Fast On-line Integer Multiplication
dc.contributor.author | Fischer, Michael J. | en_US |
dc.contributor.author | Stockmeyer, Larry J. | en_US |
dc.date.accessioned | 2023-03-29T14:03:54Z | |
dc.date.available | 2023-03-29T14:03:54Z | |
dc.date.issued | 1974-05 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/148874 | |
dc.description.abstract | A Turing machine multiplies binary integers on-line if it receives its inputs low-order digits first and produces the jth digit of the product before reading in the (j+l)st digits of the two inputs. We present a general method for converting any off-line multiplication algorithm which forms the product of two n-digit binary numbers in time F(n) into an on-line method which uses time only O(F(n) log n ), assuming that F is monotone and satisfies n F(n) F(2n)/2 ! kF(n) for some constant k. | en_US |
dc.relation.ispartofseries | MIT-LCS-TM-045 | |
dc.relation.ispartofseries | MAC-TM-045 | |
dc.title | Fast On-line Integer Multiplication | en_US |
dc.identifier.oclc | 09585393 |