Show simple item record

dc.contributor.authorSchaeffer, Joachim
dc.contributor.authorGasper, Paul
dc.contributor.authorGarcia-Tamayo, Esteban
dc.contributor.authorGasper, Raymond
dc.contributor.authorAdachi, Masaki
dc.contributor.authorPablo Gaviria-Cardona, Juan
dc.contributor.authorMontoya-Bedoya, Simon
dc.contributor.authorBhutani, Anoushka
dc.contributor.authorSchiek, Andrew
dc.contributor.authorGoodall, Rhys
dc.contributor.authorFindeisen, Rolf
dc.contributor.authorBraatz, Richard D
dc.contributor.authorEngelke, Simon
dc.date.accessioned2024-12-03T21:54:23Z
dc.date.available2024-12-03T21:54:23Z
dc.date.issued2023-06-01
dc.identifier.urihttps://hdl.handle.net/1721.1/157747
dc.description.abstractAnalysis of Electrochemical Impedance Spectroscopy (EIS) data for electrochemical systems often consists of defining an Equivalent Circuit Model (ECM) using expert knowledge and then optimizing the model parameters to deconvolute various resistance, capacitive, inductive, or diffusion responses. For small data sets, this procedure can be conducted manually; however, it is not feasible to manually define a proper ECM for extensive data sets with a wide range of EIS responses. Automatic identification of an ECM would substantially accelerate the analysis of large sets of EIS data. We showcase machine learning methods to classify the ECMs of 9,300 impedance spectra provided by QuantumScape for the BatteryDEV hackathon. The best-performing approach is a gradient-boosted tree model utilizing a library to automatically generate features, followed by a random forest model using the raw spectral data. A convolutional neural network using boolean images of Nyquist representations is presented as an alternative, although it achieves a lower accuracy. We publish the data and open source the associated code. The approaches described in this article can serve as benchmarks for further studies. A key remaining challenge is the identifiability of the labels, underlined by the model performances and the comparison of misclassified spectra.en_US
dc.language.isoen
dc.publisherThe Electrochemical Societyen_US
dc.relation.isversionof10.1149/1945-7111/acd8fben_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceThe Electrochemical Societyen_US
dc.titleMachine Learning Benchmarks for the Classification of Equivalent Circuit Models from Electrochemical Impedance Spectraen_US
dc.typeArticleen_US
dc.identifier.citationJoachim Schaeffer et al 2023 J. Electrochem. Soc. 170 060512en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.relation.journalJournal of The Electrochemical Societyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-12-03T21:46:58Z
dspace.orderedauthorsSchaeffer, J; Gasper, P; Garcia-Tamayo, E; Gasper, R; Adachi, M; Pablo Gaviria-Cardona, J; Montoya-Bedoya, S; Bhutani, A; Schiek, A; Goodall, R; Findeisen, R; Braatz, RD; Engelke, Sen_US
dspace.date.submission2024-12-03T21:47:06Z
mit.journal.volume170en_US
mit.journal.issue6en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record