Gi, and therefore j′ 6= i.
Since x′ is the smallest integer such that αs[x′].Gj′ contains the vertex (i, k, e) and j′ 6= i, we

conclude that the action preceding αs[x′].Gj′ in α is an action of the form receive(observe, j′′)j′ ,
where observe contains the vertex (i, k, e) and αs[x].Gi is not a subgraph of observe. Fix the
location j′′. Therefore, there exists a positive integer x′′ < x′ such that αs[x′′].Gj′′ contains the
vertex (i, k, e) and αs[x].Gi is not a subgraph of αs[x′′].Gj′′ . This contradicts the definition of
x′.

Lemma 11.7. For any edge (v1, v2) in αs[x].Gi, the event e1 occurs before event e2 in α, where
v1 = (i1, k1, e1) and v2 = (i2, k2, e2).

Proof. Fix v1 = (i1, k1, e1) and v2 = (i2, k2, e2), as in the hypotheses of the lemma.
Applying Lemma 11.3, we know that there exists a positive integer x1 such that (1) αs[x1].Gi1

contains vertex v1, (2) for each positive integer x′1 < x1, αs[x′1].Gi1 does not contain v1, and (3) for
each positive integer x′1 ≤ x1 and every other location j, αs[x′1].Gj does not contain the vertex v1.

Similarly, applying Lemma 11.3, we know that there exists a positive integer x2 such that (1)
αs[x2].Gi2 contains vertex v2, (2) for each positive integer x′2 < x2, αs[x′2].Gi2 does not contain the
vertex v2, and (3) for each positive integer x′2 ≤ x2 and every other location j, αs[x′2].Gj does not
contain the vertex v2. From Lemma 11.5 we know that αs[x2].Gi2 also contains the edge (v1, v2).

60

Therefore, αs[x1].Gi1 contains vertex v1 and does not contain v2, whereas αs[x2].Gi2 contains
vertices v1 and v2. Applying Lemma 11.6, we know that αs[x1].Gi1 is a subgraph of αs[x2].Gi2 .
From the definition of x1 and x2, we know that x1 < x2. Note that v1 is added to αs[x1].Gi1 when
event e1 occurs in α after state αs[x1 − 1], and similarly, v2 is added to αs[x2].Gi1 when event e2

occurs in α after state αs[x2 − 1]. Therefore, e1 occurs before e2 in α.

11.2.2 For each location i, Gi is an observation

In this subsection, we prove in Theorem 11.11 that for each location i and each positive integer x,
αs[x].Gi is an observation for D. We use two three lemmas to prove the main result. In Lemma
11.8, we prove that for any location i, if the graph Gi is an observation and an event from OD,i

occurs, then in the resulting state, Gi is an observation. In Lemma 11.9, we show that for any two
graphs αs[x].Gj and αs[x′].Gj′ , and for every vertex v = (i, k, e) from αs[x].Gj , either αs[x′].Gj′

also contains v, or αs[x′].Gj′ does not contain any vertex of the form (i, k, ∗). In Lemma 11.10, we
show that for any two graphs αs[x].Gj and αs[x′].Gj′ , for any vertex v that is in both αs[x].Gj and
αs[x′].Gj′ , v has the same set of incoming edges in both αs[x].Gj and αs[x′].Gj′ .

Lemma 11.8. For any location i and a positive integer x, if αs[x].Gi is an observation and the
event e between αs[x] and αs[x+ 1] in α is an event from OD,i then αs[x+ 1].Gi is an observation.

Proof. Fix i, x, and e from the hypothesis of the lemma. From the pseudocode, we know that when
e occurs, a vertex v of the form (i, e, k̂) is added to Gi, and for each vertex u in αs[x].Gi, the edge
(u, v) is added to Gi as well. From Lemma 11.4, we know that αs[x].ki = k̂ − 1 and αs[x].Gi does
not contain any vertex of the form (i, ∗, k̂). Therefore, αs[x+ 1].Gi = insert(αs[x].Gi, v); invoking
Lemma 8.8, we conclude that αs[x+ 1].Gi is an observation.

Lemma 11.9. For any pair of positive integers x and x′, and any pair of locations j and j′, if
αs[x].Gj contains a vertex v = (i, k, e), then it is not the case that αs[x′].Gj′ contains a vertex
v′ = (i, k, e′) where e 6= e′.

