Show simple item record

dc.contributor.authorDror, Ron O.en_US
dc.contributor.authorAdelson, Edward H.en_US
dc.contributor.authorWillsky, Alan S.en_US
dc.date.accessioned2004-10-08T20:36:32Z
dc.date.available2004-10-08T20:36:32Z
dc.date.issued2001-09-01en_US
dc.identifier.otherAIM-2001-023en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/6656
dc.description.abstractHumans recognize optical reflectance properties of surfaces such as metal, plastic, or paper from a single image without knowledge of illumination. We develop a machine vision system to perform similar recognition tasks automatically. Reflectance estimation under unknown, arbitrary illumination proves highly underconstrained due to the variety of potential illumination distributions and surface reflectance properties. We have found that the spatial structure of real-world illumination possesses some of the statistical regularities observed in the natural image statistics literature. A human or computer vision system may be able to exploit this prior information to determine the most likely surface reflectance given an observed image. We develop an algorithm for reflectance classification under unknown real-world illumination, which learns relationships between surface reflectance and certain features (statistics) computed from a single observed image. We also develop an automatic feature selection method.en_US
dc.format.extent22 p.en_US
dc.format.extent7750699 bytes
dc.format.extent706071 bytes
dc.format.mimetypeapplication/postscript
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.relation.ispartofseriesAIM-2001-023en_US
dc.subjectAIen_US
dc.subjectreflectanceen_US
dc.subjectlightingen_US
dc.subjectBRDFen_US
dc.subjectsurfaceen_US
dc.subjectillumination statisticsen_US
dc.subjectnatural imagesen_US
dc.titleSurface Reflectance Estimation and Natural Illumination Statisticsen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record