Show simple item record

dc.contributor.authorBringmann, Bjoern
dc.contributor.authorLührmann, Jonas
dc.contributor.authorStaffilani, Gigliola
dc.date.accessioned2025-04-01T19:41:21Z
dc.date.available2025-04-01T19:41:21Z
dc.date.issued2024-02-23
dc.identifier.urihttps://hdl.handle.net/1721.1/159019
dc.description.abstractWe discuss the ( 1 + 1 ) -dimensional wave maps equation with values in a compact Riemannian manifold . Motivated by the Gibbs measure problem, we consider Brownian paths on the manifold as initial data. Our main theorem is the probabilistic local well-posedness of the associated initial value problem. The analysis in this setting combines analytic, geometric, and probabilistic methods.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00220-023-04885-5en_US
dc.rightsCreative Commons Attribution-Noncommercial-ShareAlikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleThe Wave Maps Equation and Brownian Pathsen_US
dc.typeArticleen_US
dc.identifier.citationCommunications in Mathematical Physics. 2024 Feb 23;405(3):60en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalCommunications in Mathematical Physicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2025-03-27T13:46:21Z
dc.language.rfc3066en
dc.rights.holderThe Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature
dspace.embargo.termsY
dspace.date.submission2025-03-27T13:46:21Z
mit.journal.volume405en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record