Proof. Fix a pair of positive integers x and x′, and a pair of locations j and j′, such that αs[x].Gj

contains a vertex v = (i, k, e), αs[x′].Gj′ contains a vertex v′ = (i, k, e′). We complete the proof by
showing that e = e′.

Let x1 be the smallest positive integer such that for some location i1, αs[x1].Gi1 contains the
vertex v, and let x2 be the smallest positive integer such that for some location i2, αs[x2].Gi2

contains the vertex v′. Invoking Lemma 11.3, we know that i1 = i2 = i. Invoking Lemma 11.4, we
know that e = α|OD,i

[k] and e′ = α|OD,i
[k]; that is, e = e′.

Lemma 11.10. For any pair of positive integers x and x′, and any pair of locations j and j′, for
every vertex v in αs[x].Gj and αs[x′].Gj′, If an edge (u, v) is in αs[x].Gj, then the edge (u, v) exists
in αs[x′].Gj′.

Proof. Fix a pair of positive integers x and x′, and a pair of locations j and j′. If the set of vertices
of αs[x].Gj and αs[x′].Gj′ are disjoint, then the lemma is satisfied vacuously. For the remainder of
the proof, assume that there exists at least one vertex in both αs[x].Gj and αs[x′].Gj′ . Fix such a
vertex v = (i, k, e). Fix u to be any vertex in αs[x].Gj such that (u, v) is an edge in αs[x].Gj . We
show that the edge (u, v) exists in αs[x′].Gj′ .

Let x̂ be the smallest positive integer such that αs[x̂].Gi contains the vertex v. Invoking Lemma
11.5, we know that αs[x̂].Gi contains the edge (u, v). Invoking Lemma 11.6, we know that αs[x̂].Gi

is a subgraph of αs[x′].Gj′ , and therefore, αs[x′].Gj′ contains the edge (u, v).

61

Theorem 11.11. For each location i, for each positive integer x, αs[x].Gi is an observation.

Proof. We prove the theorem by strong induction on x.
Inductive Hypothesis. For each location i, and each positive integer x′ < x, αs[x′].Gi is an

observation.
Inductive Step. Fix a location i. We know that for x = 0, αs[x].Gi is the empty graph, and

is therefore an observation. The remainder of the proof assumes x > 1. We know from Lemma
11.1 that αs[x − 1].Gi is a subgraph of αs[x].Gi. Therefore, either αs[x − 1].Gi = αs[x].Gi, or
αs[x − 1].Gi 6= αs[x].Gi. In the former case, we apply the inductive hypothesis to conclude that
αs[x].Gi is an observation. In the latter case, the following argument holds.

From the pseudocode, we know that the event e between αs[x− 1] and αs[x] in α is either (1)
an event from OD,i or (2) an event of the form receive(observe, j)i for some j 6= i.

Case 1. Let e be an event from OD,i. Recall that by the inductive hypothesis, αs[x − 1].Gi is
an observation. Invoking Lemma 11.8, we conclude that αs[x].Gi is an observation.

Case 2. Let e be an event of the form receive(observe, j)i for some j 6= i. From the FIFO
property of the channels, we know that an event send(observe, i)j occurred in α before event e, From
the pseudocode, we know that for some x′ < x, observe = αs[x′].Gj . By the inductive hypothesis, we
conclude that observe and αs[x− 1].Gi are observations. Also, from the pseudocode, we know that
when even e occurs, Gi is updated to Gi ∪ observe. Therefore, αs[x].Gi = αs[x − 1].Gi ∪ observe.
By Lemma 11.9, we know that for each vertex v = (i′, k′, e′) in observe, it is not the case that
αs[x − 1].Gi contains a vertex v′ = (i′, k′, e′′) where e′′ 6= e′, and invoking Lemma 11.10, we know
that for every vertex v in both observe and αs[x − 1].Gi, v has the same set of incoming edges in
both observe and αs[x − 1].Gi. Therefore, we can invoke Lemma 8.7 to conclude that αs[x].Gi is
an observation. This completes the induction.

11.2.3 The limit of the Gi’s is a viable observation

For each location i, we define G∞i to be the limit of αs[k].Gi as k tends to ∞. In this subsection,
we show that for each pair of live locations i and j, G∞i = G∞j , and this limiting observation is
viable for D.

