Show simple item record

dc.contributor.authorGrosso, Gaia
dc.contributor.authorLetizia, Marco
dc.date.accessioned2025-01-06T18:37:58Z
dc.date.available2025-01-06T18:37:58Z
dc.date.issued2025-01-04
dc.identifier.urihttps://hdl.handle.net/1721.1/157946
dc.description.abstractIn this work, we address the question of how to enhance signal-agnostic searches by leveraging multiple testing strategies. Specifically, we consider hypothesis tests relying on machine learning, where model selection can introduce a bias towards specific families of new physics signals. Focusing on the New Physics Learning Machine, a methodology to perform a signal-agnostic likelihood-ratio test, we explore a number of approaches to multiple testing, such as combining p-values and aggregating test statistics. Our findings show that it is beneficial to combine different tests, characterised by distinct choices of hyperparameters, and that performances comparable to the best available test are generally achieved, while also providing a more uniform response to various types of anomalies. This study proposes a methodology that is valid beyond machine learning approaches and could in principle be applied to a larger class model-agnostic analyses based on hypothesis testing.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1140/epjc/s10052-024-13722-5en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleMultiple testing for signal-agnostic searches for new physics with machine learningen_US
dc.typeArticleen_US
dc.identifier.citationGrosso, G., Letizia, M. Multiple testing for signal-agnostic searches for new physics with machine learning. Eur. Phys. J. C 85, 4 (2025).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Nuclear Scienceen_US
dc.relation.journalThe European Physical Journal Cen_US
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2025-01-05T04:11:59Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2025-01-05T04:11:59Z
mit.journal.volume85en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record