Show simple item record

dc.contributor.authorLepsveridze, Saba
dc.contributor.authorSaatashvili, Aleksandre
dc.contributor.authorZhao, Yufei
dc.date.accessioned2025-04-08T16:40:19Z
dc.date.available2025-04-08T16:40:19Z
dc.date.issued2025-01-02
dc.identifier.urihttps://hdl.handle.net/1721.1/159064
dc.description.abstractA spherical L-code, where L ⊆ [−1,∞), consists of unit vectors in Rd whose pairwise inner products are contained in L. Determining the maximum cardinality NL (d) of an L-code in Rd is a fundamental question in discrete geometry and has been extensively investigated for various choices of L. Our understanding in high dimensions is generally quite poor. Equiangular lines, corresponding to L = {−α, α}, is a rare and notable solved case. Bukh studied an extension of equiangular lines and showed that NL (d) = OL (d) for L = [−1, −β]∪{α} with α, β > 0 (we call such L-codes “uniacute”), leaving open the question of determining the leading constant factor. Balla, Dräxler, Keevash, and Sudakov proved a “uniform bound” showing lim supd→∞ NL (d)/d ≤ 2p for L = [−1, −β]∪{α} and p = α/β + 1. For which (α, β) is this uniform bound tight? We completely answer this question. We develop a framework for studying uniacute codes, including a global structure theorem showing that the Gram matrix has an approximate p-block structure. We also formulate a notion of “modular codes,” which we conjecture to be optimal in high dimensions.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00493-024-00125-zen_US
dc.rightsCreative Commons Attribution-Noncommercial-ShareAlikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleUniacute Spherical Codesen_US
dc.typeArticleen_US
dc.identifier.citationLepsveridze, S., Saatashvili, A. & Zhao, Y. Uniacute Spherical Codes. Combinatorica 45, 8 (2025).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalCombinatoricaen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2025-03-27T13:46:56Z
dc.language.rfc3066en
dc.rights.holderThe Author(s), under exclusive licence to János Bolyai Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature
dspace.embargo.termsY
dspace.date.submission2025-03-27T13:46:56Z
mit.journal.volume45en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record