Recall that the limit G∞i = (V∞i , Z∞i) is defined as follows. Let αs[k].Gi = (V k
i , Z

k
i) for each

natural number k. Then, V∞i =
⋃

k∈N V
k
i and Z∞i =

⋃
k∈N Z

k
i .

Lemma 11.12. For each location i, for every pair of integers x,x′, where x′ > x, αs[x].Gi is a
prefix of αs[x′].Gi.

Proof. Fix i, x, and x′, as in the hypotheses of the lemma. Applying Theorem 11.11, we know that
αs[x].Gi and αs[x′].Gi are observations. From Corollary 11.2 we know that αs[x].Gi is a subgraph of
αs[x′].Gi. Applying Lemma 11.5, we conclude that for each vertex in αs[x].Gi, the set of incoming
edges of v is the same in αs[x].Gi and αs[x′].Gi. Therefore, αs[x].Gi is a prefix of αs[x′].Gi.

Corollary 11.13. For each location i and each positive integer x, αs[x].Gi is a prefix of G∞i .

Next, Lemma 11.15 shows that for any pair i, j of live locations G∞i = G∞j . We use Lemma
11.14, which shows at any given point in the execution, the value of Gi is a prefix of the value of
Gj at some later point in the execution, as a helper.

Lemma 11.14. For each positive integer k, every pair of locations i and j that are live in tD, there
exists a positive integer k′ ≥ k such that αs[k].Gi is a prefix of αs[k′].Gj.

62

Proof. Fix k, i, and j as in the hypotheses of the lemma. Since i is live, there exist a positive
integers k1 ≥ k and k2 ≥ k such that αs[k2].sendqi contains (αs[k1].Gi, j), and therefore, eventually
the event send(αs[k1].Gi, j)i occurs which sends αs[k1].Gi to j. By Lemma 11.12, we know that
αs[k].Gi is a prefix of αs[k1].Gi. From the properties of the channel automata we know that
eventually event receive(αs[k1].Gi, i)j occurs in state (say) αs[k3], where k3 > k2, and from the
pseudocode, we know that αs[k3 + 1].Gj is αs[k3].Gj ∪ αs[k − 1].Gi. Invoking Theorem 11.11, we
know that αs[k3+1].Gj is an observation. Since we have already established that αs[k].Gi is a prefix
of αs[k1].Gi, we conclude that αs[k].Gi is a prefix of αs[k3 + 1].Gj . Thus the lemma is satisfied for
k′ = k3 + 1.

Lemma 11.15. For every pair of locations i and j that are live in tD, G∞i = G∞j .

Proof. Fix i and j as in the hypotheses of the lemma. Fix z to be either an edge or a vertex in G∞i .
By definition, there exists a positive integer k such that αs[k].Gi contains z. By Lemma 11.14, we
know that there exists a positive integer k′ such that αs[k′].Gj contains z; applying Corollary 11.2,
we conclude that for all k′′ ≥ k′, αs[k′′].Gj contains z. In other words, G∞j contains z. Therefore,
G∞i is a subgraph of G∞j .

Reversing the roles of i and j, we see that G∞j is a subgraph of Gk. Therefore, G∞i = G∞j .

Lemma 11.15 allows us to define G∞ to be the graph G∞i for any location i that is live in tD.

Lemma 11.16. For every location i such that G∞ contains an infinite number of vertices whose
location is i, for each vertex v in G∞, there exists a vertex v′ in G∞ whose location is i and the
edge (v, v′) is in G∞.

Proof. Fix i and v as in the hypotheses of the lemma. Since G∞ contains an infinite number of
vertices whose location is i, we know that i is live in α, and therefore, an infinite number of events
from OD,i occur in α.

Since v is in G∞, we know that there exists a positive integer xi such that v is a vertex αs[xi].Gi.
Fix e to be the first event from OD,i following αs[xi] in α. Let the state preceding e in α be αs[x].
From the pseudocode, we know that when e occurs, a vertex of the form (i, ∗, e) is inserted in Gi.
Let this vertex be v′. From the insertion operation, we know that an edge (v, v′) is added to Gi.
Therefore, αs[x+ 1].Gi contains the edge (v, v′). From Corollary 11.13, we know that αs[x+ 1].Gi

is a prefix of G∞. Therefore, there exists a vertex v′ in G∞ whose location is i and the edge (v, v′)
is in G∞.

