Show simple item record

dc.contributor.authorFischer, Michael J.en_US
dc.contributor.authorStockmeyer, Larry J.en_US
dc.date.accessioned2023-03-29T14:03:54Z
dc.date.available2023-03-29T14:03:54Z
dc.date.issued1974-05
dc.identifier.urihttps://hdl.handle.net/1721.1/148874
dc.description.abstractA Turing machine multiplies binary integers on-line if it receives its inputs low-order digits first and produces the jth digit of the product before reading in the (j+l)st digits of the two inputs. We present a general method for converting any off-line multiplication algorithm which forms the product of two n-digit binary numbers in time F(n) into an on-line method which uses time only O(F(n) log n ), assuming that F is monotone and satisfies n F(n) F(2n)/2 ! kF(n) for some constant k.en_US
dc.relation.ispartofseriesMIT-LCS-TM-045
dc.relation.ispartofseriesMAC-TM-045
dc.titleFast On-line Integer Multiplicationen_US
dc.identifier.oclc09585393


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record