Show simple item record

dc.contributor.authorAtkeson, Christopher G.en_US
dc.contributor.authorAboaf, Eric W.en_US
dc.contributor.authorMcIntyre, Josephen_US
dc.contributor.authorReinkensmeyer, David J.en_US
dc.date.accessioned2004-10-04T14:36:56Z
dc.date.available2004-10-04T14:36:56Z
dc.date.issued1988-04-01en_US
dc.identifier.otherAIM-1024en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/6050
dc.description.abstractModels play an important role in learning from practice. Models of a controlled system can be used as learning operators to refine commands on the basis of performance errors. The examples used to demonstrate this include positioning a limb at a visual target and following a defined trajectory. Better models lead to faster correction of command errors, requiring less practice to attain a given level of performance. The benefits of accurate modeling are improved performance in all aspects of control, while the risks of inadequate modeling are poor learning performance, or even degradation of performance with practice.en_US
dc.format.extent9 p.en_US
dc.format.extent2422777 bytes
dc.format.extent885654 bytes
dc.format.mimetypeapplication/postscript
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.relation.ispartofseriesAIM-1024en_US
dc.titleModel-Based Robot Learningen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record