Finally, in Theorem 11.17, we establish that G∞ is an observation, and in Theorem 11.18, we
establish that it is a viable observation.

Theorem 11.17. G∞ is an observation.

Proof. For any live location j, we know from Lemma 11.12 that αs[0].Gj , αs[1].Gj , αs[2].Gi, . . . is
an infinite sequence of finite observations, where αs[x].Gj is a prefix of αs[x+1].Gj for each natural
number x. By definition, we know thatG∞i is the limit of the infinite sequence αs[0].Gj , αs[1].Gj , αs[2].Gi, . . .,
and we know that G∞ = G∞i .

By Lemma 11.16, we know that for every vertex v ∈ V and any location i ∈ live(G∞), there
exists a vertex v′ with location i and G∞ contains an edge from v to v′. Therefore, invoking Lemma
8.10, we conclude that G∞ is an observation.

63

Next we establish that G∞ is a viable observation. Intuitively, the proof is as follows. Recall
that α|OD∪Î = tD. For any live location i, G∞ contains all the AFD output events from tD that
occur at i and in the same order in which they occur at i. For any non-live location i, G∞ contains
some prefix of all the AFD output events from tD that occur at i and in the same order in which they
occur at i. Also, there is an edge from a vertex v1 = (i1, k1, e1) to another vertex v2 = (i2, k2, e2)
in G∞ only if e1 occurs before e2 in tD. Therefore, there must exist some sampling t′D of tD such
that tD|OD

is a topological sort of G∞. Invoking closure under sampling, we conclude that t′D must
be in TD, and therefore G∞ is viable. The formal theorem statement and proof follows.

Theorem 11.18. G∞ is a viable observation for D.

Proof. Recall that α|OD∪Î = tD ∈ TD. We complete the proof by showing that there exists a trace
t′D ∈ TD that is compatible with G∞; specifically, we show that there exists a topological sort ν of
the vertices of G∞ and a sampling t′D of tD such that t′D|OD

= ε|OD
, where ε is the event-sequence

of ν.
Let ν̂ be the set of all topological sorts of the vertices of G∞, and let ε̂ be the set of all event-

sequences such that each ε̂ = {ε′|ε′ is the event-sequence of some ν ′ ∈ ν̂}. From the pseudocode, we
see that ε̂ is the set of all ε′ such that (1) for each location j, ε′|OD,j

is a prefix of α|OD,j
= tD|OD,j

,
and (2) for each location j that is live in tD, ε′|OD,j

= α|OD,j
= tD|OD,j

.
For any edge (v1, v2) in G∞ we know that there exists a location i and a positive integer x such

that αs[x].Gi contains the edge (v1, v2); applying Lemma 11.7, the event of v1 occurs before the
event of v2. Therefore, in G∞, for every edge (v1, v2), the event of v1 occurs before the event of v2.
Therefore, (3) for every pair of vertices v1, v2 of G∞, it is not the case that the event of v1 occurs
before the event of v2 in the event sequence ε′ of every topological sort ν ′ of the vertices of G∞,
and the event of v1 does not occur before the event of v2 in tD.

From (1), (2), and (3), we conclude that there must exist an event-sequence ε ∈ ε̂, such that (1)
for each location j, ε|OD,j

is a prefix of αOD,j
= tD|OD,j

, (2) for each location j that is live in tD,
ε|OD,j

= αOD,j
= tD|OD,j

, and (3) for every pair of events e1, e2 in ε, if e1 occurs before e2 in tD,
then e1 occurs before e2 in ε. Therefore, there exists a sampling t′D of tD such that t′D|OD

= ε|OD
.

By closure under sampling we know that t′D ∈ TD. Thus, by definition, G∞ is viable for D.

We have seen so far that in any fair execution α of the system, at each live location i, Gi evolves
as an ever growing observation such that the limit G∞ of Gi in α is a viable observation for D.

11.2.4 Identifying the smallest decision gadget

Next, we show that RG∞ has at least one non-⊥ decision gadget. Let Y be the first non-⊥ decision
gadget in RG∞ . We show that at each live location i, eventually, RGi will contain the decision
gadget Y , and importantly, eventually forever, Y remains the first non-⊥ decision gadget of RGi .
By Theorem 10.28, we know that the critical location of Y is a live location. However, since for all
the live processes i, the first non-⊥ decision gadget of RGi converges to Y , we know that all the
live locations converge to the same live location, which is output of the AΩ. Thus, AΩ solves Ωf

using AFD D.

