Show simple item record

dc.contributor.authorGrimson W. Eric L.en_US
dc.contributor.authorHuttenlocher, Daniel P.en_US
dc.contributor.authorJacobs, David W.en_US
dc.date.accessioned2004-10-04T15:31:21Z
dc.date.available2004-10-04T15:31:21Z
dc.date.issued1991-08-01en_US
dc.identifier.otherAIM-1250en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/6557
dc.description.abstractAffine transformations are often used in recognition systems, to approximate the effects of perspective projection. The underlying mathematics is for exact feature data, with no positional uncertainty. In practice, heuristics are added to handle uncertainty. We provide a precise analysis of affine point matching, obtaining an expression for the range of affine-invariant values consistent with bounded uncertainty. This analysis reveals that the range of affine-invariant values depends on the actual $x$-$y$-positions of the features, i.e. with uncertainty, affine representations are not invariant with respect to the Cartesian coordinate system. We analyze the effect of this on geometric hashing and alignment recognition methods.en_US
dc.format.extent5692320 bytes
dc.format.extent2225833 bytes
dc.format.mimetypeapplication/postscript
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.relation.ispartofseriesAIM-1250en_US
dc.titleAffine Matching with Bounded Sensor Error: A Study of Geometric Hashing and Alignmenten_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record