Corollary 11.19. RG∞ contains at least one decision gadget.

Proof. Follows from Theorems 10.28 and 11.18.

Applying the above Corollary, we know thatRG∞ contains a decision gadget. Applying Theorem
10.41, let Ymin be first(RG∞) (the first non-⊥ decision gadget in RG∞).

64

Lemma 11.20. For each location i that is live in tD, there exists a positive integer x such that for
all positive integers x′ ≥ x, Ymin is the first non-⊥ decision gadget in αs[x′].RG

i .

Proof. Fix a location i that is live in tD. Invoking Theorem 11.11, we know that for each positive
integer x, αs[x].Gi is an observation. Since G∞ = limx→∞ αs[x].Gi is a viable observation for D
and tD is compatible with G∞, we invoke Lemma 11.12 to conclude that αs[1].RG

i , αs[2].RG
i , . . . is

an infinite sequence of finite observations that converge to G∞.
Thus, the conclusion follows immediately from the application of Lemma 10.43.

Theorem 11.21. The algorithm AΩ solves Ωf using AFD D, where f < n.

Proof. Fix a fair execution α of the system consisting of AΩ, the channel automata, and the crash
automaton such that α|OD∪Î ∈ TD and at most f locations crash in α. Denote α|OD∪Î as tD. For
each location i that is live in tD, let G∞i denote limx→∞ αs[x].Gi. Applying Lemma 11.15, we know
that for each location j that is live in tD, G∞i = G∞j = G∞. By Theorem 11.18, we know that G∞

is a viable observation for D. By Corollary 11.19, we know that RG∞ contains at least one decision
gadget. Applying Theorem 10.41 let Ymin be the first non-⊥ decision gadget in RG∞ . Applying
Lemma 11.20, we know that for each location i that is live in tD, eventually and permanently, Ymin

is the first non-⊥ decision gadget of RG
i . Thus, for each location i that is live in tD, eventually

and permanently, when an event from OD,i occurs in α, (fdout, i) is appended to sendqi, where
fdout is the critical location of Ymin. Therefore, for each location i that is live in tD, some suffix of
α|FDΩ,i

is the infinite sequence over FDΩ(fdout)i. Applying Theorem 10.28, we know that fdout
is live in G∞, and therefore, fdout is live in α. In other words, α|OΩ∪Î ∈ TΩf

.

12 Conclusion

We have shown that for any strong sampling AFD sufficient to solve consensus, the executions
of the system that solves consensus using this AFD must satisfy the following property. For any
fair execution, the events responsible for the transition from a bivalent execution to a univalent
execution must occur at location that does not crash. Using the above result, we have shown that
Ω is a weakest strong-sampling AFD to solve consensus. The proof is along the lines similar to
the original proof from [2]. However, our proof is much more rigorous and does not make any
implicit assumptions or assertions. Furthermore, the notion of observations and tree of executions
introduced in Sections 8 and 9 and their properties may be of independent interest themselves.

References

[1] Gregor Cantor. Uber eine eigenschaft des inbegroffes aller reellen algebraischen zahlen. Journal
für die reine und angewandte Mathematik, 77:258–262, 1874.

[2] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure detector for
solving consensus. Journal of the ACM, 43(4):685–722, 1996.

[3] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225–267, 1996.

[4] Bernadette Charron-Bost, Martin Hutle, and Josef Widder. In search of lost time. Information
Processing Letters, 110(21), 2010.

65

[5] Alejandro Cornejo, Nancy Lynch, and Srikanth Sastry. Asynchronous failure detectors. In
Proceedings of the 2012 ACM symposium on Principles of Distributed Computing, pages 243–
252, 2012.

[6] Alejandro Cornejo, Nancy Lynch, and Srikanth Sastry. Asynchronous failure detectors. Tech-
nical Report MIT-CSAIL-TR-2013-025, CSAIL, MIT, 2013.

[7] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, 1985.

[8] Nancy Lynch and Mark Tuttle. Hierarchical correctness proofs for distributed algorithms. In
Proceedings of the sixth annual ACM Symposium on Principles of distributed computing, pages
137–151, 1987.

[9] Nancy Lynch and Mark Tuttle. An introduction to Input/Output automata. CWI-Quarterly,
2(3), 1989.

[10] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

66

